Computing Sparse Reduced-Rank Approximations to
Sparse Matrices

Michael W. Berry
Shakhina A. Pulatova
G. W. Stewart

ABSTRACT

In many applications— latent semantic indexing, for example—it is re-
quired to obtain a reduced rank approximation to a sparse matrix A. Unfor-
tunately, the approximations based on traditional decompositions, like the
singular value and QR decompositions, are not in general sparse. Stewart
[Numer. Math. 83 (1999) 313-323] has shown how to use a variant of the clas-
sical Gram—Schmidt algorithm, called the quasi—-Gram-Schmidt—algorithm,
to obtain an approximation of the form A =2 XTY ', where X and Y are
sparse (they actually consist of rows and columns of A) and 7' is small. In
this paper we treat the computational details of the algorithm and describe
a Matlab implementation.

1. Introduction

In a number of applications [2, 7, 13, 4] one is given a large matrix A and wishes to find
a reduced-rank approximation to A. This approximation is invariably expressed in the
form

A= XTY" (1.1)

where X and Y are full-rank matrices and T' is nonsingular (7" may be the identity
matrix). When A is mxn and T is of order k, this approximation requires (m-+n+k)k
words to store, as opposed to mn for the full A. Moreover, the matrix-vector product
Az require (m+n+k)k additions and multiplications to compute, as opposed, again, to
mn additions and multiplications for the full A. Clearly, if k is small, great savings are
to be had by using the reduced-rank approximation (1.1).

A widely used reduced-rank approximation is the truncated singular value decompo-
sition, which is known to be optimal in the sense that the Frobenius norm ||A— XTY ||

2 Sparse Reduced-Rank Approximations

is minimized. There are stable direct methods for its computation; however, these
methods compute the full decomposition and are not suitable for very large matrices.
Fortunately, there are iterative methods that produce the approximation (1.1) without
having to compute the full SVD. These methods require only the formation of matrix-
vector products and do not alter A.

An alternative is the pivoted QR decomposition, which generally gives results compa-
rable to the SVD. For large A, the Gram—Schmidt algorithm can be adapted to compute
this decomposition. Again, A is not altered, and the principle operations are matrix-
vector multiplications. This paper is concerned with elaborations of this approach to
reduced-rank approximations.

When A is large and sparse the situation is not as simple. For A, the storage and
operation counts given above become proportional to the number of nonzero elements
in A. Since the factors X, T and Y are generally not sparse, the storage and operation
counts for the approximation remain the same. Thus as k increases, we will reach a
point where it becomes necessary to abandon the factored form. Note that we do not
have the ability to choose k, since the accuracy required of the approximation, which
depends on k, is governed by the application.

In this paper we are going to describe two approximations based on the pivoted
QR decomposition that produce approximations in which X or both X and Y are
sparse. The first approximation is called sparse pivoted QR approximation (SPQR). It
is computed by an algorithm, called the quasi-Gram-Schmidt algorithm, that produces
a factorization in which X consists of a selection of columns of A. In the second
approximation, called the sparse column-row (SCR) approzimation, X consists of a
selection of the columns of A and Y consists of a selection of the rows of A, so that
when A is sparse so are both X and Y.

These methods were first described by Stewart in [10] and the quasi-Gram-Schmidt
method has been analyzed in [12]. The purpose of this paper is to give the computa-
tional details leading to the accompanying Matlab functions. In the next section we will
introduce the pivoted QR decomposition. In Section 3 we will derive the quasi-Gram—
Schmidt method and apply it to the computation of the sparse pivoted QR approxima-
tion. In Section 4 we will show how to compute the SCR approximation. We will also
show how it can be applied to an information retrieval process known as latent semantic
indexing. The implementation details for our algorithms are described in Section 5. In
Section 6 we compare the SPQR approximation with the singular value decomposition.
Finally, in Section 7 we discuss some sparsity issues that arise in producing implemen-
tations in compiled programming languages like C or Fortran. The Matlab programs
are listed in appendices.

Sparse Reduced-Rank Approximations 3

Throughout this paper, || - || will denote the Frobenius norm defined by
2 2
1A = Qij,
Y]

and || - || the spectral norm defined by

[A]l2 = max [Az].

lefi=1

2. The pivoted QR factorization

As above, let A be an mxn matrix, not necessarily sparse. A pivoted QR (PQR)
factorization has the form
AP = QR, (2.1)

where P is a permutation matrix, () is orthonormal, and R is upper triangular. The
exact form depends on the the sizes of m and n. If m > n, then Q) is mxn and R is
nxn. If m < n, then @) is mxm and R is mxn. Although our algorithms apply to both
cases, for ease of exposition we will assume that m > n in what follows.

A rank k approximation to A can be obtained by partitioning the factorization (2.1).
Let B = AP and write

(k) p(k)

Ry R

8" B) = Q" Qé’“’)() Rb%)» (2.2)
22

where B%k) has k£ columns. Then our approximation is

B® = QP (RrP gk (2.3)

Note that 3 "
B-B® =0 (0 RY)).

Since ng) is orthonormal, the error in B®) as an approximation to B is
o k
1B - B = IRl (2.4)

We will not compute the entire decomposition (2.2). Rather we will bring in columns
of A one at a time and use each to compute an additional column of () and row of R.
Thus at the end of kth step of this algorithm we will have computed the approximation
(2.3).

The process of selecting columns is called column pivoting, or for short simply piv-
oting. The order in which the columns are selected determines the permutation P.

4 Sparse Reduced-Rank Approximations

Equation (2.4) suggests that at the beginning of the kth step we should choose the
(k)

column of A in such a way as to make ||R;, || small. The classical choice is to bring in
(k—1)

the column of A that corresponds to the column of R;, ~ of largest norm. (For more
on this choice see [5, 9].)

Surprisingly, we can implement this strategy without computing Rg’;fl) itself. Con-
sider the partition (2.2), in which the superscripts (k) are replaced by (k—1). Let b;
and r; denote the jth columns of B and R. Because () is orthonormal, we have

16511 = lIr;l- (2.5)
Now for 5 > k partition
)
("1
RV
where rg) has k—1- components. Thus rg 7 is the jth column of REQ), and réj) is the

jth column of Rg2 Y. It then follows that

5712 = 05112 = 1% = ol =73 = 73— =1y (2.6)

Thus at each stage we can compute the squares of the norms of the columns of Rg; b,

Moreover, the sum of these numbers is HR22 ||2, so that by (2.4) we get, almost
for free, the value of the norm of the error in our reduced-rank approximation. This
number can be used to determine when we have a satisfactorily accurate reduced-rank
approximation.

Unfortunately, the expression (2.6) has a dark side. If Hr2 ||2 is small compared
16;1|%, there will be cancellation i 1n the computation of ||7“2 ||2 In particular, in IEEE
double-precision arithmetic if Hr2 ||2 < 107196,/ we can expect no accuracy in the
computed value. On taking square roots we find that we can use the formula (2.6) only
when

1S > 107%[b;]].

This means that if all the columns of A have norm one we cannot reliably compute
reduced-rank approximation that is more accurate than 10~%. However, this accuracy
is usually more than enough.

3. The quasi-Gram—Schmidt method

In this section we will describe the quasi-Gram—Schmidt method. We will begin with a
description of the classical Gram—Schmidt method.

Sparse Reduced-Rank Approximations 5

Suppose we have a QR factorization
B=QR (3.1)

of B and wish to compute a QR factorization

a-@a(y)

of (B a). The second column of this equality gives us the relation
a=Qr+pq.

Since QTQ =TI and QT¢ = 0, we have

r=Q%. (3.2)
Since ||¢|| = 1, we have
p=lla—Qr| (3.3)
and
g=p""'(a—Qr). (3.4)

Equations (3.2), (3.3), and (3.4) are effectively an algorithm for extending our original
QR factorization.

Unfortunately, cancellation in the formation of @ — Qr can cause the computed ¢ to
be far from orthogonal to the columns of). The cure for this problem is reorthogonal-
ization, in which the process is repeated on a — Qr. Specifically, we have the following
algorithm, in which we use Matlab notation.

1. r =Q’*a

2. q=a- Q*r

3. s =Q’%q

4, r =1 + s (3.5)
5. @ =q - Q*s

6. rho = norm(q)

7. q = gq/rho

Typically, this algorithm produces a g that is orthogonal to the columns of @) to working
accuracy.'

'Tn extremely unlikely cases the algorithm may produce a zero q at step 2 or 5, in which case special
action must be taken. In practice, most programs that use Gram—Schmidt orthogonalization ignore this
problem.

6 Sparse Reduced-Rank Approximations

We can use this algorithm to compute a PQR factorization of A simply by selecting
columns of A and updating the QR factorization of B. To start the process off, one sets
Rgll) = p = ||a||, and le) = p~la, where a is the first column selected from the columns
of A. In this way we compute the decompositions

where Rgli) is kxk.
A problem with this algorithm is that it only computes the factor R&’i) in (2.2).
However it is easy to see that row £k of R%)

of ng) and A consists of the n—k columns of A that are not in B%k). If n is large, this
computation may be the most expensive part of the algorithm. Note that even if we do

()

not want the ng we must still form (and discard) the product qgfi in order to compute
the column norms of Ré’;) as described in the last section.

Returning now to the Gram—Schmidt algorithm, we note that even if A is sparse, Q)
is in general not sparse. If m is very large, we may be unable to store). To circumvent

this problem, we observe that it follows from (3.1) that

is simply qgfi, where ¢ is the kth column

Q= BR™L.
Consequently, we can form the product Q’*a in (3.5) by the following algorithm.

1. d = a’*B
2. r = (d/R)’

Similarly we can form the product Q*r by

1. p =R\r
2. q = Bxp

This leads to the following quasi-Gram—Schmidt step (in which we have put the code
for the classical Gram-Schmidt step on the right).

1. d = a’+*B r = Q’*a

2. r = (d/R)’ g = a - Q*r

3. p=R\r

4. g =a - Bxp

5. d = q’*B s = Q’*xq

6. s = (4/R)’ (3.6)
7. r=r +s r=r+s

8. p =R\s q =q - Q*s

9. q =q - B*s

10. rho = norm(q) rho = norm(q)

Sparse Reduced-Rank Approximations 7

This code computes only r and rho— the quantities needed to update R. It does not
compute q in the form gq/rho, as does the classical Gram—-Schmidt algorithm. Instead,
q is defined by the relation

Rr

o -1
0 p> =p (a—BR 'r), (3.7)

qZLBM(
and is so computed in our algorithms.

The quasi-Gram—Schmidt step can be applied successively to columns of A, as de-
scribed above for the classical Gram—Schmidt algorithm, to produce a pivoted, Q-less
PQR factorization, which we will call a semi-PQR (SPQR) factorization. We will
call the corresponding approximation (Bfk)Rgli)_l)(R%’i) R&’;)) the SPQR approzima-
tion. The algorithm not only dispenses with the storage for @), but it replaces dense
products involving () with sparse products involving columns of A. The only strictly
dense operations involve Ry and Ris. But since the order of (Ry; Ri2) is kxn, if
m > n these operations account for little of the total work.

Once again there is a dark side— there may be a progressive loss of orthogonality
in the matrix BR~!. However, an analysis of the quasi-Gram—Schmidt algorithm [12]
shows that the loss of orthogonality is proportional to the condition number ||R||[|R~||
of R, which is usually good enough.

A nice feature of the SPQR approximation (and QR approximations in general) is
that having computed an approximation of order k£ one has immediately the all the

approximations of order £ < k. Simply, work with the first £ columns of B and rows of
R.

4. Sparse column-row approximations

When m > n, the SPQR approximation is satisfactory. But when m and n are nearly
equal, the storage of R becomes a problem. We can circumvent this problem at the cost
of performing another factorization.

Specifically, first apply the quasi-Gram—Schmidt algorithm to the columns of A to get
a representative set of columns X of A and an upper triangular matrix R corresponding
to Rj1. Let the error in the corresponding reduced-rank decomposition be €.,. Now
apply the same algorithm to AT to get a representative set Y of rows and another
upper triangular matrix S. Let the error be €. We then seek a matrix 71" such that

|A - XTYT|? = min.
In [10] it is shown that the minimizer is

T=R'RT(XxTAy)s~ s~ T,

8 Sparse Reduced-Rank Approximations

Moreover,
1A= XTY|? < €€ + e (4.1)

row*

We will call this approximation a sparse row-column approximation, or for short
an SRC approximation. Such approximations are economical to use. For example, to
compute y = XTY Tz we compute r = YTz, s = Tr, and y = Xs. This requires
two sparse matrix-vector multiplications and one dense matrix-vector multiplication in
which the matrix is small.

It may happen that X and Y do not have the same number of columns, in which
case T' will not be square. This causes no problems in matrix-vector multiplications.

Some care must be taken in computing the matrix 7. The crux of the matter is to
form XTAY correctly. If, for example, m is large and we first calculate AY, we end
up with a large, potentially full matrix. The cure for this problem is to partition Y by
columns, writing

XYAy v - k) -

We can then calculate X" AY column by column as follows.

1. T=1[1;

2. for j=1:k

3. T = [T, X>*(A*Y(:,j)];
4. end

A variant of this decomposition may be useful in latent semantic indexing (LSI), a
device for retrieving documents from a query vector of terms [1, 3, 2, 6]. Briefly, in (LSI)
one starts with a term-document matrix A whose (i, j)-element is the number of times
term ¢ occurs in document j. One then calculates the singular value approximation

A=US V! (4.2)

In the parlance of LSI, the columns of Uy are called term vectors and columns of VkT are
called document vectors. Given a query vector ¢ of terms, one computes a corresponding
document vector by the formula

d=3%,'Ulq.

and compares it with the columns of Vj to determine which columns are related to the
the query vector q. For example, one might compute the cosines of the angles between
d and the columns of Vi and choose the columns corresponding to the larger ones.

We can rewrite the XTY ' in the form of (4.2). Specifically,

XTY' = (XRHYR X AYS™H (s~ 'Y") = PwQ?.

Sparse Reduced-Rank Approximations 9

Now mathematically, P and () are orthogonal. Consequently, if we compute the singular
value decomposition W = MEN' of W and set

U=PM and V =Q@N,
then U and V are orthonormal, and
Xyt =vxv?t. (4.3)

We can use this decomposition as described above to perform LSI. Of course we do not
explicitly form U and V; rather we keep and apply them in factored form; i.e.,

U=XR'M and V=YS'N.

It should be stressed that the relation between (4.3) and (4.2) is purely formal. It is
an open question whether LSI performed using the former will share the good properties
of ordinary LSI. Theorem 6.1 below encourages us to conjecture that it will.

5. A Matlab implementation

In this section we will describe a Matlab function spgr to compute SPQR approxima-
tions. The basic algorithm is simple and the chief implementation problem is how to
package it. We begin by looking at the input parameters.

The essential input is the matrix A and a tolerance tol to tell when to stop the
factorization. Although the algorithm always terminates after a finite number of steps,
if tol is too small, spqr may be committed to performing an unacceptably large number
of operations. For this reason, a third parameter maxcol puts an upper bound on the
number of columns of A to be used in the approximation. Of course, one can always
set maxcol greater than or equal to n, it which case it has no effect. The program
terminates at the first step k for which ||Rg§) || < tol. Consequently, if tol is zero, spqr
is forced to include maxcol columns of A.

Thus the basic calling sequence for spqr is

spqr (A, tol, maxcol)

Although A is presumed to be a Matlab sparse matrix, spqr also works when A is dense.
We will now turn the output parameters.
When spqr finishes we need to know four things.

1. The number columns of A involved in the approximation.

2. The matrix (R11 ng).

10 Sparse Reduced-Rank Approximations

3. The relation of the columns of (R;; Rj2) to those of A.

4. The error in the approximation.

The first is returned in the output parameter ncols. The second in the output matrix
R.

The third and fourth items are connected with the way spqr implements pivoting.
The function begins with two arrays: colx, which is initialized to 1:n and norms which
is initialized so that norms(j) is the norm of the jth column of A. At step k, spqr
determines the first index j > k for which norms (j) is maximal and swaps components
j and k of both colx and norms, along with the corresponding columns of R. The
column A(:,colx(j)) is then used to advance the approximation. After the quasi-
Gram-Schmidt orthogonalization has been computed the elements of the kth row of
Ré’;) are computed and used to downdate norms(k+1:n). The error in the current
approximation is also computed and stored in norms (k).

From this description it follows that on return

B = A(:, colx),

which provides the relation between R and A. Moreover the error in the approximation
is norms (ncols). However, we get a little more. For j < ncols, the arrays colx and
R(1:j,:) contain the SPQR approximation associated with A(:,colx(1:j)), and by
construction its error is norms (j). Thus by setting tol to zero, we can track the quality
of all the approximations from 1 to maxcols.

The function spgr has three optional input arguments used to fine tune the decom-

position. The first fullR has a default value of 1 (true). If it is present and 0 (false),
then only R%‘iwls) is computed. This is useful when the primary concern is with the
space spanned by the columns A(:,colx(1:ncols)). The second optional parameter
pivot has the default value 1. If it is present and 0 pivoting is suppressed —i.e., the the
columns of A are processed in their natural order. Finally, the optional parameter cn
(for compute norms) has a default value of 1. If it is present and fullR | pivot | cr
is zero, then the computation of norms is suppressed and on return norms = [].

Thus the final calling sequence is
[ncols, R, colx, norms] = spqr(A, tol, maxcol, fullR, pivot, cn)

in which fullR, pivot, and cn are optional. For a concise summary see the prologue
to spqr.

6. Comparison with the SVD

In this section we shall make some timing comparisons between the quasi-QR and the
SVD reduced-rank approximations. SVD approximations are rightly regarded as the

Sparse Reduced-Rank Approximations 11

ones to beat. Gaps in the singular values reveal numerical rank with great reliability,
and the reduced rank-approximations it produces are optimal. However, it is expensive
to compute. Moreover, there seems to be no easy way to increase the the size of the
approximation step by step as we are able to do with QR approximations.

Since the SVD is so highly regarded, it is sometimes objected that other approxima-
tions may not reproduce the row and column spaces from the SVD to sufficient accuracy.
This is particularly important in applications where we are not interested in the approx-
imations themselves but in the subspaces they define. We are now going to show that
if any reduced-rank approximation is accurate then it contains good approximations to
the singular vectors corresponding to large singular values.

Theorem 6.1. Let A= XY"' + E. Let X be the space spanned by the columns of X

and Y be space spanned by the columns of Y. Let o > 0 be a singular value of A with
normalized left and right singular vectors u and v, so that Av = ou and u'A = ov?.
Then
sin Z(u, X), sin Z(v,Y) < &1z (6.1)
,X), V)< —=. .

Proof. We will establish the first inequality, the second being established similarly. Let
X | be an orthonormal basis for the orthogonal complement of X. Then || X | ul is the
sine of the angle between u and X [11, §4.2.a]. Now

XTAv =oXTu,

and
X[Av=X[XY" + X[Ev=X]Ev,

since by construction X | X = 0. It then follows that 0 X Tu = X | Ev, whence || X Tul]2 <
||E||l2/o, which is just the first inequality in (6.1). m

This theorem says that if a reduced-rank approximation is accurate, then its column
space must contain accurate approximations to the left singular vectors corresponding
to singular values that are large compared to ||E||. An analogous statement is true of
the row space and the right singular vectors.

Turning now to timing examples, we will use matrices A of order n = 10,000 gener-
ated by the Matlab function sprandn, which produces a “random” sparse matrix with
a given distribution of singular values. The first distribution we consider is given by the
Matlab statement

s = logspace(0, -6, n)

Thus the common logarithms of the singular values are equally spaced between 0 and
—6. For ncr=10:5:40 we timed the call

12 Sparse Reduced-Rank Approximations

[ncr, cx, nr, rx, T, rsd]l = cra(A, 1le-5, ncr);
which will produce an approximation of rank ncr. We also timed the Matlab function
[U, S, V] = svds(A, ncr);

which produces the wherewithal for an approximation of rank nc.
The results are summarized in the following table, in which the time is reported in

seconds.
ncr SPQR SVD

10 2.6 42.4
15 3.0 35.7
20 3.4 52.6
25 3.7 57.3
30 4.1 70.5
35 4.4 91.4
40 4.8 120.0

It is seen that the SVD times are worse by factors ranging from 16 for ncr = 10 to
25 for ncr = 40. Regarding storage, the SVD requires (n + m)k floating-point words,
whereas the SQR requires only k? words.

In the above example the singular values of the test matrix had no gaps, and con-
sequently the reduced-rank approximations are not very good —either for the SVD or
the SPQR approximations. In a different experiment, we generated singular values by
the statements

s = logspace(0, -4, n);
s(20:n) = 1le-6*s(20:n);

This places a multiplicative gap of about 107% between the 19th and 20th singular
values. For nc = 19,20 we timed the call

spqr(A, 1.e-2, nc, 1)
and the above call to svds. The results were

nc SQR SVD
19 1.8 44
20 1.8 3236

The improved performance for the SVD when nc = 19 is explained by the fact that
svds is being asked to find a singular subspace whose singular values are well separated
from the remaining singular values. Under such circumstances iterative methods for
the SVD converge rapidly. The dismal performance of the SVD for nc = 20 is harder
to explain. The function svds is being asked to find the 20th singular value, which is

Sparse Reduced-Rank Approximations 13

140

120 B

error

80 SPQR B

SvD

20 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

ncols

Figure 6.1: Error in SVD and SPQR approximation for CRAN

small compared with A and is poorly separated from the other small singular values.
Experience has shown this to be a difficult task. Be that as it may, the 20th singular
value must be found to reveal the gap in the singular values.

As a final, example we consider a term-document matrix from an LSI application—
specifically the matrix CRAN generated from the Cranfield collection and available at
http://www.cs.utk.edu/"1si/. The matrix (or rather its transpose) is 4,612 by 1,398.
Figure 6.1 graphs the error (Frobenius norm) in the SVD and SPQR approximations
for ncols ranging from 1-1000. The SVD approximation is better, as it must be, but
the SPQR approximation tracks it nicely.

The SVD approximations were not actually computed. Instead the norms of the SVD
approximation were computed from the singular values of A, which were computed via
the statement;

R = qr(h);
sig = svd(full(R));

The total time was about 4 minutes. By contrast the time to compute the entire
SPQR approximation with 1000 columns (and hence all the decompositions with fewer
columns) was about 2.5 minutes.

We included this example, since it was used by the authors of [14], who use it to

14 Sparse Reduced-Rank Approximations

1 2 3 4
1a b
2 ¢
3d
4 e
5 f g
6 h
val : adfcehbg (floating-point nnz)

[
W
al
\]

col_start
rx : 1356

9 (integer n+1)
4615 (integer nnz)

N

Figure 7.1: Compressed column representation of a 6x4 matrix

demonstrate the superiority of the SVD approximation and an approximation of theirs
over the SPQR approximation. We have been unable to reproduce their results. One
possible explanation is that the matrix must be generated from the documents and
terms. There may be more than one way to do this, and we could therefore be working
with different matrices.

7. Sparsity considerations

The timings of the last section show that the Matlab implementation of the SCR ap-
proximation is considerably faster than computing the SVD to obtain an equivalent
approximation. The code is simple because Matlab hides the implementation of the
sparse matrix-vector multiplications that are the at the heart of the algorithms. It is
therefore natural to try to improve on the performance of the Matlab implementation
by writing the algorithm — sparse operations and all—in a compiled language like C or
Fortran. This section is devoted to sparsity issues that must inform such an attempt.

For definiteness we will consider the problem of computing a pivoted SPQR approx-
imations for a matrix A of order n where n is large. We will assume that the number of
columns nc in the approximation is small compared to n. Finally, we will assume that
A is represented in compressed column (CC) form, which we will now briefly describe.
For definiteness, we will assume 1-based indexing and use Matlab statements in the
examples.

An example of CC representation is given in Figure 7.1. The nonzero values of
the elements of the sparse matrix A are stored in column major order in an array
val. The length of the array is nnz—the number of nonzero elements of A. An

Sparse Reduced-Rank Approximations 15

integer array rx of length nnz contains the row indices of the corresponding elements
in val. Another integer array, col_start, of length n+1 tells where the columns start
in val and rx. Specifically, the first element in column j is val[col_start[jl]. The
value of col_start[n+1] is set to nnz+1. This means that the length of column j is
col_start[j+1]-col_start[j].

Formation of the matrix-vector products Az and 2 A are easy in this representation.
The following code computes y = Ax

y(1:n) = 0;
for j=1:n
for ii = col_start(j):col_start(j+1)-1;
i =rx(ii); (7.1)
y(i) = y(i) + val(ii)*x(j);
end
end

Similarly, we can compute y = " A as follows.
for j=1:n
y(j) = 0;
for ii = col_start(j):col_start(j+1)-1;
i=rx(ii); (7.2)
y(i) =y() + x(i)*val(ii);
end
end
Both algorithms require nnz additions and multiplications. Both traverse the array val
in its natural order, which makes for good cache usage. The first traverses x in its
natural order, but its references to y jump around; the reverse is true for the second
algorithm.
Now if we examine the quasi-Gram-Schmidt algorithm, we find we must perform
the following operations involving the matrix A.

1. Extract the pivot column from A.
2. Calculate matrix-vector products of the form x’*A(:,colx(1:k-1)).
3. Calculate matrix-vector products of the form A(:,colx(:,1:k-1))*x.

4. Calculate matrix-vector products of the form x?*A(:,colx(:,k+1:n)). (As we
have mentioned, when n is large, this calculation is the most expensive part of the
algorithm.)

CC storage is ideal for performing all these operations. For example, to calculate
A(:,colx(1:k-1))*x, we need only replace the outer for statement in (7.1) by

16 Sparse Reduced-Rank Approximations

for j=colx(1l:k-1)

Again, to compute x’*A(:,colx(:,k+1:n)) we change the outer for statement in (7.2)
with

for j=colx(k+1l:n)

The algorithms no longer access val sequentially, but access within an individual column
is concentrated in the contiguous part of val where its elements lie. Thus the CC
representation goes hand-in-glove with the computation of the SPQR approximation.

The situation is different when we must compute the SPQR approximation of AT,
as is required when we wish to compute an SCR, approximation. There are two major
alternatives. We can work with AT, or we can write a row-oriented version of spqr that
works directly with A.

Regarding the first alternative, the SPARSKIT package by Saad [8] gives an algo-
rithm for transposing a matrix in condensed format in place.?. The algorithm requires
an additional working integer array of size nnz and 0(nnz) operations. A disadvantage
is that the elements of each column, though they remain contiguous in val, no longer
occur in their natural order. This makes no difference for our algorithms for forming
matrix-vector products.

The second alternative is to write row-oriented version of spqr. The relevant oper-
ations for this problem are the following. Here the array rowx corresponds to the array
colx in the column-oriented algorithm.

1. Extract the pivot row from A.

2. Calculate matrix-vector products of the form A(rowx (1:k-1),:)*x.
3. Calculate matrix-vector products of the form x’*A(:,rowx(1:k-1)).
4. Calculate matrix-vector products of the form A(rowx(k+1:n,:))*x.

The natural way to implement the row-oriented algorithm is to transform A into
compressed row format. Once again, SPARSKIT provides an algorithm. The advantage
of this approach is that the translation from spqr to the row-oriented version is purely
mechanical. The disadvantage is that the storage requirements are doubled.

An alternative is to work with the CC format, perhaps augmented by additional
arrays. However, this creates difficulties in implementing the row-oriented algorithm.
Specifically, consider the adaptation of (7.1) to compute A(rowx(1:k-1),:)*x.

>The algorithm assumes condensed row format, but it can easily be adapted to CC format

Sparse Reduced-Rank Approximations 17

y(1:n) = 0;
for j=1:n
for ii = col_start(j):col_start(j+1)-1;
i =rx(ii);
if i in rowx(1:k-1) (7.3)
y(@i) = y(@i) + val(ii)*x(j);
end
end
end

There are two problems with this algorithm — one easily solved, the other more difficult.

The first problem is that with each iteration of the inner loop rowx(1:k-1) must be
searched to determine if it contains i as an entry. The cure is to negate the indices of
rx corresponding to row i when row i is brought into the factorization. Then we may
replace the the conditional part of the inner loop with

if rx(i) < O
y(-i) = y(-i) + val(ii)*x(j);
end

The second problem is that by our assumptions k < n. Now the loops in (7.3)
traverse all the nnz elements in the matrix A. But we actually work with only those few
elements in the rows indexed by rowx(1:k-1). In other words, for most of the time, the
body of the double loop does nothing. The cure for this problem is to store a copy of the
matrix A(rowx(1:k-1) in compressed-row format. Because k < n, the extra storage is
insignificant. Moreover, it is then easy to perform the operations x’*A(rowx(1:k-1),:)
and A(rowx(1:k-1),:)*x. We choose the compressed row-form because it is easy to
add additional rows to it as k increases.

Now consider the product A(rowx(k+1:n,:))*x. Assuming that we have negated
the elements of rx corresponding to rows rowx (1:k), we can perform this multiplication
by modifying the body of the loop (7.3) as follows.

if rx(i) > O
y(i) = y(1) + val(ii)*x(j);
end

Since k < n, the body of the loop is performing useful work most of the time.

Surprisingly, the problem of extracting the pivot row from a compressed column
form is also difficult. For definiteness, let the index of that row be ipvt. The following
algorithm does the job.

18

val
col_start
row_index
row_start
row_elp
col_index

Sparse Reduced-Rank Approximations

1 2 3 4
1a b
2 C
3d
4 e
5 f g
6 h

adfcehbg (floating-point nnz)

14579 (integer n)

13524615 (integer nnz)

1345689 (integer m+1)

17425386 (integer nnz) (elp = element pointer)
11123344 (integer nnz)

Figure 7.2: Compressed-column representation of a 6x4 matrix with row links

for j=1:n
for ii=col_start(j):col_start(j+1)-1

if
if

end
end

rx(ii) > ipvt, break, end
rx(ii) == ipvt
% A(ipvt, j) = val(ii) is in row ipvt;

break;
end

Unfortunately, if ipvt = n, we must traverse the entire matrix just to extract the pivot
row. Thus the use of this algorithm has the potential to add O(nzz) work at each step
of the algorithm.

A solution is to augment the compressed column format to allow access to the rows.
Figure 7.2 shows one such scheme, which we will call compressed-column, linked-row
representation (CCLR representation). With it we can access the row ipvt as follows.

for jjj
jj =

j:

row_start (ipvt) :row_start (ipvt+1)-1

row_elp(jjj);
cx(jj);

% A(ipvt, j) = val(jj) is in row ipvt

end

This ability to traverse rows allows one to implement the row-oriented algorithm in

Sparse Reduced-Rank Approximations 19

exactly the same manner as the column oriented algorithm. However, there are two dif-
ferences that may affect efficiency. First there are two levels of indirection from jjj to jj
to j. Second, row traversals do not access the elements of val sequentially. Thus it may
still pay to maintain a copy of A(rowx(1:k-1),:) and to compute A(rowx(1:k-1),:)*x
directly from the column oriented form.

To sum up, if we assume that we have 4-byte integers and 8-byte floating-point
words, then compressed column storage requires 12nnz + 4n bytes of memory. To
compute the SPQR approximation of AT we have the following options.

1. Transpose A in place. Storage: 16nnz + 4n (4 nnz of which is temporary and can
be allocated as an automatic variable). Additional work: O(nnz) for the initial
transpose.

2. Copy A to compressed row format. Storage: 24nnz + 8n. Additional work:
O(nnz) for the conversion.

3. Use CC representation, and copy A(:,colx(1:k-1)). Storage 12nnz + 4n. Ad-
ditional work: up to O(nnz) per step to extract rows.

4. Use CCLR representation, copy A(:,colx(1:k-1)), and use the row links only
to extract the pivot row. Storage: 20nnz + 8n. Additional work O(1) per step.

5. Use CCRL Storage: 20nnz + 8n. Additional work: O(nnz) per step from extra
overhead in processing rows.

Items 1, 2, and 4 emerge as the strongest options, playing off storage, work, and
ease of programming against each other. Item 1 is attractive because of its low storage
requirements and the fact that one does not have to code a row-oriented version of spqr.
Item 2 doubles the storage, but makes the coding of the row-oriented version trivial.
Item 4 almost doubles the storage, and the copying complicates the row-orient algorithm.
But it is attractive when additional row operations involving A are anticipated.

It should be stressed that the above analysis was done under a number of special
hypotheses —e.g., nc < n. Change the hypotheses and the the results may change.
Moreover, the nature of the problem may make other storage schemes preferable. How-
ever, the analysis illustrates the questions that should be asked by someone implement-
ing the Matlab algorithms in a language where sparseness must be taken explicitly into
account.

A. The SPQR code

%SPQR computes a pivoted semi-QR decomposition of an mxn matrix A.
% It is especially suited for computing low-rank approximations

20 Sparse Reduced-Rank Approximations

yA to a sparse matrix.

% BACKGROUND. A pivoted QR (PQR) decomposition of an mxn matrix A is a
% factorization of the form

h

h AxP = Q*R

b

% where P is a permutation matrix, Q is an orthonormal matrix, and R
% is an upper triangular matrix. The permutation P is chosen so

% that R(k,k)"2 >= norm(R(:,k:j),’fro’)"2, (j=k:n). This tends to make
% the initial columns of AP well-conditioned and the trailing

% principal submatrix of R small. In particular, if we partition

% the decomposition B = A*P = Q*R in the form

b

h [B1 B2] = [Q1 Q2]=[R11 R12; (%)

h 0 R22]

h

% and R22 is small, then AP can be approximated by Qi1x[R11 R12].
% The Frobenius norm of the difference is NORM(R22, ’fro’).

% A semi-PQR (SPQR) approximation consists of P, R11 and R12.

% Since Q1 = Bl*inv(R11) the action of Q1 on a vector can be calculated
% by operations involving Bl and Q1. For example,

b

% Q1’*x = R’\ (B’ *x) ()

b

% SPQR computes a SPQR approximation using a quasi-Gram-Schmidt

% algorithm that takes advantage of (**) (and its equivalents) to

% avoid storing (. This means that the algorithm’s only operations
% involving A are matrix-vector products. The only storage

% requirements are for R11, R12 and a few work

% vectors of lengths m and n. Thus SPQR is ideally suited for the
% approximating sparse matrices.

b

% THE FUNCTION SPQR. The statement

b

% [ncols, R, colx, colnrm] = spqr(A, tol, maxcols, fullR, pivot, cn)
b

% returns

b

% ncols : the number of columns in Bl of (*).

b

b

h R : The matrix [R11 R12] or R11 depending on fullR.

Sparse Reduced-Rank Approximations 21

colx(n) : The permutation P. Specifically, AP = A(:,colx)
and Bl = A(:,colx(1:ncols)).

norms(n) : If norms are to be computed, norms contains
the following information. For j<=ncols,
norms(j) is the norm of R22 for the decomposition
(*), where R11 is jxj. For j>ncols, norms(j)
is the norm of R22(:,j) in (%), where R11 is
ncols x ncols.
If norms are not computed, norms=[].

The input arguments are

A : The matrix whose SPQR approximation is to be
computed.
tol : The reduction stops when norm(R22,’fro) < tol.

maxcols : Stops the reduction when ncols = maxcols.

fullR : An optional argument with default value 1.
If fullR"=0, SPQR returns [R11 R12]. Otherwise
it returns only R11.

pivot : An optional argument with default value 1.
If pivot==0, pivoting is suppressed.

cn : An optional argument with default value 1.
If (fullR | pivot | cn)==0 computation of norms
is suppressed and on return norms=[].

WARNING. The accuracy of the the approximation decreases as
norm(R22,’fro’) decreases. As a rule of thumb, if the norms of
the columns of A are approximately equal, tol should be greater
than 10"-8*norm(A,’fro’).

NOTES. The combination of fullR = pivot = cn = 0 gives

very fast factorization of the first maxcols columns of A.

If maxcols = n, this gives an unpivoted semi-QR factorization
of A, which can be use to solve least squares problems or
compute projections.

If tol.leq.0, SPQR will stop only when ncols is equal to colmax.

When R12 is too large to store, a second application of SPQR

22 Sparse Reduced-Rank Approximations

% gives the wherewithal to compute a sparse C-R approximation of the
% form

b

% A = XTY?

yA

% where X consists of columns of A and Y’ consists of rows of

% A. See SCRA.

h

% Author: Pete Stewart, May 20 2004

%

function [ncols, R, colx, norms] = spqr(A, tol, maxcols, fullR, pivot, cn);

% Determine the maximum number of columns in the result.
[m, n] = size(A);

ncols = min([m, n, maxcols]);

% Set default values of the optional arguments

if nargin ==

fullR = 1;
pivot = 1;
cn = 1;
elseif nargin == 4
pivot = 1;
cn = 1;
elseif nargin == 5
cn = 1;
else
error (’SPQR: Wrong number of input parameters.’)

end
% Initialize arrays.
cn = fullR | pivot | cn

colx = 1:n;

if cn
rkk = zeros(1,n);
for j=1:n

norms(j) = norm(A(:,j));
end

Sparse Reduced-Rank Approximations

else

norms = [];
end
if fullR

R = zeros(ncols,n);
else

R = zeros(ncols,ncols);
end

% Loop bringing columns of A into the decomposition.
for k=1:ncols
if pivot
% Determine the pivot column and swap it with column k.

[maxnrm, jmax] = max(norms(k:n));
jmax = jmax + k - 1;

cxk = colx(k);
colx(k) = colx(jmax);
colx(jmax) = cxk;
cnk = norms (k) ;
norms (k) = norms(jmax);
norms (jmax) = cnk;
else
jmax = k;
end

if (fullR & k>1)
R(1:k-1,jmax) = R(1:k-1,k);
end
% Get column k and incorporate it into the decomposition.
a = A(:,colx(k));
if k ==1

% Special action for the first column

R(1,1) = norm(a);
q = full(a/R(1,1));

Sparse Reduced-Rank Approximations

else

% Perform a quasi-Gram-Schmidt step with reorthogonalization.

full(a’*A(:,colx(1:k-1)));
(b/R(1:k-1,1:k-1))7;
R(1:k-1,1:k-1)\r;

a - A(:,colx(1:k-1))*c;
q’*A(:,colx(1:k-1));

rr = (b/R(1:k-1,1:k-1))7;

c = R(1:k-1,1:k-1)\rr;

q =q - A(:,colx(1:k-1))*c;

o oo
]

% Update R.

r =r + rr;

rho = norm(q);
R(1:k-1,k) = r;
R(k,k) = rho;

% Compute the kth column of Q.

R(1:k-1,1:k-1)\r;
(a - A(:,colx(1:k-1))*c)/rho;

Q 0
1]

end
% Update norms and compute norm(R22,’fro’)
if k+1<=n

if cn

% Compute the k-th row of R. Note: For large matrices
% this step dominates the computation.

rrk(k+1:n) = q’*A(:,colx(k+1l:n));
if fullR

R(k,k+1:n) = rrk(k+1:n);
end

% Downdate the column norms and compute norm(R22,’fro’).

norms(k+1:n) = ...
max([norms(k+1:n)."2 - rrk(k+1:n)."2; zeros(1l,n-k)]);

Sparse Reduced-Rank Approximations

norms (k) = sqrt(sum(norms(k+1:n)));
norms (k+1:n) = sqrt(norms(k+1:n));

% Check the stopping criterion.

if (norms(k) < tol) break; end
end
else
norms(k) = 0;
end
end

% Clean up.

ncols = k;

if fullR

R = R(1l:ncols,:);
else

R = R(1:ncols,1:ncols);
end

B. The SCRA code

% SCRA produces a reducedls-rank approximation to a matrix. Specifically,

% [nc, cx, nr, rx, T, err] = cra(A, tol, maxnrc)

b

% produces an approximation of the form

b

% A(C:,cx)*T*A(rx,:)

b

% where T is a nc by nr matrix. The parameter err is a bound
% on the accuracy of the approximation and is contrlled by tol.
% The parameter maxnrc is an upper bound on nc

% and nr.

b

% SCRA uses SPQR to compute SPQR factorizations of A and A’.

function [nc, cx, nr, rx, T, err] = cra(A, tol, maxrc)

[nc, R, cx, cn] = spqr(A, tol, maxrc, 0);
[nr, S, rx, rn] = spqr(A’, tol, maxrc, 0);

25

26

CX

rx

T =
for

end

T =

err

Sparse Reduced-Rank Approximations

cx(1l:nc);
rx(1:nr);

[1;
i=1:nr
T = [T, full(A(:,cx)?*(AxA(rx(i),:)?))];

R\C(R’\(T/S))/S’);

= sqrt(cn(nc) "2 + rn(nr)"2);

References

[1]

2]

[5]

[6]

M. Berry and M. Browne. Understanding Search Engines: Mathematical Modeling
and Text Retrieval. STAM, Philadelphia, PA, 1999.

M. W. Berry, Z. Drmac, and E.R.. Jessup. Matrices, vector spaces, and information
retrieval. SIAM Review, 41:335-362, 1999.

M. W. Berry, S. T. Dumais, and Gavin W. O’Brien. Using linear algebra for
intelligent information retrieval. SIAM Review, 37:573-595, 1995.

M. W. Berry and D. I. Martin. Principal component analysis for information
retrieval. In Handbook of Parallel Computing and Statistics. Marcel Dekker, New
York, 2004. To appear.

A. Bjorck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,
1996.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by
latent semantic analysis. Journal of the American Society for Information Science,
41:391-407, 1990.

P. Jiang and M. W. Berry. Solving total least squares problems in information
retrieval. Linear Algebra and Its Applications, 316:137-156, 2000.

Y. Saad. SPARSEKIT: A basic tool kit for sparse matrix computations. Available
at www-users.cs.umn.edu/"saad/software/SPARSKIT/sparskit.html, 1994.

G. W. Stewart. Matrixz Algorithms I: Basic Decompositions. SIAM, Philadelphia,
1998.

Sparse Reduced-Rank Approximations 27

[10]

[11]

[12]

[13]

[14]

G. W. Stewart. Four algorithms for the the efficient computation of truncated
pivoted qr approximations to a sparse matrix. Numerische Mathematik, 83:313—
323, 1999.

G. W. Stewart. Matriz Algorithms II: Eigensystems. SIAM, Philadelphia, 2001.

G. W. Stewart. Error analysis of the quasi-Gram—Schmidt algorithm. Technical
Report CMSC TR-4572, Department of Computer Science, University of Maryland,
2004.

G. W. Stuart and M. W. Berry. A comprehensive whole genome bacterial phylogeny
using correlated peptide motifs defined in a high dimensional vector space. Journal
of Bioinformatics and Computational Biology, 1:475-493, 2003.

Z. Zhang, H. Zha, and H. Simon. Low-rank approximations with sparse factors
I: Basic algorithms and error analysis. SIAM Journal on Matriz Analysis and
Applications, 23:706-727, 2002.

