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Preface

This document summarizes the basic computations for Markov chain usage models,
presents their derivations, and includes Scilab code to compute each of them.

The contents of this document are the result of years of work by many different
people, and very few results are original. James Whittaker, Michael Thomason, and
Jesse Poore did the original work on Markov chain usage motiél4§]. Gwen Wal-
ton’s research applied mathematical programming techniques to set model probabili-
ties under testing constraintsd]. Jenny Morales§] and Dave Pearso®]investigated
combining information across tests to improve reliability measurements. Kirk Sayre’s
research provided many new and useful analytical results, and provided a framework
for simulation and partition testind.B]. Walter Gutjahr demonstrated how a Markov
chain could be modified to bias test generation toward low-use critical function, and
how the bias could be removed in the resulfis [

This document only discusses computations. Carmen Trammell and Jesse Poore
have written about experimental control during the testing procegsiRob Oshana
and Dave Kelly have written about their experience applying Markov chain usage mod-
els to very large, embedded, real-time, distributed systém4.[
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Chapter 1

Preliminary Definitions

This chapter summarizes some basic results used in the remainder of the document.
See P] for a discussion of Matrix analysis, and sd@][for a discussion of probability
theory.

1.1 Scilab

The algorithms presented in this paper can be executed using Scilab. This is a freely-
available software package which runs on several different platforms. While the Scilab
input language is very similar to MATLAB's input language, there are differences and
the algorithms presented here may require modification to run under MATLAB. Infor-
mation about Scilab is available from Inria:

http://www-rocq.inria.fr/scilab/

It will be necessary to use several stochastic matrices, often constructed from fre-
guency counts by row-normalization. A Scilab procedure to accomplish this is pre-
sented as algorithrh

Oddly enough, the current version of Scilab (2.5) does not provide the binomial co-
eﬁicient(“), or compute the beta function. Procedures for these are given as algorithms
2and3. 'Iphese will be used when reliability models are introduced.

1.2 Notation

Every random variablX has an associated probability distributi®nX — [0, 1] such
that [y dP = 1. For a random variabl¥ with associated probability distributid? the
probability of a particular outcome p¢ = x| will be denoted simplyp(x). Thus if one
has two random variables andY, and writesp(x) p(y), it should be understood that
this represents X = x|PH{Y =y].
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16 CHAPTER 1. PRELIMINARY DEFINITIONS

Algorithm 1 Row-normalize a matrix

// Row-normalize a matrix.

//

// P: a matrix

function [P]=r_n(P),
[m,n]=size (P);

// Get the row sums.
E(l:m)=1; v=P*E;

// Normalize.
for i=1:m, P(i,:)=P(i,:)/v(i); end;
endfunction;

Algorithm 2 Compute the binomial coefficierff)

// Compute the binomial coefficient.
//
// B: The binomial coefficient.
// n: The number of objects of both classes.
// p: The number of objects of one class.
function [B]=binomial_coeff (n,p),

B=exp (sum(log(p+l:n))-sum(log(l:n-p)));
endfunction;

Algorithm 3 Compute the beta function(B, b)

// Compute the beta function.
//
// B: The value of the beta function.
// a: The first parameter.
// b: The second parameter.
function [B]=beta_function(a,b),
B=exp (gammaln (a) tgammaln (b) —~gammaln (a+b) ) ;
endfunction;
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CHAPTER 1. PRELIMINARY DEFINITIONS 17

Thejoint probability PfX = x A Y = y] will be denoted simplyp(x&y). The con-
ditional probability PfY = y|X = x] will be denoted simplyp(y|x).
The Kronecker deltd; j; extended to the real numbers is definedifgre R as:

[0 ifi#]
5"1—{1 ifi—j.

Matrices will be denoted by upper-case letters, and elements of matrices by lower-
case letters. For example, thiex n matrix A consists oimnelementsy; j, wherei and
j are the row and column indices of the element, respectively. To make the association
clear, matrixA may be writtenA = [a; j]. It will often be useful to refer to a single
column of a matrix; this will be done by subscripting the matrixAsaenotes thgth
column vector of matriA.

For any matrixA = [a; j] let Aq = [g j&; j] denote the matrix consisting of the diag-
onal of A, with zeros everywhere else. Whenever necessaty, e{1] denote a matrix
of ones of appropriate size.

1.3 Expectation of random variables
Theexpectatiorof a random variabl, denotedE[X], is an unbiased estimator of the

random variable’s value. In the discrete case this expectation is a probability-weighted
average of the random variable’s values:

EX] = Z(x-p(x).

Mathematical expectation exhibits several useful properties:
e Linearity: E[3{L aX] =YL aE[X]

e Positivity. If X > 0thenE[X] > 0. If X >Y thenE[X] > E[Y]
e E[X]] > [E[X]|

e The Schwarz InequalityE[XY]|? < E[|X|?]E][|Y|?]; equality holds if and only if
there is a real constaitsuch thahX +Y = 0.

e Jensen’s InequalityLetg: R — R be a convex Borel function. Theg{E[X]) <
E[g(X)].

For two random variableX andY, one has:

EXY] = ; Xy P(X&Y).
xexX,yeY
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18 CHAPTER 1. PRELIMINARY DEFINITIONS

If and only if the two random variables are independent, the&y) = p(x)p(y). In
this case, the following derivation holds:

EIXY] = >Zny-ID(X&y)
ye

= ; xy- p(x)p(y)
xeX,yeY

= ; X-p(x)-y-p(y)
xeX,yeY

= <X€;x p(X)) <y;y' p(v))

= EXE[Y].

1.4 Variance of random variables

How far can one expect the value of a random variabte differ from its expectation

E[X]? This question is answered by theriance VafX] of the random variable, which

is the expectation of the square of the difference between the observed value and the
expected value:

Var(X] =E [(X - E[X])?] .

One can “scale” the variance back by taking the square root. This is callethtieard
deviationa[X]| = y/Var[X].

The variance of random variab¥ecan be restated using linearity and the definition
of expectation as follows:

VarX] = E[(X-E[X])?
= E[X*- 2XEX]—|—E2[ 1]
= E[X?-2EXE[X]+E*[X]
= E[X?-E*X]. 1.1

Eqg.1.1is the standard formula for variance. It can be applied to a simple sum of two

Contents Copyrigh©) 2000 by Stacy J. Prowell. All rights reserved.



CHAPTER 1. PRELIMINARY DEFINITIONS 19

random variableX andY as follows:

varX+Y] = E[X+Y—-EX+Y])?

= E[X24+Y?+E?X+Y]+2XY
—2XE[X+Y] —2YE[X +VY]]

= E[X2+Y24+ (E[X]+E[Y])?+2XY
—2XE[X] — 2XE]Y] — 2Y E[X] — 2Y E]Y]]

= E[X?+Y2+E?X]+2E[X]E[Y] +E?[Y] +2XY
—2XE[X] — 2XE[Y] — 2Y E[X] — 2Y E]Y]]

= E[X?I+E[Y +E2[X] + 2E[X]E[Y] + E?[Y] + 2E[XY]
—2E2[X] — 4E[X|E[Y] — 2E2[Y]

= E[X?I+E[YY —E2[X] - E2Y] +2E[XY] — 2E[X]E[Y]

= Var[X]+Var[Y]+2(E[XY] — E[X]|E]Y]). 1.2)

The termE[XY] — E[X]E[Y] in eq. 1.2 s referred to as theovarianceof X andY,
denotedCoV{X,Y]. Thus one can write the above equation as:

VarX+Y] = Var[X]+VarY]+2Co{X,Y].

If X andY are independent random variables, one®@agX,Y] = E[XY]—E[X]|E[Y] =
E[X]E[Y]—E[X]E[Y] =0, andVar[X + Y] = Var[X] +Var[Y]. If X andY are not inde-
pendent, one can use the Schwarz inequality to obtain an upper bowviarfgr+ Y]

(in the covariance is not readily computable). Consider the Schwarz inequality for ran-
dom variable® andW, and make the substitutiohs= X — E[X] andW =Y — E[Y]:

E°VW] < E[VIEW?]
E (X —EX])(Y-E[V])] < E[X-EX)?E[(Y-E]N)?
E2[XY - YE[X] - XE[Y]+E[X]E[Y]] < Var[X]Var]Y]
(EXY]—E[X]E[Y])? < Var[X]VarlY]
CoV[X,)Y] < Var[ Var[Y]
CoyX,Y] < ++/Var[XVar[Y] 1.3)

Since eql.3is an upper bound on the covariance, it follows that one has the inequality:

Var[X +Y] <Var[X] +Var[Y] + 2y/Var[X]Var[Y

Note that generalizing the variance to an arbitrary sum requires all covariance pairs;
thus if one has terms in a sum one will requirg)) = (n® —n)/2 covariances. The
general expression can be written:

Var

ix} <iVar[X;]+2; Var[XVar[X;]. (1.4)
i= i= iZ]
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20 CHAPTER 1. PRELIMINARY DEFINITIONS

If X andY are “completely dependentX(=Y), such as for a case in which one
state unconditionally follows another in a Markov chain, then one has:

CovX,Y] = E[XY]—E[X]E[Y]
= E[X?-E?[X]
= Var[X] = Var[Y].

While the variance doesn’t have as many nice properties as the expectation, a more
intuitive sense of what it means can be obtained from the Chebyshev inequality. This
states that the probability that the observed value of the random vaXatbfters from
its expectatiorE[X] by at leask (for some positivek) is bounded above bByar[X]/k?.

That is:

Var[X]
k2 -

Note that eql.5is astatistically conservativepper bound. It may be possible to do

much better if more is known about the random variable, especially its distribution. As

an example, consider a 95% confidence interval:

Pr|IX—E[X]| > K <

(1.5)

Var[X]
095 < %
R < Var[X]
0.95
K < Var[X]_
- 0.95

Thus one can conclude that 95% of the time the observed value will be in the closed

interval:
E[X]—\/Vggg],E[X]+\/Vigg>5q .
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Chapter 2

Markov Computations

Many of the computations in this chapter are taken directly frém [

Consider the Markov chain usage model in figl. TML is a language developed
for representing Markov chain usage modelg]] This model is equivalent to the
following TML.

model example

[Enter] ($ 1 §) "a" [A]
[A] ($ 1/2 8) "b" [B]

($ 1/2 §) "c" [C]
[B] ($ 1/2 §) "b" [B]

($ 1/4 8) "c" [C]

($ 1/4 8) "e" [Exit]
[C] ($ 1/4 $) "a" [A]

($ 1/2 $) "e" [Exit]

($ 1/4 $) "f" [Exit]
end

There are two special states in this model: gharceor enter state [Enter], and the
sink or exit state [Exit]. The sink state represents the end of a test (or use) and thus no
usage events are possible from this state.

This example model can be described by two matrices. For these matrices let the
states be indexed in the order [Enter], [A], [B], [C], and [Exit], and let the stimuli be
indexed in the order “a,” “b,” “c,” “e” and “f.”

The first matrix is the(state) transitionmatrix, P = [p; j], for which p; j is the
probability that the next state iggiven that the current state isFor the example
model the transition matrix is:

T
O OOOo
OoO+»— O O P
o ONIEFNIF O
O OBIFNIF o
ommu—\ o o
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22 CHAPTER 2. MARKOV COMPUTATIONS

Enter

Figure 2.1: Example usage model
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CHAPTER 2. MARKOV COMPUTATIONS 23

Note that the example matrix has been maairrentby connecting [Exit] back to
[Enter]. This will be important for several computations. Note that there are two
transitions from state [C] to state [Exit]; these two transitions are mutually exclusive, so
the total probability of a transition from [C] to [Exit] is the sum of the t\/\é)+ % = %.

For many computations it will be useful to have a reduced m&rix [q ;] in which

the row and column for the model sink have been removed. For the example model the
reduced matrix is:

0100
oo L 1
oo ¢ ]
0 ; 00

Both theP andQ matrices are square matrices.

The second matrix is thetimulus (occurrencenatrix S= [s ], for which s  is
the probability that the next stimulus will be stimuljigiven that the current stateiis
For the example model, the stimulus matrix is:

1 0 0 0 0
o 3% 00
S= [ S
923 1 9
2 003 3

The usage models used are deterministic; a stimulus can only label one outgoing tran-
sition from a state, so there is no need to sum transition probabilities in the stimulus
matrix.

It will occasionally be convenient to discuss the probability of a transition from
statei to statej on an arc labeled with a particular stimulks This probability will
be denotedy j xk when needed. Theestrictionof a matrixA to only those elements
corresponding to stimuluswill be denotedA|x. ThusP|x = [p; j k] for fixedk, and:

Q= ZQ\k- (2.1)

Note that eg2.1 cannot be re-written foP because the recurrence loop is not labeled
with a stimulus. For the example model, the restrictioP &b stimulus e is the matrix:

0000 O
000O0O
Pe=|0 0 0 0 2
00003
0000 O

Throughout the rest of this document, the source will be assumed to have index 1
while the sink will be assumed to have indexThe number of stimuli for a model will
bes. ThusP is ann x n matrix, whileSis a(n— 1) x s matrix, since there can be no
outgoing arcs (other than the recurrence loop) from the sink.

It is worth noting a few important facts aboBt First, thanks to the recurrence
loop the directed graph of the model is strongly-connected, meaning that from any
nodei there is a path to any other noglelt follows thatP is an irreducible matrix (see
Theorem 6.2.24 inZ]).
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24 CHAPTER 2. MARKOV COMPUTATIONS

2.1 Number of occurrences of a state in a test case

The number of occurrences of a state in a test case can be computed using the reduced
matrix Q. If the sink is made absorbing{, = 1 andp, 1 = 0), one can then compute

the number of occurrences of a state prior to absorptionTLa#note the set of tran-

sient (non-absorbing) states, which will in this case be every state other than the sink.
Let nj j denote the number of occurrences of stjapeior to absorption, given that one

starts in staté Using the “first passage” method, one obtains the relation:

E[ni ;] =5i,j+kezr pi kE [Nk j]- (2.2)

LetN = [E[n; j]|. Eq.2.2can be re-written in matrix form as:

N = I+QN
N-QN = |
(I-QN = |

N = (I1-Q~L (2.3)

The matrixN defined by eqg2.3is called thundamental matrifor absorbing chains.
Many Markov chain results can be obtained from the fundamental matrix.

What about the variance associated with this expectation? \ERjte ] is easy to
compute, the other terE[nfj] is a bit harder:

E[nﬁj] =n;(2n;;—1). (2.4)

The derivation of eq2.4 can be found in§]. Thus the varianc¥ar(n j] is:

Var[n”-] = ni7j(2nj7j -1)- nﬁj.

These results allow the computation of the expected number of occurrences for each
state and the associated variance by the Scilab procedure in algdrithote that for a
usage model one is primarily concerned only with the first row of these matrices, since
one is concerned with the behavior when the model is started from the source. The
results obtained from the algorithm for the example model are presented ir2table

Let| denote the number of state transitions from the source to the sink in a test
case. The expected lengiil] of a test case generated from a Markov chain usage
model can be quickly computed onisles known:

n-1 n-1
Elll=E [Zl nl,i] = 21 Elnyi]. (2.5)

That is, the average length of a test case is the total average number of state transitions
from the source to the sink. Note tHafl| does not include the sink; the total average
number of state visits (including the sink)El] + 1, since the sink is always visited
exactly once. In sectioB.8 another way to obtai&[l] will be presented, along with a
means to obtaiNar]l].
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25

Table 2.1: Expected occurrence and associated variance for each state

State | Occurrence Variance
(visits / test case) (visits / test case
Enter | 1.000 0.000
A 1.231 0.2840
B 1.231 2.556
C 0.9231 0.4970
Exit | 1.000 0.000

Algorithm 4 Compute the expected number of occurrences for each state

//
//
//
//
//
//
//

Compute the non-terminal expectation
and variance matrices for the stochastic
matrix P.

P: a stochastic matrix
N: the expected occurrence of each state
V: the associated variances

function [N,V]=get_nte(P),

// Discard the last row and column to obtain
// the reduced matrix.

n=size(P,1)-1;

Q=P(l:n,1:n);

// Compute the expectation matrix.
N=inv (eye (n,n)-Q);

// Compute the variance matrix. Note that
// diag(N) is a vector, whereas diag(diag(N))
// is a matrix.

V=N* (2*diag(diag(N))-eye(n,n)) - (N.*N);

endfunction;
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26 CHAPTER 2. MARKOV COMPUTATIONS

2.2 Computing the long-run state probabilities

Assume that many realizations (test cases) are generated from a usage model. For
each state one can sum the number of occurrences of the state, and then divide this
by the number of occurrences of all states. As the number of test cases becomes very
large, this ratio will approach a fixed value called theg-run occupancyr long-run
probability of the state. Since the chain is always in one of the states, the sum of all
long-run occupancies is one.

LetMN = [my, Ty, ..., T, be the vector of long-run probabilities for thestates. This
vector can be found for a given transition matRxas the unique stochastic vector
solution to the eigenvector equation:

n=np (2.6)

The eigenvectorl is sometimes called tHeéerroneigenvector. EqR.6is equivalent to
the system of equations:

T = TgpP11+Tep21+---+ ThPnl
T, = TOP12+TRP22+ -+ ThpPn2
Th = TaPin+TeP2n+---+ ThpPnn
1 = mM+To+-+Th

Note that there are unknowns (then 15 values) andh+ 1 equations. Incidentally, each
row of P® = lim,_,, P" is equal to the vectdn, unlessP is periodic ).

There are many ways to solve this system. For a simple solution by hand, back-
substitution will work just fine using the above equations.

The fundamental matrix can be used to obtAin The average number of state
visits in a test case iE[l] + 1. The fraction of time one spends in state the long
run isTg, so the average number of times stiatdll be visited in a single test case is
T (E[l]+1). This gives:
E[n“}
E[l]+1

Note thatE [ny ] is not computed via e@.3, but that one can conclude tHafn; ,| = 1
since the sink is always visited exactly once in a test case. Algorihmes this
relationship to computd.

To use algorithn®, define yourP matrix and then call the function. The example
model’s transition matrix can be expressed in Scilab as follows:

2.7)

Tﬁ:

p=1I

1 0 0 0
0 1/21/2 0
0 1/2 1/4 1/4
1/4 0 0 3/4
0

0 0 0]

= O O O O
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CHAPTER 2. MARKOV COMPUTATIONS 27

Algorithm 5 Compute the Perron eigenvector (long-run probabilities)
// Compute the Perron eigenvector for the
// stochastic matrix P and return it. The
// computation is performed by computation
// of the fundamental matrix.

//
// pi: the Perron eigenvector.
// P: a square stochastic matrix.
// N: the fundamental matrix, if available.
function [pil=get_pi(P,N),
// Get the matrix size.
n=size(P,1);

// Compute the fundamental matrix.

if argn(2)<2 then
[N,V]=get_nte(P);

end;

// Get the test case length, plus one.
1=1.0;
for i=1:n-1, 1=1+N(1,1); end;
// Compute the solution.
for i=1:n-1, pi(1,1)=N(1,1i)/1; end;
pi(l,n)=1/1;

endfunction;
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28 CHAPTER 2. MARKOV COMPUTATIONS

Table 2.2: Long-run occupancies

| State [ Long-run Occupancy

Enter | 0.1857
A 0.2286
B 0.2286
C 0.1714
Exit | 0.1857

The long-run occupancies can be computed using the following command:

get_pi (p)

The results from the analysis are presented in tat#e Note that if one already has
the fundamental matrix, it can be passed as the optional second argument to avoid
recomputing it:

get_pi (p,N)

An alternate method of getting the long run distribution is to use an iterative method
called thepower methodGiven a guess at the long-run distributidpn one computes
a slightly better guess b1 = INM;P. This method is guaranteed to converge to the
Perron eigenvector if the matrix imitive [2, p. 516]. Without going into too much
detail, if there is a non-zero entry on the diagonal, the matrix is primitive (though the
converse is not true). Thusji ; # O for anyi, then the power method will converge to
the Perron eigenvector.

One way to guarantee primitivity is to introduce a “dummy” stdtwith a self-
loop to ensure primitivity (that ispgq # 0), apply the power method, then remove
the dummy state and correct for its presence. This can be done by adding the dummy
state on the recurrence loop from the sink to the sourcpsisgs = 1, pg.g = 1/2, and
Pda,source= 1/2; flow always passes straight through the state, so any of the probabil-
ity mass absorbed by the state can be redistributed among the remaining states. This
change can be made to the example model’s transition nfaasfollows:

0

o
o
o

N O O O O
O OO O
O o ONKFNIFE O
O o ORIENIE
o omwbu—-o
NH—‘H O O o

(Note that the matrix was primitive before this change, sipge # 0.) This change
guarantees primitivity by makingg ¢ # 0. The power method can be applied to yield
the long-run probabilitie§1. The entry for the dummy state is dropped frémand
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Table 2.3: Transition sensitivities

From|[To [ Enter A B C Exit

A B -0.047 25 | -0.09449| 0.3780 | -0.1890 | -0.047 26
A C 0.047 25 0.094 49| -0.3780 0.1890 0.047 26
B B -0.1639 -0.201 7 0.6808 | -0.1513 | -0.1639

B C 0.003151| 0.03782| -0.1828 0.1387 0.003 151
B Exit 0.080 67 0.06454| -0.1613 | -0.06454| 0.080 67
C A -0.1327 0.096 50| 0.09650| 0.07237| -0.1327

C Exit 0.1327 -0.096 50| -0.096 50| -0.072 37| 0.1327

the vector is re-normalized to obtain the correct long-run probabilities. A Scilab pro-
cedure to perform this computation is given as algorighnor the example model
convergence to within & 1012 requires 98 steps.

2.3 Sensitivity analysis

A change in a transition probability impacts the occupancies of all probabilities down-
stream. Consider the example model and the exit arcs from [C]. If one re-directs some
probability to make the probability of “e” or “f” 0.9, this has a significant effect on the
model. Alternately, changing the probability of “a” to 0.9 has a very different effect.

For each pair of statégsand j in the model such thap; ; # 0, setp; j to 0.95 and
compute the long-run occupancigéP.i=0-99 — [Tuipi‘jzo'95>]. Next setp; j to 0.05 and
again compute the long-run occupandigg.i=009 — [T[‘((pi,jZO.OS)]. The sensitivity of
statek with respect to transition from stait¢o statej is defined as:

(Pi.j:0~95)_n(‘pi‘j:0.05)

A= 0.90

The matrix of sensitivities is computed by algorititn The sensitivities for the
example model are given in takie3. If one wishes to direct more of the model’s flow
to state [C], the table indicates that th e best way to do so is to increase the probability
associated with transition from state [A] to state [C]. The best way to increase the
average length of a test case is to decrease the long-run occupancy of [Exit], and the
sensitivities indicate that the best way to do that is to increase the probability associated
with transition from state [B] to state [B].

2.4 Other long run statistics

The long-run occupancy for transition from state statej is obtained asgp; j. The
long-run occupancy for a particular stimulag can then be obtained by summing the
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Algorithm 6 Compute an approximation to the Perron eigenvector via the power
method
// Compute the Perron eigenvector for the
// stochastic matrix P and return it. The
// computation is performed using the power
// method.
//
// y: an approximation of the Perron eigenvector
// step: the number of steps required
// P: a stochastic matrix
// g: (optional) an initial gquess
function [y,stepl=get_pi_approx(P,q),
// Add a dummy state to ensure primitivity.
n=size(P,1);
d=n+1;
P(n,d)=1; P(d,d)=1/2; P(d,1)=1/2; P(n,1)=0;

// Create an initial guess unless one

// 1is given.

if isdef(’g’) then
// The initial guess must be adjusted to
// make it the correct size. The dummy
// state’s occupancy will be twice the
// sink’s.
g(l,d)=2*g(n); yold=g/sum(qg);

else
yold(1l,1:d)=1/d;

end;

y=yold*P;

// Count the number of steps and set the
// error limit; the smaller the limit, the
// better the approximation and the more
// steps required.

step=1; el=le-12;

// Run until the error limit is reached.
while sum(abs(yold-y)) > el,
step=step+l;
yold=y; y=y*P;
end;

// Remove the dummy and normalize.
y=y(1l,1:n); y=y/sum(y);
endfunction;
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Algorithm 7 Compute the matrix of sensitivities

//
//
//
//
//
//
//
//
//
//

Compute the matrix of arc sensitivities.
The first column of the returned matrix
is the source state, the second column
is the target state. The remaining
columns are the changes in the
occupancies.

Z: the matrix of arc sensitivities.
P: the state transition matrix.
pi: the pi vector, if available.

function [Z]=get_sensitivities(P,pi),

en

// Get the size of the matrices.
n=size(P,1);
// Get the baseline pi vector.
if argn(2)<2 then
pi=get_pi(P);
end;
// Loop over all the arcs.
m=1;
for i=1:n,
for j=1:n,
// If there is an uncertain
// transition from state i to
// state j, compute the
// associated sensitivities.
if P(i,3) <> 0 & P(i,]) <> 1,
// Modify the transition.
x=1-P(1,3); t=P(i,1:n);
P(i,1:n)=t/x*0.05; P(i,3)=0.95;
// Compute pi.
ph=get_pi_approx(P,pi);
// Modify the transition.
P(i,1:n)=t/x*0.95; P(i,7)=0.05;
// Compute pi.
pl=get_pi_approx(P,pi);
// Compute the sensitivities.
Z(m,1:2)=[1,73];
7 (m,3:n+2)=(ph-pl) /0.9; m=m+1;
// Restore the transition.
P(i,1:n)=t;
end;
end;
end;
dfunction;
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Algorithm 8 Compute the stimulus long-run occupancy
// Compute the stimulus long run occupancies.
//

// sigma: the stimulus long-run occupancies.
// S: the stimulus matrix.
// pi: the pi vector.
function [sigmal=get_sigma(S,pi),
// Compute the normalization factor.
n=size(S,1);
m=1/(1-pi(n+1));
p2=pi(l,1:n);

// Compute the sum for each element.
sigma=p2*S*m;
endfunction;

long run occupancies for all arcs labeled with the stimulus:

1 n-1
== Y msk 2.8
Ok - i;ﬂis,k (2.8)

The factor ¥(1—T,) in eq.2.8is used to remove the sink from the computation and
re-normalize the vector. This is needed because no stimulus labels the recurrence arc
from the sink to the source. Algorithi® computes the stimulus occupancies given

the state long-run occupancies and the stimulus matrix. The example model’s stimulus
matrix can be expressed in Scilab as follows:

s =

1 0 0 0 0
0 1/21/2 0 0
0 1/2 1/41/4 0
1/4 0 0 1/2 1/4

]
The stimulus occupancies can be computed using the following command:

get_sigma (s, get_pi (p))

The expected number of test cases, in the long run, between occurrences gf state
is:
T
u
The expected number of occurrences of sfdtea single test case is:

Elny ] = % (2.9)
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Table 2.4: Probability of occurrence for each state

| Enter [ Probability of Occurrence

Enter | 1.000
A 1.000
B 0.5714
C 0.7500
Exit 1.000

Note that eq2.9is actually the same as €B.7, once one notes that another way to
compute the expected length of a test case is:

1
Elll]=—-1
Th
The expected number of occurrences of a state transition fromi dtagtatej during
atest case is:
TG Pi,j
N
These results are all very easy to obtain fromltheector.

2.5 Probability of occurrence for states

Lety; j denote the probability that one visits statprior to absorption, given that one
starts in staté. Given one reaches stajgone re-visits itE[n; j| times, on average.
Thusy; jE[n; ;] is the average number of times one visits statgiven that one starts
in statei. This gives the simple relation:

yiiE[njjl = E[ni;]
-~ _ Einj]
yij = E[n,—,lj]' (2.10)

The matrix of node probabilities is computed by algorithrhQ The node probabilities
for the example model, starting from the source, are given in @dle

An alternate approach, which will be useful later, works as follows. Assume the
sink and statg are made absorbing (that is,n = pj,j = 1). The probability that one
is absorbed in statg¢, given one starts in stafeis y; j. Starting in stateé, one may
be absorbed into statgin one step with probability; j, or after moving to a non-
absorbing stat& with probability p; ki j. These are mutually-exclusive possibilities,
so they may be summed to give:

Yi,j = Pi,j+ Pi kYk, - (2.11)
ke {J.n}
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Algorithm 9 Compute the probability of occurrence for each state
// Compute probability of occurrence
// of a state in a realization.
//
// Y: the node probability matrix.
// P: the transition matrix.
// N: the fundamental matrix.
function [Y]=get_node_probability(P,N),
// Compute the fundamental matrix.
if argn(2)<2 then
[N,V]=get_nte(P);
end;

// Compute the matrix.
Y=N*(1/diag(diag(N)));
endfunction;

2.6 Probability of occurrence for arcs

Consider the probability of occurrence of an arc in a usage model. This value can be
computed by introducing a new, intermediate state on the arc of interest, thus split-
ting the arc into two arcs. The probability of occurrence of the new state can then
be computed, and this will be equal to the probability of occurrence of the original
arc. This approach has been proposed by Sagje hut no closed-form solution was
given (other than re-applying the method2f1 to the modified model, thus requiring
a matrix inversion for every arc). A computationally simpler approach will be derived
here.

Assume the arc of interesriginates at stata and terminates at stabeand let the
arc’s probability bepy. Let the new intermediate state on arge statex. The modified
transition matrix will be denote® = [pi,j]. For the modified matrixpaq = px and
Pa b = 1. Because the new state and its arcs replace,gig, = pab — Px. Introduction
of the new state will have no other effect on the transition matrix. The probability of
occurrence foo can be computed using 11

Yia = Piat > PikYia (2.12)
k¢{a,n}

Let Q denote the usua® matrix with the change thaap = Pap = Pab— Px =
Oab — Px. Note thatQY, differs fromQYy by only one element:

GabYba = (Gap— px)Yb,u = Oab¥Yb,a — PxYb,a-

It will be convenient to note thatﬁYa = QYy —C for a column vectolC defined by
Ca = PxYba andc; = 0 for alli # a. Finally, note thatp; o # 0 only wheni = &; thus
let X = [x;] be a column vector for whicky = px andx; = 0 otherwise. Eg2.12can
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now be re-written in terms of the vectoys and X and the matrixQ. Observe that

(I-Q1=N:

Yo
Yo
Yo — QYa
(I-Q)Ya
Yo
Yo

X+QY0(
X+QYy—C
X-C

X-C
(1-Q1X—C)

N(X —C). (2.13)

While N andX are known, neitheYy norC is yet known. Re-expressing e}13
in terms of elements of thg, vector gives:

E [ ] (% — i) (2.14)

k¢{a,n}

Yia =

The rightmost term in the sum is zero except wheaa. Sincexx = py, €g.2.14can
be re-written as:

Yia = E[nia(px—ca)

= E[ni,a](px - pXYb,or)- (2.15)

Eq.2.15contains two unknownsy; ¢ andyy . Consideryy o

Yo,a [
Yoo = E[n
Yoo +E[Moalpx¥ba = E[
Yoa(1+E[Malp) = E|
E[Nb,a] Px

T Elne 2 oe ElNoalpr (2.16)

Yoo =

Now eq.2.16for y, o can be substituted back into éy15for y; 4:

E[ni.a] (Px — PuYb.a)

E[Nb.a) Pa )
1+ E[Npa] px
__ Elnbalpx )

1+ E[nb,a] Px

Yia =
_ Ema(m—m

= E[nialpx (1

. 1+ E[npalpx E[Np.a) Px
= E[l’h,a] Px <1+ E[nb,a] Dx - 1t E[nb,a] px>

—  E[nialpx <1+E[1m,a]px)

_ E[1i,a] P
= TTEmnn E[nb,a]px' (2.17)
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Algorithm 10 Compute the probability of occurrence for each arc
// Compute the probability of occurrence for
// each arc.
//
// Z: arc probabilities.
// P: the transition matrix.
// N: the fundamental matrix, if available.
function [Z]=get_arc_prob (P,N),
// Get the matrix size.
n=size(P,1);

// Compute the fundamental matrix.
if argn(2)<2 then

N=get_nte(P);
end;

// Compute the matrix of arc probabilities.
Z(1l:n-1,1:n)=0;
for i=1:n-1,
for j=1:n,
Z(i,3)=N(1,1)*P(i,3);
if j<>n then
Z(1,3)=2(1i,3)/ (14N (], 1) *P(1,3));
end;
end;
end;
endfunction;

In eg.2.17all elements are known, and the probability of the arc can be computed
using the original fundamental matrix and the transition matrix. Note thaidfthe
sink, thenE[n, o) = O (since there can be no outgoing arcs from the sink), whefe.

Consider the probability of the arc fronto j given that one starts in the source.
Denote this probability by, :

E[nyilpij

R 2.18
4T T Emlp (219

Eqg. 2.18is used in algorithnl0 to generate the matrix of arc probabilities, given the
transition matrix and possibly the fundamental matrix. The arc probabilities for the
example model are given in talbeb.
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Table 2.5: Probability of occurrence for each arc

[ From [ To [ Probability |

Enter | A 1.000

A B 0.5714
A C 0.5333
B B 0.296 3
B C 0.2857
B Exit | 0.307 7
C A 0.1875
C Exit | 0.692 3

2.7 Probability of occurrence for stimuli

LetY = [y; k] be the matrix whose entry x is the probability that, given one starts in
statei, one visits an arc labeled with stimulkgrior to reaching the sink. This can be

expressed as follows:
Yik=Sk+ ; ;pi,j,lyj,k
j#nl

The inner summation is used to avoid traversing arcs labeledkwifiince the model
is deterministic:

Yik=Sk+ Y (Pij—Pijk)Yjk
j#n
The differencep; j — pi,j k can be quickly obtained by takinQ — Q|x. This is conve-
nient with respect to the system of equations, siQaoes not contain the sink.
Holding k constant over the above equation allows it to be re-written in terms of
the vectorsyrk andS;, which are just théth columns of the corresponding matrices:

Yo = S+ (Q—-QlY%
Ye—(Q-Ql%k =
I-Q-Q% =
Y« = (1-Q+Ql) 'S (2.19)

It is now possible to solve for the probability with which each stimulus occurs,
given that one starts in a given state. Note that solving for all stimulus probabilities
requiress matrix inversions.

2.8 First passage times

Letm j be the number of state transitions, starting in statmtil the first occurrence
of statej. LetM = [E[m ;]| be the matrix whose entries are the mean number of state
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Table 2.6: Mean first passage times and associated variances (events) for each state

State | Mean First Passagg Variance
(events) (events)

Enter | 5.385 4.095

A 1.000 0.000

B 5.500 25.25

C 4.333 13.33

Exit | 4.385 4.095

transitions until stat¢ occurs given that the process started in stafgain using the
method of first passage, these numbers are the solution to the system of equations:

Em; = 1 i KE[My

(m ] +erj PikE My j]

Em;] = 1+ pikElmej] - piE[mj]. (2.20)
k=1

Eqg.2.20can be re-written in matrix vector form as follows:
M = U+PM-PM;y. (2.21)

Let A= [a ;] be the matrix for whicte; ; = 11;. That is, limh_.., P" = A (provided
P is not periodic). The expected number of events between occurrences of sate
E[m;j] = n%-’ soMq = 1/Ay. Let matrixZ can be computed as:

Z=(1—-(P-A)L
In [6] the following equation is shown to solve €21
M= (l-Z+UZy)Mq

As in the previous sectiof;?[m j] is easy to compute bllﬁ[nﬁj] is more difficult. Let
M® = [E[nﬁj]] be the matrix of second moments$] flerives the following equation
for M(2):

M2 = M(2ZgMg—1) +2(ZM—E(ZM)q)

These equations are implemented by the Scilab procedure in algatithrithe
results for the example model are presented in talile

Note thatE[my 5] is the expected number of occurrences until the sink is visited,
given that one starts in the source. THiien 5| = E[l], and furtheiar[my n] = Var(l].
This allows one to compute the variance of the expected test case length.

The mean first passage times in terms of events from any starting state may not be
the most useful metric for Markov chain usage models. A more useful statistic is the

Contents Copyrigh©) 2000 by Stacy J. Prowell. All rights reserved.



CHAPTER 2. MARKOV COMPUTATIONS 39

Algorithm 11 Compute the mean first passage times and their variances
// Compute the mean first passage times
// and their variances for a stochastic
// matrix P.
//
// M: the mean first passage times.
// V: the variances of the first passage times.
// P: a stochastic matrix.
// pi: the long-run occupancies, if available.
function [M,V]=get_mfp_events(P,pi),
// Compute the limit matrix A.
if argn(2)<2 then
pi=get_pi(P);
end;
n=size(P,1);
for i=1:n, A(i,1l:n)=pi; end;
// Compute some "helper" matrices.
I=eye(n,n); Ad=1/diag(diag(d)); E(l:n,1:n)=1;
// Compute the fundamental matrix, then M.
Z=inv (I-(P-A)); Zd=diag(diag(Z));
M= (I-Z+E*Zzd) *Ad;
// Compute the variances.
M2=M* (2*Zd*Ad-I)+2* (2Z*M-E*diag(diag(Z2*M)));
V=M2- (M. *M) ;
endfunction;
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number of test cases until a state first appears. The probability that statars in a
randomly-selected test caseyig, which can be assumed to be greater than zero (since
the model is connected). Then the probability that stéevisited for the first time in
exactlyk > 1 tests is:
(1—y1)* tya.

Let m; be the number of test cases until stiafiest appears. Applying the definition of
expectation gives:

Em] = 3 k(@-y) . (2.22)

K=1

This is a well-known series3[ series 3], and it converges when-¥,; < 1. Since
0 <y1,; <1 forevery staté, the series converges and one obtains:

_ 1
i’
This gives a quick way to obtain a mean first passage metric from the fundamental

matrix. The variance can be computed similarly. Applying the definition of variance
gives another well-known serie8,[series 1113]. AssumeQy; < 1:

E[m]

Varm] = E[nf]—E*m]
o 1
= K(1—y) i — —
=1 Yous,i
Vii <2 v 1
= == k(1 — Y1i) = —-
1=y, kzl ( 1) Yii

- () (Sra?) -2

B A1+ (Q-y)) 1
- (yl,l)< y:ii ) yii

1+(1-yi) 1
yii yii
1-wj
y%,i
Next, consider the restrictiopy; < 1. If y1; = 1 then the variance computation gives
zero, which happens to be correct, so the restriction (required by the derivation) can be
removed and the above formula applied wheneveryd; < 1. These computations

are implemented in algorithh2. The results for the example model are presented in
table2.7.

2.9 Number of occurrences of a stimulus in a test case

Once one has the expected number of occurrences of each arc in a model, one can
compute the expected number of occurrences of each stimulus.
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Table 2.7: Mean first passage times and associated variances (test cases) for each state

State | Mean First Passagg Variance
(test cases) (test cases

Enter | 1.000 0.000

A 1.000 0.000

B 1.750 1.313

C 1.333 0.444 4

Exit | 1.000 0.000

Algorithm 12 Compute mean first passage in terms of test cases
// Compute the vector of mean first passage times
// and their variances in units of test cases.

//

// M: the mean first passage times.

// V: variances of the mean first passage times.
// P: the transition matrix.

// N: the fundamental matrix, if available.
function [M,V]=get_mfp(P,N),

// Get the matrix size.

n=size(P,1)-1;

// Compute the fundamental matrix.
if argn(2)<2 then

N=get_nte (P);
end;

// Get the mean first passage vector.
for i=1:n,
y=N(1,1)/N(i,1);

M(1)=1/y;
V(1)=(1-y)/y"2;
end;
endfunction;
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Table 2.8: Stimulus expectations

D

Stimulus | Expected Occurrenc
(visits / test case)

1.231
1.231
0.9231
0.769 2
0.2308

DO |T| D

Let X; be a random variable counting the number of occurrences dfiara test
case. Lelyj be a random variable counting the number of occurrences of a particular
stimulusj in a test case, and |&4 be the set of arcs which are labeled with stimujlus
Theny; is defined in terms of thi; as follows:

Yi= ) X.
icA|
Based on this simple definition, the expectation for the new random variable is as fol-
lows:

E[Yj]=E [;X.] =EXi|+EX]+ -+ E[X]-

Thus the expected number of occurrences of the stimuisishe sum of the expecta-
tions of the arcs labeled with

Given a state occurrence expectation matiand the stimulus matri$, one can
compute the stimulus expectation maffias follows:

n
tij =5 E[Mixs-
2,

In matrix terms this can be expressed simplyTass NS The stimulus expectation
matrix is computed by algorithrh3.
As with the state expectations, one is primarily concerned with the first row of the
stimulus expectation matrix. The results for the example model are giv&8.in
Computation of the variance for this expectation is complicated by the fact that it
requires covariances. An upper bound can be obtained usirg4eq.
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Algorithm 13 Compute the stimulus expectation matrix

// Compute the terminal (stimulus) expectation

given the state transition matrix

// and the stimulus matrix.

// matrix
//

// T: the
// P: the
// S: the
// N: the

stimulus expectation matrix.
state transition matrix.

stimulus matrix.

fundamental matrix, if available.

function [T]=get_te(P,S,N),
// Compute the fundamental matrix.
if argn(2)<3 then

N=get_.

end;

nte (P);

// Compute the terminal expectations.

T=N*S;

endfunction;
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Chapter 3

Information Theory

The field of information theory can be applied to yield additional results about Markov
chain usage models. This chapter discusses three such results: the entropy, the number
of statistically typical sequences, and the discrimination. Alternative derivations for
some of the results presented here are included in appBndix

In this chapter it will be useful to refer to logarithms of base 2, and the shorthand
Igx will be used for log x. Note that:

log,x = log, %X
= (logyx)(log,b)

which results in the relationship:

log, x
log,b

logy, X.

Therefore, to compute logarithms base 2, one could use-lpx/In2.

3.1 Entropy

Entropyis a measure of uncertainty. The greater the entropy of a process, the more
uncertain the outcome. Entropy may also be thought of as the minimum abverage
number of “yes or no” questions required to determine the result of one observation of
a random variable.

If one observes outcomee X with probability p(x), then —Ig p(x) bits are re-
quired to encode this result. Since this result is seen with probapilty the expected
number of bits required to encode a single observatiox isf

1The termminimum averagenay seem like an oxymoron, but consider playing a simple guessing game.
Your opponent chooses a secret number between one and ten. For each guess you are told whether the secret
number is higher, lower, or equal to your guess. Your can guess the number with four guesses, and this is the
best you can do on average; it is the minimum average.
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H{X}=— ; p(x)lg p(x)

which is called theentropyof X, and denotedt {X}.

The joint entropy of two random variable$ andY is the minimum average in-
formation needed to encode the result of the joint experiment of observing both an
outcome ofX and an outcome of. This joint entropy can be expressed using the
previous definition as:

H{X&Y}=— ; P(x&y)lg(p(x&Y)).
XEX yE

Note that ifX andY are independent random variables, one p@&y) = p(x)p(y).

The conditionalentropy of one random variab¥ given another random variable
X is the average amount of information needed to specify a particular observaton of
given that one already has an observatioX 0T his can be expressed as:

H{Y|X} = - ; p(x&y)lg(p(ylx)).
XEX YE

The conditional probability can be re-expressed using the relationship:

pyX)p(x) = p(x&y)
_ p(x&y)

If and only if X andY are independent, then one hag&y) = p(x) p(y), andp(y|x) =
p(y). In this case, the conditional entropy can be reduced to:

—ngye P(x&Y)lg(p(ylx))
= —X;ye P(X)p(Y)lg(p(y))
= —X; p(x)ye p(Y)l9(p(y))
—X;MX)(—H{Y})

= H{Y}.

H{YIX}

In other words if the two random variables are independent, obseWirayeals no
information about the outcome ¥f

Consider that one is in statef a Markov chain. The probability associated with
choosing next statgis p; j, and one could express the uncertainty of choosing the next
state as:

n
Hi=—> pijlgpi;. (3.1)
=1

(The sum in eq3.1 must actually be over only those terms for whighy # 0, since
Ig0 is undefined.) The quantity; is thestate entropyor statei.
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In the long run the probability of being in statés 15. Thus the expected value of
the state entropy denoted simplyis:

n

_ZlTﬁ H;

. n n

- zlm > pijlgpi;. (3.2)
i= =1

(Again, the sum in eB.2must be over only those terms which are non-zero.) This ex-
pected state entropy is the average number of bits one needs to encode the observation
of the next state, and is called the Markov cha{transition) source entropyH.

The usual source entropy reveals the amount of uncertainty associated with choos-
ing the next state. For a Markov chain usage model it may be more appropriate to
determine the uncertainty associated with choosing the next state and stimulus pair. In
the example model if one is in state [C] and the next state is [EXxit], there is still some
uncertainty associated with choosing one of the two arcs from the state [C] to state
[Exit]. This uncertainty is not taken into account by the usual source entropy.

Given that one is in statig the probability that one chooses next stimujus s ;.

The entropy associated with choosing the next stimulus from istatbus:

H

n
Hi = — Z s,jlgs,j.
=1

Again one may compute the expected value of this uncertainty and obtastirthdus
(source) entropy

n S
Hs=-Y 1) sjlgs.
AN

If there is at most one arc between each pair of states, nhers, P = S and thus
Hs = H. Otherwise there will be more arcs and thg will be smaller than thep; ;.
Thus there will be increased uncertainty with each choice, and onEldhasH with
equality if and only if there is at most one arc between each pair of states. These two
entropies are computed by algoritHim.

The state transition source entropy for the example model is approximately 0.7105
bits, and the stimulus source entropy for the example model is approximately 0.8286
bits.

3.2 Statistically-typical sequences

Consider an “average” sequence. In such a sequence statdd be visited approxi-
matelyTg /15, times, since this is the expected number of occurrences of the state. This
means that one would visit the arc from stete statej approximatelyrs p; j /T, times.

Every time one observes the transition from sidi® statej, —Ig p; j bits are re-
quired to encode this observation. The expected number of bits required to encode a
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Algorithm 14 Compute source entropies

// Compute the source entropies of the given
// Markov chain in bits.
//
// H: state transition source entropy.
// G: stimulus transition source entropy.
// P: the transition matrix.
// S: the stimulus matrix.
// pi: the occupancies, if available.
function [H,G]=get_entropies(P,S,pi),
// Get the size of the matrices.
n=size(P,1); s=size(S,2);
// The pi vector is needed.
if argn(2)<3 then
pi=get_pi(P);
end;
// Convert everything to log base 2.
12=1o0g(2);
// Compute the entropies. There is no need
// to loop for the sink.
H=0; G=0;
for i=1:n-1,
// Compute the state contribution to
// the state entropy.
p=0;
for j=1:n,
if P(i,j)>0 then
p=p+P (1,3) *log (P (i,3))/12;
end;
end;
H=H-p*pi (1) ;
// Compute the state contribution to
// the stimulus entropy.
p=0;
for j=l:s,
if S(i,3)>0 then
p=p+S (i, j) *log(S(i,3))/12;
end;
end;
G=G-p*pi(i);
end;
endfunction;
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statistically-typical sequence is called tingjectory entropy H:

L2 Thp;
H/ _ )] ] -
i;}; ™ (—lgpij)

n

m o
= _-Z\ﬂ J;Pi,j'g Pij

= T][;]_imHi
H

T

One could apply the same reasoning with respect to next state, stimulus pair and obtain
Hg = Hs/mh, with the relationHg > H’ sinceHs > H.

Assume that one hdsequally-likely outcomes, each with probabilityi This
distribution has the following entropy:

1 1

= —(lgl-Igk)
= lgk

One can reverse this reasoning and say Ithéts could encode up td 2qually-likely
outcomes. In the case above, one obtali§2= 29k — k, as expected.

One would expect statistically-typical test cases to have some “average” likelihood
of being generated. It therefore follows that if one has a trajectory entroply, afne
has:

statistically-typical trajectories. This is the number of (approximately) equally-likely
test cases whose ensemble statistics match the expectations for the chain. For the ex-
ample chain the trajectory entropyli = Hs/Ti, = 0.8286 bitg0.1857= 4.462 bits

Given this result, there are consequenflff&Pits— 22 04 ~ 23 statistically-typical test

cases for the example model.

3.3 Discrimination
Let X be a random variable governed by the true distribupor statistical model

is constructed to approximatg and this model uses the approximating distribution
g. It is reasonable to ask how closely the model resembles the true distribution. One
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way to measure this is to compute tiedative entropyof distribution p with respect to
distributionq. This number can be thought of as the number of bits which are wasted
by encoding observations &f using the not-quite-right distributiom

Whenever outcomr € X is observed, it is encoded usirgdgq(x) bits. This out-
come is observed with the true probabilityx), so on average- ¥ ,-x P(x)lgq(x) bits
are used to encode an outcomeXoflif the statistical model precisely matched the
true distribution, the minimum average B X} = — Sycx P(X)lg p(x) bits would be
used to encode the outcome. The number of bits wasted is the difference between the
encoding used and the minimum:

(— Ex D(X)|QO|(X)> - (— EX p(x)1g IO(X)>

= 3 PXIgp(X)— 5 pX)lga(y
= ; p(x) (Ig p(x) —lgq(x))

P(x)
= X)lg——.
XGZK p(x)1g 9
This quantity is known as thi€ullback-Leibler numbeior sometimes just theiscrim-
ination, and is denoted[p, g]. Note that the discrimination is not a true metric: it is
not symmetric.

The discrimination can be used to compare two Markov chain usage models. For
example suppose one has a usage cblaia [u; j| which is believed to represent the
“true” use of the system and I8t = [t; ;] be the testing chain state transition matrix
representing the testing experience. The expected number of bits wasted by encoding
U with the approximatd is the discrimination between the two stochastic processes:

n n
KU,T] = _Zmzlumlg
i= j=

As the testing experience comes to more closely represent the expected use, the dis-
crimination approaches zero. (As usual, the logarithm is only taken whe# 0.)

The discrimination based on stimuli is computed by algorittn Assume the
following set of test trajectories are given:

Ui,j
ti j

e abbe,

e ace,

e abbbe,and
eacabbcf.

Then the matrix of stimulus executions is as follows:
00

4

0
E = 0
1

ok~ wOoO
ORFrL NO

0 0
20
11
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and the vector of state visitations is:

Es

I
Aw~NO A

This matrix and vector can be represented in Scilab as follows:

O > w O |l
= o O O

The discrimination between this testing experience and the usage chain is approxi-
mately 0.034 41 bits.
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Algorithm 15 Compute the perturbed discrimination

// Compute the Kullback-Leibler number

// (the discrimination).

//

// K: the Kullback-Leibler number.

// P: the state transition matrix.

// S: the stimulus matrix.

// Es: the state visitation vector.

// Et: the stimulus execution matrix.

// pi: the occupancies, if available.

function [K]=get_discrimination(P,S,Es,Et,pi),
// Get the pi vector for the usage matrix.
if argn(2)<5 then

pi=get_pi(P);

end;
// Matrices must be of the same size.
m=size(S,1); n=size(S,2);
// Compute the log of 2 for use in converting
// to base two later on.
12=10g(2);

// This will accumulate the discrimination.
K=0;
for i=1:m,
// This is the partial sum from the inner
// summation.
k=0;
for j=1:n,
if S(i,J) > 0,
// Normalize the stimulus execution.
t=Es(i)/Et (i, 73);
k=k+S (1, ) *1og (S (i,3) *t)/12;
end;
end;
K=K+pi (1) *k;
end;
endfunction;

Contents Copyrigh©) 2000 by Stacy J. Prowell. All rights reserved.



Chapter 4

Reliability Models

This chapter is concerned with statistical inference; specifically, the point estimation
of a software system’s reliability. This chapter presents some reliability models used
with Markov chain usage models. In the following, assume thests are conducted,
and that every test can be classified as a success or a failur&.beghe number of
failures; there are thus- k successful tests.

The single-useaeliability is the long run probability that the software will not fail
on a randomly-selected use (as defined by the usage modelR debote the true
(unknown) reliability of the system. The goal is to produce an estim&oaf the
reliability based on observations of software tests. The observations of the tests are
random variables, anid is a function of these observations. It follows tiis also a
random variable.

Underlying the idea of a single-use reliability is the concept afsage profile
This is, informally, a statement of how the software will be used once it is delivered to
the field. Under different usage profiles, a single software system may have different
reliabilities. Here it is assumed that the software system’s usage profiles are specified
using Markov chain usage models in the following way: the probability of generating
a particular path from source to sink in the usage model corresponds closely to the
relative frequency with which the same sequence of events will occur in actual use.

Mean time to failurgMT TF) is the average number of uses between two failures.
This quantity is related to the reliability as follows:

1
MTTF = ﬁ?uses
The denominator is thafthreliability,” and the expectation is its reciprocal. This MTTF
is in units of “uses.” If MTTF is desired in terms of “events,” which is more useful for
some systems, multiply by the average number of events per test case. If the expected
test case length &]l], then the following should work nicely:

luse " events  E[l]

MTTHR = =
Fi 1-R Huse 1-R

events

SinceRis a random variable, it makes sense to discuss its expectation and variance.
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Note that the variance fd® may not be as desirable as a different measure, called the
confidencen the estimate, denotézf{R]. The confidence is the probability that the true
reliability Ris at least the estimated reliabiliB:

C[Rl=PriR>R.

Thus as the estimated reliability grows closer to the true reliability, and as the variance
of the estimated reliability decreases, the confidence grows. If the distribution of the
reliability is known, one can compute the confidence as the integral:

A 1
CIR = / PR=r]dr.
JR
Since the total area under the curve from zero to one must be one, an alternate compu-

tation is: a
1—C[F‘e]=/o PiR=r]dr. (4.2)

Eqg.4.1is often more useful since one of the limits of integration is zero.

4.1 Sample reliability

For the sample reliability, computeas:

r= =K
t

Thus if one test is run, and it passes, the sample reliability is one. Likewise, if ten
tests are run and all pass, then the reliability is again one. In the long run as randomly-
selected tests are executed, the sample relialilityill approach the true reliability
R; it is an unbiased estimator. Further, the sample variance will approach zero as the
number of trials increases, and thus the estimator is consistent. The sample variance
can be computed as:

(t-K? (-2 _ (t-1)t—k?

t t2 t2

The difference between one successful test and ten successful tests is the confidence
in the process which produced the reliability estimate. The sample reliability does not
take this into account; a better model is needed. Note that the Chebyshev inequality
may be applied to bound the area under the reliability curve without knowledge of
the distribution, but one can do much better if the distribution of the true reliability is
known.

4.2 Binomial distribution

One can consider each test a Bernoulli trial; that is, an experiment with two possible
outcomes (the software performs correctly, or the software fails) in which trials are
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independent and identically distributed. If the probability of succed® ithen the
probability of failure is - R.

Having confidence in the testing process essentially means that one believes that
if the software is unreliable, this unreliability will be detected by observing failures
during testing. The goal is to limit the probability that the software is not as reliable as
thought, but few failures are seen. Lettiﬁﬁi} denote confidence gives the following
relationship for confidence:

observe< k failures
in thet trials

Pr R< FAQ} = (1-C[R).

That is, one has confiden@R)] that the reliability is at leas® givenn trials and no
more thark failures observed. This is the probability that the reliability is at I&ast
[11], but includes additional information about failures observed.

Since the trials are independent and identically distributed, the probabilities of the
outcomes of the trials can be multiplied to obtain the estimated probability of the
particular sequence of outcomes: in this désé&(1— R)X. One can distributkfailures

amongt trials in:
t
()

ways (which is just the same as distributingk successes ovetrials). These different
ways of distributing the failures are all mutually exclusive (only one can be observed),
so they may be summed. The probability that one &daBures int trials is thus:

(L)QKQ—QK

The probability that one se&wr fewer failures (given estimated reliabiliB) is thus:
R K7t \ & o
(1-C] ]):%( : )R“(l—R)' (4.2)
i=

since again only one of the mutually-exclusive outcomes can be observed. One can
solve this numerically fot, and get the number of trials to certify with estimated
reliability R and confidenc€[R]. The above distribution is known as thénomial
distribution.

With a simplifying assumption of zero failures, the equation reduces dramatically.
Lettingk = 0 in the above equation, gives:

(1-C[R) =R. (4.3)

(Notice that the relationship between reliability and confidence is not linear.) This
simple equation can be solved for the number of test cases. TaKiraj both sides

1The logarithm base makes no difference:

logy(1-C[R]) _ log,(1-C[R)) logya _ log,(1-C[R]) logya _ logy(1-C[R))
log, R log,R  log,a logba  log,R log,R
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Table 4.1: Trials to achieve estimated reliability and confidence levels

Confidence Level Estimated Reliability
0.90\ 0.95\ 0.99\ 0.999\ 0.9999\ 0.999 99

0.90 22 29 44 66 88 110
0.95 45 59 90 135 180 225
0.99 230 299 459 688 917 1,146
0.999 2,302 2,995 4,603 6,905 9,206 11,508
0.9999 23,025| 29,956| 46,050| 69,075| 92,099| 115,124
0.999 99 230,258 299,572| 460,515| 690,773| 921,030 1,151,287
gives:

In1-C[R) = InR

In(1-C[R) = tInR

n1-CR) _

InR B

Thus the minimum number of trials required to obtain the desired estimated reliability

and confidence is given by the ceiling of the left hand side of the above equation (the
smallest integer greater than the quantity).

. Fna;gm |

Using this approach, it is possible to explore the relationship between estimated

reliability and confidence. This can be done (for example) with the following Scilab
commands:

deff (' [t]=rc(r,c)’, t=ceil (log(l-c)/log(r))")
x=[0.9,0.95,0.99,0.999,0.9999,0.99999]
for i=1:6, for j=1:6, t(i,j)=rc(x(i),x(3); end; end

This will build the matrix for table4.1 This table makes it clear that reliability and

confidence grow differently. To see this in more detail, one can execute the following
Scilab commands:

t=0; x=0; y=0
deff (' [t]=rc(r,c)’, t=ceil(log(l-c)/log(r))")
for i=1:9, for j=1:9,
t (i, j)=rc(i/10,73/10);
end; end
for 1=1:9, x(1)=1/10; y(i1)=1/10; end
xbasc ()
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Tests

22.0

115

o=
oo

0.9

Confidence

Figure 4.1: Reliability, confidence, and number of tests

plot3d(x,vy,t,-117,5,...
"Confidence@Reliability@Tests")

These commands should generate a plot similar to figuite

The binomial model gives equal weight to each test, so 59 randomly-generated
tests executed without failure certify a system at an estimated reliability of 0.95 and a
confidence of 0.95, regardless of whether the 59 tests represent millions of events and
days of testing, or only a few events per test and almost no testing time. The binomial
model isstatistically conservativin that it uses very little statistical information about
each test.

4.3 Testing Markov chain

One can incorporate information about each test using the Markov chain. Consider
again the tests given in secti@3:

e abbe,
e ace,

e abbbe, and
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e acabbct.

Assume these tests are executed and that the first two tests execute without failure. The
third test fails on the first “b” event, but testing is able to proceed to completion. The
last test fails on the first “b,” and testing is not able to proceed. One has the following
matrix of successfuéxecutions:

40000
c_|01200
*“lo 2020

100 30

and the following matrix ofailed executions:

0 00O
0 2 00
0 0 0O
0 0 00O

Ef =

[oNeoNe)

One can duplicate the structure of the original usage model, and then keep track
of the transitions on each arc. This new model is calledtésting Markov chain
[18]. Every time an arc is successfully traversed in testing, a counter on the arc is
incremented. This is shown in figude2

If a failure which has not been encountered previously is encountered, one classifies
the failure as a&topfailure, meaning that one cannot execute the remainder of the test
after the failure, or as eontinuefailure, meaning that execution of the test continues
after the failure. The first failure (in the third example test case) is a continue failure,
since the rest of the test is executed. The second failure (in the fourth example test
case) is a stop failure, since the rest of the test is not executed.

For each unique failure encountered, a riailure stateis introduced and the failed
arc is duplicated to point to the new failure state. If the new failure was a continue
failure, an arc is created from the failure state to the appropriate next state. If the
failure was a stop failure, an arc is created from the failure state to the sink. In either
case, the frequency count on the arcs is incremented. In fig@tae continue failure
is [f1], and the stop failure id P]. If a previously-encountered stop or continue failure
is encountered again during testing, the frequency counts associated with the existing
failure state are incremented.

After the testing experience has been captured in the testing Markov chain, one can
normalize the frequency counts to obtain probabilities. For the example in figgre
the following probability matrix results:

0

=

_|

I
RrOOOOoOo
O O R ONRUIF O
O 0o O QuNg
ecRoNoReNellNe)
cNeReReR=liaNo)
ol_\ON\H\)H—\O o

O O ONPF O O
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Enter

Figure 4.2: Usage model with successful traversal counts

Contents Copyrigh®© 2000 by Stacy J. Prowell. All rights reserved.

59



60 CHAPTER 4. RELIABILITY MODELS

Enter

resume

Figure 4.3: Usage model with failure states
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Enter

resume
(1.0)

Figure 4.4: Testing Markov chain modified to compute reliability

Note that the failure states have been insettefibrethe sink state to keep it the last
state in the matrix; many of the algorithms given here depend on this. This probability
matrix can be analyzed to obtain the probability of occurrence of the failure states.
Unfortunately, the failure states do not occur independently. For example, the trajectory
a, b (with continue failure), c, a, b (with stop failure), visits both failure states.

The estimated probability that the software does not fail (encounter a failure state)
on a randomly-selected use can be computed if occurrence of the failure states can be
made independent. This can be done by redirecting the outgoing arcs from continue
failure states to point to the model sink, as has been done in figdreAfter these
changes are made, one can compute the probability of occurrence of each state via
algorithm9. Let there bem failure states, and lgt be the probability of occurrence of
failure statd. One now encounters the failure states independently, and the estimated
software reliability can be computed as:

R=1 3
= *i;)’i

The matrix for the testing Markov chain can be expressed in Scilab as:
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Table 4.2: Expectation and variance of failure states

State | Expectation| Variance
(visits) (visits)
fl 0.222 2 0.1728
f2 0.2222 0.172 8

t=[
0 1 o 0 0 0 0
0 0 1/52/51/51/5 0
0 0 1/2 0 0 0 1/2
0 1/4 0 0 O 0 3/4
0 0 o 0 O 0 1
0 0 o 0 0 0 1
1 0 0 0 ©0 0 0]

For the example just given one obtains probabilities of occurrence of the failure states
of 2/9 each, giving a total probability of failure of/8, and thus a reliability of +
4/9=>5/9. If a confidence is desired, one can compute it using the binomial distribution
of eq.4.2 In this case, one h&d= 5/9,t =4, andk = 2, giving a confidence of 0.765

9. The following Scilab commands can be used:

R=5/9; t=4; k=2;
bin=binomial ((1-R),t); sum(bin(1l:k+1))

The testing Markov chain model takes much more information into account than the
binomial model, but it suffers from its own weaknesses. First, it does not immediately
provide a means to compute a confidence. Second, it cannot render a judgment when
testing reveals no failures. Consider the example, and assume that no failures were
observed in the four test cases. One would then introduce no failure states, and the
equation for reliability would yielR = 1.

As an alternate means to compute the reliability using the testing Markov chain,
assume that one takes the chain as it appears in figd@nd computes the expected
number of occurrences of each failure state in a test case. Since each failure state
immediately passes to the sink, this value will also be the probability that the state
is encountered in a test case. With the expected occurrence one can also compute a
variance. These results are summarized for the example model irtable

Since the random variables (occurrencef&] pnd [ 2]) are now independent in the
modified testing chain, one can sum them and subtract from one to obtain the reliability
of 5/9. One can also sum the variances to obtain a composite variance of 0.345 7.
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4.4 Beta distribution and the Miller model

One can often get a much more accurate estimator if the distribution is known. One
possibility is the binomial distribution used previously. A very flexible approach is
to use a distribution like the beta distribution, which uses two parameters to define a
family of distributions. Further, the parameters of the beta distribution can be used to
represent prior information, providing a way to use past testing or development history
in certification. The reliability estimator based on the beta distribution will be referred
to here as thdiller model[7].

Suppose a random variable represents the number of successes in a binomial
experiment (independent, identically-distributed trials with outcome either success or
failure) withn trials and probability of succe$s Consider trying to find an estimatBr
of Rbased orX and given some prior information abdritLet this prior information be
given by the beta distribution with parameterandf3, and the probability distribution
function for O<K R< 1:

PiR=r] = B(r;a,B) = I_r((g)?(%))ral(l— rP-1,

The expectation and variance for estimafcan be computed as shown in appendix
A:

ER = g
o o(B
VarR - = (a+1+4B)(a+p)?

The parameters of the distribution can be split into prior information and observa-
tions. Takes and f to be the numbers of observed successes and observed failures,
respectively. Then take— 1 andb— 1 to be the numbers of prior successes and prior
failures, respectively. These choices are such that, if there is no prior testing infor-
mation, one has the “no information” prioes= b = 1. Then lettinga = s+ a and
B = f +bgives the expected reliability and variance:

s+a
s+a+f+b’
. (s+a)(f+b)

ValRl = raritf+bsrat 102 (4.5)

>

E|

(4.4)

Eqg.4.4and eg4.5can be applied to each arc of the model using the success and
failure counts for the arc. Lat j« the reliability for the arc from stateto state]
labeled with stimuluk. Then the expected single-event reliabiRy is the long run,
average probability of success for a randomly-selected event:

Zkﬂ'i pi,j,kri,j,k]
],

5 pi,j kE[rij K-
|,2k i, KE[rij

E[Re] E
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The variance of the estimator is easy to compute given the expectations and variances
of the arc reliabilities:

var[RJ = E ';Tﬁpi,j,kriz,jAk‘|E2[§e]
T

= 3 Tl - E R
||2k ikE[r ] — E7[Re]

= _Z(Tﬁ pi ik (Varlri ] — E2[ri ) — E?[Re]
T,

= Topjvarri el — S TipkE2[ri jk] — E2[Rel.
I%k 1) 1] |Jzk 1], 1)

The derivation of a single-use reliability estimator based on estimates of the arc
reliabilities is modestly complicated, and beyond the scope of this paper.

4.5 Confidence

The confidenc€[R] in reliability estimateR was defined by egt.1 If the reliability is
assumed to be governed by the beta distribution, as in set#pthen:

1-CR

R
/o PriR=r]dr

B Iirafl(l_r)ﬁ—l
-, B@p

R
= ﬁ/o ra 11 —r)P-dr (4.6)

At this point, eq4.6 can be simplified by assuming tHa{the failure count) is one (the
no-information case). This gives:

A R
17C[ ] - ﬁ/o I’u_ldl’
R
oB(a,1)
RO (a+1)
T o T(a)

R al (o)

a (o)

(4.7)

Il
.;g>

Note that eq4.7is the same as ed.3, obtained with the binomial distribution.
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If B=1is not required, then the terfh — r)B—1 must be dealt with. Replacing this
term with its binomial expansidrgives:

. 1 R B
CR = 1- B B)/r Ya—r)P-1dr

a
- g by () o
_ j /RB 1< > (—1)ra-LHigy
L B(lB)BZj(Bil>( 1)i/(')f*ra1+idr

a
B-1 B iﬁowi
= Y gup %( i1>< Varr (48)

As a modest check on e4.8, note that settin = 1 again results in edt.7.
Consider the following term from ed.8with positive integen andf3:

1 <5—1>:r(a+s)< (B—1)! ): (a+B—1)!
B(a,B) \ | Fa)r @) \il—1-01) ~ (a—Di@-—1-i)1"

The individual terms can become quite large. For example, Scilab can only accurately
compute the gamma function up Eg172). Scilab provides an alternate function,
gammaln, which computes Ifi(n), and can thus use much greater values. For int@ger
the value ofa! can be computed as:

a a
Inal =In rli = Zlni.
i= =

Since the value d will generally be small (indicating few failures with respect to total
tests run), it is possible to compute the confidence by simply summing up the terms. A
Scilab procedure to do so is given as algorithén

Confidence levels versus the priors for fixed reliability 0.95 can be graphed as a
surface in Scilab with the following commands:

for i=1:10, for 7j=1:10,
c(i,j)=get_confidence(0.95,1,73);

2The binomial expansion ak+y)" is:

(x+y)" = Zo (7).

When the second term is negative, this can be written as:

(x—y)" = Zo (7)-amiy
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Algorithm 16 Compute the confidence for the Miller model

// Compute the confidence associated with
// priors a,b and reliability estimate R.

//

// C: the computed confidence.
// R: estimated reliability.

// a: prior successes, plus one.

// b: prior failures, plus one.

function [C]=get_confidence(R,a,b),
// Compute the beta function coefficient.
bfc=beta_function(a,b);

// Compute the sum from zero to b.

s=0.0;

for i=0:b-1,
// Compute the binomial coefficient for
// this term of the expansion.
bc=binomial_coeff (b-1,1);

// Compute the main term.
rc=R"(a+i) / (a+i);

// Compute whether the term is negative and
// accumulate the partial sum.
if modulo(i,2)==1 then
s=s-rc*bc;
else
s=s+rc*bc;
end;
end;
C=1.0-s/bfc;
endfunction;
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Confidence

0.4

0.2

0.0
10.0

Figure 4.5: Confidence level versus priors

end; end;

xbasc () ;

[x,v,z]=genfac3d(1:10,1:10,c);

plot3d(x,y,list (z,4*ones(1,81)),...
-224,85,"al@b@Confidence");

These commands generate the graph shown in figyre

4.6 Choosing priors for the beta distribution

The Miller model (eq4.4and eq4.5) requires values for the prioesandb. If no prior
assumptions are warranted, one shouldasetb = 1. Alternatelya andb may be set
to one plus the prior successes, and one plus the prior failures, respectively.

More realistically, one may have information about an assumed reliapidibd its
varianceo? from previous releases. One may trpatndo? as the prior information,
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and compute aa andb as follows. Applying the beta distribution fprgives:

W= 3
Ma+b) = a
pa+pb = a

puwb = a

b = . (4.9)

For a2 one obtains:

o2 — bu
(@t 1+b)(atb)

2 — a(l-y
(a+1+200) (ag 220)

a? (a+1+a(1“_u)> ( = a(l-p)

)
(85 (5) - v

“(utaja = af(l-p)

crz(LhLaa—ap2 1-y = 0
a(0’(u+a)—P(1-p) = 0
olu+cla— 2 +2 = 0
c’a W — 18— o’p
21_ _0-2
a — H-W-oy ct‘z) 3 (4.10)

Substituting eg4.10into eq.4.9 gives the formula fob in terms ofu ando?:

b = (1_“)(“2L; W =0, (4.12)

Eqg.4.10and eg4.11allow choosing priors based on prior assumptions about reliabil-
ity.
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Appendix A

Probability Density and
Distribution Functions

A fundamental concept of continuous probability theory is that oBbeel setswhich

can be informally defined as the sets composed from finite unions and complementa-
tions of open and closed intervals from the real number set. That is (informally), it is
the collection of piecewise continuous real number sets. Let the set of Borel sets be
denotedB.

A.1 The gamma and beta functions

Some of the distributions to be discussed make use of the gamma fuhcti®r- R,
which is defined as:

Ma)= / e X ldx
0
An interesting property of the gamma function is the following. Consider+ 1):
MNoa+1)= / e *x%dx (A1)
Jo

The right-hand size of edA.1 can be approached using integration by parts. The
standard form for this i udv= uv— [vdu+C, obtained from the product rule for
derivatives. Lettingi = x* anddv = e *dx gives the following quick derivations. For
du

d d
i
d 1
&u = ox?
du = ax®ldx (A.2)
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and forv:

vV = /dv
= /e‘xdx

—e *+C. (A3)

Substituting egA.2 and eqA.3 into the integration by parts formula gives:
e x%dx

J
-
|:UV
{
-

Na+1 =

udv
/vdu]
0

—e*4+C)x* — / —e *4+C)a O‘1dx]

[

0
x5 — /Ooo(—e*’( +C)ax®Ldx

= [-eX +Cx“]°o°+/0 e*XO(x"‘*ldx—/0 Cax®1dx

[—e7X%], + [CX]g +al (o) — [CX]g
= al(a). (A.4)

Consider (1):

=

—~
[E

~—
I

/me*"xodx
0
/e*"dx
JO
S / e*d(—X)
0
= [,
= r!i_rgo(—e)‘”+e°
- 1 (A.5)

Eq.A.5 and egA.4 give the relationship:
ra = 1
Na+1) = al(a).

Thus for alla € Z*,I(a) = (a —1)!, and the gamma function can be viewed as a
continuous version of the factorial function.
Another useful function is the beta function B:— R, defined:

B(a,b) — /lea‘l(lfx)b‘ldx

Contents Copyrigh©) 2000 by Stacy J. Prowell. All rights reserved.



APPENDIX A. PROBABILITY DENSITY AND DISTRIBUTION FUNCTIONS3

This function has many interesting properties. Considex 1B and the transformation
y=1-—xand thusdy= —dx

1
Bab) - /0 x@1(1— x)PLdx

- /1 Clyrypy

-0

- [y ay
= /0 "1y tdy
(

B(b,a).

The gamma and beta functions are linked by the following relationship:

r(@r(b)

B@b =+arp

To see that this relationship is true, consifiéa+ b)B(a, b):

w 1
/ efoaerfldX/ yL(1—y)>-tdy
0 0
o rl
/ /e—xxa+b—1ya—1(1_y)b—1dydx
o Jo
o rl
/ /e’xxa’lxb’lxya’l(l—y)bfldydx

/ /e X(xy)3 L (x—xy)P~tdydx

[ (a+b)B(a,b)

Letu=xyandv = x—xy. Thenx=u+vandy = u/(u+ V), and the regioR: 0 <
X< 00,0<y<1ismapped to the new regidi: 0 < u< «,0< v < ». Consider the
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Jacobiah:
Su+v) Z(utv)
Juyv) = 9 u 9 u
ou u+v ov u+v
' 1 1
= _v _ _=Zu_
(U+v)Z  (utv)?
. u v
o (Utv)? (utv)?
_ o _utv
(Ut v)?
H u+v _ _U+tv
Note thatu andv are never negative, %&W = e

The modulus of the Jaco-

bian can be used with the change of variable in the double integral to yield the trans-

formed integral:

ra+bB(ab) — /0/0e*(““’)ua*l\/"’l(u—kv)ﬁdudv
= //e*“e*"uaflvbfldudv
0 JO
= /e*“uafldu/ e WP ldv
0 0
= T(a)r(b). (A.6)

A.2 Probability density and distribution functions

One can describe the probability associated with outcomes of a random vafiable
using a functiorFx : R — [0, 1] which maps the random variable’s outcome to a real
number equal to the probability mass of the outcome. In the discrete case such a map-

ping is aprobability distribution functiorof the form:

vt e R,Fx(t) = PriX =t].

In the continuous case such a mapping is callptb@ability density functioor some-
times acontinuous distribution functionkf: R — [0, 1], and has the form:

YM eIB%,/M Fx (u)du=PrX € M].

LFor a double integral, let = x(u,v) andy = y(u,v) be a change of variable which maps regRmo
transformed regio® . TheJacobian Ju,v) describes the relationship between an element of thecarda

and an element of the aready.

& | axay oxdy  A(xy)

ox X

& & ‘auav avou a(uv)’
ou ov ’
The transformed integral uses the modulus of the Jacobian:

//Rf(x,y)dxdy: //R/ f(x(u,v),y(u,v))|J(u,v)|dudv

J(u,v) =
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Table A.1: Common probability density functions (for- 0,a > 0,b > 0)
| Distribution | Definition \
Beta B(x;a,b) = r<a§ﬁz)b X3 1(1—x)P-
Exponential E(x,a) = ag &
Gamma G(xa,b) = @ Te ™
—(-p?
_ 1 02
Normal AN (X W,0) = (Wﬁ) e< 2 )
Uniform U(xab) = 15

Table A.2: Common probability distribution functions (foe=0,1,2,...)

| Distribution \ Definition \
Binomial B(x;n, p) < : ) px(l p)"
Geometric G(x;0) =6(1-06)
( )
Hypergeometric (x;n,N,k) = X N
(o)

Pascal ) _( x-1 K Y—k

(for x=k k+1,k+2,...) PO k) = k—l)p(lp)
Poisson P(x;0) = &

There are many probability density functions; some of the better-known are the
beta, exponential, gamma, normal, and uniform distributions. These are defined in
tableA.1. Some common probability distributions are the binomial, geometric, hyper-
geometric, Pascal, Poisson, which are defined in tAt?e Many continuous density
functions have discrete versions, including the beta distribution.

The normal distribution has two parameters: the mgand standard deviatiom.
The beta distribution has two parameteasandb, which choose among a family of
distributions. The uniform distribution is independentxpfvery point has the same
density, hence its distribution. One uses these to compute the density of an interval
[i,j] via integrating over the interval; for example, the following is the probability
density of the interval0, 1/2] given that the underlying random variable obeys the beta

distribution:
/ B(x;a,b)d
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A.3 The beta distribution

LetX be a parameter df, 1] whose value is to be estimated, and assMigegoverned
by the beta distribution with parametexandb:

PrX =x = B(x;a,b).
Thusg[X] = j;)l PrX = x]xdx Consider the more general caseEdK"):

EXY — /OlPr[X:x]x”dx

1
/ B(x;a,b)x"dx
0

1Xa—1(1_x)b—1 n
= /oiB(a,b) x'dx

_ 1 ! +n—1 b-1
= B(a7b)/oxa (1—x)°""dx

B(a+n,b)
= Bab (A.7)

Using eqA.6, eq.A.4, and eqA.7, it is easy to evaluatE[X] andVar[X]:
B(a+1,b)

B(a,b)
MNa+b) Ma+1)r(b)
M@r(b) MNa+1+b)
r(a+b) ar(a)

MNa) (a+blr(a+b)
a

a+b’

EX] =

varX] = E[X?]—-E?[X]
_ B(a+2b) [ a r
B(a,b) a+b
M(a+b) M(@a+2)r (b)_[ a r
r(ar(b) r(a+2+h) a+b
_ T(a+h) (a+1)ar(a) _[ a r
MNa) (a+l+b)(a+b(a+b) |a+b
_ (a+1)a _{ a r

(a+1+b)(a+b) |a+b

_ (a+la(a+b) (a+1+b)a?

" (a+1+b)(a+hb)?2 (a+1+b)(a+b)2
ab

" (at+1+b)(atb)?’
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Appendix B

Alternative Derivations of
Information Theory Results

There are many different ways of interpreting the entropy and associated measures.
This appendix presents some alternate derivations for these results.

B.1 Statistically-typical sequences

Another way of describing “statistically-typical” is to take the recurrent Markov chain
and instead of focusing on single test cases, focus on very large realizations (i.e., se-
guences of several test cases).

Consider a series of test cases whose total lengthvghereN is large enough that
large number laws take effect and the sequence statistics closely match (within some
€) their expectations. For such a sequence statexpected to appeaN times, and
the transition from stateto statej will appearriN p; j times. To obtain the probability
with which such a series is generated, one takes the product of the probabilities of each
transition. Let® denote such a series of test cases. Then:

PiR] = []ny
I‘rJ
lgP{R] = lg[]py
1)
= ZIgpf'j Rj
]
= D TNpjlgpi
1)
= N Tpijlgpi;

1]
— —NH

PiR] = 27 NH
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So such series have probability™. Given this, there are:

1w
PrR]
equally-likely statistically-typical series of test cases.

A sequence of lengtN corresponds to (on average)N test cases, since this is
the expected number of times one observes the sink in a trajectory of InJthe
average number of events per test case is thus (counting the recurrence loop):

N 1

mN T
If the same reasoning is applied as before but on the basis of test cases, this ends up

dividing the occurrence countsN p j by TN to obtainTg p; j/T,. Letting 7" denote a
“statistically typical” test case gives:

pir] = [l
1)
1]
_ Zlgplmjpu/nn
1] ’
%
= —Nnpilgpii
2, Bj 19 Pij
= inﬁp--lgp-
Th {3 T
_ _H
oW
Pri7] = 27H/m

which is the same result as obtained previously.

B.2 Discrimination

Assume there are two distributiong: which is the true distribution, and which is

an approximating distribution. Observations are taken from the true distribution, and
then explained, recorded, or encoded using the approximating distributio®, heta
collection of sequences of total lendthgenerated from the true distribution, andiet

be large enough that large number laws take effect. The probability of such a sequence
given probability distributiorr is denoted HR |r]. Consider the limit in the average
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number of bits wasted by using the approximating distribugj@sN becomes large:

lim 5 me\ pllgPrR|q] +ZPr[9U pllgPrR | p]]

1 PR |p]

= lim — | $ Pr] I
[ TﬁNpij

i 1 |_||Jp
= lim = |'S Pi®pllg

N—o N _% I’Jq;:ﬁijiJ
| P
= lm 5 %Pr{ﬂilp > TiNpjlg Y ]
— jim = - mNp,| p" PR |
o N—o N Z pl g Z p
_ 1] Pi.j
= lm 3 ZTﬁijlgq ]
= lim Zn’.p.,lgg"
= znlpljlg ZIJ
= K[U,T].

B.3 Sayre discrimination

The Sayre discriminationlf], denotedkS[U, T], is computed using the Kronecker
delta:

n

KS U,T]= lg———
Zﬂi Ui j 986[|10+th

This version of the discrimination is discontinuous; one of the properties which entropy
measures are intended to satisfy is continuity. An advantage to this measure is that
once testing has covered all arcs onethag 0 whenevew; j # 0 and thukS[U,T] =

K[U,T] immediately.

The Sayre discrimination does, however, introduce a different approach to comput-
ing a perturbed discrimination. Instead of adding the perturbatiothe arc frequency
count, one might choose to add the perturbaien the testing chain probability, ob-
taining:

UT Zn’.Zu.,lg +t|1
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Investigating this further reveals:

K[U,T]—K[U,T]

[
s M=
E
M

Z"‘ZU" gs+t.J

Il
=
M=
<
—
«Q
:f‘_
\

™
+le
— |
T_.

I
S

B
M=

<
—

«
o™
=+
K
I—‘_l

As the number of sequences executed groyysapproaches; j. This gives:
Jim [KIU,T]-RU,T)] = Jim Zm i [ H.,t”]

- 2l

- angmlet

— Zm Zlui’j lg(e+uij) —lguij]
£

n n n n
— _ZT[] ]Zlui’j Ig(s—s—ui,j) —i;ﬂi leu” Ig Ui j

i=
n

- iin} ;ui,jlg(s—&-ui,j)—H.

That is, as testing experience grows the perturbation doesash out, but converges
to the discrimination between the true distribution and the perturbed distribution, as
one would expect.
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