CONDITION NUMBERS OF GAUSSIAN RANDOM MATRICES *

ZIZHONG CHEN T AND JACK DONGARRA

Abstract. Let Gyxn be an m X n real random matrix whose elements are independent and
identically distributed standard normal random variables, and let k2(Gmx») be the 2-norm condition
number of Gy xrn. We prove that, for any m > 2, n > 2 and ¢ > [n — m| + 1, k2(Gmxn) satisfies

- Gonxn -
\/#2_” (c¢/z)lm—mItt < p <% > z) < \/#2_” (C/z)!» =™+ | where 0.245 < ¢ < 2.000 and

5.013 < C < 6.414 are universal positive constants independent of m, n and x. Moreover, for any
m > 2 and n > 2, E(logk2(Gmxn)) < log m + 2.258. A similar pair of results for complex

Gaussian random matrices is also established.
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Distribution.

1. Introduction. In [5], Edelman obtained the limiting distributions and the
limiting expected logarithms of the condition numbers of random rectangular matrices
whose elements are independent and identically distributed standard normal random
variables. The exact distributions of the condition numbers of 2 x n matrices are also
given in [5] by Edelman.

However, in the study of real-number and complex-number error correction codes
based on random matrices [3] and their applications in fault tolerant matrix computa-
tions [4], in order to estimate the numerical stability and the reliability of our coding
schemes, we need the probabilities that the condition numbers of small random rect-
angular matrices are large. For example, what is the probability that the condition
number of a 10 x 5 random matrix is larger than 102?

In this paper, we investigate the tails of the condition number distributions of ran-
dom rectangular matrices whose elements are independent and identically distributed
standard normal real or complex random variables. We establish upper and lower
bounds for the tails of the condition number distributions of these matrices. Upper
bounds for the expected logarithms of the condition numbers of these matrices are
also given.

Based on our results, for random rectangular matrices whose elements are inde-
pendent and identically distributed standard normal real or complex random variables,
we are able to estimate the probabilities that their condition numbers are large. For
example, based on our results, we are able to tell, for a 10 x 5 real random matrix
whose elements are independent and identically distributed standard normal random
variables, the probability that the condition number is larger than 102 is less than
6 x 1077,

Our main results for the 2-norm condition number x of an m X n real random
matrix whose elements are independent and identically distributed standard normal
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random variables are:
1 /c\ln—ml+1 P K 1 Cc\ mmmitt
— (= <P—————=>z)<— (= :
V2r (:c) (n/(ln—m|+1) > V2r (w)

E(log k) < log

and

P + 2.258,
where 0.245 < ¢ < 2.000 and 5.013 < C' < 6.414 are universal positive constants
independent of m, n and z, and m > 2, n > 2 and z > |n — m| + 1.

For an m x n complex random matrix whose elements are independent and iden-
tically distributed standard normal random variables, our main results for the 2-norm
condition number x are:

i (2)2(|n7m\+1) <P K A i g 2(|n—m|+1)
27 \z n/(ln —m|+1) 2 \ z ’

E(log k) < log

and

= m[ 1 + 2.240,
where 0.319 < ¢ < 2.000 and 5.013 < C < 6.298 are universal positive constants
independent of m, n and z, and m > 2, n > 2 and z > |n —m| + L.

Above and in what follows in this paper, the constant C' and ¢ denote univer-
sal positive constants independent of m, n and x; however, identical symbols may
represent different numbers in different place.

2. Preliminaries and basic facts. Let X be an m x n matrix. If o1 > g5 >

. > 0p, where p = min{m,n}, are the p singular values of X, then the 2-norm
condition number of X is

o1

Ko (X) = —.

Op

For any m x n matrix X, X7 is an n x m matrix and ko (X) = k2(X7T). So,
without loss of generality, in discussing the condition numbers of random matrices,
it is enough to only consider random matrices with no more rows than columns.
Therefore, from now on, when we speak of an m x n matrix, we will assume m <n
in the rest of this paper.

Let Gpyxn be an m X n real random matrix whose elements are independent and
identically distributed standard normal random variables. Let W, , denote the m xm
random matrix GpxnGL o - Wn,n is the well known Wishart matrix named after
John Wishart who has first studied its distribution.

Similar to [5], in this paper, we will study the condition number of Gy, xp, through
investigating the eigenvalues of the Wishart matrix W, . The following lemma
establishes a simple relationship between the condition number of G,,x, and the
eigenvalues of W, ;.

PROPOSITION 2.1. If Aoz 1S the largest eigenvalue of Wiy, n, and Ay 45 the
smallest eigenvalue of Wi, ., then the 2-norm condition number of G, xn satisfies

Amaz
KZ(Gmxn): PV
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Remarkably enough, the exact joint probability density function for the m eigen-
values of the Wishart matrix W, ,, can be written down in a closed form [7].

LEMMA 2.2. If M > ... > Ay are the m eigenvalues of Wy, n, then the joint
probability density function of \y > ... > A\, is

21)  f(@1, s Tm) = Kne 3 2aict % H (n-m— 1)1-[ I1 @i -2,
i=1 j=i+1

2.2) Kl = (g) " ﬁr ( —mi ’) r (%) :

Let N(0,1) denote the standard normal distribution. Let N(0,1) denote the
distribution of u + v, where u and v are independent and identically distributed
N(0,1) random variables, and i = v/—1. Let G,,xn be an m x n complex random
matrix whose elements are independent and identically distributed N(0,1) random

variables. Let Wm ., denote the m x m random matrix GmxnGH

xn- 10 literature,

Wm n is called the complex Wishart matrix.
Similar to the real case, there is also a simple relationship between the condition
number of Gan and the elgenvalues of Wm n-

PROPOSITION 2.3. If )\m,w is the largest eigenvalue of Wm n, ond /\mm is the
smallest eigenvalue of Wm n, then the 2-norm condition number of Gm><n satisfies

Like the real case, the exact joint probability density function for the m eigenval-
ues of the complex Wishart matrix W, , can also be written down in a closed form
[7]- 5 5 »

LEMMA 2.4. If My > ... > Ay are the m eigenvalues of Wy, ,,, then the joint
probability density function of \y > ... > A\, is

m m—1 m
(2.3) F @y m) = Kppe X [ [
i=1 i=1 j=i+l
where
- m
(2.4) K.l =2 [T (n—m+4i)T ().

i=1

In the process of deriving our upper and lower bounds for the tails of the condition
number distributions, some bounds for Gamma and incomplete Gamma functions are
very useful.

LEMMA 2.5. Assumea >0, and b> 0. Ift < %, then

t
/ eiaz.’l}'bd.’ll' < efattb+1‘
0
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Proof. Let f(t) = [, e~*®abdz — e=¢"+1, then f'(t) = e~*¢*(1 + at — (b+ 1)).
So f(t) decreases on [0, 2] and increases on [2,00). Since f(0) = 0, and f(oc0) =

Jo e *zbdz > 0. So, if t < L, then f(t) < 0. Therefore, if t < £, then f(f e gbdy <
e—attb—i-l 0

LEMMA 2.6. Assumea > 0,b> 0, andk>— Ift >

o0
/ e~ bdy < ke~ b,
t

ka 7, then

Proof. Let f(t) ft e *@gbdr — ke~ ', then f'(t) = e **(—1+ ka + £). So

f(t) decreases on [0, 7£2-] and increases on [, 00). Since f(0) = [~ e~ bda: >
0, and f(c0) = 0. So, if t > 22, then f(t) < 0. Therefore, if t < £  then
[ e abdr < keottb. n|

LEMMA 2.7. IfT(z) = [;° e~'t"'dt, where = > 0, then
(2.5) V2rz®tie @ < T(z + 1) < V2ra®tie s,
and

1

(2.6) I(z+5) <T(@)Vz.

3. Bounds for eigenvalue densities of Wishart matrices. In this section,
we will prove some bounds for the probability density functions of the eigenvalues of
Wishart matrices. These bounds are very useful in the derivation of the bounds for
the tails of the condition number distributions.

Let Amqr denote the largest eigenvalue of Wy, ,,, and Ap,;, denote the smallest
eigenvalue of Wy, ,,. In the following lemma, we prove an upper bound for the joint
probability density function of Ap,qz; and Apyin-

LEMMA 3.1. Let fx,... Amin (Z,y) denote the joint probability density function of
Amaz 0Nd Amin, then fi, .. a...(%,y) satisfies:

(3-1) f)\mam7)\min (way) < Cm,ne_%(w—i_y)x%(n—i_m_b))y%(n_m_l),
where

1
(3.2) Cmn =

AT (m -1 T (n-m+1)

Proof. Let Ry = {(22,23,.c; Tm—1) : T > T2 > ... > Tip—1 > y} € R™2. From
the joint probability density function of the m eigenvalues of W, ,, in Lemma 2.2, we
have

Famae Amin (2, Y) = / flx, 22, ., Tm—1, y)dx2drs...dTm 1

_ Km’ne—%(z-i—y)m%(n—m—l)y%(n—m—l)

m—1

[ ermme L e
i
Ray i=2
(3.3)
m—1 m—2 m— 1 m—1
(m—y)H(w—mz —l'j)Hd:U,'.
=2 =2 j=i+1 =2



Let Rp—2 = {(x2, %3, ..., Tm—1) : T2 > ... > Typ—1 > 0}, then R,,_o C R, ,. Note
that, in (3.3), z > x; >y fori = 2,3,...,m — 1. Replacing z —y and z — x; by z, and
—y by z; fori=2,3,...,m — 1, and R; y by Rpn_2, then we get

Frmaz Amin (T,Y) < Km,ne—%(w—i_y)x%(n—i_m_wy%(n_m_l)

m—2 m—1

m—1
(34) / 67% izo L H 2(” m+1) H H i — .’L']) H dz;.
Rp—2 =2

=2 =2 j=i+1

Note that f(z1,za,...,Zm) in (2.1) is a probability density function, therefore, for
any m < n, we have

s Zm m 1( ) m—1 m
-3 iy T s(n—m-—1 -
/ e =1 H T; fL'] dxz = m na
B i=1 i=1 j:i+1

where R, = {z1 > z2 > ... > z,, > 0} C R™. Therefore, we have

) 1 m—1 . m—2 m—1

_1 Y z(n—m+1

G5 [ RS ] i) Hdwz— .
Bm—2 i=2 i=2 j=i+1

Substitute (3.5) into (3.4), we obtain

(3.6) Frommermen (@) < K‘_Kﬂe—%(w+y)$%(n+m—3)y%(n—m—1)‘

m—2,n

From (2.2), we have

Km,n _ l 1
Km-an 2" (25T (%) T (2254 T (2=542)
(3.7) 1
T m-DIm-—m+1)
Substitute (3.6) into (3.5), we get (3.1) and (3.2) . O

Let )\m,w denote the largest eigenvalue of Wm n, and )\mm denote the smallest
eigenvalue of Wm,n. Similar to the real case, in the following lemma, we give an
upper bound for the joint probability density function of Xmm and Xmm The upper
bound in complex case can be proved using the same techniques used in the real case.
Therefore, we omit the proof and only give the result here.

LEMMA 3.2. Let f; 5 (@,y) denote the joint probability density function of

mawz 7Amin

Xmam and Xmm, then f; 3 (z,y) satisfies:
(3.5) Fo 5 (0,9) < Cppedletngntm=zynom,
where
~ 1
(3.9 Cmmn =

= 2T (m — DIm)T(n—m + DT(n—m +2)°

Bounds for the probability density functions of the smallest eigenvalues are also
very useful in the derivation of the bounds for the tails of the condition number
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distributions. In the following lemma, we prove upper and lower bounds for the
probability density function of the smallest eigenvalue of a real Wishart matrix.

LEMMA 3.3. Let fy,,,, (z) denotes the probability density function of the smallest
eigenvalue of W, n, then fa,... (x) satisfies:

(310) Lm,"ei%wwé(nimil) S f/\min (JI) S Lm,neiéw.’ﬂ%(nimil)a

where

22=g=ir (n_+1)
11 Ly,= 2 )
(311) T (2)T(n—m+1)

Proof. Let Ry = {(z1,%2, s Tm—1) 1 T1 > .. > Ty > 2} € R™ L. From the
joint probability density function of the eigenvalues of W,y ,, in Lemma 2.2, we have

Famin () =/ f(x1,%2, ey T 1, T)dT1dT2d T, 1
R,

X N m—1 1( 1
e Y —INTT s(n—m—
= Ky e 2%gz(nm 1)/ e 2 2uim T H x?
@ i=1
m—1 m—2 m—1 m—1
H(xz — 1) H H (z; — zj) H dz;.
i=1 i=1 j=i+1 i=

For the lower bound part, taking the transformation y; = z; — =, where i =
1,2,....,m—1, we have

m—1 m—1
Prmin () = Km,nei?zx%(nimil)/ e % Lui=m i H (yi +$)%(nimil)
R

Y i=1
m—1 m—2 m—1 m—1
yi (i — ;) [ dvs;
=1 =1 j=i+1 =1

where Ry = {y1 > y2 > ... > ym—1 >0} C R™ L.
Replacing y; + x by y; for i = 1,2

m mo1 M1 1,
Frmin () ZKmme—Tfﬂg;%(n—m—l)/R e 3D, Vi H Z/f(n m+1)
Y i=1
m—2 m—1 m—1
II II Gi—wp I dus-
i=1 j=i+1 i=1
Note that
. me—1 m—1 1( +1) m—2 m—1 m—1
-3 i z(n—m _
/ e2 2z ¥ [ v2 I I @i-v) T dvi = Kptsia-
o =1 i=1 j=i+1 i=1
Therefore, we obtain
K m
(312) Frmin (2) 2 Tt~ FagF(n-m=),
Kmfl,n+1
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For the upper bound part, from [6], we have

Km n — = — —
(3.13) Famin (@) < 1 3og(nmml),
Kmfl,n+1
From (2.2), we have
n=—m+1
Knn __ V7(3) * (")
Km-1ny1 T (3)T (254) T (25+2)
(3.14) AR
__ 2T
L(Z2)C(n—m+1)
Substitute (3.14) into (3.13) and (3.12), we get (3.10) and (3.11) . O

Similar to the real case, in the following lemma, we give upper and lower bounds
for the probability density function of the smallest eigenvalue A, of a complex
Wishart matrix. These bounds can be proved using the same techniques used in the
real case. Therefore, we omit the proof and only give the result here.

LEMMA 3.4. Let f;mi" (z) denotes the probability density function of the smallest

eigenvalue of Wm,n, then f;\«  (x) satisfies:

(3.15) Ly e 2%z ™ < - () € Ly e 272" ™,
where

~ r 1
(3.16) Lon (n+1)

T gnem T (m)(n —m + DI(n—m + 2)°

4. The upper bounds for the distribution tails. In this section, we will
derive the upper bounds for the tails of the condition number distributions of ran-
dom rectangular matrices whose elements are independent and identically distributed
standard normal random variables. Our main results are Theorem 4.5 for real random
matrices, and Theorem 4.6 for complex random matrices.

LEMMA 4.1. For any A >0, x >0, and n > m > 2, the largest eigenvalue Apqq
and the smallest eigenvalue Apin of W, n satisfy

Amaz o A%n 1 An\ "
<L — .
P( >m’Am"’—w2><F( ( )

min n—m+2) x

Proof. From the upper bound for the probability density function of A, in
Lemma 3.2, we have

A? A?
P Aml>'C1727)‘min§—n <P )\mzng—n
min z? z?
420

=/0 - Frmin (B)dt

A2

22 4
< Lm’n/ tf(n—m—l)dt
0




Since m < m, by applying (2.6) repeatedly, we can prove

(2) ()7 o (25).

2 2
Therefore, we have

A A?p 1 Ap\ "
P27 5 2 Xin < an .
()\mm>a:,)\ - x2><I‘(n—m+2)<m)
00

Similar to real random matrices, for complex random matrices, we have the fol-

lowing Lemma 4.2. Lemma 4.2 can be proved using the same techniques as Lemma
4.1, so we will omit the proof and only give the result.

LEMMA 4.2. For any A >0, z >0, and n > m > 2, the largest eigenvalue Xmam
and the smallest eigenvalue Apyin, of Wiy, satisfy

Y _ A2 1 A2 2\ n—m+1
P(i‘ml>x2,)\mm§ 2”) < ( n ) )
Amin z

F(n—m+2)2 \ 222

The proof of the following Lemma, 4.3 is based on the upper bound for the joint
probability density function of A4, and Apin in Lemma 3.1 and the upper bound of
the incomplete Gamma function in Lemma 2.6.

LEMMA 4.3. For any A > 232, x > 0, and n > m > 2, the largest eigenvalue
Amaz and the smallest eigenvalue Apyin of Wi, . satisfy

A%n 1 Anp\"m !
p [ Amaz 2 ) an 017 (2 )
(Amm > 2 Ain > 7 ) <00 ( : )

Proof. From the upper bound for the joint probability density function of Ajqq
and \,,;, in Lemma 3.1, we have

max A2
P ()\— > a:z,)\min > —n>

)‘min :EZ ta?

o o

= / f)\maz,)\min (85 t)det
A2n
22

oo oo
< / Cm ne_%tt%("_m_l)e_%ss%("er_s)dsdt.
A2n ’

2
) tr

Taking the transform u = tz2, we have

2 n—m+1 o)
P )‘maz > 1'27 /\min > M = Cm n l /
Amin z? T\

A2n

(/ e_%ss%(’”m_:’))ds) du.

According to Lemma 2.6, if u > 2(n 4+ m — 3), then

e_#u%(nimfl)

/ e 3853 (ntm=3) gs < go—3uys(n+tm=3)
u
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Since A > 2.32 and n > m, hence, u > A%n > 2(n + m — 3). Therefore, we have

)\maz A2 1 noml > u
P <— > $2;)\min > x—zn) S 4Cm,n (E) / 6_22_2_%“u”_2du

min A2n

1 n—m-+1 00 .
<4Cpp (—) / e 2% 2 dy.
T

A%n

Since A > 2.32, so A%2n > 4(n — 2). Apply Lemma 2.6 again, we have

/\min z

A A? 1\t
P ( mazx > $2,/\min > _2n> S IGCm,ne_%AQ”AQ”_‘in”_z (_)
x

2
4o~ 7" A2n—4pm—3 (n)"*m+1

T Tm-DIn—m+1) \z

46(2 In AfATQ)n nm—2 1 ny\n—m+1
(4.1) < . @) .
A 'm—-1)T(n—-—m+2) \z
Note that, for any 2 < m < n, it can be proved that
nm—2 e
4.2 < .
( ) F(m — 1) \/471'

Substitute (4.2) into (4.1), we have

2
Amaz 2 A?n 4e(2In A= +)n 1 n\ n—m+1
P{—= Ami < = .
(Amzn > ’ m‘bn> x2 - \/47TA4 F(n—m—|—2) (.Z')
Since A > 2.32, therefore, we have
o2 A=4%4+1)n <1
Therefore, when A > 2.32, we have
Amaz 9 A%n 4 1 n\ n—m+1
P — /\mn < —
()\mz'n 7 Amin > T ) S Var At T(n —m +2) (a:)
1 ATL n—m-+1
<0017+~ — .
- T'(n—m+2) ( x )

a

Similar to real random matrices, for complex random matrices, we have the fol-
lowing Lemma 4.4. Lemma 4.4 can be proved using the same techniques as Lemma
4.3, so we will omit the proof and only give the result.
_ LEMMA 4.4. For any A > 3.2735, x > 0, and n > m > 2, the largest eigenvalue
Amaz and the smallest eigenvalue Amin of Wi, n, satisfy

Amax 5 ~ A%n 1 A2p2\ "
P| — Ami — 0.0016 .
( > @ Amin > g | < F(n—m+2)2\ 2z

}\min

We are now prepared to prove our first main result about the condition numbers
of real random matrices whose elements are independent and identically distributed
standard normal random variables.



THEOREM 4.5. For anyn >m > 2 and x > n —m + 1, the 2-norm condition
number of G xn satisfies

where C' < 6.414 is a universal positive constant independent of m, n, and x.
Proof. For any L > 0, inspired by [2], we first break down P(k2(Gmxn) > z) into
two parts.

P(ks(Gonnn) > ) = P (Am” > :c2)

)\min
A L?n A L?n
-pP mar 2 )\m" <z P mar 2,)\m." =)
(Amm>m, i _$2)+ (Amin>$ i >$2>

Let L = 2.32, then based on Lemma 4.1 and Lemma 4.3, we can get

1 Ln\ " ™t
P(k2(Gmxn) > ) < Th—m+2) (7)
1 In n—m+41
HOONT oo (7)
- 1 1.017Ln "™ "
T'(n—m+2) T '

Note that, from Lemma 2.7, we have
T(n—m+2)>2r(n—m+1)(n —m+ 1)"" e~ (nmmtl),

Therefore, we have

P(k2(Gmxn) > ) 1 (1.017@[,%”14_1 ) n—m41
K mxn) > T) < |
2 x b g
Therefore
Tb—m+1
P (M S x) - 1 (1.017@L)
w/m—mt1) 2r(n —m + 1) T

! (6.414) n-mitl
V2T T '

Let C' = 6.414, then we get (4.3). O
Remark:
1. The upper bound in Theorem 4.5 is for arbitrary n > m > 2 and z > n—m+1.
For some special case of m and n, more precise upper bound can be obtained. For
example, for the special case of real random 2 x m matrices, based on the exact
probability density function of k2(Gaxy) in [5], we can get

P (k2(Goxn) > ) = (wf—iﬁl)n_l < (%)n_l.
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2. For the special case of real random m x m matrices, where m > 3, it has
been proved in [2] that

(4.4) P (k2(Gmxm) > m.x) <

81Q

)

where C' < 5.60 is a universal positive constant independent of z and m.
In Theorem 4.5, if we take m = n, then we have

2.60
P (k2(Gmxm) > m.x) < —,

which is consistent with (4.4) except that we improved the upper bound for the
constant C from 5.60 to 2.60. From the following (4.5), we know that the constant C
in (4.4) actually must be larger than 2. Therefore, the constant C' in (4.4) actually
satisfies 2 < C < 2.6.

3. For the special case of large real random m x m matrices, it has been proved
in [5] that

lim P (7&2(Gmm) < a:> —eF 7z,
m—o0 m
Therefore, we have
(4.5) lim P(M >x) —l-e s @~
m—00 m x

as £ — oo. Hence, the constant C' in Theorem 4.5 is no smaller than 21/27. Therefore,
the constant C in Theorem 4.5 actually satisfies

(4.6) 6.414 > C > 227 ~ 5.013.

Similar to real random matrices, for complex random matrices, we have the follow-
ing Theorem 4.6. Theorem 4.6 can be proved using the same techniques as Theorem
4.5, so we will omit the proof and only give the result.

THEOREM 4.6. For anyn > m > 2 and x > n —m + 1, the 2-norm condition
number of Gmxn satisfies

~ ~\ 2(n—m+1)
'92(Gm><n) 1 C
P(n/(n—m+1)>x><2w<w> ’

where C < 6.298 is a universal positive constant independent of x,m, and n.

5. The lower bounds for the distribution tails. In this section, we will
prove the lower bounds for the tails of the condition number distributions of random
rectangular matrices whose elements are independent and identically distributed stan-
dard normal random variables. Our main results are Theorem 5.5 for real random
matrices, and Theorem 5.6 for complex random matrices.

LEMMA 5.1. For any B > 0, z > 0, and n > m > 2, the smallest eigenvalue
Amin Of Wi.n satisfies

5 1 n—m+1
BQTL 2e6 _B2mn 1 e 2Bn
P dmin <22} > et .
x? 3 )




Proof. From the lower bound for the probability density function of A,,;, in
Lemma 3.2, we have

Plns) - /T

>/ Lmne——*mv‘” m=Dax,,
0

_B2m'n 2nn_;n+1 B n—m+l
> Lmne ™ 22 m(‘)
g (%) 1 (Bn)"—m“
B ) 22l T —m+2) \ & '
reg) () T :
Note that
n42
1 1 1\ 2 _=
nt r nt > V2 nt e_%,
2 2 2
and
m+1
(1) < v () 7 5o
Therefore

PE) e @D
m "—’2"+1 >e mm— 1nn m+1
r(%) (%)

_ _n— m+1 \/ n"+1 1 + 1/7’L)"+1

(TL+ ]_ mm— lnn m+1

_n— m+1
>e

Since 2 < m < n, therefore, we have

T ( . [2 % _memit
n— m+1
(%) ( %
Therefore, we have

5 1 n—m+1
plr < B?n S 25 _p2mn 1 e~2Bn
m< — e 2 .
- x? 3 I'(n —m+2) x
a

Similar to real random matrices, we have the following Lemma 5.2 for complex
random matrices. Lemma 5.2 can be proved using the same techniques as Lemma
5.1, so we will omit the proof and only give the result.
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_ LEMMA 5.2. For any B > 0, z > 0, and 2 < m < n, the smallest eigenvalue
Amin Of Wi.n satisfies

rl5i. < B2n S ol _BZmn 1 e~1B2p2\ """
in < —5— e Tme .
= g2 I'(n —m+ 2)2 222

The proof of the following Lemma 5.3 is based on the upper bound of the joint
probability density function of A4, and Ay, in Lemma 3.1 and the upper bound of
the incomplete Gamma function in Lemma 2.5.

LEMMA 5.3. For any B<e ', 2 >0, and 2 < m < n, the largest eigenvalue
Amaz and the smallest eigenvalue Apin, of Wi, n satisfy

B%n ) 11B™m-1 1 e 3Bn nom
P i, < ——, 222 < 52 )
<’””— 2 Amin = Wir Tn-m+2)\ =

Proof. From the upper bound for the joint probability density function of A;qq
and A\,in in Lemma 3.1, we have

B2n a2

= / ’ fkmamakmin (87 t)det
0

0
B

2, 2
tx
< Cmn / : / e Ftga(n-m-1)o—gs g (ntm-3) gy
0 0

—_— <z
) —
ZL'2 )\mz'n

2
P (/\mzn S B /\maz 2)

Taking the transform u = tx2, we have

2 n—m+1 B%n
P (Amzn S ﬂ )‘maz < 1'2) = Cm,n <l> / 6722%’11%(”*71171)
0

22 7 Apin z

(/u 6%38%(n+m_3)d8> du.
0

According to Lemma 2.5, if u < n + m — 3, then

u
/ e—lss%(n+m—3)d8 < e—%uu%(n—i-m—l)‘
0

Therefore, when B < e~ 7, we have

32 )\ 1 n—m+1 B2n -
P ()\min < 2N Amaz < :172) < Cmn (—) / e~ ez~ 3Uyn—1 g,
T 0

)
$2 /\mzn

1 n—m+1 ,B%n
—iu, n—1
, (—) / e 2" du.
T 0

Since B < e™!7, so B?n < 2(n — 1). Applying Lemma 2.5 again, we have

n—m+1 5
(1) e~ 72" B2npn
X

SC’ITLTL

B2
P /\T,”~n<—",)‘m“z <z2)<C,,
- oz )\mz’n - - ’

efBTQ"Bn+mflnmfl Bn n—m+1
AT (m - 1)I'(n—m+1) ( ) '
13
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From (4.2), we have

nm—2 < e
F(m - ].) \/47]'-

Therefore, we have

2 n,—B2n n+m—1 n—m-+1
P(/\mm < D1 dmaz sﬁ) g e T BT n <&>
T Amin 4 4:7TF(TL -m + ].) x
< B™ ln(n—m+ l)e%"e_BTQ"B”
- 44

1 n—m+1
1 e 2Bn
T(n—m+2) T '

2’!L
n(n —m + l)e%"e*BTB" < 11.

When B < e~ 17, for all n > m > 2, we have

Therefore,when B < e~1'7, we have

Bn A 11Bm-1 1 e-ipn\"
P (Amzn S 9 e S 1'2) .
22" Amin 4/4r T(n—m+2) z

a

Similar to real random matrices, we have the following Lemma 5.4 for complex
random matrices. Lemma 5.4 can be proved using the same techniques as Lemma
5.3, so we will omit the proof and only give the result.
_ LEMMA 5.4. For any B> <e”'?, 2 >0, and 2 < m < n, the largest eigenvalue
Amaz and the smallest eigenvalue Apyin of Wi, satisfy

_ —m4+1
e lB2n2>" mt

~ Bn A
P dpin < —, 2292 < 2 .0352
( ’ x2’ _$><0035 F(n—m+2)2< 212

min

We are now prepared to derive the lower bounds for the tails of the condition num-
ber distributions of random matrices whose elements are independent and identically
distributed standard normal random variables

THEOREM 5.5. Foranyz >n—m+1 andn > m > 2, the 2-norm condition
number of G xn satisfies

(5.1) P ("W(G—mxn)) S w) . (5)"%“’

nf(n—m+1

where ¢ > 0.245 is a universal positive constant independent of x,m, and n.
Proof. For any positive constant H, we have

P(k2(Gmxn) >x) =P (ﬁ > x2)

Am
H2n )\1
P\, <—, — 2
> ()\ _1_2,)\m>x)
2p H?n )\ N



Let H = e~ 7, then based on Lemma 5.1 and Lemma 5.3, we have

5 1 n—m+41
Pls> ) > 25 _mimn 11H™1 1 e 2Hn
K xr e 2z — .
3 4/Ar | T(n—m+2) x

From Lemma 2.7, we have
T(n—m+2) < /2r(n—m+ 1)(n—m+ 1)"—mH e~ (= D+ s |

Note that, for 2 < m < n, we have
Vn—m+1<121" ™ and D

Therefore, we have

Since H = e~ 7, and 2 < m < n, so we have

2es _ B2mn  11H™!

e 2z —

e = >0.99.
3 wair )€

Therefore, we have

0.99 /0.248—=2 n—m+l
P (ka(Gm,n) > ) > ( n m“)

V2T T
—m+1
oL (0.245n_;;+1 )” mt .
V2T T
Therefore
n—m-+1
n/(n—m+1) V2 T
Let ¢ = 0.245, then we get (5.1). a
Remark:

1. The lower bound in Theorem 5.5 is for arbitraryn > m > 2 and ¢ > n—m+1.
For some special case of m and mn, more precise lower bound can be obtained. For
example, for the special case of real random m x m matrices, where m > 3, it has
been proved in [2] that

c
P (ko (Gxm) > m.xz) > e
where ¢ > 0.13 is a universal positive constant independent of z and m.

In Theorem 5.5, however, if we take m = n, then we can only get

0.097
P (ko (Grmxm) > m.xz) > pra

15



2. For the special case of real random 2 x n matrices, based on the exact prob-
ability density function of k3 (Gaxy) in [5], we can get

P (k3(Gaxn) >$)=( 2z )"—IN (g)n—l

22 +1 x
as x — oo. Hence, the constant ¢ in Theorem 5.5 is no larger than 2. Therefore, the
constant ¢ in Theorem 5.5 actually satisfies

(5.2) 0.245 < c < 2.

Similar to real random matrices, we have the following Theorem 5.6 for complex
random matrices. Theorem 5.6 can be proved using the same techniques as Theorem
5.5, so we will omit the proof and only give the result.

THEOREM 5.6. Foranyxz >n—m+1 andn > m > 2, the 2-norm condition
number of G xn satisfies

el 1 2(n—m+1)
p [ _r2Gmxn) >_(g) 7
n/(n—m+1) 27 \z
where ¢ > 0.319 is a universal positive constant independent of x, m, and n.

6. The upper bounds for the expected logarithms. For square Gaussian
random matrix Gy, xn, in [9], Smale asked for E(log k2(Gpnxn))- Similarly, for rectangu-
lar Gaussian random matrix G, xn, it is also interesting to investigate E(log k2 (Gmxn))-
In this section, we will derive upper bounds for E(log k2(Gmxr)) and E(log K2 (Gmxn))-
Our main results are Theorem 6.1 and Theorem 6.2.

THEOREM 6.1. For any n > m > 2, the 2-norm condition number of Gxn
satisfies

n
1 E(l log ——— + 2.258.
(6 ) (OgHZ(Gmxn)) < Ogn_m+1 + o8

Proof. Let f.(z) be the probability density function of k2(Guxr), then

K2(Gmxn) /oo x
Blog | 22mxn) ) — [ jog (2 ) £ (2)d
g<6.414 n ) A Wy g RS

n—m-+1 n—m-+1
e x
< / log | ———— | fx(z)dz
6.414 2 6.69 =
*° 1
:/ P(ka(Gmxn) >z) = dax.
6.414 2 T

From Theorem 4.3, we have

o 1 (6414 2\
(1 m>>z><m( - ) .

Therefore, we have

ElOg ( "52(Gm><n) ) < 1 * (6'414n:1+1 )n_m+1 l dr
6.414—— Vor 6.a14—2 x x
_ 1
(n—m+1)v2r
< 0.399.
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Therefore, we have
n
E1l mxn log ————— +log6.414 + 0.399
Og(lﬂlz(G x))< ogn_m+1+og6 +

n
< log ——— + 2.258.
°8 n—m+1 +
O
Remark:
1. For the special case of real random m x m matrices, from the results in [10],
we can get

3+ 3log2

(6.2) Elog(k2(Gmxm)) < logm + ~ 2.54.

In Theorem 6.1, if we take m = n, then we have
Elog(k2(Gmxn)) < logn + 2.258.

which is a slightly improved version of (6.2).

2. The upper bound in Theorem 6.1 is for arbitrary n > m > 2. For some
special case of m and n or large m and n, more precise results exist:
For the special case of real random 2 x n matrices, it was shown in [6] that

1T (%)
AR ION

For real random m x m matrices, it has been proved in [6] that

E log(KJQ (GQXn)) =

Elog(k2(Gmxm)) = logm + ¢ + o(1)

as m — 00, where ¢ = 1.537.
For rectangular matrix G, xn, if lim, 00 mp/n =y and 0 < y < 1, then it has been
proved in [6] that

Elog(k2(Gm, xn)) = log i i_ g + o(1)

asn — oo

Similar to real random matrices, we have the following Theorem 6.2 for complex
random matrices. Theorem 6.2 can be proved using the same techniques as Theorem
6.1, so we will omit the proof and only give the result.

THEOREM 6.2. For any n > m > 2, the 2-norm condition number of Gxn
satisfies

n
E( W) <log — 1 9.240.
(log #2(Gmxn)) <log ——— —— +2.240
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