
Parity-check erasure codes are important alternatives to Reed-Solomon codes for wide-area storage and checkpointing 
applications. While the bulk of the research on these codes has been on large, and infinite-sized codes, there is an 
important need for systems programmers to utilize small codes. To this author's knowledge, there has been no 
presentation of optimal, small codes in the literature. 

The need for erasure codes has been well documented (see [PT04] for motivation and pointers to other work). Parity-
check codes are a class of erasure codes where the only operation required for coding and decoding is parity. 
Although first presented by Gallager in the early 1960's ([G63]), these codes have received a resurgance in attention 
due to a 1997 paper by Luby  that showed how irregular parity-check codes can achieve optimal asymptotic 
decoding performance [LMS97]. Following that paper, a great amount of research has been on constructing and 
evaluating parity-check codes of infinite size (see [PT04,WK03] for references). However, the application of these 
techniques to small codes has only recently been studied -- in 2004, Plank and Thomason evaluated codes ranging 
from the smallest sizes to 100,000's of nodes [PT04]. Their work exposed the need for studying small codes, whose 
performance does not mirror that of the infinitely sized codes.
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Abstract

Let the number of data bits be , and the number of coding bits be . Let the average number of bits required to 
decode all bits in the code be , otherwise termed the "overhead". Finally, let the computational overhead of a code 
be .

n m
o

l

In this paper, we present the optimal systematic codes for each value of ,  and , such that  is less than or 
equal to 30. These codes have been derived by an exhaustive search of all codes. It is the intent of this paper to 
provide systems researchers and programmers with a reference that they may use when they need to evaluate and 
employ small codes in their applications.

n m l (n+m)*m

1.0 Introduction

et al
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The material in this section is all well-known and has been presented elsewhere (see [WK03] for more detail).

In this paper, we present optimally performing, small codes. Optimality is determined as follows. We are given three 
parameters:

1. The number of data bits (or blocks, when this is applied to storage applications) is .n
2. The number of coding bits is . Therefore, the  of the code is ( ). Most research focuses on large 

codes of specific rates. Our work differs in that we focus on small codes of  rates.
m rate n/(n+m)

all
3. The number of links in the graph that represents the code is . This is a metric that represents the encoding and 

decoding performance of the code. Specifically, the performance is .
l

O(l)

For each value of ,  and , we present codes that minimize the "overhead" , defined to be the average number of 
bits required to reconstruct all the bits of the code.

n m l o

Since the intent of this paper is to be a reference for systems programmers, its organization is a little eccentric. We first 
present the basics of coding, how bipartite graphs represent codes, and how to encode and decode given a bipartite 
graph. We then present optimal codes for all values of  and  such that  is less than or equal to 30.
Following that, we present the exact mechanics of encoding, decoding, and computing overhead.

n m (n+m)*n

2.0 Systematic Graphs and Codes

Parity-check codes are based on bipartite graphs known as "Tanner" graphs. These graphs have  nodes on their 
left side, sometimes termed the "message" nodes, and  nodes on their right side, termed "check" nodes. Edges only 
connect message and check nodes. An example graph is depicted in Figure 1.

n+m
m

. An example Tanner graph for  and .Figure 1 n=4 m=3

The left-hand nodes hold the bits that are to be stored by the application. The edges and the right-hand nodes specify 
constraints that the left-hand nodes must satisfy. The most straightforward codes are "systematic" codes, where the data 
bits are stored in  of the left-hand nodes, and the coding bits in the remaining  left-hand nodes are calculated from 
the data bits and the constraints in the right-hand nodes using exclusive-or. 

n m

For example the code in Figure 1, is a systematic one, whose data bits may be stored in nodes  through . The 
coding bits are calculated as follows: 

l1 l4
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In [PT04], we described three different kinds of codes which have been most studied in the literature. All three may be 
defined by Tanner Graphs as described above, and the translation between their definition in [PT04] and the standard 
Tanner Graph definition above is straightforward. It is omitted here for brevity.

The decoding overhead  of a graph  is the average number of bits that need to be downloaded so that the data 
bits may be determined. It may be determined as follows. Given an ordered sequence of the bits of the graph, 
simulate downloading the bits in order. For that sequence, the first  bits will be sufficient to recalculate all the bits. 
The overhead is the average  for all possible sequences of bits.

We have performed an exhaustive search of all Tanner graphs where is less than or equal to 30. For each of
these values of  and , we present the optimal systematic codes for each value of , where is the number of edges in 
the graph. We make the distinction for differing values of , because different decoding scenarios may mandate 
different codes. For example, if bandwidth is plentiful, and computational horsepower is not, a code with a higher 
overhead, but a lower value of  may perform better than a code with a lower overhead, but a higher value of .

Bit  is the exclusive-or of  and  (from constraint ).l6 l2, l3 l4 r3
Bit  is the exclusive-or of  and  (from constraint ).l7 l1, l2 l3 r2
Bit  is the exclusive-or of  and  (from constraint ).l5 l2, l4 l7 r1

We present decoding as an act in a storage system. Suppose we store each of the  bits on a different storage 
node. Then we download bits from the storage nodes at random until we have downloaded enough bits to reconstruct
the data. To decode in this manner, we start with the Tanner graph for the code, placing values of zero in each right-
hand node, and leaving the left-hand nodes empty. When we download a bit, we put its value into its corresponding 
left-hand hand node . Then, for each right-hand node  to which it is connected, we update the value stored in  to 
be the exclusive-or of that value and the value in . We then remove the edge  from the graph. At the end of 
this process, if there are any right-hand nodes with only one incident edge, then they contain the decoded values of the 
left-hand node to which they are connected, and we can set the value of those left-hand nodes accordingly, and then 
remove their edges from the graph in the same manner as if they had been downloaded. Obviously, this is an iterative
process. 

(n+m)

lx rx rx
lx (lx,rx),

When all nodes' values have been either downloaded or decoded, the decoding process is finished. If a code is 
systematic, then the data bits are held in  of the left-hand nodes. The number of exclusive-or/copy operations required 
is equal to the number of edges in the graph.

n

Encoding with a systematic graph is straightforward -- simply decode using the  data bits. n

2.1 "Systematic" Codes, IRA Codes, Gallager Codes, and Tanner Graphs

2.2 Decoding Overhead

o(G) G
n+m

x
x

The optimal overhead of any decoding scheme is . Therefore, the  of a graph is , and 
the optimal overhead factor of any decoding scheme is 1. Note, Reed-Solomon coding achieves this optimimum; 
however, its large ( ) computational overhead renders it unattractive for many applications.

n overhead factor f(G) G o(G)/n

O(n*n)

In [PT04], we used a Monte-Carlo simulation to estimate the overhead factor of various codes. In this paper, we 
determine overhead factor exactly, using a recursive formula. However, before presenting this determination, we 
describe the optimal codes.

3.0 Optimal Codes

(n+m)*m
n m l l

l

l l
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The table that follows presents optimal codes in the following format. First, and  are listed, then a list 
of the edges of each left-hand node in the graph, and then finally a list of the coding nodes of the graph. The nodes are 
zero-indexed. As an example, consider the following table entry:

n, m, l, o(G), f(G)

n m l o(G) f(G) Edges of G Coding Nodes

3 3 9 and up 3.2000 1.0667 {(0)(1)(0,1)(2)(0,2)(1,2)} {0,1,3}

This says that for =3 and =3, and for all values of  greater than or equal to nine, the following graph is optimal, 
having an overhead of 3.2 and an overhead factor of 1.0667:

n m l

Moreover, the graph is systematic, with coding nodes 0, 1 and 3, and data nodes 2, 4 and 5. Note, the graph has 9 
edges, as denoted by the column.l

Note, if all graphs for a value of  have overhead factors greater than a graph with a smaller value of , then the latter 
graph will perform better in terms of both overhead factor and decoding performance. For that reason, as in the above 
table entry, if a graph for a certain value of has a smaller overhead factor than all graphs with higher values of , we 
list that graph as the optimal for that value of  "and up."

l l

l l
l

Tables 1, 2 and 3 list the optimal graphs for  <= 30 and  > 1. (We do not present graphs for  as 
straight parity is optimal in these cases.)

(n+m)*m m m=1

n m l o(G) f(G) Edges of G Coding Nodes

2 2 4 2.3333 1.1667 {(0)(0)(1)(1)} 0,2

2 2 5 and up 2.1667 1.0833 {(0)(1)(1)(0,1)} 0,1

3 2 5 3.4000 1.1333 {(0)(0)(1)(1)(1)} 0,2

3 2 6 and up 3.2000 1.0667 {(0)(0)(1)(1)(0,1)} 0,2

4 2 6 4.4000 1.1000 {(0)(0)(0)(1)(1)(1)} 0,3

4 2 7 4.2667 1.0667 {(0)(0)(1)(1)(1)(0,1)} 0,2

4 2 8 and up 4.2000 1.0500 {(0)(0)(1)(1)(0,1)(0,1)} 0,2

5 2 7 5.4286 1.0857 {(0)(0)(0)(1)(1)(1)(1)} 0,3

5 2 8 5.2857 1.0571 {(0)(0)(0)(1)(1)(1)(0,1)} 0,3

5 2 9 and up 5.2381 1.0476 {(0)(0)(1)(1)(1)(0,1)(0,1)} 0,2

6 2 8 6.4286 1.0714 {(0)(0)(0)(0)(1)(1)(1)(1)} 0,4

6 2 9 6.3214 1.0536 {(0)(0)(0)(1)(1)(1)(1)(0,1)} 0,3
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: Optimal systematic graphs for =2,  between 2 and 13.

6 2 10 and up 6.2500 1.0417 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)} 0,3

7 2 9 7.4444 1.0635 {(0)(0)(0)(0)(1)(1)(1)(1)(1)} 0,4

7 2 10 7.3333 1.0476 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)} 0,4

7 2 11 7.2778 1.0397 {(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)} 0,3

7 2 12 and up 7.2500 1.0357 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(0,1)} 0,3

8 2 10 8.4444 1.0556 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)} 0,5

8 2 11 8.3556 1.0444 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)} 0,4

8 2 12 8.2889 1.0361 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)} 0,4

8 2 13 and up 8.2667 1.0333 {(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,3

9 2 11 9.4545 1.0505 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)} 0,5

9 2 12 9.3636 1.0404 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)} 0,5

9 2 13 9.3091 1.0343 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)} 0,4

9 2 14 and up 9.2727 1.0303 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,4

10 2 12 10.4545 1.0455 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)} 0,6

10 2 13 10.3788 1.0379 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)} 0,5

10 2 14 10.3182 1.0318 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)} 0,5

10 2 15 10.2879 1.0288 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,4

10 2 16 and up 10.2727 1.0273 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)(0,1)(0,1)} 0,4

11 2 13 11.4615 1.0420 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)} 0,6

11 2 14 11.3846 1.0350 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)} 0,6

11 2 15 11.3333 1.0303 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)(0,1)} 0,5

11 2 16 11.2949 1.0268 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,5

11 2 17 and up 11.2821 1.0256 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)(0,1)} 0,4

12 2 14 12.4615 1.0385 {(0)(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)} 0,7

12 2 15 12.3956 1.0330 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)(0,1)} 0,6

12 2 16 12.3407 1.0284 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)(0,1)} 0,6

12 2 17 12.3077 1.0256 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,5

12 2 18 and up 12.2857 1.0238 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)(0,1)} 0,5

13 2 15 13.4667 1.0359 {(0)(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)(1)} 0,7

13 2 16 13.4000 1.0308 {(0)(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)(0,1)} 0,7

13 2 17 13.3524 1.0271 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)(0,1)(0,1)} 0,6

13 2 18 13.3143 1.0242 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,6

13 2 19 13.2952 1.0227 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)(0,1)} 0,5

13 2 20 and up 13.2857 1.0220 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)(0,1)(0,1)} 0,5

Table 1 m n

2 3 6 2.5000 1.2500 {(0)(0)(1)(2)(1,2)} 0,2,3

2 3 7 and up 2.2000 1.1000 {(0)(1)(2)(0,2)(1,2)} 0,1,2

3 3 6 3.8000 1.2667 {(0)(0)(1)(1)(2)(2)} 0,2,4

3 3 7 3.6333 1.2111 {(0)(0)(1)(2)(2)(1,2)} 0,2,3
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3 3 8 3.4167 1.1389 {(0)(1)(1)(2)(0,2)(1,2)} 0,1,3

3 3 9 and up 3.2000 1.0667 {(0)(1)(0,1)(2)(0,2)(1,2)} 0,1,3

4 3 7 4.8952 1.2238 {(0)(0)(1)(1)(2)(2)(2)} 0,2,4

4 3 8 4.6857 1.1714 {(0)(0)(1)(1)(2)(2)(1,2)} 0,2,4

4 3 9 4.4952 1.1238 {(0)(0)(1)(1)(2)(0,2)(1,2)} 0,2,4

4 3 10 4.3619 1.0905 {(0)(1)(0,1)(2)(2)(0,2)(1,2)} 0,1,3

4 3 12 and up 4.2857 1.0714 {(0)(1)(0,1)(2)(0,2)(1,2)(0,1,2)} 0,1,3

5 3 8 5.9286 1.1857 {(0)(0)(1)(1)(1)(2)(2)(2)} 0,2,5

5 3 9 5.7500 1.1500 {(0)(0)(0)(1)(1)(2)(2)(1,2)} 0,3,5

5 3 10 5.5714 1.1143 {(0)(0)(1)(1)(2)(2)(0,2)(1,2)} 0,2,4

5 3 11 5.4464 1.0893 {(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)} 0,1,4

5 3 12 5.4286 1.0857 {(0)(0)(1)(0,1)(2)(0,2)(1,2)(1,2)} 0,2,4

5 3 13 and up 5.3750 1.0750 {(0)(1)(0,1)(2)(2)(0,2)(1,2)(0,1,2)} 0,1,3

6 3 9 6.9286 1.1548 {(0)(0)(0)(1)(1)(1)(2)(2)(2)} 0,3,6

6 3 10 6.8016 1.1336 {(0)(0)(0)(1)(1)(2)(2)(2)(1,2)} 0,3,5

6 3 11 6.6508 1.1085 {(0)(0)(1)(1)(1)(2)(2)(0,2)(1,2)} 0,2,5

6 3 12 6.4881 1.0813 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)} 0,2,5

6 3 13 6.4762 1.0794 {(0)(0)(1)(0,1)(2)(2)(0,2)(1,2)(1,2)} 0,2,4

6 3 14 and up 6.4246 1.0708 {(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)(0,1,2)} 0,1,4

7 3 10 7.9667 1.1381 {(0)(0)(0)(1)(1)(1)(2)(2)(2)(2)} 0,3,6

7 3 11 7.8250 1.1179 {(0)(0)(0)(1)(1)(1)(2)(2)(2)(1,2)} 0,3,6

7 3 12 7.6889 1.0984 {(0)(0)(0)(1)(1)(1)(2)(2)(0,2)(1,2)} 0,3,6

7 3 13 7.5694 1.0813 {(0)(0)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)} 0,2,5

7 3 14 7.5056 1.0722 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)(1,2)} 0,2,5

7 3 15 and up 7.4500 1.0643 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)(0,1,2)} 0,2,5

8 3 11 8.9818 1.1227 {(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)} 0,3,7

8 3 12 8.8545 1.1068 {(0)(0)(0)(0)(1)(1)(1)(2)(2)(2)(1,2)} 0,4,7

8 3 13 8.7273 1.0909 {(0)(0)(0)(1)(1)(1)(2)(2)(2)(0,2)(1,2)} 0,3,6

8 3 14 8.6182 1.0773 {(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)} 0,2,6

8 3 15 8.5576 1.0697 {(0)(0)(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)(1,2)} 0,3,6

8 3 16 8.5091 1.0636 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,2,5

8 3 17 and up 8.4788 1.0598 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,5

9 3 12 9.9818 1.1091 {(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)} 0,4,8

9 3 13 9.8818 1.0980 {(0)(0)(0)(0)(1)(1)(1)(2)(2)(2)(2)(1,2)} 0,4,7

9 3 14 9.7682 1.0854 {(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(0,2)(1,2)} 0,3,7

9 3 15 9.6455 1.0717 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)} 0,3,7

9 3 16 9.5985 1.0665 {(0)(0)(0)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)(1,2)} 0,3,6

9 3 17 9.5515 1.0613 {(0)(0)(1)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,2,6

9 3 18 9.5091 1.0566 {(0)(0)(1)(1)(0,1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,2,6

9 3 19 and up 9.4939 1.0549 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,5
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10 3 13 11.0023 1.1002 {(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)(2)} 0,4,8

10 3 14 10.8951 1.0895 {(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)(1,2)} 0,4,8

10 3 15 10.7902 1.0790 {(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(0,2)(1,2)} 0,4,8

10 3 16 10.6923 1.0692 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)} 0,3,7

10 3 17 10.6247 1.0625 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)(1,2)} 0,3,7

10 3 18 10.5769 1.0577 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,7

10 3 19 10.5431 1.0543 {(0)(0)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,2,6

10 3 20 10.5268 1.0527 {(0)(0)(1)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,6

10 3 21 and up 10.5035 1.0503 {(0)(0)(1)(1)(0,1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,6

11 3 14 12.0110 1.0919 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)} 0,4,9

11 3 15 11.9121 1.0829 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)(1,2)} 0,5,9

11 3 16 11.8132 1.0739 {(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)(0,2)(1,2)} 0,4,8

11 3 17 11.7225 1.0657 {(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)} 0,3,8

11 3 18 11.6593 1.0599 {(0)(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)(1,2)} 0,4,8

11 3 19 11.6016 1.0547 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,7

11 3 20 11.5659 1.0514 {(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,2,7

11 3 21 11.5467 1.0497 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,3,7

11 3 22 and up 11.5275 1.0480 {(0)(0)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,6

12 3 15 13.0110 1.0842 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)} 0,5,10

12 3 16 12.9289 1.0774 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)(2)(1,2)} 0,5,9

12 3 17 12.8381 1.0698 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(0,2)(1,2)} 0,4,9

12 3 18 12.7407 1.0617 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)} 0,4,9

12 3 19 12.6886 1.0574 {(0)(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)(1,2)} 0,4,8

12 3 20 12.6344 1.0529 {(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,8

12 3 21 12.5802 1.0484 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,8

12 3 22 12.5641 1.0470 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,3,7

12 3 23 12.5436 1.0453 {(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,7

12 3 25 and up 12.5407 1.0451 {(0)(0)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)(0,1,2)} 0,2,6

13 3 16 14.0238 1.0788 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)} 0,5,10

13 3 17 13.9375 1.0721 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(1,2)} 0,5,10

13 3 18 13.8524 1.0656 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(0,2)(1,2)} 0,5,10

13 3 19 13.7708 1.0593 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(2)(0,2)(1,2)} 0,4,9

13 3 20 13.7083 1.0545 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)(1,2)} 0,4,9

13 3 21 13.6560 1.0505 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,4,9

13 3 22 13.6107 1.0470 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,8

13 3 23 13.5863 1.0451 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(1,2)} 0,3,8

13 3 24 13.5536 1.0426 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,3,8

13 3 26 and up 13.5488 1.0422 {(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)(0,1,2)} 0,2,7

14 3 17 15.0294 1.0735 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)} 0,5,11

14 3 18 14.9485 1.0678 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(1,2)} 0,6,11
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: Optimal systematic graphs for =3,  between 3 and 14.

14 3 19 14.8676 1.0620 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(0,2)(1,2)} 0,5,10

14 3 20 14.7912 1.0565 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(2)(0,2)(1,2)} 0,4,10

14 3 21 14.7324 1.0523 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)(1,2)} 0,5,10

14 3 22 14.6765 1.0483 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,4,9

14 3 23 14.6324 1.0452 {(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,9

14 3 24 14.6074 1.0434 {(0)(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(1,2)} 0,4,9

14 3 25 14.5794 1.0414 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,3,8

14 3 26 14.5647 1.0403 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(1,2)(0,1,2)} 0,3,8

14 3 27 and up 14.5529 1.0395 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)(0,1,2)} 0,3,8

Table 2 m n

2 4 8 2.5000 1.2500 {(0)(1)(0,1)(2)(3)(2,3)} 0,1,3,4

2 4 9 and up 2.2000 1.1000 {(0)(1)(2)(0,3)(1,3)(2,3)} 0,1,2,3

3 4 8 4.0667 1.3556 {(0)(0)(1)(1)(2)(3)(2,3)} 0,2,4,5

3 4 9 3.7905 1.2635 {(0)(0)(1)(2)(3)(1,3)(2,3)} 0,2,3,4

3 4 10 3.4857 1.1619 {(0)(1)(2)(0,2)(3)(1,3)(2,3)} 0,1,2,4

3 4 11 3.3714 1.1238 {(0)(1)(2)(1,2)(3)(1,3)(0,2,3)} 0,1,2,4

3 4 12 and up 3.2286 1.0762 {(0)(1)(2)(0,1,2)(0,3)(1,3)(2,3)} 0,1,2,4

4 4 8 5.3429 1.3357 {(0)(0)(1)(1)(2)(2)(3)(3)} 0,2,4,6

4 4 9 5.1786 1.2946 {(0)(0)(1)(1)(2)(3)(3)(2,3)} 0,2,4,5

4 4 10 4.9679 1.2420 {(0)(0)(1)(2)(2)(3)(1,3)(2,3)} 0,2,3,5

4 4 11 4.7286 1.1821 {(0)(1)(1)(2)(0,2)(3)(1,3)(2,3)} 0,1,3,5

4 4 12 4.4286 1.1071 {(0)(1)(0,1)(2)(0,2)(3)(1,3)(2,3)} 0,1,3,5

4 4 13 and up 4.3821 1.0955 {(0)(1)(2)(0,1,2)(3)(0,3)(1,3)(2,3)} 0,1,2,4

5 4 9 6.4524 1.2905 {(0)(0)(1)(1)(2)(2)(3)(3)(3)} 0,2,4,6

5 4 10 6.2381 1.2476 {(0)(0)(1)(1)(2)(2)(3)(3)(2,3)} 0,2,4,6

5 4 11 6.0476 1.2095 {(0)(0)(1)(1)(2)(2)(3)(1,3)(2,3)} 0,2,4,6

5 4 12 5.8452 1.1690 {(0)(0)(1)(1)(2)(0,2)(3)(1,3)(2,3)} 0,2,4,6

5 4 13 5.6587 1.1317 {(0)(1)(0,1)(2)(0,2)(3)(3)(1,3)(2,3)} 0,1,3,5

5 4 14 5.4881 1.0976 {(0)(1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)} 0,1,2,5

5 4 15 5.4603 1.0921 {(0)(1)(0,1)(2)(1,2)(3)(1,3)(2,3)(0,2,3)} 0,1,3,5

5 4 16 and up 5.4603 1.0921 {(0)(1)(0,1)(2)(0,2)(3)(1,3)(2,3)(0,1,2,3)} 0,1,3,5

6 4 10 7.5063 1.2511 {(0)(0)(1)(1)(2)(2)(2)(3)(3)(3)} 0,2,4,7

6 4 11 7.3214 1.2202 {(0)(0)(1)(1)(1)(2)(2)(3)(3)(2,3)} 0,2,5,7

6 4 12 7.1175 1.1862 {(0)(0)(1)(1)(0,1)(2)(2)(3)(3)(2,3)} 0,2,5,7

6 4 13 6.9310 1.1552 {(0)(0)(1)(1)(2)(2)(3)(0,3)(1,3)(2,3)} 0,2,4,6

6 4 14 6.7873 1.1312 {(0)(1)(2)(2)(0,2)(1,2)(3)(3)(0,3)(1,3)} 0,1,2,6

6 4 15 6.6401 1.1067 {(0)(1)(1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)} 0,1,3,6

6 4 16 and up 6.4881 1.0813 {(0)(1)(0,1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)} 0,1,3,6

7 4 11 8.5273 1.2182 {(0)(0)(1)(1)(1)(2)(2)(2)(3)(3)(3)} 0,2,5,8
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: Optimal systematic graphs for =4,  between 2 and 7.

7 4 12 8.3636 1.1948 {(0)(0)(0)(1)(1)(1)(2)(2)(3)(3)(2,3)} 0,3,6,8

7 4 13 8.2000 1.1714 {(0)(0)(0)(1)(1)(2)(2)(3)(3)(1,3)(2,3)} 0,3,5,7

7 4 14 8.0242 1.1463 {(0)(0)(1)(1)(2)(2)(0,2)(3)(3)(1,3)(2,3)} 0,2,4,7

7 4 15 7.8758 1.1251 {(0)(0)(1)(1)(2)(2)(1,2)(3)(0,3)(1,3)(2,3)} 0,2,4,7

7 4 16 7.7273 1.1039 {(0)(0)(1)(1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)} 0,2,4,7

7 4 17 7.6212 1.0887 {(0)(1)(0,1)(2)(0,2)(1,2)(3)(3)(0,3)(1,3)(2,3)} 0,1,3,6

7 4 19 7.5455 1.0779 {(0)(1)(0,1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)(1,2,3)} 0,1,3,6

7 4 20 and up 7.5061 1.0723 {(0)(1)(0,1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)(0,1,2,3)} 0,1,3,6

Table 3 m n

: Optimal systematic graphs for =5,  between 2 and 3.

2 5 10 2.600000 1.300000 {(0)(1)(0,1)(2)(3)(4)(2,3,4)} 0,1,3,4,5

2 5 11 and up 2.266667 1.133333 {(0)(1)(2)(3)(0,4)(1,4)(2,3,4)} 0,1,2,3,4

3 5 10 4.214285 1.404762 {(0)(0)(1)(2)(1,2)(3)(4)(3,4)} 0,2,3,5,6

3 5 11 3.853571 1.284524 {(0)(1)(0,1)(2)(3)(4)(2,4)(3,4)} 0,1,3,4,5

3 5 12 3.514286 1.171429 {(0)(1)(2)(3)(0,4)(1,4)(2,4)(3,4)} 0,1,2,3,4

3 5 13 3.428571 1.142857 {(0)(1)(2)(3)(1,2,3)(0,4)(2,4)(3,4)} 0,1,2,3,5

3 5 14 and up 3.346429 1.115476 {(0)(2)(1,2)(3)(1,3)(4)(1,4)(0,2,3,4)} 0,1,2,3,5

Table 4 m n

There are a few interesting trends to the optimal graphs. First, for =2 and =3, all the optimal graphs are of a type
which we will call . That is, each coding node has only one incident edge, and therefore, each coding node is 
the exclusive-or of only data bits. (These are the codes called "systematic" in [PT04], which is a misnomer, since
code where the data bits are included in the left-hand nodes is systematic). Interestingly, for =4, the optimal 
graphs are  simple (e.g. for =2, =4, =9, node 3 is a coding node, but has two edges).

m m
simple

any
n+m m

not n m l

Second, there is a clear trend in the optimal graphs where . That is that the data nodes are divided evenly into 
three classes: nodes with edges (0), nodes with edges (1), and nodes with edges (0,1). If is not evenly divisible by 
three, then the first extra node has edges to 0 and 1, and the second extra node has an edge to 0. To show this 
pictorally, we picture them below in Figure 2. The shaded nodes are the coding nodes. We suspect that graphs of this 
form are optimal for  values of  but we have neither proved this nor quantified the overhead of these graphs.

m=2
n

all n
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. Optimal Tanner Graphs for =2,  between 2 and 10.

=2n =3n =4n

=5n =6n =7n

=8n =9n =10n

Figure 2 m n

A similar trend emerges with =3. Again, the  data nodes appear to be equally divided among the possible 
combinations of edge lists: {(0),(1),(2),(0,1),(0,2),(1,2),(1,2,3)}. However, unlike with =2, where each additional 
value of  builds on the previous value's optimal graph in an identifiable pattern, in the limited graphs we have here, 
there is no such pattern. For example, the graph with =4 builds on =3 in a different way from the way in the 
analogous graph with =11 builds on =10. We will continue to explore these patterns.

m n
m

n
n n

n n

=2n =3n =4n
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. Optimal Tanner Graphs for =3,  between 2 and 14.

=5n =6n =7n

=8n =9n =10n

=11n =12n =13n

=14n

Figure 3 m n
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In Figure 4, we show the optimal graphs with . Unlike the graphs for =3 and =2, these graphs do not build 
upon one another. As before, the  nodes are divided "evenly" between the possible combinations of edges. However, 
the way in which graphs build upon one another is not clear.

m=4 m m
n

. Optimal Tanner Graphs for =4,  between 2 and 7.

=2n =3n =4n

=5n =6n =7n

Figure 4 m n

Finally, in Figure 5, we show the optimal graphs for =5. Again, we will need to enumerate more graphs to discover 
whether there are interesting patterns to these optimal graphs.

m

. Optimal Tanner Graphs for =5,  between 2 and 3.

=2n =3n

Figure 5 m n

4.0 Decoding and Computing Overhead - Precise Definitions
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We are given a Tanner graph G with  left-hand nodes and  right-hand nodes. We assume that all the right-hand 
nodes have either zero edges or more than one edge. If a left-hand node has zero edges, then we assume that we know 
its value (as a result of a previous decoding phase). 

Let  be the graph with =1, =1, and edges {(0),(0)}:

n+m m

When we start, we set all right-hand nodes to zero, and leave the values of all left-hand nodes blank.

To decode, we define two operations on graphs:  a value to a node, and  a node. Both 
operations are defined only on left-hand nodes. We start with the former. Given a left-hand node , when the value of 
that node becomes known, it should be . When it is assigned, for each right-hand node  to which  is 
connected, 's value is set to the exclusive-or of its previous value and 's value, and then the edge  is removed 
from the graph. If there are any right-hand nodes which now have only one incident edge, then the value of the left-
hand node to which  is connected may now be assigned to be the value of . Before assigning the value, however, 
the edge between that node and should be removed, and  should also be removed from the graph. Note, assigning 
one node's value can therefore result in assigning many other nodes' values.

assigning downloading
li

assigned rj li
rj li (li,rj)

rj
rj rj

rj rj

To  a node, if the node's value has already been assigned, then the node is simply removed from the graph. 
Otherwise, the value of the node is assigned to its downloaded value, and it is then removed from the graph.

download

When the values of all left-hand nodes have been assigned, the decoding process is finished.

of graph G proceeds as follows. If all nodes have zero edges, then the overhead is 
zero. Otherwise, we simulate downloading each left-hand node of the graph, and compute the average overhead as the 
average of all simulations. When we simulate downloading a node , we assign its value (if unassigned), and remove 
the node from the graph. We are then left with a  graph, . We can recursively determine 's 
overhead. Then, the equation for determining a graph's overhead (if not zero), is:

Computing the overhead o(G)

li
residual R(G,li) R(G,li)

4.1 Example 1: G1

G1 n m

This is a systematic code, where either node may be the data or coding bit. To decode, we first set 's value to zero:r0

Then, suppose we download node , which has a value of 1. We assign its value by going through the following 
steps. We set its value to 1, then set 's value to 0+1 = 1, and remove the edge  from the graph. Since  only 
has one incident edge now, which is to , we can assign l1's value to 1, and remove both the edge  and node
from the graph. Finally, we remove  from the graph. Thus, the residual graph  is:

l0
r0 (l0,r0), r0

l1 (l1,r0) r0
l0 R(G1,l0)
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Let  be the graph with =2, =1, and edges {(0),(0),()}:

Let  be the graph with =1, =2, and edges {(0,1),(0),(1)}:

Let  be the graph with =2, =2, and edges {(0,1),(1),(0),(1)}:

And the decoding process is finished. If we download node , the process is similar, and the decoding process 
finishes. Thus, to compute the overhead of decoding graph , , it is:

l1
G1 o(G1)

 = ((1 + ) + (1 + )) / 2
= ((1 + 0) + (1 + 0)) / 2 

= 1.

o(G1) o(R(G1,l0)) o(R(G1,l1))

4.2 Example 2: G2

G1 n m

Note, this is a graph that represents a residual graph of a download, where we already know 's value, but it has not 
been downloaded yet. To decode, if we download either nodes  or , then we may determine the value of all nodes, 
and decoding is complete. If we download node , then we simply remove that node from the graph, and are left with 
graph as a residual. Therefore, the overhead of decoding  is:

l2
l0 l1

l2
G1 G2

 = ((1 + ) + (1 + ) + (1 + )) / 3
= ((1 + 0) + (1 + 0) + (1 + ) / 3 

= (1 + 1 + 2) / 3
= 4/3.

o(G2) o(R(G2,l0)) o(R(G2,l1)) o(R(G2,l2))
o(G1)

4.3 Example 3: G3

G3 n m

This is a simple systematic replication code, where  is the data bit, and  and  are the coding bits. To decode, when 
any of the three nodes is downloaded, the values of the other two may be assigned. Therefore, the overhead of  is:

l0 l1 l2
G3

 = ((1 + ) + (1 + ) + (1 + )) / 3
= ((1 + 0) + (1 + 0) + (1 + 0) / 3 

= 1.

o(G3) o(R(G3,l0)) o(R(G3,l1)) o(R(G3,l3))

4.4 Example 4: G4

G4 n m
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This work has been limited in scope, largely because we have used exhaustive search techniques to generate graphs. 
However, even for these small values of  and , it is important to understand the optimal codes, and to present them 
for systems programmers to use.

This material is based upon work supported by the National Science Foundation under grants EIA0224441, ACI-
0204007, ANI-0222945 and EIA-9972889. The author thanks Mike Thomason for always being willing to delve into 
all manners of coding theory, Adam Buchsbaum for discussions, and Yair Amir for getting me re-enthused about 
parity-check codes.

This is the optimal systematic code for =2, =2 and =5. The data nodes are  and , and the coding nodes are 
and . To decode, we look at the residual graphs of downloading each of the left-hand nodes. Downloading  leaves 
us with a graph equivalent to , Downloading  leaves us with a graph equivalent to . Downloading  leaves us 
with a graph equivalent to , and downloading  leaves us with a graph equivalent to . Therefore, the overhead 
of decoding graph  is:

n m l l0 l1 l2
l3 l0

G2 l1 G3 l2
G2 l3 G3

G4

 = ((1 + ) + (1 + ) + (1 + ) + (1 + )) / 4
= ((1 + ) + (1 + ) + (1 + ) + (1 + )) / 4 

= ((1 + 4/3) + (1 + 1) + (1 + 4/3) + (1 + 1))/4
= (7/3 + 2 + 7/3 + 2)/4

= (26/3)/4 = 13/6 = 2.1667.

o(G4) o(R(G4,l0)) o(R(G4,l1)) o(R(G4,l2)) o(R(G4,l3))
o(G2) o(G3) o(G2) o(G3)

Note, that matches the overhead for the graph in the tables above.

5.0 Conclusion and Future Work

n m

We will continue our exhaustive techniques until the graph sizes prove intractable for our computational power. 
Heuristics for enumerating unique bipartite graphs, and for indexing data structures by graphs will prove helpful.

Our initial exploration has illustrated trends in optimal graphs for  and . We will continue to explore these 
trends, and attempt to prove optimality for these codes for  values of .

m=2 m=3
all n

Finally, our exploration should help us define classes of graphs for larger values of and , which may not have
optimal performance (or for which optimality cannot be proven), but which have good performance when compared to 
other evaluations of similarly sized graphs. As with this technical report, we hope to present such graphs so that the 
systems community, currently without any reference besides the asymptotic (and patented) techniques of Luby , 
have a methodology for constructing and using good systematic parity-check codes.

n m

et al
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