
Computing Sparse Redu
ed-Rank Approximations toSparse Matri
esMi
hael W. BerryShakhina A. PulatovaG. W. StewartABSTRACTIn many appli
ations| latent semanti
 indexing, for example| it is re-quired to obtain a redu
ed rank approximation to a sparse matrix A. Unfor-tunately, the approximations based on traditional de
ompositions, like thesingular value and QR de
ompositions, are not in general sparse. Stewart[Numer. Math. 83 (1999) 313{323℄ has shown how to use a variant of the 
las-si
al Gram{S
hmidt algorithm, 
alled the quasi{Gram-S
hmidt{algorithm,to obtain an approximation of the form A �= XTY T, where X and Y aresparse (they a
tually 
onsist of rows and 
olumns of A) and T is small. Inthis paper we treat the 
omputational details of the algorithm and des
ribea Matlab implementation.1. Introdu
tionIn a number of appli
ations [2, 7, 13, 4℄ one is given a large matrix A and wishes to �nda redu
ed-rank approximation to A. This approximation is invariably expressed in theform A �= XTY T (1.1)where X and Y are full-rank matri
es and T is nonsingular (T may be the identitymatrix). When A is m�n and T is of order k, this approximation requires (m+n+k)kwords to store, as opposed to mn for the full A. Moreover, the matrix-ve
tor produ
tAx require (m+n+k)k additions and multipli
ations to 
ompute, as opposed, again, tomn additions and multipli
ations for the full A. Clearly, if k is small, great savings areto be had by using the redu
ed-rank approximation (1.1).A widely used redu
ed-rank approximation is the trun
ated singular value de
ompo-sition, whi
h is known to be optimal in the sense that the Frobenius norm kA�XTY Tk1



2 Sparse Redu
ed-Rank Approximationsis minimized. There are stable dire
t methods for its 
omputation; however, thesemethods 
ompute the full de
omposition and are not suitable for very large matri
es.Fortunately, there are iterative methods that produ
e the approximation (1.1) withouthaving to 
ompute the full SVD. These methods require only the formation of matrix-ve
tor produ
ts and do not alter A.An alternative is the pivoted QR de
omposition, whi
h generally gives results 
ompa-rable to the SVD. For large A, the Gram{S
hmidt algorithm 
an be adapted to 
omputethis de
omposition. Again, A is not altered, and the prin
iple operations are matrix-ve
tor multipli
ations. This paper is 
on
erned with elaborations of this approa
h toredu
ed-rank approximations.When A is large and sparse the situation is not as simple. For A, the storage andoperation 
ounts given above be
ome proportional to the number of nonzero elementsin A. Sin
e the fa
tors X, T and Y are generally not sparse, the storage and operation
ounts for the approximation remain the same. Thus as k in
reases, we will rea
h apoint where it be
omes ne
essary to abandon the fa
tored form. Note that we do nothave the ability to 
hoose k, sin
e the a

ura
y required of the approximation, whi
hdepends on k, is governed by the appli
ation.In this paper we are going to des
ribe two approximations based on the pivotedQR de
omposition that produ
e approximations in whi
h X or both X and Y aresparse. The �rst approximation is 
alled sparse pivoted QR approximation (SPQR). Itis 
omputed by an algorithm, 
alled the quasi-Gram{S
hmidt algorithm, that produ
esa fa
torization in whi
h X 
onsists of a sele
tion of 
olumns of A. In the se
ondapproximation, 
alled the sparse 
olumn-row (SCR) approximation, X 
onsists of asele
tion of the 
olumns of A and Y 
onsists of a sele
tion of the rows of A, so thatwhen A is sparse so are both X and Y .These methods were �rst des
ribed by Stewart in [10℄ and the quasi-Gram{S
hmidtmethod has been analyzed in [12℄. The purpose of this paper is to give the 
omputa-tional details leading to the a

ompanying Matlab fun
tions. In the next se
tion we willintrodu
e the pivoted QR de
omposition. In Se
tion 3 we will derive the quasi-Gram{S
hmidt method and apply it to the 
omputation of the sparse pivoted QR approxima-tion. In Se
tion 4 we will show how to 
ompute the SCR approximation. We will alsoshow how it 
an be applied to an information retrieval pro
ess known as latent semanti
indexing. The implementation details for our algorithms are des
ribed in Se
tion 5. InSe
tion 6 we 
ompare the SPQR approximation with the singular value de
omposition.Finally, in Se
tion 7 we dis
uss some sparsity issues that arise in produ
ing implemen-tations in 
ompiled programming languages like C or Fortran. The Matlab programsare listed in appendi
es.



Sparse Redu
ed-Rank Approximations 3Throughout this paper, k � k will denote the Frobenius norm de�ned bykAk2 =Xi;j a2ij ;and k � k2 the spe
tral norm de�ned bykAk2 = maxkxk=1 kAxk:2. The pivoted QR fa
torizationAs above, let A be an m�n matrix, not ne
essarily sparse. A pivoted QR (PQR)fa
torization has the form AP = QR; (2.1)where P is a permutation matrix, Q is orthonormal, and R is upper triangular. Theexa
t form depends on the the sizes of m and n. If m � n, then Q is m�n and R isn�n. If m < n, then Q is m�m and R is m�n. Although our algorithms apply to both
ases, for ease of exposition we will assume that m � n in what follows.A rank k approximation to A 
an be obtained by partitioning the fa
torization (2.1).Let B = AP and write (B(k)1 B(k)2 ) = (Q(k)1 Q(k)2 ) R(k)11 R(k)120 R(k)22 ! ; (2.2)where B(k)1 has k 
olumns. Then our approximation is~B(k) = Q(k)1 (R(k)11 R(k)12 ): (2.3)Note that B � ~B(k) = Q(k)2 (0 R(k)22 ):Sin
e Q(k)2 is orthonormal, the error in ~B(k) as an approximation to B iskB � ~B(k)k = kR(k)22 k: (2.4)We will not 
ompute the entire de
omposition (2.2). Rather we will bring in 
olumnsof A one at a time and use ea
h to 
ompute an additional 
olumn of Q and row of R.Thus at the end of kth step of this algorithm we will have 
omputed the approximation(2.3).The pro
ess of sele
ting 
olumns is 
alled 
olumn pivoting , or for short simply piv-oting. The order in whi
h the 
olumns are sele
ted determines the permutation P .



4 Sparse Redu
ed-Rank ApproximationsEquation (2.4) suggests that at the beginning of the kth step we should 
hoose the
olumn of A in su
h a way as to make kR(k)22 k small. The 
lassi
al 
hoi
e is to bring inthe 
olumn of A that 
orresponds to the 
olumn of R(k�1)22 of largest norm. (For moreon this 
hoi
e see [5, 9℄.)Surprisingly, we 
an implement this strategy without 
omputing R(k�1)22 itself. Con-sider the partition (2.2), in whi
h the supers
ripts (k) are repla
ed by (k�1). Let bjand rj denote the jth 
olumns of B and R. Be
ause Q is orthonormal, we havekbjk = krjk: (2.5)Now for j � k partition rj =  r(j)1r(j)2 !where r(j)1 has k�1-
omponents. Thus r(j)1 is the jth 
olumn of R(k�1)12 , and r(j)2 is thejth 
olumn of R(k�1)22 . It then follows thatkr(j)2 k2 = kbjk2 � kr(j)1 k2 = kbjk2 � r21j � r22j � � � � � r2k�1;j: (2.6)Thus at ea
h stage we 
an 
ompute the squares of the norms of the 
olumns of R(k�1)22 .Moreover, the sum of these numbers is kR(k�1)22 k2, so that by (2.4) we get, almostfor free, the value of the norm of the error in our redu
ed-rank approximation. Thisnumber 
an be used to determine when we have a satisfa
torily a

urate redu
ed-rankapproximation.Unfortunately, the expression (2.6) has a dark side. If kr(j)2 k2 is small 
omparedkbjk2, there will be 
an
ellation in the 
omputation of kr(j)2 k2. In parti
ular, in IEEEdouble-pre
ision arithmeti
 if kr(j)2 k2 � 10�16kbjk2 we 
an expe
t no a

ura
y in the
omputed value. On taking square roots we �nd that we 
an use the formula (2.6) onlywhen kr(j)2 k > 10�8kbjk:This means that if all the 
olumns of A have norm one we 
annot reliably 
omputeredu
ed-rank approximation that is more a

urate than 10�8. However, this a

ura
yis usually more than enough.3. The quasi-Gram{S
hmidt methodIn this se
tion we will des
ribe the quasi-Gram{S
hmidt method. We will begin with ades
ription of the 
lassi
al Gram{S
hmidt method.



Sparse Redu
ed-Rank Approximations 5Suppose we have a QR fa
torizationB = QR (3.1)of B and wish to 
ompute a QR fa
torization(B a) = (Q q)�R r0 ��of (B a). The se
ond 
olumn of this equality gives us the relationa = Qr + �q:Sin
e QTQ = I and QTq = 0, we have r = QTa: (3.2)Sin
e kqk = 1, we have � = ka�Qrk (3.3)and q = ��1(a�Qr): (3.4)Equations (3.2), (3.3), and (3.4) are e�e
tively an algorithm for extending our originalQR fa
torization.Unfortunately, 
an
ellation in the formation of a�Qr 
an 
ause the 
omputed q tobe far from orthogonal to the 
olumns of Q. The 
ure for this problem is reorthogonal-ization, in whi
h the pro
ess is repeated on a�Qr. Spe
i�
ally, we have the followingalgorithm, in whi
h we use Matlab notation.1. r = Q'*a2. q = a - Q*r3. s = Q'*q4. r = r + s5. q = q - Q*s6. rho = norm(q)7. q = q/rho (3.5)Typi
ally, this algorithm produ
es a q that is orthogonal to the 
olumns of Q to workinga

ura
y.11In extremely unlikely 
ases the algorithm may produ
e a zero q at step 2 or 5, in whi
h 
ase spe
iala
tion must be taken. In pra
ti
e, most programs that use Gram{S
hmidt orthogonalization ignore thisproblem.



6 Sparse Redu
ed-Rank ApproximationsWe 
an use this algorithm to 
ompute a PQR fa
torization of A simply by sele
ting
olumns of A and updating the QR fa
torization of B. To start the pro
ess o�, one setsR(1)11 = � = kak, and Q(1)1 = ��1a, where a is the �rst 
olumn sele
ted from the 
olumnsof A. In this way we 
ompute the de
ompositionsB(k)1 = Q(k)1 R(k)11 ;where R(k)11 is k�k.A problem with this algorithm is that it only 
omputes the fa
tor R(k)11 in (2.2).However it is easy to see that row k of R(k)12 is simply qTk Â, where qk is the kth 
olumnof Q(k)1 and Â 
onsists of the n�k 
olumns of A that are not in B(k)1 . If n is large, this
omputation may be the most expensive part of the algorithm. Note that even if we donot want the R(k)12 we must still form (and dis
ard) the produ
t qTk Â in order to 
omputethe 
olumn norms of R(k)22 as des
ribed in the last se
tion.Returning now to the Gram{S
hmidt algorithm, we note that even if A is sparse, Qis in general not sparse. If m is very large, we may be unable to store Q. To 
ir
umventthis problem, we observe that it follows from (3.1) thatQ = BR�1:Consequently, we 
an form the produ
t Q'*a in (3.5) by the following algorithm.1. d = a'*B2. r = (d/R)'Similarly we 
an form the produ
t Q*r by1. p = R\r2. q = B*pThis leads to the following quasi-Gram{S
hmidt step (in whi
h we have put the 
odefor the 
lassi
al Gram-S
hmidt step on the right).1. d = a'*B r = Q'*a2. r = (d/R)' q = a - Q*r3. p = R\r4. q = a - B*p5. d = q'*B s = Q'*q6. s = (d/R)'7. r = r + s r = r + s8. p = R\s q = q - Q*s9. q = q - B*s10. rho = norm(q) rho = norm(q)
(3.6)



Sparse Redu
ed-Rank Approximations 7This 
ode 
omputes only r and rho|the quantities needed to update R. It does not
ompute q in the form q/rho, as does the 
lassi
al Gram{S
hmidt algorithm. Instead,q is de�ned by the relationq = (B a)�R r0 ���1 = ��1(a�BR�1r); (3.7)and is so 
omputed in our algorithms.The quasi-Gram{S
hmidt step 
an be applied su

essively to 
olumns of A, as de-s
ribed above for the 
lassi
al Gram{S
hmidt algorithm, to produ
e a pivoted, Q-lessPQR fa
torization, whi
h we will 
all a semi-PQR (SPQR) fa
torization. We will
all the 
orresponding approximation (B(k)1 R(k)11 �1)(R(k)11 R(k)12 ) the SPQR approxima-tion. The algorithm not only dispenses with the storage for Q, but it repla
es denseprodu
ts involving Q with sparse produ
ts involving 
olumns of A. The only stri
tlydense operations involve R11 and R12. But sin
e the order of (R11 R12) is k�n, ifm� n these operations a

ount for little of the total work.On
e again there is a dark side|there may be a progressive loss of orthogonalityin the matrix BR�1. However, an analysis of the quasi-Gram{S
hmidt algorithm [12℄shows that the loss of orthogonality is proportional to the 
ondition number kRkkR�1kof R, whi
h is usually good enough.A ni
e feature of the SPQR approximation (and QR approximations in general) isthat having 
omputed an approximation of order k one has immediately the all theapproximations of order ` < k. Simply, work with the �rst ` 
olumns of B and rows ofR.4. Sparse 
olumn-row approximationsWhen m� n, the SPQR approximation is satisfa
tory. But when m and n are nearlyequal, the storage of R be
omes a problem. We 
an 
ir
umvent this problem at the 
ostof performing another fa
torization.Spe
i�
ally, �rst apply the quasi-Gram{S
hmidt algorithm to the 
olumns of A to geta representative set of 
olumns X of A and an upper triangular matrix R 
orrespondingto R11. Let the error in the 
orresponding redu
ed-rank de
omposition be �
ol. Nowapply the same algorithm to AT to get a representative set Y T of rows and anotherupper triangular matrix S. Let the error be �row. We then seek a matrix T su
h thatkA�XTY Tk2 = min :In [10℄ it is shown that the minimizer isT = R�1R�T(XTAY )S�1S�T:



8 Sparse Redu
ed-Rank ApproximationsMoreover, kA�XTY Tk2 � �2
ol + �2row: (4.1)We will 
all this approximation a sparse row-
olumn approximation, or for shortan SRC approximation. Su
h approximations are e
onomi
al to use. For example, to
ompute y = XTY Tx we 
ompute r = Y Tx, s = Tr, and y = Xs. This requirestwo sparse matrix-ve
tor multipli
ations and one dense matrix-ve
tor multipli
ation inwhi
h the matrix is small.It may happen that X and Y do not have the same number of 
olumns, in whi
h
ase T will not be square. This 
auses no problems in matrix-ve
tor multipli
ations.Some 
are must be taken in 
omputing the matrix T . The 
rux of the matter is toform XTAY 
orre
tly. If, for example, m is large and we �rst 
al
ulate AY , we endup with a large, potentially full matrix. The 
ure for this problem is to partition Y by
olumns, writing XTA(y1 y2 � � � yk) :We 
an then 
al
ulate XTAY 
olumn by 
olumn as follows.1. T = [℄;2. for j=1:k3. T = [T, X'*(A*Y(:,j)℄;4. endA variant of this de
omposition may be useful in latent semanti
 indexing (LSI), adevi
e for retrieving do
uments from a query ve
tor of terms [1, 3, 2, 6℄. Brie
y, in (LSI)one starts with a term-do
ument matrix A whose (i; j)-element is the number of timesterm i o

urs in do
ument j. One then 
al
ulates the singular value approximationA = Uk�kV Tk : (4.2)In the parlan
e of LSI, the 
olumns of Uk are 
alled term ve
tors and 
olumns of V Tk are
alled do
ument ve
tors. Given a query ve
tor q of terms, one 
omputes a 
orrespondingdo
ument ve
tor by the formula d = ��1k UTk q:and 
ompares it with the 
olumns of Vk to determine whi
h 
olumns are related to thethe query ve
tor q. For example, one might 
ompute the 
osines of the angles betweend and the 
olumns of Vk and 
hoose the 
olumns 
orresponding to the larger ones.We 
an rewrite the XTY T in the form of (4.2). Spe
i�
ally,XTY T = (XR�1)(R�TXTAY S�1)(S�TY T) � PWQT:



Sparse Redu
ed-Rank Approximations 9Now mathemati
ally, P and Q are orthogonal. Consequently, if we 
ompute the singularvalue de
omposition W =M�NT of W and setU = PM and V = QN;then U and V are orthonormal, andXTY T = U�V T: (4.3)We 
an use this de
omposition as des
ribed above to perform LSI. Of 
ourse we do notexpli
itly form U and V ; rather we keep and apply them in fa
tored form; i.e.,U = XR�1M and V = Y S�1N:It should be stressed that the relation between (4.3) and (4.2) is purely formal. It isan open question whether LSI performed using the former will share the good propertiesof ordinary LSI. Theorem 6.1 below en
ourages us to 
onje
ture that it will.5. A Matlab implementationIn this se
tion we will des
ribe a Matlab fun
tion spqr to 
ompute SPQR approxima-tions. The basi
 algorithm is simple and the 
hief implementation problem is how topa
kage it. We begin by looking at the input parameters.The essential input is the matrix A and a toleran
e tol to tell when to stop thefa
torization. Although the algorithm always terminates after a �nite number of steps,if tol is too small, spqrmay be 
ommitted to performing an una

eptably large numberof operations. For this reason, a third parameter max
ol puts an upper bound on thenumber of 
olumns of A to be used in the approximation. Of 
ourse, one 
an alwaysset max
ol greater than or equal to n, it whi
h 
ase it has no e�e
t. The programterminates at the �rst step k for whi
h kR(k)22 k < tol. Consequently, if tol is zero, spqris for
ed to in
lude max
ol 
olumns of A.Thus the basi
 
alling sequen
e for spqr isspqr(A, tol, max
ol)Although A is presumed to be a Matlab sparse matrix, spqr also works when A is dense.We will now turn the output parameters.When spqr �nishes we need to know four things.1. The number 
olumns of A involved in the approximation.2. The matrix (R11 R12).



10 Sparse Redu
ed-Rank Approximations3. The relation of the 
olumns of (R11 R12) to those of A.4. The error in the approximation.The �rst is returned in the output parameter n
ols. The se
ond in the output matrixR. The third and fourth items are 
onne
ted with the way spqr implements pivoting.The fun
tion begins with two arrays: 
olx, whi
h is initialized to 1:n and norms whi
his initialized so that norms(j) is the norm of the jth 
olumn of A. At step k, spqrdetermines the �rst index j � k for whi
h norms(j) is maximal and swaps 
omponentsj and k of both 
olx and norms, along with the 
orresponding 
olumns of R. The
olumn A(:,
olx(j)) is then used to advan
e the approximation. After the quasi-Gram{S
hmidt orthogonalization has been 
omputed the elements of the kth row ofR(k)22 are 
omputed and used to downdate norms(k+1:n). The error in the 
urrentapproximation is also 
omputed and stored in norms(k).From this des
ription it follows that on returnB = A(:; 
olx);whi
h provides the relation between R and A. Moreover the error in the approximationis norms(n
ols). However, we get a little more. For j � n
ols, the arrays 
olx andR(1:j,:) 
ontain the SPQR approximation asso
iated with A(:,
olx(1:j)), and by
onstru
tion its error is norms(j). Thus by setting tol to zero, we 
an tra
k the qualityof all the approximations from 1 to max
ols.The fun
tion spqr has three optional input arguments used to �ne tune the de
om-position. The �rst fullR has a default value of 1 (true). If it is present and 0 (false),then only R(n
ols)11 is 
omputed. This is useful when the primary 
on
ern is with thespa
e spanned by the 
olumns A(:,
olx(1:n
ols)). The se
ond optional parameterpivot has the default value 1. If it is present and 0 pivoting is suppressed| i.e., the the
olumns of A are pro
essed in their natural order. Finally, the optional parameter 
n(for 
ompute norms) has a default value of 1. If it is present and fullR | pivot | 
ris zero, then the 
omputation of norms is suppressed and on return norms = [℄.Thus the �nal 
alling sequen
e is[n
ols, R, 
olx, norms℄ = spqr(A, tol, max
ol, fullR, pivot, 
n)in whi
h fullR, pivot, and 
n are optional. For a 
on
ise summary see the prologueto spqr.6. Comparison with the SVDIn this se
tion we shall make some timing 
omparisons between the quasi-QR and theSVD redu
ed-rank approximations. SVD approximations are rightly regarded as the



Sparse Redu
ed-Rank Approximations 11ones to beat. Gaps in the singular values reveal numeri
al rank with great reliability,and the redu
ed rank-approximations it produ
es are optimal. However, it is expensiveto 
ompute. Moreover, there seems to be no easy way to in
rease the the size of theapproximation step by step as we are able to do with QR approximations.Sin
e the SVD is so highly regarded, it is sometimes obje
ted that other approxima-tions may not reprodu
e the row and 
olumn spa
es from the SVD to suÆ
ient a

ura
y.This is parti
ularly important in appli
ations where we are not interested in the approx-imations themselves but in the subspa
es they de�ne. We are now going to show thatif any redu
ed-rank approximation is a

urate then it 
ontains good approximations tothe singular ve
tors 
orresponding to large singular values.Theorem 6.1. Let A = XY T +E. Let X be the spa
e spanned by the 
olumns of Xand Y be spa
e spanned by the 
olumns of Y . Let � > 0 be a singular value of A withnormalized left and right singular ve
tors u and v, so that Av = �u and uTA = �vT.Then sin\(u;X ); sin\(v;Y) � kEk2� : (6.1)Proof. We will establish the �rst inequality, the se
ond being established similarly. LetX? be an orthonormal basis for the orthogonal 
omplement of X . Then kXT?uk is thesine of the angle between u and X [11, x4.2.a℄. NowXT?Av = �XT?u;and XT?Av = XT?XY Tv +XT?Ev = XT?Ev;sin
e by 
onstru
tionXT?X = 0. It then follows that �XT?u = XT?Ev, when
e kXT?uk2 �kEk2=�, whi
h is just the �rst inequality in (6.1).This theorem says that if a redu
ed-rank approximation is a

urate, then its 
olumnspa
e must 
ontain a

urate approximations to the left singular ve
tors 
orrespondingto singular values that are large 
ompared to kEk. An analogous statement is true ofthe row spa
e and the right singular ve
tors.Turning now to timing examples, we will use matri
es A of order n = 10;000 gener-ated by the Matlab fun
tion sprandn, whi
h produ
es a \random" sparse matrix witha given distribution of singular values. The �rst distribution we 
onsider is given by theMatlab statements = logspa
e(0, -6, n)Thus the 
ommon logarithms of the singular values are equally spa
ed between 0 and�6. For n
r=10:5:40 we timed the 
all



12 Sparse Redu
ed-Rank Approximations[n
r, 
x, nr, rx, T, rsd℄ = 
ra(A, 1e-5, n
r);whi
h will produ
e an approximation of rank n
r. We also timed the Matlab fun
tion[U, S, V℄ = svds(A, n
r);whi
h produ
es the wherewithal for an approximation of rank n
.The results are summarized in the following table, in whi
h the time is reported inse
onds. n
r SPQR SVD10 2:6 42:415 3:0 35:720 3:4 52:625 3:7 57:330 4:1 70:535 4:4 91:440 4:8 120:0It is seen that the SVD times are worse by fa
tors ranging from 16 for n
r = 10 to25 for n
r = 40. Regarding storage, the SVD requires (n +m)k 
oating-point words,whereas the SQR requires only k2 words.In the above example the singular values of the test matrix had no gaps, and 
on-sequently the redu
ed-rank approximations are not very good|either for the SVD orthe SPQR approximations. In a di�erent experiment, we generated singular values bythe statementss = logspa
e(0, -4, n);s(20:n) = 1e-6*s(20:n);This pla
es a multipli
ative gap of about 10�6 between the 19th and 20th singularvalues. For n
 = 19; 20 we timed the 
allspqr(A, 1.e-2, n
, 1)and the above 
all to svds. The results weren
 SQR SVD19 1:8 4:420 1:8 323:6The improved performan
e for the SVD when n
 = 19 is explained by the fa
t thatsvds is being asked to �nd a singular subspa
e whose singular values are well separatedfrom the remaining singular values. Under su
h 
ir
umstan
es iterative methods forthe SVD 
onverge rapidly. The dismal performan
e of the SVD for n
 = 20 is harderto explain. The fun
tion svds is being asked to �nd the 20th singular value, whi
h is
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Figure 6.1: Error in SVD and SPQR approximation for CRANsmall 
ompared with A and is poorly separated from the other small singular values.Experien
e has shown this to be a diÆ
ult task. Be that as it may, the 20th singularvalue must be found to reveal the gap in the singular values.As a �nal, example we 
onsider a term-do
ument matrix from an LSI appli
ation{spe
i�
ally the matrix CRAN generated from the Cran�eld 
olle
tion and available athttp://www.
s.utk.edu/~lsi/. The matrix (or rather its transpose) is 4;612 by 1;398.Figure 6.1 graphs the error (Frobenius norm) in the SVD and SPQR approximationsfor n
ols ranging from 1{1000. The SVD approximation is better, as it must be, butthe SPQR approximation tra
ks it ni
ely.The SVD approximations were not a
tually 
omputed. Instead the norms of the SVDapproximation were 
omputed from the singular values of A, whi
h were 
omputed viathe statement;R = qr(A);sig = svd(full(R));The total time was about 4 minutes. By 
ontrast the time to 
ompute the entireSPQR approximation with 1000 
olumns (and hen
e all the de
ompositions with fewer
olumns) was about 2.5 minutes.We in
luded this example, sin
e it was used by the authors of [14℄, who use it to



14 Sparse Redu
ed-Rank Approximations1 2 3 41 a b2 
3 d4 e5 f g6 hval : a d f 
 e h b g (floating-point nnz)
ol_start : 1 4 5 7 9 (integer n+1)rx : 1 3 5 2 4 6 1 5 (integer nnz)Figure 7.1: Compressed 
olumn representation of a 6�4 matrixdemonstrate the superiority of the SVD approximation and an approximation of theirsover the SPQR approximation. We have been unable to reprodu
e their results. Onepossible explanation is that the matrix must be generated from the do
uments andterms. There may be more than one way to do this, and we 
ould therefore be workingwith di�erent matri
es.7. Sparsity 
onsiderationsThe timings of the last se
tion show that the Matlab implementation of the SCR ap-proximation is 
onsiderably faster than 
omputing the SVD to obtain an equivalentapproximation. The 
ode is simple be
ause Matlab hides the implementation of thesparse matrix-ve
tor multipli
ations that are the at the heart of the algorithms. It istherefore natural to try to improve on the performan
e of the Matlab implementationby writing the algorithm|sparse operations and all| in a 
ompiled language like C orFortran. This se
tion is devoted to sparsity issues that must inform su
h an attempt.For de�niteness we will 
onsider the problem of 
omputing a pivoted SPQR approx-imations for a matrix A of order n where n is large. We will assume that the number of
olumns n
 in the approximation is small 
ompared to n. Finally, we will assume thatA is represented in 
ompressed 
olumn (CC) form, whi
h we will now brie
y des
ribe.For de�niteness, we will assume 1-based indexing and use Matlab statements in theexamples.An example of CC representation is given in Figure 7.1. The nonzero values ofthe elements of the sparse matrix A are stored in 
olumn major order in an arrayval. The length of the array is nnz|the number of nonzero elements of A. An



Sparse Redu
ed-Rank Approximations 15integer array rx of length nnz 
ontains the row indi
es of the 
orresponding elementsin val. Another integer array, 
ol_start, of length n+1 tells where the 
olumns startin val and rx. Spe
i�
ally, the �rst element in 
olumn j is val[
ol_start[j℄℄. Thevalue of 
ol_start[n+1℄ is set to nnz+1. This means that the length of 
olumn j is
ol_start[j+1℄-
ol_start[j℄.Formation of the matrix-ve
tor produ
ts Ax and xTA are easy in this representation.The following 
ode 
omputes y = Axy(1:n) = 0;for j=1:nfor ii = 
ol_start(j):
ol_start(j+1)-1;i = rx(ii);y(i) = y(i) + val(ii)*x(j);endend (7.1)Similarly, we 
an 
ompute y = xTA as follows.for j=1:ny(j) = 0;for ii = 
ol_start(j):
ol_start(j+1)-1;i = rx(ii);y(j) = y(j) + x(i)*val(ii);endend (7.2)Both algorithms require nnz additions and multipli
ations. Both traverse the array valin its natural order, whi
h makes for good 
a
he usage. The �rst traverses x in itsnatural order, but its referen
es to y jump around; the reverse is true for the se
ondalgorithm.Now if we examine the quasi-Gram{S
hmidt algorithm, we �nd we must performthe following operations involving the matrix A.1. Extra
t the pivot 
olumn from A.2. Cal
ulate matrix-ve
tor produ
ts of the form x'*A(:,
olx(1:k-1)).3. Cal
ulate matrix-ve
tor produ
ts of the form A(:,
olx(:,1:k-1))*x.4. Cal
ulate matrix-ve
tor produ
ts of the form x'*A(:,
olx(:,k+1:n)). (As wehave mentioned, when n is large, this 
al
ulation is the most expensive part of thealgorithm.)CC storage is ideal for performing all these operations. For example, to 
al
ulateA(:,
olx(1:k-1))*x, we need only repla
e the outer for statement in (7.1) by
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ed-Rank Approximationsfor j=
olx(1:k-1)Again, to 
ompute x'*A(:,
olx(:,k+1:n))we 
hange the outer for statement in (7.2)with for j=
olx(k+1:n)The algorithms no longer a

ess val sequentially, but a

ess within an individual 
olumnis 
on
entrated in the 
ontiguous part of val where its elements lie. Thus the CCrepresentation goes hand-in-glove with the 
omputation of the SPQR approximation.The situation is di�erent when we must 
ompute the SPQR approximation of AT,as is required when we wish to 
ompute an SCR approximation. There are two majoralternatives. We 
an work with AT, or we 
an write a row-oriented version of spqr thatworks dire
tly with A.Regarding the �rst alternative, the SPARSKIT pa
kage by Saad [8℄ gives an algo-rithm for transposing a matrix in 
ondensed format in pla
e.2. The algorithm requiresan additional working integer array of size nnz and O(nnz) operations. A disadvantageis that the elements of ea
h 
olumn, though they remain 
ontiguous in val, no longero

ur in their natural order. This makes no di�eren
e for our algorithms for formingmatrix-ve
tor produ
ts.The se
ond alternative is to write row-oriented version of spqr. The relevant oper-ations for this problem are the following. Here the array rowx 
orresponds to the array
olx in the 
olumn-oriented algorithm.1. Extra
t the pivot row from A.2. Cal
ulate matrix-ve
tor produ
ts of the form A(rowx(1:k-1),:)*x.3. Cal
ulate matrix-ve
tor produ
ts of the form x'*A(:,rowx(1:k-1)).4. Cal
ulate matrix-ve
tor produ
ts of the form A(rowx(k+1:n,:))*x.The natural way to implement the row-oriented algorithm is to transform A into
ompressed row format. On
e again, SPARSKIT provides an algorithm. The advantageof this approa
h is that the translation from spqr to the row-oriented version is purelyme
hani
al. The disadvantage is that the storage requirements are doubled.An alternative is to work with the CC format, perhaps augmented by additionalarrays. However, this 
reates diÆ
ulties in implementing the row-oriented algorithm.Spe
i�
ally, 
onsider the adaptation of (7.1) to 
ompute A(rowx(1:k-1),:)*x.2The algorithm assumes 
ondensed row format, but it 
an easily be adapted to CC format



Sparse Redu
ed-Rank Approximations 17y(1:n) = 0;for j=1:nfor ii = 
ol_start(j):
ol_start(j+1)-1;i = rx(ii);if i in rowx(1:k-1)y(i) = y(i) + val(ii)*x(j);endendend (7.3)
There are two problems with this algorithm|one easily solved, the other more diÆ
ult.The �rst problem is that with ea
h iteration of the inner loop rowx(1:k-1) must besear
hed to determine if it 
ontains i as an entry. The 
ure is to negate the indi
es ofrx 
orresponding to row i when row i is brought into the fa
torization. Then we mayrepla
e the the 
onditional part of the inner loop withif rx(i) < 0y(-i) = y(-i) + val(ii)*x(j);endThe se
ond problem is that by our assumptions k � n. Now the loops in (7.3)traverse all the nnz elements in the matrix A. But we a
tually work with only those fewelements in the rows indexed by rowx(1:k-1). In other words, for most of the time, thebody of the double loop does nothing. The 
ure for this problem is to store a 
opy of thematrix A(rowx(1:k-1) in 
ompressed-row format. Be
ause k� n, the extra storage isinsigni�
ant. Moreover, it is then easy to perform the operations x'*A(rowx(1:k-1),:)and A(rowx(1:k-1),:)*x. We 
hoose the 
ompressed row-form be
ause it is easy toadd additional rows to it as k in
reases.Now 
onsider the produ
t A(rowx(k+1:n,:))*x. Assuming that we have negatedthe elements of rx 
orresponding to rows rowx(1:k), we 
an perform this multipli
ationby modifying the body of the loop (7.3) as follows.if rx(i) > 0y(i) = y(i) + val(ii)*x(j);endSin
e k� n, the body of the loop is performing useful work most of the time.Surprisingly, the problem of extra
ting the pivot row from a 
ompressed 
olumnform is also diÆ
ult. For de�niteness, let the index of that row be ipvt. The followingalgorithm does the job.
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ed-Rank Approximations1 2 3 41 a b2 
3 d4 e5 f g6 hval : a d f 
 e h b g (floating-point nnz)
ol_start : 1 4 5 7 9 (integer n)row_index : 1 3 5 2 4 6 1 5 (integer nnz)row_start : 1 3 4 5 6 8 9 (integer m+1)row_elp : 1 7 4 2 5 3 8 6 (integer nnz) (elp = element pointer)
ol_index : 1 1 1 2 3 3 4 4 (integer nnz)Figure 7.2: Compressed-
olumn representation of a 6�4 matrix with row linksfor j=1:nfor ii=
ol_start(j):
ol_start(j+1)-1if rx(ii) > ipvt, break, endif rx(ii) == ipvt% A(ipvt, j) = val(ii) is in row ipvt;break;endendendUnfortunately, if ipvt = n, we must traverse the entire matrix just to extra
t the pivotrow. Thus the use of this algorithm has the potential to add O(nzz) work at ea
h stepof the algorithm.A solution is to augment the 
ompressed 
olumn format to allow a

ess to the rows.Figure 7.2 shows one su
h s
heme, whi
h we will 
all 
ompressed-
olumn, linked-rowrepresentation (CCLR representation). With it we 
an a

ess the row ipvt as follows.for jjj = row_start(ipvt):row_start(ipvt+1)-1jj = row_elp(jjj);j = 
x(jj);% A(ipvt, j) = val(jj) is in row ipvtendThis ability to traverse rows allows one to implement the row-oriented algorithm in
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ed-Rank Approximations 19exa
tly the same manner as the 
olumn oriented algorithm. However, there are two dif-feren
es that may a�e
t eÆ
ien
y. First there are two levels of indire
tion from jjj to jjto j. Se
ond, row traversals do not a

ess the elements of val sequentially. Thus it maystill pay to maintain a 
opy of A(rowx(1:k-1),:) and to 
ompute A(rowx(1:k-1),:)*xdire
tly from the 
olumn oriented form.To sum up, if we assume that we have 4-byte integers and 8-byte 
oating-pointwords, then 
ompressed 
olumn storage requires 12 nnz + 4 n bytes of memory. To
ompute the SPQR approximation of AT we have the following options.1. Transpose A in pla
e. Storage: 16 nnz+ 4 n (4 nnz of whi
h is temporary and 
anbe allo
ated as an automati
 variable). Additional work: O(nnz) for the initialtranspose.2. Copy A to 
ompressed row format. Storage: 24 nnz + 8 n. Additional work:O(nnz) for the 
onversion.3. Use CC representation, and 
opy A(:,
olx(1:k-1)). Storage 12 nnz+ 4 n. Ad-ditional work: up to O(nnz) per step to extra
t rows.4. Use CCLR representation, 
opy A(:,
olx(1:k-1)), and use the row links onlyto extra
t the pivot row. Storage: 20 nnz+ 8 n. Additional work O(1) per step.5. Use CCRL Storage: 20 nnz+ 8 n. Additional work: O(nnz) per step from extraoverhead in pro
essing rows.Items 1, 2, and 4 emerge as the strongest options, playing o� storage, work, andease of programming against ea
h other. Item 1 is attra
tive be
ause of its low storagerequirements and the fa
t that one does not have to 
ode a row-oriented version of spqr.Item 2 doubles the storage, but makes the 
oding of the row-oriented version trivial.Item 4 almost doubles the storage, and the 
opying 
ompli
ates the row-orient algorithm.But it is attra
tive when additional row operations involving A are anti
ipated.It should be stressed that the above analysis was done under a number of spe
ialhypotheses|e.g., n
 � n. Change the hypotheses and the the results may 
hange.Moreover, the nature of the problem may make other storage s
hemes preferable. How-ever, the analysis illustrates the questions that should be asked by someone implement-ing the Matlab algorithms in a language where sparseness must be taken expli
itly intoa

ount.A. The SPQR 
ode%SPQR 
omputes a pivoted semi-QR de
omposition of an mxn matrix A.% It is espe
ially suited for 
omputing low-rank approximations



20 Sparse Redu
ed-Rank Approximations% to a sparse matrix.%% BACKGROUND. A pivoted QR (PQR) de
omposition of an mxn matrix A is a% fa
torization of the form%% A*P = Q*R%% where P is a permutation matrix, Q is an orthonormal matrix, and R% is an upper triangular matrix. The permutation P is 
hosen so% that R(k,k)^2 >= norm(R(:,k:j),'fro')^2, (j=k:n). This tends to make% the initial 
olumns of AP well-
onditioned and the trailing% prin
ipal submatrix of R small. In parti
ular, if we partition% the de
omposition B = A*P = Q*R in the form%% [B1 B2℄ = [Q1 Q2℄*[R11 R12; (*)% 0 R22℄%% and R22 is small, then AP 
an be approximated by Q1*[R11 R12℄.% The Frobenius norm of the differen
e is NORM(R22, 'fro').%% A semi-PQR (SPQR) approximation 
onsists of P, R11 and R12.% Sin
e Q1 = B1*inv(R11) the a
tion of Q1 on a ve
tor 
an be 
al
ulated% by operations involving B1 and Q1. For example,%% Q1'*x = R'\(B'*x) (**)%% SPQR 
omputes a SPQR approximation using a quasi-Gram-S
hmidt% algorithm that takes advantage of (**) (and its equivalents) to% avoid storing Q. This means that the algorithm's only operations% involving A are matrix-ve
tor produ
ts. The only storage% requirements are for R11, R12 and a few work% ve
tors of lengths m and n. Thus SPQR is ideally suited for the% approximating sparse matri
es.%% THE FUNCTION SPQR. The statement%% [n
ols, R, 
olx, 
olnrm℄ = spqr(A, tol, max
ols, fullR, pivot, 
n)%% returns%% n
ols : the number of 
olumns in B1 of (*).%%% R : The matrix [R11 R12℄ or R11 depending on fullR.%



Sparse Redu
ed-Rank Approximations 21% 
olx(n) : The permutation P. Spe
ifi
ally, AP = A(:,
olx)% and B1 = A(:,
olx(1:n
ols)).%% norms(n) : If norms are to be 
omputed, norms 
ontains% the following information. For j<=n
ols,% norms(j) is the norm of R22 for the de
omposition% (*), where R11 is jxj. For j>n
ols, norms(j)% is the norm of R22(:,j) in (*), where R11 is% n
ols x n
ols.% If norms are not 
omputed, norms=[℄.%% The input arguments are%% A : The matrix whose SPQR approximation is to be% 
omputed.%% tol : The redu
tion stops when norm(R22,'fro) < tol.%% max
ols : Stops the redu
tion when n
ols = max
ols.%% fullR : An optional argument with default value 1.% If fullR~=0, SPQR returns [R11 R12℄. Otherwise% it returns only R11.%% pivot : An optional argument with default value 1.% If pivot==0, pivoting is suppressed.%% 
n : An optional argument with default value 1.% If (fullR | pivot | 
n)==0 
omputation of norms% is suppressed and on return norms=[℄.%% WARNING. The a

ura
y of the the approximation de
reases as% norm(R22,'fro') de
reases. As a rule of thumb, if the norms of% the 
olumns of A are approximately equal, tol should be greater% than 10^-8*norm(A,'fro').%% NOTES. The 
ombination of fullR = pivot = 
n = 0 gives% very fast fa
torization of the first max
ols 
olumns of A.% If max
ols = n, this gives an unpivoted semi-QR fa
torization% of A, whi
h 
an be use to solve least squares problems or% 
ompute proje
tions.%% If tol.leq.0, SPQR will stop only when n
ols is equal to 
olmax.%% When R12 is too large to store, a se
ond appli
ation of SPQR



22 Sparse Redu
ed-Rank Approximations% gives the wherewithal to 
ompute a sparse C-R approximation of the% form%% A = XTY'%% where X 
onsists of 
olumns of A and Y' 
onsists of rows of% A. See SCRA.%% Author: Pete Stewart, May 20 2004%fun
tion [n
ols, R, 
olx, norms℄ = spqr(A, tol, max
ols, fullR, pivot, 
n);% Determine the maximum number of 
olumns in the result.[m, n℄ = size(A);n
ols = min([m, n, max
ols℄);% Set default values of the optional argumentsif nargin == 3fullR = 1;pivot = 1;
n = 1;elseif nargin == 4pivot = 1;
n = 1;elseif nargin == 5
n = 1;elseerror('SPQR: Wrong number of input parameters.')end% Initialize arrays.
n = fullR | pivot | 
n
olx = 1:n;if 
nrkk = zeros(1,n);for j=1:nnorms(j) = norm(A(:,j));end



Sparse Redu
ed-Rank Approximations 23elsenorms = [℄;endif fullRR = zeros(n
ols,n);elseR = zeros(n
ols,n
ols);end% Loop bringing 
olumns of A into the de
omposition.for k=1:n
olsif pivot% Determine the pivot 
olumn and swap it with 
olumn k.[maxnrm, jmax℄ = max(norms(k:n));jmax = jmax + k - 1;
xk = 
olx(k);
olx(k) = 
olx(jmax);
olx(jmax) = 
xk;
nk = norms(k);norms(k) = norms(jmax);norms(jmax) = 
nk;elsejmax = k;endif (fullR & k>1)R(1:k-1,jmax) = R(1:k-1,k);end% Get 
olumn k and in
orporate it into the de
omposition.a = A(:,
olx(k));if k == 1% Spe
ial a
tion for the first 
olumnR(1,1) = norm(a);q = full(a/R(1,1));



24 Sparse Redu
ed-Rank Approximationselse% Perform a quasi-Gram-S
hmidt step with reorthogonalization.b = full(a'*A(:,
olx(1:k-1)));r = (b/R(1:k-1,1:k-1))';
 = R(1:k-1,1:k-1)\r;q = a - A(:,
olx(1:k-1))*
;b = q'*A(:,
olx(1:k-1));rr = (b/R(1:k-1,1:k-1))';
 = R(1:k-1,1:k-1)\rr;q = q - A(:,
olx(1:k-1))*
;% Update R.r = r + rr;rho = norm(q);R(1:k-1,k) = r;R(k,k) = rho;% Compute the kth 
olumn of Q.
 = R(1:k-1,1:k-1)\r;q = (a - A(:,
olx(1:k-1))*
)/rho;end% Update norms and 
ompute norm(R22,'fro')if k+1<=nif 
n% Compute the k-th row of R. Note: For large matri
es% this step dominates the 
omputation.rrk(k+1:n) = q'*A(:,
olx(k+1:n));if fullRR(k,k+1:n) = rrk(k+1:n);end% Downdate the 
olumn norms and 
ompute norm(R22,'fro').norms(k+1:n) = ...max([norms(k+1:n).^2 - rrk(k+1:n).^2; zeros(1,n-k)℄);
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ed-Rank Approximations 25norms(k) = sqrt(sum(norms(k+1:n)));norms(k+1:n) = sqrt(norms(k+1:n));% Che
k the stopping 
riterion.if (norms(k) < tol) break; endendelsenorms(k) = 0;endend% Clean up.n
ols = k;if fullRR = R(1:n
ols,:);elseR = R(1:n
ols,1:n
ols);endB. The SCRA 
ode% SCRA produ
es a redu
edls-rank approximation to a matrix. Spe
ifi
ally,%% [n
, 
x, nr, rx, T, err℄ = 
ra(A, tol, maxnr
)%% produ
es an approximation of the form%% A(:,
x)*T*A(rx,:)%% where T is a n
 by nr matrix. The parameter err is a bound% on the a

ura
y of the approximation and is 
ontrlled by tol.% The parameter maxnr
 is an upper bound on n
% and nr.%% SCRA uses SPQR to 
ompute SPQR fa
torizations of A and A'.fun
tion [n
, 
x, nr, rx, T, err℄ = 
ra(A, tol, maxr
)[n
, R, 
x, 
n℄ = spqr(A, tol, maxr
, 0);[nr, S, rx, rn℄ = spqr(A', tol, maxr
, 0);



26 Sparse Redu
ed-Rank Approximations
x = 
x(1:n
);rx = rx(1:nr);T = [℄;for i=1:nrT = [T, full(A(:,
x)'*(A*A(rx(i),:)'))℄;endT = R\((R'\(T/S))/S');err = sqrt(
n(n
)^2 + rn(nr)^2);Referen
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