
The Logistical Networking Testbed
Scott Atchley Micah Beck Jeremy Millar
Terry Moore Jim Plank Stephen Soltesz

Logistical Computing and Internetworking Laboratory
Tech Report UT-CS-02-496

Computer Science Department
University of Tennessee

{atchley, mbeck, millar, tmoore, plank, soltesz}@cs.utk.edu
http://www.cs.utk.edu/˜plank/plank/papers/CS-02-496.html

ABSTRACT
We describe the Logistical Networking Testbed, built using
the Network Storage Stack, and sample applications that use
the testbed. The testbed uses the Network Storage Stack, de-
veloped at the University of Tennessee, which allows for flexi-
ble sharing and utilization of writable storage as a network
resource. The sample applications include content delivery,
multimedia streaming, overlay routing, checkpointing, and an
integrated example. This networking testbed provides over 10
TB of shared storage that is available to all for research.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design – distributed networks, network communi-
cations, store and forward networks.

General Terms
Performance, Design, Reliability, Experimentation, Security.

Keywords
Logistical Networking, store and forward, network storage,
end-to-end guarantees, scalability, wide area storage, Internet
Backplane Protocol, IBP, exNode, LoRS, Logistical Runtime
System, Logistical Backbone, L-Bone, overlay routing, content
delivery, caching, asynchronous storage, peer to peer.

1. INTRODUCTION
Logistical Networking is the term we use to describe the com-
bination of the movement and storage of data. The Logistical
Computing and Internetworking Lab at the University of Ten-
nessee has developed the Network Storage Stack, which i s
modeled after the TCP/IP stack. The purpose of this stack is to
provide a scalably sharable storage service that will increase
efficiency, performance, and functionality of distributed ap-
plications [4].

The paper is organized as follows: In section 2 we provide an
overview of the components of the Network Storage Stack in-
cluding the Logistical Runtime System, which is our testbed.
In section 3 we describe applications that have been or are
being built using this infrastructure. These applications in-
clude content delivery (higher performance downloads of
widely distributed Linux ISO images), multimedia streaming
(viewing DVD-quality video stored around the world), overlay
routing (point-to-point with single and multiple intermediate

nodes as well as point-to-multipoint), checkpointing, and,
finally, an integrated example using all the above.

2. THE NETWORK STORAGE STACK
The Internet Protocol (IP) Stack serves as the basis for net-
working communication worldwide. The IP stack has at its
foundation a simple service — datagram delivery. The failure
mode is simple as well — the datagram either arrives or it does
not. The IP layer makes no guarantees. Based on this simple
service, more complex services can be built such as TCP, which
does offer delivery guarantees. This notion of building com-
plex services on top of unreliable services is based on the end-
to-end arguments [10] and it is because of this design the In-
ternet has been able to scale so well.

Using the IP stack as a guideline, the Logistical Computing
and Internetworking (LoCI) Lab at the University of Tennessee
has developed the Network Storage Stack. The goal of the Net-
work Storage Stack is to add storage resources to the Internet
in a sharable, scalable manner just as IP made possible scal-
able, sharable communication. The parts of the Network Stor-
age Stack are shown in figure 1. Next, we will outline each
layer.

Figure 1: The Network Storage Stack.

2.1 IBP
The foundation of the Network Storage Stack is the Internet
Backplane Protocol (IBP). IBP allows anyone to share disk
space or memory space over the network. The server software
can run in user space (no root access required). The user sets
the amount of space to share and the maximum time allowed
for any single allocation. The user could set that time to be
infinite, but if the client ever loses the pointer to that space,

the space will be lost forever. Typically, LoCI suggests that
depot owners set the duration between one day and one month
for disk depots and less than a day for memory depots.

IBP is a simple service with the following operations:

Allocate

A user can request an allocation (a specific amount of
space on the machine for a specific amount of time). If the
depot (IBP server) has the space and the time request i s
less than or equal to the depot’s maximum duration pol-
icy, then the request is granted and the depot sends a ca-
pability set (keys) to the user. The keys grant write (store),
read (load), and manage access to the space. These keys are
long, variable length, random strings. Note, that the key
does not infer anything about the depot’s file system
structure.

Store

Once granted a set of capabilities, the user may write data
to an allocation. The writes are append-only.

Load

After data has been written to an allocation, the user may
read from that allocation, beginning from any offset
within the allocation.

Copy

Copy allows the user to perform a third-party transfer that
is to send data from one allocation to another allocation
(point-to-point) without bringing the data back to the cli-
ent. The Copy call uses TCP and is available on every IBP
depot.

MCopy

MCopy allows the user to perform third-party transfers in
point-to-point or point-to-multipoint mode. The MCopy
call can use many protocols including TCP, reliable and
unreliable UDP, and non-IP protocols. The depots allow
plug-in modules to provide additional protocols. All de-
pots involved in the transfer must support the specified
protocol.

Manage

Manage allows the user to change the properties of the al-

location. The user may request a renewal of the lease (ex-
tend the expiration time), a shortening of the lease, en-
large the space, shorten the space or free the allocation.

Given the above, a client may request 1 GB for 5 days. If the
depot has the space and 5 days is within its duration policy,
then the depot will return a set of capabilities to the client.
Once the client has the capabilities, she may write to the space,
read from the space, copy it to another allocation, etc. If the
client gives the read capability to someone else, they can read
the stored data as well. This is a very basic type of file sharing
and is similar to a soft link.

The IBP depot supports two policies for allocation revocation,
Hard and Soft. The depot treats Hard allocations like any other
file on the hard drive and will not revoke it until it expires or
until a user frees it with a Manage call. Since other users and
other processes on that machine will also use disk resources, i t
is possible to use all the disk space on the drive (or array). IBP
also supports the policy of Soft allocations, which the depot
may prematurely revoke if the available hard drive space falls
beneath a preset threshold. This allows a depot owner to ini-
tially allow the depot to allocate most of a new, empty drive
and then as other applications consume disk space, the depot
revokes Soft allocations to maintain enough disk space to
prevent write-to-disk failures.

Because IBP has a few, simple operations, we believe that the
service can scale as easily as the Internet. See [4] for a more
detailed look at IBP including types of allocations and other
policies.

2.2 L-Bone
Once a user knows the hostnames and ports for some IBP de-
pots, the user can allocate space and then write and read from
it. To help users find IBP depots, part of the next layer up of
the stack is the Logistical Backbone (L-Bone). The L-Bone is a
resource discovery service that maintains a list of public de-
pots and metadata about those depots.

The metadata includes IBP information such as hostname, port,
and allocation duration policy, as well as recent space avail-
ability values. The L-Bone periodically polls the depots to
update the space availability values. In addition to the IBP
metadata, the L-Bone can also store geographic location in-

Figure 2: The L-Bone has over 140 depots worldwide share over 10 TB of storage.

formation as well as machine room characteristics such as data
backup policy, power backup availability, and others. The L-
Bone client library provides the ability to find depots match-
ing specific criteria (available space, duration policy, IBP allo-
cation type, etc.). It also provides the ability to check if a list
of depots are available and still meet the needs of the user.

The L-Bone servers use the Network Weather Service (NWS)
[11] to monitor throughput between depots. NWS takes peri-
odic measurements between depots, which it stores and uses to
produce forecasts when needed. The L-Bone client library al-
lows the client to provide a source list of depots and a target
list of depots to the server. The server will query NWS and then
return a matrix of the throughput forecasts.

As of December 2002, the L-Bone lists over 140 depots (Figure
2) on five continents. These depots are serving over 10 TB of
publicly available storage.

2.3 ExNode
Handling a large number of IBP capabilities can be cumber-
some. The exNode library automates the handling of IBP capa-
bilities and allows the user to associate metadata with the ca-
pabilities.

In the Unix file system, the inode maintains an index of disk
blocks that map the file’s contents to the disk. In Unix, these
blocks must be a uniform size throughout the disk and there
must be only one block per offset within the file. The exNode
is a similar data structure that allows a user to chain IBP allo-
cations together into a larger logical entity that is much like a
network file (Figure 3).

Figure 3: exNode compared to inode.

Even though current IBP allocations have a 2 GB limit, the
exNode will allow the user to chain two billion IBP allocations
together, representing a 4 Exabyte (262) file.

Unlike the inode, the exNode is not limited to fixed size allo-
cations and the exNode may have varying-size IBP allocations.
Also, unlike the inode, which is assumed to be on a reliable
disk, the exNode holds IBP allocations on a network that i s
assumed to be unreliable. Because of this inherent unreliabil-
ity, the exNode may have many replicas of the data over differ-
ent IBP depots to improve fault-tolerance. See figure 4 for
sample exNodes.

Figure 4: Sample exNodes.

The exNode also allows for allocations that contain auxiliary
data, which is not part of the file extent. For example, the allo-
cations may contain Reed-Solomon code blocks or parity cod-
ings. These blocks can improve fault-tolerance with a lower
space requirement than replication alone.

The exNode has two major components, arbitrary metadata and
mappings. Mappings may have metadata as well. Metadata
consists of <name, value, type> triplets where the types are 64-
bit integers, 64-bit floating point numbers, character strings,
and metadata lists. The metadata lists allow nesting of meta-
data.

An individual mapping may have an allocation, which can be a
set of URLs. Typically, these are IBP capabilities, but they may
also be other URLs, e.g. HTTP, FTP, or GridFTP URLs. Typi-
cally, the mapping will also have specialized metadata, such as
logical offset, length and physical offset (where in the URL to
begin reading) as well as user-defined, arbitrary metadata.

Each mapping may also have function metadata that describes
how the data was encoded. The function metadata is a nested
list that describes the type of encodings and their relative or-
der. Each function has arguments and optionally metadata. If
the user has encrypted and check-summed the data, he can
store the encryption algorithm name, the encryption key and
the checksum algorithm name using the function metadata.
The exNode library does not include any data conditioning
functions itself.

The exNode library allows a user to create an exNode, attach a
mapping to it, store IBP capabilities into the mapping and add
metadata to the mapping. When a user wants to write the
exNode to disk or to pass it to another user, he can use the
exNode library to serialize it to XML. Because of the XML for-
mat, exNodes created on one platform can be interchanged with
exNodes from any other supported platform.

2.4 LoRS
Although the L-Bone makes it easier for the user to find depots
and the exNode handles IBP capabilities for the user, the user
still has to manually request allocations, store the data, create
the exNode, attach mappings to the exNode and insert the IBP
allocations and metadata into the mappings. The next layer on
the Network Storage Stack is the Logistical Runtime System
(LoRS). The LoRS layer consists of a C API and a command
line interface (CLI) tool set that automate the finding of IBP
depots via the L-Bone, creating and using IBP capabilities and
creating exNodes. Using LoRS is akin to creating and using
network “files”.

The LoRS tools provides six basic functions:

Upload

Store data to a network file.

Download

Retrieve data from a network file.

Augment

Add replicas to a network file.

Trim

Remove replicas from a network file.

Refresh

Modify the expiration time of a network file.

List

View the network file’s metadata

The LoRS API provides much more fine-grain control. The API
can store data from files or memory. Third parties may also use
the API to implement new tools or capabilities such as multi-
cast augments and overlay routing.

Both the LoRS tools and API provide end-to-end services. To
ensure that the data stored on the IBP depots was not altered in
transit or while on disk, LoRS can insert MD5 checksums. Dur-
ing a download, if a block’s checksum does not match, the
block is discarded and the same extent is downloaded from
another source.

To protect data while in transit and while stored on a depot,
which should be considered an un-trusted server, LoRS pro-
vides multiple types of encryption, including DES. With the
API, the application may use additional encryption algorithms
and then add the algorithm type and key as function metadata
to the exNode.

In addition to replication for improving fault-tolerance, LoRS
allows coding blocks to be stored as well. These coding blocks
are like the parity blocks used in RAID storage systems. While
simple replication may provide an adequate measure of fault-
tolerance, the addition of coding blocks can greatly improve
fault-tolerance. Even if a certain extent of the file does not
exist in any replica, it may be possible to regenerate that data
from the remaining data and the coding blocks.

Lastly, to reduce the amount of data transmitted, stored and
retrieved, LoRS supports compression.

3. APPLICATIONS
We have shown that Logistical Networking provides a flexible
framework. We now outline several applications where the
strengths of Logistical Networking are shown more clearly.

3.1 Content Distribution
The dissemination of Linux ISO images ranks as one of the
thorniest content distribution problems. The large size of each
image (approx. 650 MB) and large demand conspire to make
ISO delivery a problem for the major distribution maintainers.
The traditional solution has been to increase the aggregate
bandwidth available to users via mirroring. Additionally, geo-
graphic and network distribution of mirrors provides users
with potentially lower latencies.

However, mirroring is not without disadvantages. In particular,
users tend to consistently use the same mirrors. Generally
speaking, users make use of mirrors at the top of the list, or

those with a reputation for speed. In the large, this behavior
tends to cluster load on a small number of mirrors, often re-
sulting in overload while other resources are under-utilized.

The common solution to the problems of mirroring is the ap-
plication of content distribution networks, e.g., Akamai [6] or
I2-DSI [5]. These networks operate by caching or replicating
content at strategic locations throughout the network. Unlike
mirrors, however, content distribution networks also manage
URL redirection such that users do not need to choose a cache
or replica. Instead, the content distribution network chooses
the copy best able to satisfy the user and redirects the request.
The best copy is determined by a number of metrics, including
hop count from user to cache, load on the replica server, avail-
able throughput from user to cache, etc.

Content distribution networks are not without their problems.
Perhaps non-intuitively, they remain susceptible to flash
crowds, although to a lesser extent than traditional content
delivery systems. This phenomenon has been reported in the
literature [7] and empirically verified by the I2-DSI project. I2-
DSI is a replica-based content distribution network that makes
Linux ISO images available to the Internet2 community. Dur-
ing the four days following the RedHat 7.3 release in April
2002, I2-DSI moved approximately 1.1 TB of data. Addition-
ally, the I2-DSI network experienced an extremely high load
during this period, resulting in refused connections and an
inability to access non-Linux content.

While content distribution networks address the problems of
simple mirroring, a solution to the flash crowd problem is
clearly needed in order to efficiently distribute Linux content.
We propose that logistical networking technologies can pro-
vide this solution by enabling the creation of extensible, ad-
hoc content distribution networks. The exNode Distribution
Network (exDN) utilizes the existing logistical and I2-DSI
infrastructures to distribute Linux ISO images as exNodes.

Each ISO image is uploaded to the logistical network via
LoRS. A number of geographically dispersed replicas (typi-
cally 12) are created in order to provide fault tolerance and
effective load balancing. The resulting exNodes (one per ISO
image) are collected and placed onto the I2-DSI network. Lo-
gistical clients retrieve the Linux exNodes from I2-DSI. They
then download the ISO images from the exNodes via the LoRS
tools.

exDN overcomes the limitations of traditional content distri-
bution networks by leveraging logistical technologies to
quickly add replicas as needed to meet demand. In the event of
a flash crowd, replicas are added via the LoRS tools and the
Linux exNodes are replaced. Load balancing across the exDN
network is achieved via the LoRS download algorithms. The
LoRS download tools use an adaptive algorithm (described in
detail in section 3.2) that attempts to retrieve data from multi-
ple sources in parallel. If an IBP depot is overloaded, the
download tools automatically use the other depots to retrieve
the data. An additional benefit of exDN is the improved per-
formance garnered by utilizing parallel TCP streams.

3.2 Multimedia Streaming
Servers in any kind of content distribution network will suffer
from finite availability, limited connections or gross capacity
over a single connection. While the general goal of “faster
download” helps motivate solutions such as exDN or other
content distribution strategies, no hard throughput require-
ments exist for delivering Linux ISOs or other cached content.

However, in the case of streaming multimedia, a predictable
quality of service is necessary to sustain a minimum through-
put to provide uninterrupted playback.

Commercial multimedia delivery solutions typically require
special purpose server software, proprietary protocols and
dedicated machinery, which is quite costly. If the provider
wishes to prevent a single point of failure, then mirrors or a
content delivery network is required, greatly increasing the
cost. An ideal solution is to find some way of combining the
benefits of exDN with predictable quality of service.

Video IBPster [2] demonstrated at iGrid2002 that Logistical
Networking could reliably deliver high bit-rate video using
freely available, generic infrastructure (typically desktop class
PCs located around the world). A progress-driven redundancy
download algorithm makes it possible to maintain the mini-
mum necessary throughput for streaming multimedia on top of
un-tuned TCP [8].

Figures 5 and 6 illustrate how the download algorithm be-
haves. Initially, a pool of available threads is assigned equally
across available replicas. Past a certain threshold the algorithm
replicates work to improve overall throughput. In this way,
higher priority is placed on pending blocks before those
needed later. If one block lags, an available thread is assigned
to the lagging block. Whichever thread finishes first “wins”
and both threads are freed for work on new blocks or other
lagging blocks.

Figure 5: Progressive-Redundancy Algorithm.

Figure 6: Redundant work when needed.

At the iGrid2002 and SC2002 conferences, we were able to
stream 10 and 15 Mbps video from Australia to the conference
sites in Amsterdam and Baltimore.

3.3 Overlay Routing
In addition to 3rd party point-to-point transfers, Logistical
Networking supports a variety of overlay routing techniques.

3.3.1 Store-and-forward routing
While it is relatively well known that store-and-forward rout-
ing is effective at the link level, the abstractions provided by
the TCP/IP stack encourage programmers to avoid similar al-
gorithms at the application level. Indeed, TCP provides a reli-
able, point-to-point view of the network. However, significant
gains in performance can be made simply by applying low-
level routing techniques to application-level transfers. Logis-
tical networking enables source-directed overlay routing by
providing explicit control of network buffers to applications.

In particular, we have conducted a number of preliminary ex-
periments in the area of store-and-forward overlay routing.
Routing is accomplished by replacing a single point-to-point
data transfer with a number of smaller transfers through inter-
mediate buffers. For instance, a single transfer from A to C can
be replaced with two transfers: A to B, followed by B to C.
Early experiments indicate performance gains of approxi-
mately 75% on average.

Logistical networking admits a variety of variations on this
theme. Using multiple intermediaries is a trivial extension. A
more interesting variation is “interleaved store-and-forward”.
In this variation, the data to be transferred is fragmented into a
number of blocks, and each block is transferred using the pre-
viously described store-and-forward mechanism. Since block
transfers are logically separate, there is no need to wait for all
of the blocks to arrive at the intermediary before forwarding
them. Interleaved performance is no worse than the straight-
forward store-and-forward scheme, and it remains to be seen if
it provides any advantage.

A third variation involves treating the intermediary as a FIFO
buffer. In this case, there is no need to wait for all of a block to
arrive at the intermediary before forwarding can begin. Al-
though we've conducted only the most preliminary of experi-
ments, we expect this method to perform best.

3.3.2 Multi-path routing
In addition to allowing applications to benefit from link-level
type data routing, Logistical Networking also allows applica-
tions to make use of novel new approaches to data transfer. A
promising example of such an approach is multi-path routing.

Multi-path routing is the simultaneous transfer of multiple
data blocks via separate intermediaries. This transfer can be
conceptualized as a scatter from the source to some number of
intermediaries, followed by a gather from those intermediaries
to the ultimate destination. This approach is similar to that
taken by the NetLets project at ORNL [9], and we expect to see
similar performance gains.

3.3.3 Overlay multicast
Logistical networking can also be used to implement overlay
multicast, or point-to-multipoint routing. Here, multicast trees
are built from a number of logistical storage depots and trans-
fers within distinct sub-trees occur in parallel. Transfers be-
tween nodes of the multicast tree may take advantage of any of
the previously described routing mechanisms in order to en-

hance performance. Additionally, IP multicast may be used in
networks where it is supported.

3.4 Data Staging
Another application of Logistical Networking is data staging
for distributed computation. Pre-staging inputs and caching of
intermediate values improves the performance due to data lo-
cality. One project that is exploring the potential of Logistical
Networking for data management is NetSolve [1, 3].

Typically NetSolve clients pass the data and the operation to
be performed to the NetSolve server. The server performs the
computation and returns the result to the client. If the output
of one computation is needed as input to another computation,
it needs to be resent by the client.

In order to eliminate returning intermediate values to the cli-
ent, NetSolve can store the first computation’s results using
the LoRS API and generate an exNode. The NetSolve server
then returns the exNode to the client. Next, the client sends the
exNode and the requested operation as input parameters to the
next NetSolve server. This lightens the burden on the client
and reduces the time to complete all the computations (Figure
7).

Figure 7: In a), NetSolve returns all intermediate results to
the client which must be re-sent before the next computation.
In b), NetSolve uses LoRS for data staging, which minimizes
traffic to and from the client and also reduces latency for the

next computation.

3.5 Checkpointing
As computations increase in complexity and time to comple-
tion, and as parallel computing on clusters becomes more
prevalent, the potential for compute node failure also in-
creases. Checkpointing is a well-understood means for dealing
with the possibility of failures. However, checkpointing a
large distributed application can be problematic, particularly
if the application is running on some sort of RPC platform
without dedicated storage (e.g., NetSolve [ns]).

Logistical networking is uniquely suited to the problem of
managing checkpoints in distributed computing systems. The
time-limited storage provided by IBP maps cleanly to the in-
trinsically short duration of checkpoints. Furthermore, the
anonymous nature of logistical storage ensures that applica-
tions have access to storage as needed. Moreover, the geo-
graphic distribution of logistical storage depots makes it like-
ly that the application will be able to access storage that i s
nearby.

A second application of checkpointing is to facilitate the mi-
gration of compute jobs from one node to another. Again, the
capabilities of a logistical network are well suited to this sort
of interaction. Process state can be checkpointed to logistical
storage and moved quickly to another depot, perhaps across
the world, for resumption on a nearby compute platform. Lo-
gistical networking is poised to enable large-scale data and
process migration for the next generation of geographically
distributed computing environments (i.e. grids).

3.6 Integrated Example
The Terascale Supernova Initiative (TSI) [2] is a collaborative,
multi-disciplinary effort sponsored by the Department of En-
ergy's SciDAC program. TSI is developing models for core
collapse supernovae and enabling technologies in radiation
transport, radiation hydrodynamics, nuclear structure, linear
algebra, and collaborative visualization. The TSI team is com-
posed of members from one national lab and eight universi-
ties.

The centerpiece of the TSI effort is a large-scale magneto-
hydrodynamics simulation. To date, simulations have been
run on 3203 and 6403 node meshes, and runs on 10243 node
meshes are planned for the near future. The storage require-
ments of this simulation are massive: small runs produce out-
put data on the order of 120 GB, while the largest runs are ex-
pected to produce data on the order of 20 TB.

The storage and movement of such large data sets between
institutions is a major challenge for the TSI effort. In order to
meet this challenge, TSI is a major integrator of Logistical
Networking technologies. Logistical networking will be used
to augment or replace legacy systems such as HPSS [1]. While
such systems are able to meet the storage requirements of TSI,
they are unable to address the distributed collaboration re-
quirements. In particular, data managed by HPSS must reside
in one mass storage system at a time, at one of the TSI sites.
When users at another site need to access the data, it must be
packaged and shipped over the network using standard data
transfer mechanisms such as FTP.

Logistical networking will be used as the default output
mechanism for TSI application codes. Rather than outputting
to a parallel file system for staging to HPSS, applications will
output data directly to IBP buffers. Once a portion of the out-
put is generated and stored in IBP, that IBP allocation will be

added to the exNode that contains all of the output. The
exNode will then be replicated to logistical depots at collabo-
rating sites and to mass storage for archival purposes. The
primary advantage of this scheme is that data will reside at all
sites simultaneously, allowing collaborators across many dif-
ferent administrative domains to access the data as soon as i t
is available. This will greatly simplify the complex data pack-
aging and transport requirements of the project.

Additionally, the overlay routing techniques described previ-
ously can be applied to significantly speed up the necessary
data transfer operations. Since the size of the output data will
be quite large, the use of explicit overlay routing and the abil-
ity to use different protocols within IBP’s mcopy() operation
will greatly reduce transfer times.

4. INVITATION TO USE THE TESTBED
The Logistical Networking Testbed is open to all researchers.
No account is needed to use the publicly available storage.

IBP, the L-Bone, the exNode and the Logistical Runtime Sys-
tem are supported by the Logistical Computing and Internet-
working (LoCI) Laboratory and are available at
http://loci.cs.utk.edu. All of the packages compile on Linux,
Solaris and MacOSX. We also provide a set of binaries for
Windows2000 that require Cygwin.

The power of this suite of software has been demonstrated with
several applications:

IBP-Mail is an application that allows users to mail large files
to other users by uploading them into the network, and then
mailing the exNode to the recipient.

IBPster is a media player that plays audio and video files
stored in exNodes on the network. The files may be arbitrarily
striped and replicated, and the player performs a streaming
download to play them.

IBPvo is an application that allows users may schedule record-
ing of television programs into IBP allocations. The user i s
sent an exNode, which he or she may use to re-play the pro-
gram from the network storage buffers.

LoCI supports a main L-Bone (http://loci.cs.utk.edu/lbone/
cgi-bin/lbone_list_view.cgi) that currently is composed of
140 depots in North and South America, Europe, Asia and Oce-
ania (Australia and New Zealand), serving over ten terabytes of
network storage. This storage is available for all to use without
need of an account. The LoRS software has been designed to
run without an L-Bone, or for users to configure their own,
private L-Bone.

People interested in adding more public storage resources to
the L-Bone can do so easily. They can simply download and
install the IBP depot software. Then they would register the
depot with the public L-Bone at http://loci.cs.utk.edu/
lbone/cgi-bin/lbone_depot_modify.cgi?action=add.

5. ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation under grants ANI-0222945, ANI-9980203,
EIA-9972889, EIA-9975015 and EIA-0204007, the Depart-
ment of Energy under grant DE-FC02-01ER25465, and the
University of Tennessee Center for Information Technology
Research. The authors would like to acknowledge Alex Bassi,
Xiang Li and Yong Zheng for their work on IBP, the NetSolve
team, Nagi Rao for discussing his work on multiple path over-
lay routing, Rich Wolski and Martin Swany for their work on
the Network Weather Service and the Logistical Session Layer,
and Hunter Hagewood for his systems support.

6. REFERENCES
[1] Arnold, D., et. al. User's Guide to NetSolve V1.4.1. Techni-

cal Report, ICL-UT-02-05. University of Tennessee Inno-
vative Computing Laboratory. June, 2002.

[2] Atchley, S., Soltesz, S., Plank, J. S., and Beck, M. Video
IBPster. Accepted for publication in Future Generation of
Computer Systems.

[3] Beck, M., et. al. Middleware for the use of storage in com-
munication. Accepted for publication in Parallel Comput-
ing.

[4] Beck, M., Moore, T., and Plank, J.S. An end-to-end ap-
proach to globally scalable network storage. Proc. of ACM
SIGCOMM ’02, Pittsburgh, August 2002.

[5] http://dsi.internet2.edu.

[6] http://www.akamai.com.

[7] Jung, J., Krishnamurthy, B., and Rabinovich, M. Flash
crowds and denial of service attacks: characterization and
implications for CDNs and web sites. Proc. 11th Intl.
World Wide Web Conference. Honolulu, HI, 2002.

[8] Plank, J.S., Atchley, S., Ding, Y., and Beck, M. Algorithms
for high performance, wide-area, distributed file down-
loads. Technical Report CS-02-485. University of Tennes-
see Department of Computer Science, October 8, 2002.

[9] Rao, N. S. V. Multiple paths for end-to-end delay minimi-
zation in distributed computing over the Internet. Proc. of
the ACM/IEEE Conference on Supercomputing. Denver,
Colorado, 2001.

[10] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end argu-
ments in system design. ACM Transactions on Computer
Systems, 2(4):277–288, November 1984.

[11] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A distributed resource performance forecasting
service for metacomputing. Future Generation Computer
Systems, 15(5-6):757–768, 1999.

