
Parity-check erasure codes are important alternatives to Reed-Solomon codes for wide-area storage and checkpointing
applications. While the bulk of the research on these codes has been on large, and infinite-sized codes, there is an
important need for systems programmers to utilize small codes. To this author's knowledge, there has been no
presentation of optimal, small codes in the literature.

The need for erasure codes has been well documented (see [PT04] for motivation and pointers to other work). Parity-
check codes are a class of erasure codes where the only operation required for coding and decoding is parity.
Although first presented by Gallager in the early 1960's ([G63]), these codes have received a resurgance in attention
due to a 1997 paper by Luby that showed how irregular parity-check codes can achieve optimal asymptotic
decoding performance [LMS97]. Following that paper, a great amount of research has been on constructing and
evaluating parity-check codes of infinite size (see [PT04,WK03] for references). However, the application of these
techniques to small codes has only recently been studied -- in 2004, Plank and Thomason evaluated codes ranging
from the smallest sizes to 100,000's of nodes [PT04]. Their work exposed the need for studying small codes, whose
performance does not mirror that of the infinitely sized codes.

Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief
Presentation

James S. Plank

Technical Report CS-04-528.

Department of Computer Science
University of Tennessee
203 Claxton Complex

Knoxville, TN 37996-3450

July, 2004.

See for the publication status of this paper.http://www.cs.utk.edu/~plank/plank/papers/CS-04-528.html

plank@cs.utk.edu
http://www.cs.utk.edu/~plank

Abstract

Let the number of data bits be , and the number of coding bits be . Let the average number of bits required to
decode all bits in the code be , otherwise termed the "overhead". Finally, let the computational overhead of a code
be .

n m
o

l

In this paper, we present the optimal systematic codes for each value of , and , such that is less than or
equal to 30. These codes have been derived by an exhaustive search of all codes. It is the intent of this paper to
provide systems researchers and programmers with a reference that they may use when they need to evaluate and
employ small codes in their applications.

n m l (n+m)*m

1.0 Introduction

et al

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 1 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

The material in this section is all well-known and has been presented elsewhere (see [WK03] for more detail).

In this paper, we present optimally performing, small codes. Optimality is determined as follows. We are given three
parameters:

1. The number of data bits (or blocks, when this is applied to storage applications) is .n
2. The number of coding bits is . Therefore, the of the code is (). Most research focuses on large

codes of specific rates. Our work differs in that we focus on small codes of rates.
m rate n/(n+m)

all
3. The number of links in the graph that represents the code is . This is a metric that represents the encoding and

decoding performance of the code. Specifically, the performance is .
l

O(l)

For each value of , and , we present codes that minimize the "overhead" , defined to be the average number of
bits required to reconstruct all the bits of the code.

n m l o

Since the intent of this paper is to be a reference for systems programmers, its organization is a little eccentric. We first
present the basics of coding, how bipartite graphs represent codes, and how to encode and decode given a bipartite
graph. We then present optimal codes for all values of and such that is less than or equal to 30.
Following that, we present the exact mechanics of encoding, decoding, and computing overhead.

n m (n+m)*n

2.0 Systematic Graphs and Codes

Parity-check codes are based on bipartite graphs known as "Tanner" graphs. These graphs have nodes on their
left side, sometimes termed the "message" nodes, and nodes on their right side, termed "check" nodes. Edges only
connect message and check nodes. An example graph is depicted in Figure 1.

n+m
m

. An example Tanner graph for and .Figure 1 n=4 m=3

The left-hand nodes hold the bits that are to be stored by the application. The edges and the right-hand nodes specify
constraints that the left-hand nodes must satisfy. The most straightforward codes are "systematic" codes, where the data
bits are stored in of the left-hand nodes, and the coding bits in the remaining left-hand nodes are calculated from
the data bits and the constraints in the right-hand nodes using exclusive-or.

n m

For example the code in Figure 1, is a systematic one, whose data bits may be stored in nodes through . The
coding bits are calculated as follows:

l1 l4

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 2 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

In [PT04], we described three different kinds of codes which have been most studied in the literature. All three may be
defined by Tanner Graphs as described above, and the translation between their definition in [PT04] and the standard
Tanner Graph definition above is straightforward. It is omitted here for brevity.

The decoding overhead of a graph is the average number of bits that need to be downloaded so that the data
bits may be determined. It may be determined as follows. Given an ordered sequence of the bits of the graph,
simulate downloading the bits in order. For that sequence, the first bits will be sufficient to recalculate all the bits.
The overhead is the average for all possible sequences of bits.

We have performed an exhaustive search of all Tanner graphs where is less than or equal to 30. For each of
these values of and , we present the optimal systematic codes for each value of , where is the number of edges in
the graph. We make the distinction for differing values of , because different decoding scenarios may mandate
different codes. For example, if bandwidth is plentiful, and computational horsepower is not, a code with a higher
overhead, but a lower value of may perform better than a code with a lower overhead, but a higher value of .

Bit is the exclusive-or of and (from constraint).l6 l2, l3 l4 r3
Bit is the exclusive-or of and (from constraint).l7 l1, l2 l3 r2
Bit is the exclusive-or of and (from constraint).l5 l2, l4 l7 r1

We present decoding as an act in a storage system. Suppose we store each of the bits on a different storage
node. Then we download bits from the storage nodes at random until we have downloaded enough bits to reconstruct
the data. To decode in this manner, we start with the Tanner graph for the code, placing values of zero in each right-
hand node, and leaving the left-hand nodes empty. When we download a bit, we put its value into its corresponding
left-hand hand node . Then, for each right-hand node to which it is connected, we update the value stored in to
be the exclusive-or of that value and the value in . We then remove the edge from the graph. At the end of
this process, if there are any right-hand nodes with only one incident edge, then they contain the decoded values of the
left-hand node to which they are connected, and we can set the value of those left-hand nodes accordingly, and then
remove their edges from the graph in the same manner as if they had been downloaded. Obviously, this is an iterative
process.

(n+m)

lx rx rx
lx (lx,rx),

When all nodes' values have been either downloaded or decoded, the decoding process is finished. If a code is
systematic, then the data bits are held in of the left-hand nodes. The number of exclusive-or/copy operations required
is equal to the number of edges in the graph.

n

Encoding with a systematic graph is straightforward -- simply decode using the data bits. n

2.1 "Systematic" Codes, IRA Codes, Gallager Codes, and Tanner Graphs

2.2 Decoding Overhead

o(G) G
n+m

x
x

The optimal overhead of any decoding scheme is . Therefore, the of a graph is , and
the optimal overhead factor of any decoding scheme is 1. Note, Reed-Solomon coding achieves this optimimum;
however, its large () computational overhead renders it unattractive for many applications.

n overhead factor f(G) G o(G)/n

O(n*n)

In [PT04], we used a Monte-Carlo simulation to estimate the overhead factor of various codes. In this paper, we
determine overhead factor exactly, using a recursive formula. However, before presenting this determination, we
describe the optimal codes.

3.0 Optimal Codes

(n+m)*m
n m l l

l

l l

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 3 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

The table that follows presents optimal codes in the following format. First, and are listed, then a list
of the edges of each left-hand node in the graph, and then finally a list of the coding nodes of the graph. The nodes are
zero-indexed. As an example, consider the following table entry:

n, m, l, o(G), f(G)

n m l o(G) f(G) Edges of G Coding Nodes

3 3 9 and up 3.2000 1.0667 {(0)(1)(0,1)(2)(0,2)(1,2)} {0,1,3}

This says that for =3 and =3, and for all values of greater than or equal to nine, the following graph is optimal,
having an overhead of 3.2 and an overhead factor of 1.0667:

n m l

Moreover, the graph is systematic, with coding nodes 0, 1 and 3, and data nodes 2, 4 and 5. Note, the graph has 9
edges, as denoted by the column.l

Note, if all graphs for a value of have overhead factors greater than a graph with a smaller value of , then the latter
graph will perform better in terms of both overhead factor and decoding performance. For that reason, as in the above
table entry, if a graph for a certain value of has a smaller overhead factor than all graphs with higher values of , we
list that graph as the optimal for that value of "and up."

l l

l l
l

Tables 1, 2 and 3 list the optimal graphs for <= 30 and > 1. (We do not present graphs for as
straight parity is optimal in these cases.)

(n+m)*m m m=1

n m l o(G) f(G) Edges of G Coding Nodes

2 2 4 2.3333 1.1667 {(0)(0)(1)(1)} 0,2

2 2 5 and up 2.1667 1.0833 {(0)(1)(1)(0,1)} 0,1

3 2 5 3.4000 1.1333 {(0)(0)(1)(1)(1)} 0,2

3 2 6 and up 3.2000 1.0667 {(0)(0)(1)(1)(0,1)} 0,2

4 2 6 4.4000 1.1000 {(0)(0)(0)(1)(1)(1)} 0,3

4 2 7 4.2667 1.0667 {(0)(0)(1)(1)(1)(0,1)} 0,2

4 2 8 and up 4.2000 1.0500 {(0)(0)(1)(1)(0,1)(0,1)} 0,2

5 2 7 5.4286 1.0857 {(0)(0)(0)(1)(1)(1)(1)} 0,3

5 2 8 5.2857 1.0571 {(0)(0)(0)(1)(1)(1)(0,1)} 0,3

5 2 9 and up 5.2381 1.0476 {(0)(0)(1)(1)(1)(0,1)(0,1)} 0,2

6 2 8 6.4286 1.0714 {(0)(0)(0)(0)(1)(1)(1)(1)} 0,4

6 2 9 6.3214 1.0536 {(0)(0)(0)(1)(1)(1)(1)(0,1)} 0,3

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 4 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

: Optimal systematic graphs for =2, between 2 and 13.

6 2 10 and up 6.2500 1.0417 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)} 0,3

7 2 9 7.4444 1.0635 {(0)(0)(0)(0)(1)(1)(1)(1)(1)} 0,4

7 2 10 7.3333 1.0476 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)} 0,4

7 2 11 7.2778 1.0397 {(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)} 0,3

7 2 12 and up 7.2500 1.0357 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(0,1)} 0,3

8 2 10 8.4444 1.0556 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)} 0,5

8 2 11 8.3556 1.0444 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)} 0,4

8 2 12 8.2889 1.0361 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)} 0,4

8 2 13 and up 8.2667 1.0333 {(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,3

9 2 11 9.4545 1.0505 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)} 0,5

9 2 12 9.3636 1.0404 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)} 0,5

9 2 13 9.3091 1.0343 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)} 0,4

9 2 14 and up 9.2727 1.0303 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,4

10 2 12 10.4545 1.0455 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)} 0,6

10 2 13 10.3788 1.0379 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)} 0,5

10 2 14 10.3182 1.0318 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)} 0,5

10 2 15 10.2879 1.0288 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,4

10 2 16 and up 10.2727 1.0273 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)(0,1)(0,1)} 0,4

11 2 13 11.4615 1.0420 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)} 0,6

11 2 14 11.3846 1.0350 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)} 0,6

11 2 15 11.3333 1.0303 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)(0,1)} 0,5

11 2 16 11.2949 1.0268 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,5

11 2 17 and up 11.2821 1.0256 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)(0,1)} 0,4

12 2 14 12.4615 1.0385 {(0)(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)} 0,7

12 2 15 12.3956 1.0330 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)(0,1)} 0,6

12 2 16 12.3407 1.0284 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)(0,1)} 0,6

12 2 17 12.3077 1.0256 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,5

12 2 18 and up 12.2857 1.0238 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)(0,1)} 0,5

13 2 15 13.4667 1.0359 {(0)(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)(1)} 0,7

13 2 16 13.4000 1.0308 {(0)(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)(0,1)} 0,7

13 2 17 13.3524 1.0271 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(1)(0,1)(0,1)} 0,6

13 2 18 13.3143 1.0242 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)} 0,6

13 2 19 13.2952 1.0227 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)(0,1)} 0,5

13 2 20 and up 13.2857 1.0220 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(0,1)(0,1)(0,1)(0,1)} 0,5

Table 1 m n

2 3 6 2.5000 1.2500 {(0)(0)(1)(2)(1,2)} 0,2,3

2 3 7 and up 2.2000 1.1000 {(0)(1)(2)(0,2)(1,2)} 0,1,2

3 3 6 3.8000 1.2667 {(0)(0)(1)(1)(2)(2)} 0,2,4

3 3 7 3.6333 1.2111 {(0)(0)(1)(2)(2)(1,2)} 0,2,3

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 5 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

3 3 8 3.4167 1.1389 {(0)(1)(1)(2)(0,2)(1,2)} 0,1,3

3 3 9 and up 3.2000 1.0667 {(0)(1)(0,1)(2)(0,2)(1,2)} 0,1,3

4 3 7 4.8952 1.2238 {(0)(0)(1)(1)(2)(2)(2)} 0,2,4

4 3 8 4.6857 1.1714 {(0)(0)(1)(1)(2)(2)(1,2)} 0,2,4

4 3 9 4.4952 1.1238 {(0)(0)(1)(1)(2)(0,2)(1,2)} 0,2,4

4 3 10 4.3619 1.0905 {(0)(1)(0,1)(2)(2)(0,2)(1,2)} 0,1,3

4 3 12 and up 4.2857 1.0714 {(0)(1)(0,1)(2)(0,2)(1,2)(0,1,2)} 0,1,3

5 3 8 5.9286 1.1857 {(0)(0)(1)(1)(1)(2)(2)(2)} 0,2,5

5 3 9 5.7500 1.1500 {(0)(0)(0)(1)(1)(2)(2)(1,2)} 0,3,5

5 3 10 5.5714 1.1143 {(0)(0)(1)(1)(2)(2)(0,2)(1,2)} 0,2,4

5 3 11 5.4464 1.0893 {(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)} 0,1,4

5 3 12 5.4286 1.0857 {(0)(0)(1)(0,1)(2)(0,2)(1,2)(1,2)} 0,2,4

5 3 13 and up 5.3750 1.0750 {(0)(1)(0,1)(2)(2)(0,2)(1,2)(0,1,2)} 0,1,3

6 3 9 6.9286 1.1548 {(0)(0)(0)(1)(1)(1)(2)(2)(2)} 0,3,6

6 3 10 6.8016 1.1336 {(0)(0)(0)(1)(1)(2)(2)(2)(1,2)} 0,3,5

6 3 11 6.6508 1.1085 {(0)(0)(1)(1)(1)(2)(2)(0,2)(1,2)} 0,2,5

6 3 12 6.4881 1.0813 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)} 0,2,5

6 3 13 6.4762 1.0794 {(0)(0)(1)(0,1)(2)(2)(0,2)(1,2)(1,2)} 0,2,4

6 3 14 and up 6.4246 1.0708 {(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)(0,1,2)} 0,1,4

7 3 10 7.9667 1.1381 {(0)(0)(0)(1)(1)(1)(2)(2)(2)(2)} 0,3,6

7 3 11 7.8250 1.1179 {(0)(0)(0)(1)(1)(1)(2)(2)(2)(1,2)} 0,3,6

7 3 12 7.6889 1.0984 {(0)(0)(0)(1)(1)(1)(2)(2)(0,2)(1,2)} 0,3,6

7 3 13 7.5694 1.0813 {(0)(0)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)} 0,2,5

7 3 14 7.5056 1.0722 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)(1,2)} 0,2,5

7 3 15 and up 7.4500 1.0643 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)(0,1,2)} 0,2,5

8 3 11 8.9818 1.1227 {(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)} 0,3,7

8 3 12 8.8545 1.1068 {(0)(0)(0)(0)(1)(1)(1)(2)(2)(2)(1,2)} 0,4,7

8 3 13 8.7273 1.0909 {(0)(0)(0)(1)(1)(1)(2)(2)(2)(0,2)(1,2)} 0,3,6

8 3 14 8.6182 1.0773 {(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)} 0,2,6

8 3 15 8.5576 1.0697 {(0)(0)(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)(1,2)} 0,3,6

8 3 16 8.5091 1.0636 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,2,5

8 3 17 and up 8.4788 1.0598 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,5

9 3 12 9.9818 1.1091 {(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)} 0,4,8

9 3 13 9.8818 1.0980 {(0)(0)(0)(0)(1)(1)(1)(2)(2)(2)(2)(1,2)} 0,4,7

9 3 14 9.7682 1.0854 {(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(0,2)(1,2)} 0,3,7

9 3 15 9.6455 1.0717 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)} 0,3,7

9 3 16 9.5985 1.0665 {(0)(0)(0)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)(1,2)} 0,3,6

9 3 17 9.5515 1.0613 {(0)(0)(1)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,2,6

9 3 18 9.5091 1.0566 {(0)(0)(1)(1)(0,1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,2,6

9 3 19 and up 9.4939 1.0549 {(0)(0)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,5

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 6 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

10 3 13 11.0023 1.1002 {(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)(2)} 0,4,8

10 3 14 10.8951 1.0895 {(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)(1,2)} 0,4,8

10 3 15 10.7902 1.0790 {(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(0,2)(1,2)} 0,4,8

10 3 16 10.6923 1.0692 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)} 0,3,7

10 3 17 10.6247 1.0625 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)(1,2)} 0,3,7

10 3 18 10.5769 1.0577 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,7

10 3 19 10.5431 1.0543 {(0)(0)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,2,6

10 3 20 10.5268 1.0527 {(0)(0)(1)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,6

10 3 21 and up 10.5035 1.0503 {(0)(0)(1)(1)(0,1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,6

11 3 14 12.0110 1.0919 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)} 0,4,9

11 3 15 11.9121 1.0829 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)(1,2)} 0,5,9

11 3 16 11.8132 1.0739 {(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)(0,2)(1,2)} 0,4,8

11 3 17 11.7225 1.0657 {(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)} 0,3,8

11 3 18 11.6593 1.0599 {(0)(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(1,2)(1,2)} 0,4,8

11 3 19 11.6016 1.0547 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,7

11 3 20 11.5659 1.0514 {(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,2,7

11 3 21 11.5467 1.0497 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,3,7

11 3 22 and up 11.5275 1.0480 {(0)(0)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,6

12 3 15 13.0110 1.0842 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)} 0,5,10

12 3 16 12.9289 1.0774 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(2)(2)(2)(2)(2)(1,2)} 0,5,9

12 3 17 12.8381 1.0698 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(0,2)(1,2)} 0,4,9

12 3 18 12.7407 1.0617 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)} 0,4,9

12 3 19 12.6886 1.0574 {(0)(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)(1,2)} 0,4,8

12 3 20 12.6344 1.0529 {(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,8

12 3 21 12.5802 1.0484 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,8

12 3 22 12.5641 1.0470 {(0)(0)(0)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,3,7

12 3 23 12.5436 1.0453 {(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,2,7

12 3 25 and up 12.5407 1.0451 {(0)(0)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)(0,1,2)} 0,2,6

13 3 16 14.0238 1.0788 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)} 0,5,10

13 3 17 13.9375 1.0721 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(1,2)} 0,5,10

13 3 18 13.8524 1.0656 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(0,2)(1,2)} 0,5,10

13 3 19 13.7708 1.0593 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(2)(0,2)(1,2)} 0,4,9

13 3 20 13.7083 1.0545 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)(1,2)} 0,4,9

13 3 21 13.6560 1.0505 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,4,9

13 3 22 13.6107 1.0470 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,8

13 3 23 13.5863 1.0451 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(1,2)} 0,3,8

13 3 24 13.5536 1.0426 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,3,8

13 3 26 and up 13.5488 1.0422 {(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)(0,1,2)} 0,2,7

14 3 17 15.0294 1.0735 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)} 0,5,11

14 3 18 14.9485 1.0678 {(0)(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(1,2)} 0,6,11

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 7 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

: Optimal systematic graphs for =3, between 3 and 14.

14 3 19 14.8676 1.0620 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(0,2)(1,2)} 0,5,10

14 3 20 14.7912 1.0565 {(0)(0)(0)(0)(1)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(2)(0,2)(1,2)} 0,4,10

14 3 21 14.7324 1.0523 {(0)(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(1,2)(1,2)} 0,5,10

14 3 22 14.6765 1.0483 {(0)(0)(0)(0)(1)(1)(1)(1)(0,1)(2)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,4,9

14 3 23 14.6324 1.0452 {(0)(0)(0)(1)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)} 0,3,9

14 3 24 14.6074 1.0434 {(0)(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(1,2)} 0,4,9

14 3 25 14.5794 1.0414 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)} 0,3,8

14 3 26 14.5647 1.0403 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(1,2)(0,1,2)} 0,3,8

14 3 27 and up 14.5529 1.0395 {(0)(0)(0)(1)(1)(1)(0,1)(0,1)(2)(2)(2)(0,2)(0,2)(1,2)(1,2)(0,1,2)(0,1,2)} 0,3,8

Table 2 m n

2 4 8 2.5000 1.2500 {(0)(1)(0,1)(2)(3)(2,3)} 0,1,3,4

2 4 9 and up 2.2000 1.1000 {(0)(1)(2)(0,3)(1,3)(2,3)} 0,1,2,3

3 4 8 4.0667 1.3556 {(0)(0)(1)(1)(2)(3)(2,3)} 0,2,4,5

3 4 9 3.7905 1.2635 {(0)(0)(1)(2)(3)(1,3)(2,3)} 0,2,3,4

3 4 10 3.4857 1.1619 {(0)(1)(2)(0,2)(3)(1,3)(2,3)} 0,1,2,4

3 4 11 3.3714 1.1238 {(0)(1)(2)(1,2)(3)(1,3)(0,2,3)} 0,1,2,4

3 4 12 and up 3.2286 1.0762 {(0)(1)(2)(0,1,2)(0,3)(1,3)(2,3)} 0,1,2,4

4 4 8 5.3429 1.3357 {(0)(0)(1)(1)(2)(2)(3)(3)} 0,2,4,6

4 4 9 5.1786 1.2946 {(0)(0)(1)(1)(2)(3)(3)(2,3)} 0,2,4,5

4 4 10 4.9679 1.2420 {(0)(0)(1)(2)(2)(3)(1,3)(2,3)} 0,2,3,5

4 4 11 4.7286 1.1821 {(0)(1)(1)(2)(0,2)(3)(1,3)(2,3)} 0,1,3,5

4 4 12 4.4286 1.1071 {(0)(1)(0,1)(2)(0,2)(3)(1,3)(2,3)} 0,1,3,5

4 4 13 and up 4.3821 1.0955 {(0)(1)(2)(0,1,2)(3)(0,3)(1,3)(2,3)} 0,1,2,4

5 4 9 6.4524 1.2905 {(0)(0)(1)(1)(2)(2)(3)(3)(3)} 0,2,4,6

5 4 10 6.2381 1.2476 {(0)(0)(1)(1)(2)(2)(3)(3)(2,3)} 0,2,4,6

5 4 11 6.0476 1.2095 {(0)(0)(1)(1)(2)(2)(3)(1,3)(2,3)} 0,2,4,6

5 4 12 5.8452 1.1690 {(0)(0)(1)(1)(2)(0,2)(3)(1,3)(2,3)} 0,2,4,6

5 4 13 5.6587 1.1317 {(0)(1)(0,1)(2)(0,2)(3)(3)(1,3)(2,3)} 0,1,3,5

5 4 14 5.4881 1.0976 {(0)(1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)} 0,1,2,5

5 4 15 5.4603 1.0921 {(0)(1)(0,1)(2)(1,2)(3)(1,3)(2,3)(0,2,3)} 0,1,3,5

5 4 16 and up 5.4603 1.0921 {(0)(1)(0,1)(2)(0,2)(3)(1,3)(2,3)(0,1,2,3)} 0,1,3,5

6 4 10 7.5063 1.2511 {(0)(0)(1)(1)(2)(2)(2)(3)(3)(3)} 0,2,4,7

6 4 11 7.3214 1.2202 {(0)(0)(1)(1)(1)(2)(2)(3)(3)(2,3)} 0,2,5,7

6 4 12 7.1175 1.1862 {(0)(0)(1)(1)(0,1)(2)(2)(3)(3)(2,3)} 0,2,5,7

6 4 13 6.9310 1.1552 {(0)(0)(1)(1)(2)(2)(3)(0,3)(1,3)(2,3)} 0,2,4,6

6 4 14 6.7873 1.1312 {(0)(1)(2)(2)(0,2)(1,2)(3)(3)(0,3)(1,3)} 0,1,2,6

6 4 15 6.6401 1.1067 {(0)(1)(1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)} 0,1,3,6

6 4 16 and up 6.4881 1.0813 {(0)(1)(0,1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)} 0,1,3,6

7 4 11 8.5273 1.2182 {(0)(0)(1)(1)(1)(2)(2)(2)(3)(3)(3)} 0,2,5,8

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 8 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

: Optimal systematic graphs for =4, between 2 and 7.

7 4 12 8.3636 1.1948 {(0)(0)(0)(1)(1)(1)(2)(2)(3)(3)(2,3)} 0,3,6,8

7 4 13 8.2000 1.1714 {(0)(0)(0)(1)(1)(2)(2)(3)(3)(1,3)(2,3)} 0,3,5,7

7 4 14 8.0242 1.1463 {(0)(0)(1)(1)(2)(2)(0,2)(3)(3)(1,3)(2,3)} 0,2,4,7

7 4 15 7.8758 1.1251 {(0)(0)(1)(1)(2)(2)(1,2)(3)(0,3)(1,3)(2,3)} 0,2,4,7

7 4 16 7.7273 1.1039 {(0)(0)(1)(1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)} 0,2,4,7

7 4 17 7.6212 1.0887 {(0)(1)(0,1)(2)(0,2)(1,2)(3)(3)(0,3)(1,3)(2,3)} 0,1,3,6

7 4 19 7.5455 1.0779 {(0)(1)(0,1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)(1,2,3)} 0,1,3,6

7 4 20 and up 7.5061 1.0723 {(0)(1)(0,1)(2)(0,2)(1,2)(3)(0,3)(1,3)(2,3)(0,1,2,3)} 0,1,3,6

Table 3 m n

: Optimal systematic graphs for =5, between 2 and 3.

2 5 10 2.600000 1.300000 {(0)(1)(0,1)(2)(3)(4)(2,3,4)} 0,1,3,4,5

2 5 11 and up 2.266667 1.133333 {(0)(1)(2)(3)(0,4)(1,4)(2,3,4)} 0,1,2,3,4

3 5 10 4.214285 1.404762 {(0)(0)(1)(2)(1,2)(3)(4)(3,4)} 0,2,3,5,6

3 5 11 3.853571 1.284524 {(0)(1)(0,1)(2)(3)(4)(2,4)(3,4)} 0,1,3,4,5

3 5 12 3.514286 1.171429 {(0)(1)(2)(3)(0,4)(1,4)(2,4)(3,4)} 0,1,2,3,4

3 5 13 3.428571 1.142857 {(0)(1)(2)(3)(1,2,3)(0,4)(2,4)(3,4)} 0,1,2,3,5

3 5 14 and up 3.346429 1.115476 {(0)(2)(1,2)(3)(1,3)(4)(1,4)(0,2,3,4)} 0,1,2,3,5

Table 4 m n

There are a few interesting trends to the optimal graphs. First, for =2 and =3, all the optimal graphs are of a type
which we will call . That is, each coding node has only one incident edge, and therefore, each coding node is
the exclusive-or of only data bits. (These are the codes called "systematic" in [PT04], which is a misnomer, since
code where the data bits are included in the left-hand nodes is systematic). Interestingly, for =4, the optimal
graphs are simple (e.g. for =2, =4, =9, node 3 is a coding node, but has two edges).

m m
simple

any
n+m m

not n m l

Second, there is a clear trend in the optimal graphs where . That is that the data nodes are divided evenly into
three classes: nodes with edges (0), nodes with edges (1), and nodes with edges (0,1). If is not evenly divisible by
three, then the first extra node has edges to 0 and 1, and the second extra node has an edge to 0. To show this
pictorally, we picture them below in Figure 2. The shaded nodes are the coding nodes. We suspect that graphs of this
form are optimal for values of but we have neither proved this nor quantified the overhead of these graphs.

m=2
n

all n

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 9 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

. Optimal Tanner Graphs for =2, between 2 and 10.

=2n =3n =4n

=5n =6n =7n

=8n =9n =10n

Figure 2 m n

A similar trend emerges with =3. Again, the data nodes appear to be equally divided among the possible
combinations of edge lists: {(0),(1),(2),(0,1),(0,2),(1,2),(1,2,3)}. However, unlike with =2, where each additional
value of builds on the previous value's optimal graph in an identifiable pattern, in the limited graphs we have here,
there is no such pattern. For example, the graph with =4 builds on =3 in a different way from the way in the
analogous graph with =11 builds on =10. We will continue to explore these patterns.

m n
m

n
n n

n n

=2n =3n =4n

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 10 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

. Optimal Tanner Graphs for =3, between 2 and 14.

=5n =6n =7n

=8n =9n =10n

=11n =12n =13n

=14n

Figure 3 m n

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 11 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

In Figure 4, we show the optimal graphs with . Unlike the graphs for =3 and =2, these graphs do not build
upon one another. As before, the nodes are divided "evenly" between the possible combinations of edges. However,
the way in which graphs build upon one another is not clear.

m=4 m m
n

. Optimal Tanner Graphs for =4, between 2 and 7.

=2n =3n =4n

=5n =6n =7n

Figure 4 m n

Finally, in Figure 5, we show the optimal graphs for =5. Again, we will need to enumerate more graphs to discover
whether there are interesting patterns to these optimal graphs.

m

. Optimal Tanner Graphs for =5, between 2 and 3.

=2n =3n

Figure 5 m n

4.0 Decoding and Computing Overhead - Precise Definitions

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 12 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

We are given a Tanner graph G with left-hand nodes and right-hand nodes. We assume that all the right-hand
nodes have either zero edges or more than one edge. If a left-hand node has zero edges, then we assume that we know
its value (as a result of a previous decoding phase).

Let be the graph with =1, =1, and edges {(0),(0)}:

n+m m

When we start, we set all right-hand nodes to zero, and leave the values of all left-hand nodes blank.

To decode, we define two operations on graphs: a value to a node, and a node. Both
operations are defined only on left-hand nodes. We start with the former. Given a left-hand node , when the value of
that node becomes known, it should be . When it is assigned, for each right-hand node to which is
connected, 's value is set to the exclusive-or of its previous value and 's value, and then the edge is removed
from the graph. If there are any right-hand nodes which now have only one incident edge, then the value of the left-
hand node to which is connected may now be assigned to be the value of . Before assigning the value, however,
the edge between that node and should be removed, and should also be removed from the graph. Note, assigning
one node's value can therefore result in assigning many other nodes' values.

assigning downloading
li

assigned rj li
rj li (li,rj)

rj
rj rj

rj rj

To a node, if the node's value has already been assigned, then the node is simply removed from the graph.
Otherwise, the value of the node is assigned to its downloaded value, and it is then removed from the graph.

download

When the values of all left-hand nodes have been assigned, the decoding process is finished.

of graph G proceeds as follows. If all nodes have zero edges, then the overhead is
zero. Otherwise, we simulate downloading each left-hand node of the graph, and compute the average overhead as the
average of all simulations. When we simulate downloading a node , we assign its value (if unassigned), and remove
the node from the graph. We are then left with a graph, . We can recursively determine 's
overhead. Then, the equation for determining a graph's overhead (if not zero), is:

Computing the overhead o(G)

li
residual R(G,li) R(G,li)

4.1 Example 1: G1

G1 n m

This is a systematic code, where either node may be the data or coding bit. To decode, we first set 's value to zero:r0

Then, suppose we download node , which has a value of 1. We assign its value by going through the following
steps. We set its value to 1, then set 's value to 0+1 = 1, and remove the edge from the graph. Since only
has one incident edge now, which is to , we can assign l1's value to 1, and remove both the edge and node
from the graph. Finally, we remove from the graph. Thus, the residual graph is:

l0
r0 (l0,r0), r0

l1 (l1,r0) r0
l0 R(G1,l0)

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 13 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

Let be the graph with =2, =1, and edges {(0),(0),()}:

Let be the graph with =1, =2, and edges {(0,1),(0),(1)}:

Let be the graph with =2, =2, and edges {(0,1),(1),(0),(1)}:

And the decoding process is finished. If we download node , the process is similar, and the decoding process
finishes. Thus, to compute the overhead of decoding graph , , it is:

l1
G1 o(G1)

 = ((1 +) + (1 +)) / 2
= ((1 + 0) + (1 + 0)) / 2

= 1.

o(G1) o(R(G1,l0)) o(R(G1,l1))

4.2 Example 2: G2

G1 n m

Note, this is a graph that represents a residual graph of a download, where we already know 's value, but it has not
been downloaded yet. To decode, if we download either nodes or , then we may determine the value of all nodes,
and decoding is complete. If we download node , then we simply remove that node from the graph, and are left with
graph as a residual. Therefore, the overhead of decoding is:

l2
l0 l1

l2
G1 G2

 = ((1 +) + (1 +) + (1 +)) / 3
= ((1 + 0) + (1 + 0) + (1 +) / 3

= (1 + 1 + 2) / 3
= 4/3.

o(G2) o(R(G2,l0)) o(R(G2,l1)) o(R(G2,l2))
o(G1)

4.3 Example 3: G3

G3 n m

This is a simple systematic replication code, where is the data bit, and and are the coding bits. To decode, when
any of the three nodes is downloaded, the values of the other two may be assigned. Therefore, the overhead of is:

l0 l1 l2
G3

 = ((1 +) + (1 +) + (1 +)) / 3
= ((1 + 0) + (1 + 0) + (1 + 0) / 3

= 1.

o(G3) o(R(G3,l0)) o(R(G3,l1)) o(R(G3,l3))

4.4 Example 4: G4

G4 n m

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 14 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

This work has been limited in scope, largely because we have used exhaustive search techniques to generate graphs.
However, even for these small values of and , it is important to understand the optimal codes, and to present them
for systems programmers to use.

This material is based upon work supported by the National Science Foundation under grants EIA0224441, ACI-
0204007, ANI-0222945 and EIA-9972889. The author thanks Mike Thomason for always being willing to delve into
all manners of coding theory, Adam Buchsbaum for discussions, and Yair Amir for getting me re-enthused about
parity-check codes.

This is the optimal systematic code for =2, =2 and =5. The data nodes are and , and the coding nodes are
and . To decode, we look at the residual graphs of downloading each of the left-hand nodes. Downloading leaves
us with a graph equivalent to , Downloading leaves us with a graph equivalent to . Downloading leaves us
with a graph equivalent to , and downloading leaves us with a graph equivalent to . Therefore, the overhead
of decoding graph is:

n m l l0 l1 l2
l3 l0

G2 l1 G3 l2
G2 l3 G3

G4

 = ((1 +) + (1 +) + (1 +) + (1 +)) / 4
= ((1 +) + (1 +) + (1 +) + (1 +)) / 4

= ((1 + 4/3) + (1 + 1) + (1 + 4/3) + (1 + 1))/4
= (7/3 + 2 + 7/3 + 2)/4

= (26/3)/4 = 13/6 = 2.1667.

o(G4) o(R(G4,l0)) o(R(G4,l1)) o(R(G4,l2)) o(R(G4,l3))
o(G2) o(G3) o(G2) o(G3)

Note, that matches the overhead for the graph in the tables above.

5.0 Conclusion and Future Work

n m

We will continue our exhaustive techniques until the graph sizes prove intractable for our computational power.
Heuristics for enumerating unique bipartite graphs, and for indexing data structures by graphs will prove helpful.

Our initial exploration has illustrated trends in optimal graphs for and . We will continue to explore these
trends, and attempt to prove optimality for these codes for values of .

m=2 m=3
all n

Finally, our exploration should help us define classes of graphs for larger values of and , which may not have
optimal performance (or for which optimality cannot be proven), but which have good performance when compared to
other evaluations of similarly sized graphs. As with this technical report, we hope to present such graphs so that the
systems community, currently without any reference besides the asymptotic (and patented) techniques of Luby ,
have a methodology for constructing and using good systematic parity-check codes.

n m

et al

6.0 Acknowledgements

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 15 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

7.0 References

[G63] R. G. Gallager, , MIT Press, Cambridge, MA, 1963.Low-Density Parity-Check Codes

[LMS97] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman and V. Stemann,
," 1997. pp. 150-159.

"Practical Loss-Resilient
Codes 29th Annual ACM Symposium on Theory of Computing,

[PT04] J. S. Plank and M. G. Thomason,

, IEEE, June, 2004.

"A Practical Analysis of Low-Density Parity-Check Erasure Codes
for Wide-Area Storage Applications," DSN-2004: The International Conference on Dependable Systems and
Networks

[WK03] S. B. Wicker and S. Kim, , Kluwer Academic
Publishers, Norwell, MA, 2003. ISBN 1-4020-7264-3.

Fundamentals of Codes, Graphs, and Iterative Decoding

8/12/04 10:08 AMPlank: Optimal, Small, Systematic Parity-Check Erasure Codes -- A Brief Presentation

Page 16 of 16http://www.cs.utk.edu/~plank/CS-04-528/paper.html

