
Computing Sparse Redu
ed-Rank Approximations toSparse Matri
esMi
hael W. BerryShakhina A. PulatovaG. W. StewartABSTRACTIn many appli
ations| latent semanti
 indexing, for example| it is re-quired to obtain a redu
ed rank approximation to a sparse matrix A. Unfor-tunately, the approximations based on traditional de
ompositions, like thesingular value and QR de
ompositions, are not in general sparse. Stewart[Numer. Math. 83 (1999) 313{323℄ has shown how to use a variant of the
las-si
al Gram{S
hmidt algorithm,
alled the quasi{Gram-S
hmidt{algorithm,to obtain an approximation of the form A �= XTY T, where X and Y aresparse (they a
tually
onsist of rows and
olumns of A) and T is small. Inthis paper we treat the
omputational details of the algorithm and des
ribea Matlab implementation.1. Introdu
tionIn a number of appli
ations [2, 7, 13, 4℄ one is given a large matrix A and wishes to �nda redu
ed-rank approximation to A. This approximation is invariably expressed in theform A �= XTY T (1.1)where X and Y are full-rank matri
es and T is nonsingular (T may be the identitymatrix). When A is m�n and T is of order k, this approximation requires (m+n+k)kwords to store, as opposed to mn for the full A. Moreover, the matrix-ve
tor produ
tAx require (m+n+k)k additions and multipli
ations to
ompute, as opposed, again, tomn additions and multipli
ations for the full A. Clearly, if k is small, great savings areto be had by using the redu
ed-rank approximation (1.1).A widely used redu
ed-rank approximation is the trun
ated singular value de
ompo-sition, whi
h is known to be optimal in the sense that the Frobenius norm kA�XTY Tk1

2 Sparse Redu
ed-Rank Approximationsis minimized. There are stable dire
t methods for its
omputation; however, thesemethods
ompute the full de
omposition and are not suitable for very large matri
es.Fortunately, there are iterative methods that produ
e the approximation (1.1) withouthaving to
ompute the full SVD. These methods require only the formation of matrix-ve
tor produ
ts and do not alter A.An alternative is the pivoted QR de
omposition, whi
h generally gives results
ompa-rable to the SVD. For large A, the Gram{S
hmidt algorithm
an be adapted to
omputethis de
omposition. Again, A is not altered, and the prin
iple operations are matrix-ve
tor multipli
ations. This paper is
on
erned with elaborations of this approa
h toredu
ed-rank approximations.When A is large and sparse the situation is not as simple. For A, the storage andoperation
ounts given above be
ome proportional to the number of nonzero elementsin A. Sin
e the fa
tors X, T and Y are generally not sparse, the storage and operation
ounts for the approximation remain the same. Thus as k in
reases, we will rea
h apoint where it be
omes ne
essary to abandon the fa
tored form. Note that we do nothave the ability to
hoose k, sin
e the a

ura
y required of the approximation, whi
hdepends on k, is governed by the appli
ation.In this paper we are going to des
ribe two approximations based on the pivotedQR de
omposition that produ
e approximations in whi
h X or both X and Y aresparse. The �rst approximation is
alled sparse pivoted QR approximation (SPQR). Itis
omputed by an algorithm,
alled the quasi-Gram{S
hmidt algorithm, that produ
esa fa
torization in whi
h X
onsists of a sele
tion of
olumns of A. In the se
ondapproximation,
alled the sparse
olumn-row (SCR) approximation, X
onsists of asele
tion of the
olumns of A and Y
onsists of a sele
tion of the rows of A, so thatwhen A is sparse so are both X and Y .These methods were �rst des
ribed by Stewart in [10℄ and the quasi-Gram{S
hmidtmethod has been analyzed in [12℄. The purpose of this paper is to give the
omputa-tional details leading to the a

ompanying Matlab fun
tions. In the next se
tion we willintrodu
e the pivoted QR de
omposition. In Se
tion 3 we will derive the quasi-Gram{S
hmidt method and apply it to the
omputation of the sparse pivoted QR approxima-tion. In Se
tion 4 we will show how to
ompute the SCR approximation. We will alsoshow how it
an be applied to an information retrieval pro
ess known as latent semanti
indexing. The implementation details for our algorithms are des
ribed in Se
tion 5. InSe
tion 6 we
ompare the SPQR approximation with the singular value de
omposition.Finally, in Se
tion 7 we dis
uss some sparsity issues that arise in produ
ing implemen-tations in
ompiled programming languages like C or Fortran. The Matlab programsare listed in appendi
es.

Sparse Redu
ed-Rank Approximations 3Throughout this paper, k � k will denote the Frobenius norm de�ned bykAk2 =Xi;j a2ij ;and k � k2 the spe
tral norm de�ned bykAk2 = maxkxk=1 kAxk:2. The pivoted QR fa
torizationAs above, let A be an m�n matrix, not ne
essarily sparse. A pivoted QR (PQR)fa
torization has the form AP = QR; (2.1)where P is a permutation matrix, Q is orthonormal, and R is upper triangular. Theexa
t form depends on the the sizes of m and n. If m � n, then Q is m�n and R isn�n. If m < n, then Q is m�m and R is m�n. Although our algorithms apply to both
ases, for ease of exposition we will assume that m � n in what follows.A rank k approximation to A
an be obtained by partitioning the fa
torization (2.1).Let B = AP and write (B(k)1 B(k)2) = (Q(k)1 Q(k)2) R(k)11 R(k)120 R(k)22 ! ; (2.2)where B(k)1 has k
olumns. Then our approximation is~B(k) = Q(k)1 (R(k)11 R(k)12): (2.3)Note that B � ~B(k) = Q(k)2 (0 R(k)22):Sin
e Q(k)2 is orthonormal, the error in ~B(k) as an approximation to B iskB � ~B(k)k = kR(k)22 k: (2.4)We will not
ompute the entire de
omposition (2.2). Rather we will bring in
olumnsof A one at a time and use ea
h to
ompute an additional
olumn of Q and row of R.Thus at the end of kth step of this algorithm we will have
omputed the approximation(2.3).The pro
ess of sele
ting
olumns is
alled
olumn pivoting , or for short simply piv-oting. The order in whi
h the
olumns are sele
ted determines the permutation P .

4 Sparse Redu
ed-Rank ApproximationsEquation (2.4) suggests that at the beginning of the kth step we should
hoose the
olumn of A in su
h a way as to make kR(k)22 k small. The
lassi
al
hoi
e is to bring inthe
olumn of A that
orresponds to the
olumn of R(k�1)22 of largest norm. (For moreon this
hoi
e see [5, 9℄.)Surprisingly, we
an implement this strategy without
omputing R(k�1)22 itself. Con-sider the partition (2.2), in whi
h the supers
ripts (k) are repla
ed by (k�1). Let bjand rj denote the jth
olumns of B and R. Be
ause Q is orthonormal, we havekbjk = krjk: (2.5)Now for j � k partition rj = r(j)1r(j)2 !where r(j)1 has k�1-
omponents. Thus r(j)1 is the jth
olumn of R(k�1)12 , and r(j)2 is thejth
olumn of R(k�1)22 . It then follows thatkr(j)2 k2 = kbjk2 � kr(j)1 k2 = kbjk2 � r21j � r22j � � � � � r2k�1;j: (2.6)Thus at ea
h stage we
an
ompute the squares of the norms of the
olumns of R(k�1)22 .Moreover, the sum of these numbers is kR(k�1)22 k2, so that by (2.4) we get, almostfor free, the value of the norm of the error in our redu
ed-rank approximation. Thisnumber
an be used to determine when we have a satisfa
torily a

urate redu
ed-rankapproximation.Unfortunately, the expression (2.6) has a dark side. If kr(j)2 k2 is small
omparedkbjk2, there will be
an
ellation in the
omputation of kr(j)2 k2. In parti
ular, in IEEEdouble-pre
ision arithmeti
 if kr(j)2 k2 � 10�16kbjk2 we
an expe
t no a

ura
y in the
omputed value. On taking square roots we �nd that we
an use the formula (2.6) onlywhen kr(j)2 k > 10�8kbjk:This means that if all the
olumns of A have norm one we
annot reliably
omputeredu
ed-rank approximation that is more a

urate than 10�8. However, this a

ura
yis usually more than enough.3. The quasi-Gram{S
hmidt methodIn this se
tion we will des
ribe the quasi-Gram{S
hmidt method. We will begin with ades
ription of the
lassi
al Gram{S
hmidt method.

Sparse Redu
ed-Rank Approximations 5Suppose we have a QR fa
torizationB = QR (3.1)of B and wish to
ompute a QR fa
torization(B a) = (Q q)�R r0 ��of (B a). The se
ond
olumn of this equality gives us the relationa = Qr + �q:Sin
e QTQ = I and QTq = 0, we have r = QTa: (3.2)Sin
e kqk = 1, we have � = ka�Qrk (3.3)and q = ��1(a�Qr): (3.4)Equations (3.2), (3.3), and (3.4) are e�e
tively an algorithm for extending our originalQR fa
torization.Unfortunately,
an
ellation in the formation of a�Qr
an
ause the
omputed q tobe far from orthogonal to the
olumns of Q. The
ure for this problem is reorthogonal-ization, in whi
h the pro
ess is repeated on a�Qr. Spe
i�
ally, we have the followingalgorithm, in whi
h we use Matlab notation.1. r = Q'*a2. q = a - Q*r3. s = Q'*q4. r = r + s5. q = q - Q*s6. rho = norm(q)7. q = q/rho (3.5)Typi
ally, this algorithm produ
es a q that is orthogonal to the
olumns of Q to workinga

ura
y.11In extremely unlikely
ases the algorithm may produ
e a zero q at step 2 or 5, in whi
h
ase spe
iala
tion must be taken. In pra
ti
e, most programs that use Gram{S
hmidt orthogonalization ignore thisproblem.

6 Sparse Redu
ed-Rank ApproximationsWe
an use this algorithm to
ompute a PQR fa
torization of A simply by sele
ting
olumns of A and updating the QR fa
torization of B. To start the pro
ess o�, one setsR(1)11 = � = kak, and Q(1)1 = ��1a, where a is the �rst
olumn sele
ted from the
olumnsof A. In this way we
ompute the de
ompositionsB(k)1 = Q(k)1 R(k)11 ;where R(k)11 is k�k.A problem with this algorithm is that it only
omputes the fa
tor R(k)11 in (2.2).However it is easy to see that row k of R(k)12 is simply qTk Â, where qk is the kth
olumnof Q(k)1 and Â
onsists of the n�k
olumns of A that are not in B(k)1 . If n is large, this
omputation may be the most expensive part of the algorithm. Note that even if we donot want the R(k)12 we must still form (and dis
ard) the produ
t qTk Â in order to
omputethe
olumn norms of R(k)22 as des
ribed in the last se
tion.Returning now to the Gram{S
hmidt algorithm, we note that even if A is sparse, Qis in general not sparse. If m is very large, we may be unable to store Q. To
ir
umventthis problem, we observe that it follows from (3.1) thatQ = BR�1:Consequently, we
an form the produ
t Q'*a in (3.5) by the following algorithm.1. d = a'*B2. r = (d/R)'Similarly we
an form the produ
t Q*r by1. p = R\r2. q = B*pThis leads to the following quasi-Gram{S
hmidt step (in whi
h we have put the
odefor the
lassi
al Gram-S
hmidt step on the right).1. d = a'*B r = Q'*a2. r = (d/R)' q = a - Q*r3. p = R\r4. q = a - B*p5. d = q'*B s = Q'*q6. s = (d/R)'7. r = r + s r = r + s8. p = R\s q = q - Q*s9. q = q - B*s10. rho = norm(q) rho = norm(q)
(3.6)

Sparse Redu
ed-Rank Approximations 7This
ode
omputes only r and rho|the quantities needed to update R. It does not
ompute q in the form q/rho, as does the
lassi
al Gram{S
hmidt algorithm. Instead,q is de�ned by the relationq = (B a)�R r0 ���1 = ��1(a�BR�1r); (3.7)and is so
omputed in our algorithms.The quasi-Gram{S
hmidt step
an be applied su

essively to
olumns of A, as de-s
ribed above for the
lassi
al Gram{S
hmidt algorithm, to produ
e a pivoted, Q-lessPQR fa
torization, whi
h we will
all a semi-PQR (SPQR) fa
torization. We will
all the
orresponding approximation (B(k)1 R(k)11 �1)(R(k)11 R(k)12) the SPQR approxima-tion. The algorithm not only dispenses with the storage for Q, but it repla
es denseprodu
ts involving Q with sparse produ
ts involving
olumns of A. The only stri
tlydense operations involve R11 and R12. But sin
e the order of (R11 R12) is k�n, ifm� n these operations a

ount for little of the total work.On
e again there is a dark side|there may be a progressive loss of orthogonalityin the matrix BR�1. However, an analysis of the quasi-Gram{S
hmidt algorithm [12℄shows that the loss of orthogonality is proportional to the
ondition number kRkkR�1kof R, whi
h is usually good enough.A ni
e feature of the SPQR approximation (and QR approximations in general) isthat having
omputed an approximation of order k one has immediately the all theapproximations of order ` < k. Simply, work with the �rst `
olumns of B and rows ofR.4. Sparse
olumn-row approximationsWhen m� n, the SPQR approximation is satisfa
tory. But when m and n are nearlyequal, the storage of R be
omes a problem. We
an
ir
umvent this problem at the
ostof performing another fa
torization.Spe
i�
ally, �rst apply the quasi-Gram{S
hmidt algorithm to the
olumns of A to geta representative set of
olumns X of A and an upper triangular matrix R
orrespondingto R11. Let the error in the
orresponding redu
ed-rank de
omposition be �
ol. Nowapply the same algorithm to AT to get a representative set Y T of rows and anotherupper triangular matrix S. Let the error be �row. We then seek a matrix T su
h thatkA�XTY Tk2 = min :In [10℄ it is shown that the minimizer isT = R�1R�T(XTAY)S�1S�T:

8 Sparse Redu
ed-Rank ApproximationsMoreover, kA�XTY Tk2 � �2
ol + �2row: (4.1)We will
all this approximation a sparse row-
olumn approximation, or for shortan SRC approximation. Su
h approximations are e
onomi
al to use. For example, to
ompute y = XTY Tx we
ompute r = Y Tx, s = Tr, and y = Xs. This requirestwo sparse matrix-ve
tor multipli
ations and one dense matrix-ve
tor multipli
ation inwhi
h the matrix is small.It may happen that X and Y do not have the same number of
olumns, in whi
h
ase T will not be square. This
auses no problems in matrix-ve
tor multipli
ations.Some
are must be taken in
omputing the matrix T . The
rux of the matter is toform XTAY
orre
tly. If, for example, m is large and we �rst
al
ulate AY , we endup with a large, potentially full matrix. The
ure for this problem is to partition Y by
olumns, writing XTA(y1 y2 � � � yk) :We
an then
al
ulate XTAY
olumn by
olumn as follows.1. T = [℄;2. for j=1:k3. T = [T, X'*(A*Y(:,j)℄;4. endA variant of this de
omposition may be useful in latent semanti
 indexing (LSI), adevi
e for retrieving do
uments from a query ve
tor of terms [1, 3, 2, 6℄. Brie
y, in (LSI)one starts with a term-do
ument matrix A whose (i; j)-element is the number of timesterm i o

urs in do
ument j. One then
al
ulates the singular value approximationA = Uk�kV Tk : (4.2)In the parlan
e of LSI, the
olumns of Uk are
alled term ve
tors and
olumns of V Tk are
alled do
ument ve
tors. Given a query ve
tor q of terms, one
omputes a
orrespondingdo
ument ve
tor by the formula d = ��1k UTk q:and
ompares it with the
olumns of Vk to determine whi
h
olumns are related to thethe query ve
tor q. For example, one might
ompute the
osines of the angles betweend and the
olumns of Vk and
hoose the
olumns
orresponding to the larger ones.We
an rewrite the XTY T in the form of (4.2). Spe
i�
ally,XTY T = (XR�1)(R�TXTAY S�1)(S�TY T) � PWQT:

Sparse Redu
ed-Rank Approximations 9Now mathemati
ally, P and Q are orthogonal. Consequently, if we
ompute the singularvalue de
omposition W =M�NT of W and setU = PM and V = QN;then U and V are orthonormal, andXTY T = U�V T: (4.3)We
an use this de
omposition as des
ribed above to perform LSI. Of
ourse we do notexpli
itly form U and V ; rather we keep and apply them in fa
tored form; i.e.,U = XR�1M and V = Y S�1N:It should be stressed that the relation between (4.3) and (4.2) is purely formal. It isan open question whether LSI performed using the former will share the good propertiesof ordinary LSI. Theorem 6.1 below en
ourages us to
onje
ture that it will.5. A Matlab implementationIn this se
tion we will des
ribe a Matlab fun
tion spqr to
ompute SPQR approxima-tions. The basi
 algorithm is simple and the
hief implementation problem is how topa
kage it. We begin by looking at the input parameters.The essential input is the matrix A and a toleran
e tol to tell when to stop thefa
torization. Although the algorithm always terminates after a �nite number of steps,if tol is too small, spqrmay be
ommitted to performing an una

eptably large numberof operations. For this reason, a third parameter max
ol puts an upper bound on thenumber of
olumns of A to be used in the approximation. Of
ourse, one
an alwaysset max
ol greater than or equal to n, it whi
h
ase it has no e�e
t. The programterminates at the �rst step k for whi
h kR(k)22 k < tol. Consequently, if tol is zero, spqris for
ed to in
lude max
ol
olumns of A.Thus the basi

alling sequen
e for spqr isspqr(A, tol, max
ol)Although A is presumed to be a Matlab sparse matrix, spqr also works when A is dense.We will now turn the output parameters.When spqr �nishes we need to know four things.1. The number
olumns of A involved in the approximation.2. The matrix (R11 R12).

10 Sparse Redu
ed-Rank Approximations3. The relation of the
olumns of (R11 R12) to those of A.4. The error in the approximation.The �rst is returned in the output parameter n
ols. The se
ond in the output matrixR. The third and fourth items are
onne
ted with the way spqr implements pivoting.The fun
tion begins with two arrays:
olx, whi
h is initialized to 1:n and norms whi
his initialized so that norms(j) is the norm of the jth
olumn of A. At step k, spqrdetermines the �rst index j � k for whi
h norms(j) is maximal and swaps
omponentsj and k of both
olx and norms, along with the
orresponding
olumns of R. The
olumn A(:,
olx(j)) is then used to advan
e the approximation. After the quasi-Gram{S
hmidt orthogonalization has been
omputed the elements of the kth row ofR(k)22 are
omputed and used to downdate norms(k+1:n). The error in the
urrentapproximation is also
omputed and stored in norms(k).From this des
ription it follows that on returnB = A(:;
olx);whi
h provides the relation between R and A. Moreover the error in the approximationis norms(n
ols). However, we get a little more. For j � n
ols, the arrays
olx andR(1:j,:)
ontain the SPQR approximation asso
iated with A(:,
olx(1:j)), and by
onstru
tion its error is norms(j). Thus by setting tol to zero, we
an tra
k the qualityof all the approximations from 1 to max
ols.The fun
tion spqr has three optional input arguments used to �ne tune the de
om-position. The �rst fullR has a default value of 1 (true). If it is present and 0 (false),then only R(n
ols)11 is
omputed. This is useful when the primary
on
ern is with thespa
e spanned by the
olumns A(:,
olx(1:n
ols)). The se
ond optional parameterpivot has the default value 1. If it is present and 0 pivoting is suppressed| i.e., the the
olumns of A are pro
essed in their natural order. Finally, the optional parameter
n(for
ompute norms) has a default value of 1. If it is present and fullR | pivot |
ris zero, then the
omputation of norms is suppressed and on return norms = [℄.Thus the �nal
alling sequen
e is[n
ols, R,
olx, norms℄ = spqr(A, tol, max
ol, fullR, pivot,
n)in whi
h fullR, pivot, and
n are optional. For a
on
ise summary see the prologueto spqr.6. Comparison with the SVDIn this se
tion we shall make some timing
omparisons between the quasi-QR and theSVD redu
ed-rank approximations. SVD approximations are rightly regarded as the

Sparse Redu
ed-Rank Approximations 11ones to beat. Gaps in the singular values reveal numeri
al rank with great reliability,and the redu
ed rank-approximations it produ
es are optimal. However, it is expensiveto
ompute. Moreover, there seems to be no easy way to in
rease the the size of theapproximation step by step as we are able to do with QR approximations.Sin
e the SVD is so highly regarded, it is sometimes obje
ted that other approxima-tions may not reprodu
e the row and
olumn spa
es from the SVD to suÆ
ient a

ura
y.This is parti
ularly important in appli
ations where we are not interested in the approx-imations themselves but in the subspa
es they de�ne. We are now going to show thatif any redu
ed-rank approximation is a

urate then it
ontains good approximations tothe singular ve
tors
orresponding to large singular values.Theorem 6.1. Let A = XY T +E. Let X be the spa
e spanned by the
olumns of Xand Y be spa
e spanned by the
olumns of Y . Let � > 0 be a singular value of A withnormalized left and right singular ve
tors u and v, so that Av = �u and uTA = �vT.Then sin\(u;X); sin\(v;Y) � kEk2� : (6.1)Proof. We will establish the �rst inequality, the se
ond being established similarly. LetX? be an orthonormal basis for the orthogonal
omplement of X . Then kXT?uk is thesine of the angle between u and X [11, x4.2.a℄. NowXT?Av = �XT?u;and XT?Av = XT?XY Tv +XT?Ev = XT?Ev;sin
e by
onstru
tionXT?X = 0. It then follows that �XT?u = XT?Ev, when
e kXT?uk2 �kEk2=�, whi
h is just the �rst inequality in (6.1).This theorem says that if a redu
ed-rank approximation is a

urate, then its
olumnspa
e must
ontain a

urate approximations to the left singular ve
tors
orrespondingto singular values that are large
ompared to kEk. An analogous statement is true ofthe row spa
e and the right singular ve
tors.Turning now to timing examples, we will use matri
es A of order n = 10;000 gener-ated by the Matlab fun
tion sprandn, whi
h produ
es a \random" sparse matrix witha given distribution of singular values. The �rst distribution we
onsider is given by theMatlab statements = logspa
e(0, -6, n)Thus the
ommon logarithms of the singular values are equally spa
ed between 0 and�6. For n
r=10:5:40 we timed the
all

12 Sparse Redu
ed-Rank Approximations[n
r,
x, nr, rx, T, rsd℄ =
ra(A, 1e-5, n
r);whi
h will produ
e an approximation of rank n
r. We also timed the Matlab fun
tion[U, S, V℄ = svds(A, n
r);whi
h produ
es the wherewithal for an approximation of rank n
.The results are summarized in the following table, in whi
h the time is reported inse
onds. n
r SPQR SVD10 2:6 42:415 3:0 35:720 3:4 52:625 3:7 57:330 4:1 70:535 4:4 91:440 4:8 120:0It is seen that the SVD times are worse by fa
tors ranging from 16 for n
r = 10 to25 for n
r = 40. Regarding storage, the SVD requires (n +m)k
oating-point words,whereas the SQR requires only k2 words.In the above example the singular values of the test matrix had no gaps, and
on-sequently the redu
ed-rank approximations are not very good|either for the SVD orthe SPQR approximations. In a di�erent experiment, we generated singular values bythe statementss = logspa
e(0, -4, n);s(20:n) = 1e-6*s(20:n);This pla
es a multipli
ative gap of about 10�6 between the 19th and 20th singularvalues. For n
 = 19; 20 we timed the
allspqr(A, 1.e-2, n
, 1)and the above
all to svds. The results weren
 SQR SVD19 1:8 4:420 1:8 323:6The improved performan
e for the SVD when n
 = 19 is explained by the fa
t thatsvds is being asked to �nd a singular subspa
e whose singular values are well separatedfrom the remaining singular values. Under su
h
ir
umstan
es iterative methods forthe SVD
onverge rapidly. The dismal performan
e of the SVD for n
 = 20 is harderto explain. The fun
tion svds is being asked to �nd the 20th singular value, whi
h is

Sparse Redu
ed-Rank Approximations 13

0 100 200 300 400 500 600 700 800 900 1000
20

40

60

80

100

120

140

ncols

er
ro

r

SPQR

SVD

Figure 6.1: Error in SVD and SPQR approximation for CRANsmall
ompared with A and is poorly separated from the other small singular values.Experien
e has shown this to be a diÆ
ult task. Be that as it may, the 20th singularvalue must be found to reveal the gap in the singular values.As a �nal, example we
onsider a term-do
ument matrix from an LSI appli
ation{spe
i�
ally the matrix CRAN generated from the Cran�eld
olle
tion and available athttp://www.
s.utk.edu/~lsi/. The matrix (or rather its transpose) is 4;612 by 1;398.Figure 6.1 graphs the error (Frobenius norm) in the SVD and SPQR approximationsfor n
ols ranging from 1{1000. The SVD approximation is better, as it must be, butthe SPQR approximation tra
ks it ni
ely.The SVD approximations were not a
tually
omputed. Instead the norms of the SVDapproximation were
omputed from the singular values of A, whi
h were
omputed viathe statement;R = qr(A);sig = svd(full(R));The total time was about 4 minutes. By
ontrast the time to
ompute the entireSPQR approximation with 1000
olumns (and hen
e all the de
ompositions with fewer
olumns) was about 2.5 minutes.We in
luded this example, sin
e it was used by the authors of [14℄, who use it to

14 Sparse Redu
ed-Rank Approximations1 2 3 41 a b2
3 d4 e5 f g6 hval : a d f
 e h b g (floating-point nnz)
ol_start : 1 4 5 7 9 (integer n+1)rx : 1 3 5 2 4 6 1 5 (integer nnz)Figure 7.1: Compressed
olumn representation of a 6�4 matrixdemonstrate the superiority of the SVD approximation and an approximation of theirsover the SPQR approximation. We have been unable to reprodu
e their results. Onepossible explanation is that the matrix must be generated from the do
uments andterms. There may be more than one way to do this, and we
ould therefore be workingwith di�erent matri
es.7. Sparsity
onsiderationsThe timings of the last se
tion show that the Matlab implementation of the SCR ap-proximation is
onsiderably faster than
omputing the SVD to obtain an equivalentapproximation. The
ode is simple be
ause Matlab hides the implementation of thesparse matrix-ve
tor multipli
ations that are the at the heart of the algorithms. It istherefore natural to try to improve on the performan
e of the Matlab implementationby writing the algorithm|sparse operations and all| in a
ompiled language like C orFortran. This se
tion is devoted to sparsity issues that must inform su
h an attempt.For de�niteness we will
onsider the problem of
omputing a pivoted SPQR approx-imations for a matrix A of order n where n is large. We will assume that the number of
olumns n
 in the approximation is small
ompared to n. Finally, we will assume thatA is represented in
ompressed
olumn (CC) form, whi
h we will now brie
y des
ribe.For de�niteness, we will assume 1-based indexing and use Matlab statements in theexamples.An example of CC representation is given in Figure 7.1. The nonzero values ofthe elements of the sparse matrix A are stored in
olumn major order in an arrayval. The length of the array is nnz|the number of nonzero elements of A. An

Sparse Redu
ed-Rank Approximations 15integer array rx of length nnz
ontains the row indi
es of the
orresponding elementsin val. Another integer array,
ol_start, of length n+1 tells where the
olumns startin val and rx. Spe
i�
ally, the �rst element in
olumn j is val[
ol_start[j℄℄. Thevalue of
ol_start[n+1℄ is set to nnz+1. This means that the length of
olumn j is
ol_start[j+1℄-
ol_start[j℄.Formation of the matrix-ve
tor produ
ts Ax and xTA are easy in this representation.The following
ode
omputes y = Axy(1:n) = 0;for j=1:nfor ii =
ol_start(j):
ol_start(j+1)-1;i = rx(ii);y(i) = y(i) + val(ii)*x(j);endend (7.1)Similarly, we
an
ompute y = xTA as follows.for j=1:ny(j) = 0;for ii =
ol_start(j):
ol_start(j+1)-1;i = rx(ii);y(j) = y(j) + x(i)*val(ii);endend (7.2)Both algorithms require nnz additions and multipli
ations. Both traverse the array valin its natural order, whi
h makes for good
a
he usage. The �rst traverses x in itsnatural order, but its referen
es to y jump around; the reverse is true for the se
ondalgorithm.Now if we examine the quasi-Gram{S
hmidt algorithm, we �nd we must performthe following operations involving the matrix A.1. Extra
t the pivot
olumn from A.2. Cal
ulate matrix-ve
tor produ
ts of the form x'*A(:,
olx(1:k-1)).3. Cal
ulate matrix-ve
tor produ
ts of the form A(:,
olx(:,1:k-1))*x.4. Cal
ulate matrix-ve
tor produ
ts of the form x'*A(:,
olx(:,k+1:n)). (As wehave mentioned, when n is large, this
al
ulation is the most expensive part of thealgorithm.)CC storage is ideal for performing all these operations. For example, to
al
ulateA(:,
olx(1:k-1))*x, we need only repla
e the outer for statement in (7.1) by

16 Sparse Redu
ed-Rank Approximationsfor j=
olx(1:k-1)Again, to
ompute x'*A(:,
olx(:,k+1:n))we
hange the outer for statement in (7.2)with for j=
olx(k+1:n)The algorithms no longer a

ess val sequentially, but a

ess within an individual
olumnis
on
entrated in the
ontiguous part of val where its elements lie. Thus the CCrepresentation goes hand-in-glove with the
omputation of the SPQR approximation.The situation is di�erent when we must
ompute the SPQR approximation of AT,as is required when we wish to
ompute an SCR approximation. There are two majoralternatives. We
an work with AT, or we
an write a row-oriented version of spqr thatworks dire
tly with A.Regarding the �rst alternative, the SPARSKIT pa
kage by Saad [8℄ gives an algo-rithm for transposing a matrix in
ondensed format in pla
e.2. The algorithm requiresan additional working integer array of size nnz and O(nnz) operations. A disadvantageis that the elements of ea
h
olumn, though they remain
ontiguous in val, no longero

ur in their natural order. This makes no di�eren
e for our algorithms for formingmatrix-ve
tor produ
ts.The se
ond alternative is to write row-oriented version of spqr. The relevant oper-ations for this problem are the following. Here the array rowx
orresponds to the array
olx in the
olumn-oriented algorithm.1. Extra
t the pivot row from A.2. Cal
ulate matrix-ve
tor produ
ts of the form A(rowx(1:k-1),:)*x.3. Cal
ulate matrix-ve
tor produ
ts of the form x'*A(:,rowx(1:k-1)).4. Cal
ulate matrix-ve
tor produ
ts of the form A(rowx(k+1:n,:))*x.The natural way to implement the row-oriented algorithm is to transform A into
ompressed row format. On
e again, SPARSKIT provides an algorithm. The advantageof this approa
h is that the translation from spqr to the row-oriented version is purelyme
hani
al. The disadvantage is that the storage requirements are doubled.An alternative is to work with the CC format, perhaps augmented by additionalarrays. However, this
reates diÆ
ulties in implementing the row-oriented algorithm.Spe
i�
ally,
onsider the adaptation of (7.1) to
ompute A(rowx(1:k-1),:)*x.2The algorithm assumes
ondensed row format, but it
an easily be adapted to CC format

Sparse Redu
ed-Rank Approximations 17y(1:n) = 0;for j=1:nfor ii =
ol_start(j):
ol_start(j+1)-1;i = rx(ii);if i in rowx(1:k-1)y(i) = y(i) + val(ii)*x(j);endendend (7.3)
There are two problems with this algorithm|one easily solved, the other more diÆ
ult.The �rst problem is that with ea
h iteration of the inner loop rowx(1:k-1) must besear
hed to determine if it
ontains i as an entry. The
ure is to negate the indi
es ofrx
orresponding to row i when row i is brought into the fa
torization. Then we mayrepla
e the the
onditional part of the inner loop withif rx(i) < 0y(-i) = y(-i) + val(ii)*x(j);endThe se
ond problem is that by our assumptions k � n. Now the loops in (7.3)traverse all the nnz elements in the matrix A. But we a
tually work with only those fewelements in the rows indexed by rowx(1:k-1). In other words, for most of the time, thebody of the double loop does nothing. The
ure for this problem is to store a
opy of thematrix A(rowx(1:k-1) in
ompressed-row format. Be
ause k� n, the extra storage isinsigni�
ant. Moreover, it is then easy to perform the operations x'*A(rowx(1:k-1),:)and A(rowx(1:k-1),:)*x. We
hoose the
ompressed row-form be
ause it is easy toadd additional rows to it as k in
reases.Now
onsider the produ
t A(rowx(k+1:n,:))*x. Assuming that we have negatedthe elements of rx
orresponding to rows rowx(1:k), we
an perform this multipli
ationby modifying the body of the loop (7.3) as follows.if rx(i) > 0y(i) = y(i) + val(ii)*x(j);endSin
e k� n, the body of the loop is performing useful work most of the time.Surprisingly, the problem of extra
ting the pivot row from a
ompressed
olumnform is also diÆ
ult. For de�niteness, let the index of that row be ipvt. The followingalgorithm does the job.

18 Sparse Redu
ed-Rank Approximations1 2 3 41 a b2
3 d4 e5 f g6 hval : a d f
 e h b g (floating-point nnz)
ol_start : 1 4 5 7 9 (integer n)row_index : 1 3 5 2 4 6 1 5 (integer nnz)row_start : 1 3 4 5 6 8 9 (integer m+1)row_elp : 1 7 4 2 5 3 8 6 (integer nnz) (elp = element pointer)
ol_index : 1 1 1 2 3 3 4 4 (integer nnz)Figure 7.2: Compressed-
olumn representation of a 6�4 matrix with row linksfor j=1:nfor ii=
ol_start(j):
ol_start(j+1)-1if rx(ii) > ipvt, break, endif rx(ii) == ipvt% A(ipvt, j) = val(ii) is in row ipvt;break;endendendUnfortunately, if ipvt = n, we must traverse the entire matrix just to extra
t the pivotrow. Thus the use of this algorithm has the potential to add O(nzz) work at ea
h stepof the algorithm.A solution is to augment the
ompressed
olumn format to allow a

ess to the rows.Figure 7.2 shows one su
h s
heme, whi
h we will
all
ompressed-
olumn, linked-rowrepresentation (CCLR representation). With it we
an a

ess the row ipvt as follows.for jjj = row_start(ipvt):row_start(ipvt+1)-1jj = row_elp(jjj);j =
x(jj);% A(ipvt, j) = val(jj) is in row ipvtendThis ability to traverse rows allows one to implement the row-oriented algorithm in

Sparse Redu
ed-Rank Approximations 19exa
tly the same manner as the
olumn oriented algorithm. However, there are two dif-feren
es that may a�e
t eÆ
ien
y. First there are two levels of indire
tion from jjj to jjto j. Se
ond, row traversals do not a

ess the elements of val sequentially. Thus it maystill pay to maintain a
opy of A(rowx(1:k-1),:) and to
ompute A(rowx(1:k-1),:)*xdire
tly from the
olumn oriented form.To sum up, if we assume that we have 4-byte integers and 8-byte
oating-pointwords, then
ompressed
olumn storage requires 12 nnz + 4 n bytes of memory. To
ompute the SPQR approximation of AT we have the following options.1. Transpose A in pla
e. Storage: 16 nnz+ 4 n (4 nnz of whi
h is temporary and
anbe allo
ated as an automati
 variable). Additional work: O(nnz) for the initialtranspose.2. Copy A to
ompressed row format. Storage: 24 nnz + 8 n. Additional work:O(nnz) for the
onversion.3. Use CC representation, and
opy A(:,
olx(1:k-1)). Storage 12 nnz+ 4 n. Ad-ditional work: up to O(nnz) per step to extra
t rows.4. Use CCLR representation,
opy A(:,
olx(1:k-1)), and use the row links onlyto extra
t the pivot row. Storage: 20 nnz+ 8 n. Additional work O(1) per step.5. Use CCRL Storage: 20 nnz+ 8 n. Additional work: O(nnz) per step from extraoverhead in pro
essing rows.Items 1, 2, and 4 emerge as the strongest options, playing o� storage, work, andease of programming against ea
h other. Item 1 is attra
tive be
ause of its low storagerequirements and the fa
t that one does not have to
ode a row-oriented version of spqr.Item 2 doubles the storage, but makes the
oding of the row-oriented version trivial.Item 4 almost doubles the storage, and the
opying
ompli
ates the row-orient algorithm.But it is attra
tive when additional row operations involving A are anti
ipated.It should be stressed that the above analysis was done under a number of spe
ialhypotheses|e.g., n
 � n. Change the hypotheses and the the results may
hange.Moreover, the nature of the problem may make other storage s
hemes preferable. How-ever, the analysis illustrates the questions that should be asked by someone implement-ing the Matlab algorithms in a language where sparseness must be taken expli
itly intoa

ount.A. The SPQR
ode%SPQR
omputes a pivoted semi-QR de
omposition of an mxn matrix A.% It is espe
ially suited for
omputing low-rank approximations

20 Sparse Redu
ed-Rank Approximations% to a sparse matrix.%% BACKGROUND. A pivoted QR (PQR) de
omposition of an mxn matrix A is a% fa
torization of the form%% A*P = Q*R%% where P is a permutation matrix, Q is an orthonormal matrix, and R% is an upper triangular matrix. The permutation P is
hosen so% that R(k,k)^2 >= norm(R(:,k:j),'fro')^2, (j=k:n). This tends to make% the initial
olumns of AP well-
onditioned and the trailing% prin
ipal submatrix of R small. In parti
ular, if we partition% the de
omposition B = A*P = Q*R in the form%% [B1 B2℄ = [Q1 Q2℄*[R11 R12; (*)% 0 R22℄%% and R22 is small, then AP
an be approximated by Q1*[R11 R12℄.% The Frobenius norm of the differen
e is NORM(R22, 'fro').%% A semi-PQR (SPQR) approximation
onsists of P, R11 and R12.% Sin
e Q1 = B1*inv(R11) the a
tion of Q1 on a ve
tor
an be
al
ulated% by operations involving B1 and Q1. For example,%% Q1'*x = R'\(B'*x) (**)%% SPQR
omputes a SPQR approximation using a quasi-Gram-S
hmidt% algorithm that takes advantage of (**) (and its equivalents) to% avoid storing Q. This means that the algorithm's only operations% involving A are matrix-ve
tor produ
ts. The only storage% requirements are for R11, R12 and a few work% ve
tors of lengths m and n. Thus SPQR is ideally suited for the% approximating sparse matri
es.%% THE FUNCTION SPQR. The statement%% [n
ols, R,
olx,
olnrm℄ = spqr(A, tol, max
ols, fullR, pivot,
n)%% returns%% n
ols : the number of
olumns in B1 of (*).%%% R : The matrix [R11 R12℄ or R11 depending on fullR.%

Sparse Redu
ed-Rank Approximations 21%
olx(n) : The permutation P. Spe
ifi
ally, AP = A(:,
olx)% and B1 = A(:,
olx(1:n
ols)).%% norms(n) : If norms are to be
omputed, norms
ontains% the following information. For j<=n
ols,% norms(j) is the norm of R22 for the de
omposition% (*), where R11 is jxj. For j>n
ols, norms(j)% is the norm of R22(:,j) in (*), where R11 is% n
ols x n
ols.% If norms are not
omputed, norms=[℄.%% The input arguments are%% A : The matrix whose SPQR approximation is to be%
omputed.%% tol : The redu
tion stops when norm(R22,'fro) < tol.%% max
ols : Stops the redu
tion when n
ols = max
ols.%% fullR : An optional argument with default value 1.% If fullR~=0, SPQR returns [R11 R12℄. Otherwise% it returns only R11.%% pivot : An optional argument with default value 1.% If pivot==0, pivoting is suppressed.%%
n : An optional argument with default value 1.% If (fullR | pivot |
n)==0
omputation of norms% is suppressed and on return norms=[℄.%% WARNING. The a

ura
y of the the approximation de
reases as% norm(R22,'fro') de
reases. As a rule of thumb, if the norms of% the
olumns of A are approximately equal, tol should be greater% than 10^-8*norm(A,'fro').%% NOTES. The
ombination of fullR = pivot =
n = 0 gives% very fast fa
torization of the first max
ols
olumns of A.% If max
ols = n, this gives an unpivoted semi-QR fa
torization% of A, whi
h
an be use to solve least squares problems or%
ompute proje
tions.%% If tol.leq.0, SPQR will stop only when n
ols is equal to
olmax.%% When R12 is too large to store, a se
ond appli
ation of SPQR

22 Sparse Redu
ed-Rank Approximations% gives the wherewithal to
ompute a sparse C-R approximation of the% form%% A = XTY'%% where X
onsists of
olumns of A and Y'
onsists of rows of% A. See SCRA.%% Author: Pete Stewart, May 20 2004%fun
tion [n
ols, R,
olx, norms℄ = spqr(A, tol, max
ols, fullR, pivot,
n);% Determine the maximum number of
olumns in the result.[m, n℄ = size(A);n
ols = min([m, n, max
ols℄);% Set default values of the optional argumentsif nargin == 3fullR = 1;pivot = 1;
n = 1;elseif nargin == 4pivot = 1;
n = 1;elseif nargin == 5
n = 1;elseerror('SPQR: Wrong number of input parameters.')end% Initialize arrays.
n = fullR | pivot |
n
olx = 1:n;if
nrkk = zeros(1,n);for j=1:nnorms(j) = norm(A(:,j));end

Sparse Redu
ed-Rank Approximations 23elsenorms = [℄;endif fullRR = zeros(n
ols,n);elseR = zeros(n
ols,n
ols);end% Loop bringing
olumns of A into the de
omposition.for k=1:n
olsif pivot% Determine the pivot
olumn and swap it with
olumn k.[maxnrm, jmax℄ = max(norms(k:n));jmax = jmax + k - 1;
xk =
olx(k);
olx(k) =
olx(jmax);
olx(jmax) =
xk;
nk = norms(k);norms(k) = norms(jmax);norms(jmax) =
nk;elsejmax = k;endif (fullR & k>1)R(1:k-1,jmax) = R(1:k-1,k);end% Get
olumn k and in
orporate it into the de
omposition.a = A(:,
olx(k));if k == 1% Spe
ial a
tion for the first
olumnR(1,1) = norm(a);q = full(a/R(1,1));

24 Sparse Redu
ed-Rank Approximationselse% Perform a quasi-Gram-S
hmidt step with reorthogonalization.b = full(a'*A(:,
olx(1:k-1)));r = (b/R(1:k-1,1:k-1))';
 = R(1:k-1,1:k-1)\r;q = a - A(:,
olx(1:k-1))*
;b = q'*A(:,
olx(1:k-1));rr = (b/R(1:k-1,1:k-1))';
 = R(1:k-1,1:k-1)\rr;q = q - A(:,
olx(1:k-1))*
;% Update R.r = r + rr;rho = norm(q);R(1:k-1,k) = r;R(k,k) = rho;% Compute the kth
olumn of Q.
 = R(1:k-1,1:k-1)\r;q = (a - A(:,
olx(1:k-1))*
)/rho;end% Update norms and
ompute norm(R22,'fro')if k+1<=nif
n% Compute the k-th row of R. Note: For large matri
es% this step dominates the
omputation.rrk(k+1:n) = q'*A(:,
olx(k+1:n));if fullRR(k,k+1:n) = rrk(k+1:n);end% Downdate the
olumn norms and
ompute norm(R22,'fro').norms(k+1:n) = ...max([norms(k+1:n).^2 - rrk(k+1:n).^2; zeros(1,n-k)℄);

Sparse Redu
ed-Rank Approximations 25norms(k) = sqrt(sum(norms(k+1:n)));norms(k+1:n) = sqrt(norms(k+1:n));% Che
k the stopping
riterion.if (norms(k) < tol) break; endendelsenorms(k) = 0;endend% Clean up.n
ols = k;if fullRR = R(1:n
ols,:);elseR = R(1:n
ols,1:n
ols);endB. The SCRA
ode% SCRA produ
es a redu
edls-rank approximation to a matrix. Spe
ifi
ally,%% [n
,
x, nr, rx, T, err℄ =
ra(A, tol, maxnr
)%% produ
es an approximation of the form%% A(:,
x)*T*A(rx,:)%% where T is a n
 by nr matrix. The parameter err is a bound% on the a

ura
y of the approximation and is
ontrlled by tol.% The parameter maxnr
 is an upper bound on n
% and nr.%% SCRA uses SPQR to
ompute SPQR fa
torizations of A and A'.fun
tion [n
,
x, nr, rx, T, err℄ =
ra(A, tol, maxr
)[n
, R,
x,
n℄ = spqr(A, tol, maxr
, 0);[nr, S, rx, rn℄ = spqr(A', tol, maxr
, 0);

26 Sparse Redu
ed-Rank Approximations
x =
x(1:n
);rx = rx(1:nr);T = [℄;for i=1:nrT = [T, full(A(:,
x)'*(A*A(rx(i),:)'))℄;endT = R\((R'\(T/S))/S');err = sqrt(
n(n
)^2 + rn(nr)^2);Referen
es[1℄ M. Berry and M. Browne. Understanding Sear
h Engines: Mathemati
al Modelingand Text Retrieval. SIAM, Philadelphia, PA, 1999.[2℄ M. W. Berry, Z. Drma�
, and E.R. Jessup. Matri
es, ve
tor spa
es, and informationretrieval. SIAM Review, 41:335{362, 1999.[3℄ M. W. Berry, S. T. Dumais, and Gavin W. O'Brien. Using linear algebra forintelligent information retrieval. SIAM Review, 37:573{595, 1995.[4℄ M. W. Berry and D. I. Martin. Prin
ipal
omponent analysis for informationretrieval. In Handbook of Parallel Computing and Statisti
s. Mar
el Dekker, NewYork, 2004. To appear.[5℄ �A. Bj�or
k. Numeri
al Methods for Least Squares Problems. SIAM, Philadelphia,1996.[6℄ S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing bylatent semanti
 analysis. Journal of the Ameri
an So
iety for Information S
ien
e,41:391{407, 1990.[7℄ P. Jiang and M. W. Berry. Solving total least squares problems in informationretrieval. Linear Algebra and Its Appli
ations, 316:137{156, 2000.[8℄ Y. Saad. SPARSEKIT: A basi
 tool kit for sparse matrix
omputations. Availableat www-users.
s.umn.edu/~saad/software/SPARSKIT/sparskit.html, 1994.[9℄ G. W. Stewart. Matrix Algorithms I: Basi
 De
ompositions. SIAM, Philadelphia,1998.

Sparse Redu
ed-Rank Approximations 27[10℄ G. W. Stewart. Four algorithms for the the eÆ
ient
omputation of trun
atedpivoted qr approximations to a sparse matrix. Numeris
he Mathematik, 83:313{323, 1999.[11℄ G. W. Stewart. Matrix Algorithms II: Eigensystems. SIAM, Philadelphia, 2001.[12℄ G. W. Stewart. Error analysis of the quasi-Gram{S
hmidt algorithm. Te
hni
alReport CMSC TR-4572, Department of Computer S
ien
e, University of Maryland,2004.[13℄ G. W. Stuart and M. W. Berry. A
omprehensive whole genome ba
terial phylogenyusing
orrelated peptide motifs de�ned in a high dimensional ve
tor spa
e. Journalof Bioinformati
s and Computational Biology, 1:475{493, 2003.[14℄ Z. Zhang, H. Zha, and H. Simon. Low-rank approximations with sparse fa
torsI: Basi
 algorithms and error analysis. SIAM Journal on Matrix Analysis andAppli
ations, 23:706{727, 2002.

