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ABSTRACT

As the number of processors in today’s high performance
computers continues to grow, the mean-time-to-failure of
these computers are becoming significantly shorter than the
execution time of many current high performance computing
applications. Although today’s architectures are usually ro-
bust enough to survive node failures without suffering com-
plete system failure, most today’s high performance comput-
ing applications can not survive node failures and, therefore,
whenever there is a node failure, have to abort themselves
and restart from the beginning or a stable-storage-based
checkpoint.

In this paper, we present how to build fault survivable
high performance computing applications with FT-MPI, a
fault tolerant version of MPI we developed, using diskless
checkpointing so that these applications can survive node
failures without aborting themselves. We describe the se-
mantics and usages of FT-MPI. We introduce floating-point
arithmetic encodings into diskless checkpointing and discuss
several checkpoint encoding strategies, both old and new,
with detail. We give a detailed presentation on how to write
a fault survivable application with FT-MPI using diskless
checkpointing and evaluate the performance overhead of our
fault tolerance approach by using a preconditioned conju-
gate gradient equation solver as an example. Experimental
results demonstrate that our fault tolerance approach can
survive a small number of simultaneous processor failures
with low performance overhead and little numerical impact.
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1. INTRODUCTION

As the unquenchable desire of today’s scientists to run
ever larger simulations and analyze ever larger data sets
drives the size of high performance computers from hun-
dreds, to thousands, and even tens of thousands of proces-
sors, the mean-time-to-failure (MTTF) of these computers
are becoming significantly shorter than the execution time
of many current high performance computing applications.
Even making generous assumptions on the reliability of a
single processor or link, it is clear that as the processor count
in high end clusters grows into the tens of thousands, the
mean-time-to-failure of these clusters will drop from a few
years to a few hours, or less. The next generation DOE
ASCI computers (IBM Blue Gene L) are being designed
with 131,000 processors [1]. The failure of some nodes or
links for such a large system is likely to be just a few minutes
away [12]. In recent years, the trend of the high performance
computing has been shifting from the expensive massively
parallel computer systems to the clusters of commodity off-
the-shelf systems[7]. While the commodity off-the-shelf clus-
ter systems have excellent price-performance ratio, due to
the low reliability of the off-the-shelf components in these
systems, there is a growing concern with the fault tolerance
issues in such system. The recently emerging computational
grid environments [15] with dynamic resources have further
exacerbated the problem. However, driven by the desire of
scientists for ever higher levels of detail and accuracy in their
simulations, many computational science programs are now
being designed to run for days or even months. Therefore,
the next generation computational science programs need to
be able to tolerate failures.

Today’s long running scientific applications typically deal
with faults by writing checkpoints into stable storage peri-
odically. If a process failure occurs, then all surviving ap-
plication processes are aborted and the whole application
is restarted from the last checkpoint. The major source of
overhead in all stable-storage-based checkpoint systems is
the time it takes to write checkpoints to stable storage [21].
The checkpoint of an application on a, say, ten-thousand-
processor computer implies that all critical data for the ap-
plication on all ten thousand processors have to be written
into stable storage periodically, which may introduce an un-
acceptable amount of overhead into the checkpointing sys-
tem. The restart of such an application implies that all
processes have to be recreated and all data for each pro-
cess have to be re-read from stable storage into memory



or re-generated by computation, which often brings a large
amount of overhead into restart. It may also be very ex-
pensive or unrealistic for many large systems such as grids
to provide the large amount of stable storage necessary to
hold all process state of an application of thousands of pro-
cesses. Therefore, due to the high frequency of failures for
the next generation computing systems, the classical check-
point/restart fault tolerance approach may become a very
inefficient way to deal with failures. Alternative fault toler-
ance approaches need to be investigated.

In this paper, we study an alternative approach to build
fault tolerant high performance computing applications so
that they can survive a small number of simultaneous pro-

cessor failures without restarting the whole application. Based

on diskless checkpointing [21] and FT-MPI, a fault tolerant
version of MPI we developed [9, 10], our fault tolerance ap-
proach removes stable storage from fault tolerance and takes
an application-level approach, which gives the application
developer an opportunity to achieve as low fault tolerance
overhead as possible according the specific characteristics
of an application. Unlike in traditional checkpoint/restart
fault tolerance paradigm, in our fault tolerance framework,
if a small number of application processes failed, the sur-
vival application processes will not be aborted. Instead, the
application will keep all survival processes, and adapt itself
to failures.

The rest of the paper is organized as follow. Section 2
gives a brief introduction to FT-MPI from the user point of
view. Section 3 introduces floating-point arithmetic encod-
ings into diskless checkpointing and discusses several check-
point encoding strategies, both old and new, with detail. In
Section 4, we give a detailed presentation on how to write a
fault survivable application with FT-MPI by using a conju-
gate gradient equation solver as an example. In Section 5,
we evaluate both the performance overhead of our fault tol-
erance approach and the numerical impact of our floating-
point arithmetic encoding. Section 6 discusses the limita-
tions of our approach and possible improvements. Section 7
concludes the paper and discusses future work.

2. FT-MPI: AFAULT TOLERANT MPI
IMPLEMENTATION

Current parallel programming paradigms for high-performance

computing systems are typically based on message passing,
especially on the Message-Passing Interface (MPI) specifica-
tion [17]. However, the current MPI specification does not
deal with the case where one or more process failures occur
during runtime. MPI gives the user the choice between two
possibilities of how to handle failures. The first one, which
is also the default mode of MPI, is to immediately abort all
the processes of the application. The second possibility is
just slightly more flexible, handing control back to the user
application without guaranteeing, however, that any further
communication can occur.

2.1 FT-MPI Overview

FT-MPI [10] is a fault tolerant version of MPI that is
able to provide basic system services to support fault surviv-
able applications. FT-MPI implements the complete MPI-
1.2 specification, some parts of the MPI-2 document and
extends some of the semantics of MPI for allowing the ap-
plication the possibility to survive process failures. FT-MPI

can survive the failure of n-1 processes in a n-process job,
and, if required, can re-spawn the failed processes. How-
ever, the application is still responsible for recovering the
data structures and the data of the failed processes.

Although FT-MPI provides basic system services to sup-
port fault survivable applications, prevailing benchmarks
show that the performance of FT-MPI is comparable [11]
to the current state-of-the-art MPI implementations.

2.2 FT-MPI Semantics

FT-MPI provides semantics that answer the following ques-
tions:

1. what is the status of an MPI object after recovery?

2. what is the status of ongoing communication and mes-
sages during and after recovery?

When running an FT-MPI application, there are two pa-
rameters used to specify which modes the application is run-
ning.

The first parameter, the ’communicator mode’, indicates
what is the status of an MPI object after recovery. FT-MPI
provides four different communicator modes, which can be
specified when starting the application:

e ABORT: like any other MPI implementation, FT-MPI
can abort on an error.

e BLANK: failed processes are not replaced, all surviv-
ing processes have the same rank as before the crash
and MPI_.COMM_WORLD has the same size as be-
fore.

e SHRINK: failed processes are not replaced, however
the new communicator after the crash has no ’holes’ in
its list of processes. Thus, processes might have a new
rank after recovery and the size of MPI_COMM_WORLD
will change.

e REBUILD: failed processes are re-spawned, surviving
processes have the same rank as before. The RE-
BUILD mode is the default, and the most used mode
of FT-MPIL.

The second parameter, the 'communication mode’, indi-
cates how messages, which are on the 'fly’ while an error
occurs, are treated. FT-MPI provides two different commu-
nication modes, which can be specified while starting the
application:

e CONT/CONTINUE: all operations which returned the
error code MPI_SUCCESS will finish properly, even if
a process failure occurs during the operation (unless
the communication partner has failed).

e NOOP/RESET: all ongoing messages are dropped. The
assumption behind this mode is, that on error the ap-
plication returns to its last consistent state, and all
currently ongoing operations are not of any further in-
terest.

2.3 FT-MPI Usage

Handling fault-tolerance typically consists of three steps:
1) failure detection, 2) notification, and 3) recovery. The
only assumption the FT-MPI specification makes about the



first two points is that the run-time environment discov-
ers failures and all remaining processes in the parallel job
are notified about these events. The recovery procedure
is considered to consist of two steps: recovering the MPI
library and the run-time environment, and recovering the
application. The latter one is considered to be the respon-
sibility of the application. In the FT-MPI specification, the
communicator-mode discovers the status of MPI objects af-
ter recovery; and the message-mode ascertains the status
of ongoing messages during and after recovery. FT-MPI
offers for each of those modes several possibilities. This al-
lows application developers to take the specific characteris-
tics of their application into account and use the best-suited
method to handle fault-tolerance.

3. APPLICATION LEVEL DISKLESS
CHECKPOINTING

In order to build fault survivable applications with FT-
MPI, application developers have to design their own re-
covery schemes to recover their applications after failure.
Checkpointing, message-logging, algorithm based checkpoint-
free schemes such as lossy approach [3, 12] or combinations
of these approaches may be used to reconstruct the required
consistent state to continue the computation. However, due
to its generality and performance, the diskless checkpoint-
ing technique [21] is a very promising approach to build fault
survivable applications with FT-MPI.

Diskless checkpointing is a technique to save the state of
a long running computation on a distributed system with-
out relying on stable storage. With diskless checkpointing,
each processor involved in the computation stores a copy of
its state locally, either in memory or on local disk. Addi-
tionally, encodings of these checkpoints are stored in local
memory or on local disk of some processors which may or
may not be involved in the computation. When a failure
occurs, each live processor may roll its state back to its last
local checkpoint, and the failed processor’s state may be
calculated from the local checkpoints of the surviving pro-
cessors and the checkpoint encodings. By eliminating stable
storage from checkpointing and replacing it with memory
and processor redundancy, diskless checkpointing removes
the main source of overhead in checkpointing on distributed
systems [21].

To make diskless checkpointing as efficient as possible it
can be implemented at the application level rather than at
the system level [19]. There are several advantages to im-
plement checkpointing at the application level. Firstly, the
application level checkpointing can be placed at synchro-
nization points in the program, which achieves checkpoint
consistency automatically. Secondly, with the application
level checkpointing, the size of the checkpoint can be min-
imized because the application developers can restrict the
checkpoint to the required data. This is opposed to a trans-
parent checkpointing system which has to save the whole
process state. Thirdly, the transparent system level check-
pointing typically write binary memory dumps, which rules
out a heterogeneous recovery. On the other hand, applica-
tion level checkpointing can be implemented such that the
recovery operation can be performed in a heterogeneous en-
vironment as well.

In typical long running scientific applications, when disk-
less checkpointing is taken from application level, what needs

to be checkpointed is often some numerical data [16]. These
numerical data can either be treated as bit-streams or as
floating-point numbers. If the data are treated as bit-streams,
then bit-stream operations such as parity can be used to en-
code the checkpoint. Otherwise, floating-point arithmetic
such as addition can be used to encode the data.

However, compared with treating checkpoint data as nu-
merical numbers, treating them as bit-streams usually has
the following disadvantages

1. To survive general multiple process failures, treating
checkpoint data as bit-streams often involves the in-
troduction of Galois Field arithmetic in the calculation
of checkpoint encoding and recovery decoding [18]. If
the checkpoint data are treated as numerical numbers,
then only floating-point arithmetic is needed to calcu-
late the checkpoint encoding and recovery decoding.
Floating-point arithmetic is usually simpler to imple-
ment and more efficient than Galois Field arithmetic.

2. Treating checkpoint data as bit-streams rules out a
heterogeneous recovery. The checkpoint data may have
different bit-stream representation on different plat-
forms and even have different bit-stream length on
different architectures. The introduction of a unified
representation of the checkpoint data on different plat-
forms within an application for checkpoint purposes
scarifies too much performance and is unrealistic in
practice.

3. In some cases, treating checkpoint data as bit-streams
does not work. For example, in [16], in order to re-
duce memory overhead in fault tolerant dense matrix
computation, no local checkpoints are maintained on
computation processors, only the checksum of the local
checkpoints is maintained on the checkpoint proces-
sors. Whenever a failure occurs, the local checkpoints
on surviving computation processors are re-constructed
by reversing the computation. Lost data on failed pro-
cessors are then re-constructed through the checksum
and the local checkpoints obtained from the reverse
computation. However, due to round-off errors, the lo-
cal checkpoints obtained from reverse computation are
not the same bit-streams as the original local check-
points. Therefore, in order to be able to re-construct
the lost data on failed processors, the checkpoint data
has to be treated as numerical numbers and the float-
ing point arithmetic has to be used to encode the
checkpoint data.

The main disadvantage of treating the checkpoint data as
floating-point numbers is the introduction of round-off errors
into the checkpoint and recovery operations. Round-off er-
rors is a limitation of any floating-point number calculations.
Even without checkpoint and recovery, scientific computing
applications are still affected by round-off errors. In prac-
tice, the increased possibility of overflows, underflows, and
cancellations due to round-off errors in numerically stable
checkpoint and recovery algorithms is often negligible.

In this paper, we treat the checkpoint data as floating-
point numbers rather than bit-streams. However, the corre-
sponding bit-stream version schemes could also be used as
long as the application developer thinks they are more ap-
propriate. In the following subsections, we discuss how the



local checkpoint can be encoded so that applications can
survive failures.

3.1 Neighbor-Based Checkpointing

In neighbor-based checkpointing, a neighbor processor is
first defined for each computation processor. Then, in ad-
dition to keep a local checkpoint in its memory, each com-
putation processor stores a copy of its local checkpoint in
the memory of its neighbor processor. Whenever a compu-
tation processor fails, the lost local checkpoint data can be
recovered from its neighbor processor.

The performance overhead of the neighbor-based check-
pointing is usually very low. The checkpoint are localized
to only two processors: a computation processor and its
neighbor. The recovery only involves the failed processors
and its neighbors. There is no global communications or en-
coding/decoding calculations needed in the checkpoint and
recovery.

Because no floating point operations are involved in the
checkpoint and recovery, no round-off errors are introduced
in the neighbor-based checkpointing.

Depending on how we define the neighbor processor of
a computation processor, there are three neighbor-based
checkpointing schemes

3.1.1 Mirroring

The mirroring scheme of neighbor-based checkpointing is
originally proposed in [21]. In this scheme, if there are n
computation processors, another n checkpoint processors are
dedicated as neighbors of the computation processors. The
i-th computation processor simply stores a copy of its local
checkpoint data in the i-th checkpoint processor (see Figure
1 (a)).

Up to n processor failures may be tolerated, although the
failure of both a computation processor and its neighbor pro-
cessor can not be tolerated. If we assume that the failure of
each processor are independent and identically distributed,
then the probability that the mirroring scheme survives k
processor failures is

When k is much smaller than n, the probability to survive
k failures can be very close to 1.

The disadvantage of the mirroring scheme is that n ad-
ditional processors are dedicated as checkpoint processors,
therefore, can not be used to do computation.

3.1.2 Ring Neighbor

In [23], a ring neighbor scheme was discussed by Silva
et al. In this scheme, there are no additional processors
used. All computation processors are organized in a virtual
ring. Each processor sends a copy of its local checkpoint
to the neighbor processor that follows on the virtual ring.
Therefore, each processor has two checkpoints maintained
in memory: one is the local checkpoint of itself, another is
the local checkpoint of its neighbor (see Figure 1 (b)).

The ring neighbor scheme is able to tolerate at least one
and up to || processor failures in a n processor job de-
pending on the distribution of the failed processors.

Compared with mirroring scheme, the advantage of the
ring neighbor scheme is that there is no processor redun-
dancy in the scheme. However, two copies of checkpoints

have to be maintained in the memory of each computation
processor. The degree of fault tolerance of the ring neighbor
scheme is also lower than the mirroring scheme.
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Figure 1: Neighbor-Based Schemes

3.1.3 Pair Neighbor

Another possibility is to organize all computation proces-
sors as pairs (assume there are even number of computation
processors). The two processors in a pair are neighbors of
each other. Each processor sends a copy of its local check-
point to its neighbor processor (see Figure 1 (c)).

Like the ring neighbor scheme, there is no processor re-
dundancy used in the paired neighbor scheme and two copies
of checkpoints have to be maintained in the memory of each
computation processor.

However, compared with the ring neighbor scheme, the
degree of fault tolerance for the pair neighbor scheme are
improved. Like the mirroring scheme, if we assume that the
failure of each processes are independent and identically dis-
tributed, then the probability that the pair neighbor scheme
survives k failures in a n processor job is

Ck ,2*
Ck

3.2 Checksum-Based Checkpointing

The checksum-based checkpointing is a modified version
of the parity-based checkpointing proposed in [20]. In the
checksum-based checkpointing, instead of using parity, the
floating-point number addition is used to encode the local
checkpoint data. By encoding the local checkpoint data
of the computation processors and sending the encoding to
some dedicated checkpoint processors, the checksum- based
checkpointing introduces a much lower memory overhead
into the checkpoint system than neighbor-based checkpoint.
However, due to the calculating and sending of the encod-
ing, the performance overhead of the checksum-based check-
pointing is usually higher than neighbor-based checkpoint
schemes. There are two versions of the checksum-based
checkpointing schemes.

3.2.1 Basic Checksum Scheme

The basic checksum scheme works as follow. If the pro-
gram is executing on N processors, then there is a N + 1-st
processor called the checksum processor. At all points in
time a consistent checkpoint is held in the N processors in
memory. Moreover a checksum of the N local checkpoints
is held in the checksum processor (see Figure 2 (a)). As-
sume P; is the local checkpoint data in the memory of the
i-th computation processor. C is the checksum of the lo-



cal checkpoint in the checkpoint processor. If we look at
the checkpoint data as an array of real numbers, then the
checkpoint encoding actually establishes an identity

Pi4..+P,=C (1)

between the checkpoint data P; on computation processors
and the checksum data C on the checksum processor. If any
processor fails then the identity (1) becomes an equation
with one unknown. Therefore, the data in the failed proces-
sor can be reconstructed through solving this equation.

Due to the floating-point arithmetic used in the check-
point and recovery, there will be round-off errors in the
checkpoint and recovery. However, the checkpoint involves
only additions and the recovery involves additions and only
one subtraction. In practice, the increased possibility of
overflows, underflows, and cancellations due to round-off er-
rors in the checkpoint and recovery algorithm is negligible.

The basic checksum scheme can survive only one failure.
However, it can be used to construct one dimensional check-
sum scheme to survive certain multiple failures.
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Figure 2: Checksum Based Schemes

3.2.2 One Dimensional Checksum Scheme

The one dimensional checksum scheme works as follow.
Assume the program is running on mn processors. Par-
tition the mn processors into m groups with n processors
in each group. Dedicate one checksum processor for each
group. At each group, the checkpoint are done using the
basic checksum scheme (see Figure 2 (b)).

The advantage of this scheme is that the checkpoint are
localized to a subgroup of processors, so the checkpoint en-
coding in each sub-group can be done parallelly. Therefore,
compared with the basic checksum scheme, the performance
of the one dimensional checksum scheme is usually better.
If we assume that the failure of each processes are indepen-
dent and identically distributed, then the probability that
the one dimensional checksum scheme survives k (k < m)
failures is

ck(n+ 1)k
C7kn(n+1)

3.3 Weighted-Checksum-Based Checkpointing

The weighted checksum scheme is a natural extension to
the checksum scheme to survive multiple failures of arbi-
trary patterns with minimum processor redundancy. It can
also be viewed as a version of the Reed-Solomon erasure
coding scheme [18] in the real number field. The basic idea
of this scheme works as follow: Each processor takes a lo-
cal in memory checkpoint, m equalities are established by

saving weighted checksums of the local checkpoint into m
checksum processors. When there are f failures happen,
where f < m, the m equalities becomes m equations with
f unknowns. By appropriately choosing the weights of the
weighted checksums, the lost data on the f failed processors
can be recovered by solving these m equations.
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Figure 3: Weighted Checksum Schemes

3.3.1 The Basic Weighted Checksum Scheme

Suppose there are n processors used for computation. As-
sume the checkpoint data on the i-th computation proces-
sor is P;. In order to be able to reconstruct the lost data
on failed processors, another m processors are dedicated to
hold m encodings (weighted checksums) of the checkpoint
data (see Figure 3 (a)). The weighted checksum C; on the
jth checksum processor can be calculated from

at1Pr+ ...+ a1, Py =C
: 2)
amiP1 + ...+ amn P :Cm,

where a;;, ¢ = 1,2,...,m, j = 1,2,...,n, is the weight we
need to choose. Let A = (aij)mn. We call A the checkpoint
matrix for the weighted checksum scheme.

Suppose that & computation processors and m — h check-
point processors have failed, then there are n — k computa-
tion processors and h checkpoint processors survive. If we
look at the data on failed processors as unknowns, then (2)
becomes m equations with m — (h — k) unknowns.

If kK > h, then there are less equations than unknowns.
There is no unique solution for (2). The lost data on the
failed processors can not be recovered.

However, if & < h, then there are more equations than
unknowns. By appropriately choosing A, a unique solution
for (2) can be guaranteed. Therefore, the lost data on the
failed processors can be recovered by solving (2).

Without loss of generality, we assume: (1) the computa-
tional processor ji, jo2,-.., jkx failed and the computational
Processor ji+1, Jk+2, -, jn sSurvived; (2) the checkpoint pro-
cessor 41, 2,...,%n survived and the checkpoint processor
th+1, th+2, .-, tm failed. Then, in equation (2), Pj,, ..., Pj,
and Cj, 4, ..., Ci,, become unknowns after the failure occurs.
If we re-structure (2), we can get

aiyj, Pjy + ... + Qiqjy, ij =Ci, — Z::]H_l @iy j, P,
: ®3)
@i i1 Pjy + oo +ai i, Py = Ciy, — Z?:k_u aiyj, P,



and
Cinyr =i 1P+ +ai, 0P
: @)
Ci,, =ai, 1 Pi+...4+0ai,nPn.

Let A, denote the coefficient matrix of the linear system
(3). If A, has full column rank, then Pj, ..., P;, can be
recovered by solving (3), and Cj,, ., -.., Ci,, can be recovered
by substituting P;,, ..., Pj, into (4).

Whether we can recover the lost data on the failed pro-
cesses or not directly depends on whether A, has full column
rank or not. However, A, in (3) can be any sub-matrix (in-
cluding minor) of A depending on the distribution of the
failed processors. If any square sub-matrix (including mi-
nor) of A is non-singular and there are no more than m
process failed, then A, can be guaranteed to have full col-
umn rank. Therefore, to be able to recover from any no more
than m failures, the checkpoint matrix A has to satisfy any
square sub-matriz (including minor) of A is non-singular.

How can we find such kind of matrices? It is well known
that some structured matrices such as Vandermonde matrix
and Cauchy matrix satisfy any square sub-matrix (including
minor) of the matrix is non-singular.

However, in computer floating point arithmetic where no
computation is exact due to round-off errors, it is well known
[2] that, in solving a linear system of equations, a condition
number of 10¥ for the coefficient matrix leads to a loss of ac-
curacy of about k£ decimal digits in the solution. Therefore,
in order to get a reasonably accurate recovery, the check-
point matrix A actually has to satisfy any square sub-matrizc
(including minor) of A is well-conditioned.

It is well-known [8] that Gaussian random matrices are
well-conditioned. To estimate how well conditioned Gaus-
sian random matrices are, we have proved the following The-
orem:

THEOREM 1. Let Gmxn be an m X n real random matriz
whose elements are independent and identically distributed
standard normal random variables, and let K2(Gmxn) be the
2-norm condition number of Gmxn. Then, for any m > 2,
n>2and x> |n—m|+1, K2(Gmxn) satisfies

(i > ) <7 (5

and

E(ln k2 (Gmxn)) < 1n + 2.258,

_n
|ln—m|+1
where 0.245 < ¢ < 2.000 and 5.013 < C < 6.414 are univer-
sal positive constants independent of m, n and x.

Due to the length of the proof for Theorem 1, we omit the
proof here and refer interested readers to [4] for complete
proof.

Note that any sub-matrix of a Gaussian random matrix
is still a Gaussian random matrix. Therefore, a Gaussian
random matrix would satisfy any sub-matrix of the matrix
is well-conditioned with high probability.

Theorem 1 can be used to estimate the accuracy of recov-
ery in the weighted checksum scheme. For example, if an
application uses 100,000 processors to perform computation
and 20 processors to perform checkpointing, then the check-
point matrix is a 20 by 100,000 Gaussian random matrix. If

10 processors fail concurrently, then the coefficient matrix
A, in the recovery algorithm is a 20 by 10 Gaussian random
matrix. From Theorem 1, we can get

E(log,o k2 (Ar)) < 1.25
and
P(k2(A,) > 100) < 3.1 x 107 ',

Therefore, on average, we will loss about one decimal digit
in the recovered data and the probability to loss 2 digits is
less than 3.1 x 1071,

3.3.2 OneDimensional Weighted Checksum Scheme

The one dimensional weighted checksum scheme works as
follows. Assume the program is running on mmn processors.
Partition the mn processors into m groups with n processors
in each group. Dedicate another k checksum processors for
each group. At each group, the checkpoint are done using
the basic weighted checksum scheme (see Figure 3 (b)). This
scheme can survive k processor failures at each group. The
advantage of this scheme is that the checkpoint are localized
to a subgroup of processors, so the checkpoint encoding in
each sub-group can be done parallelly. Therefore, compared
with the basic weighted checksum scheme, the performance
of the one dimensional weighted checksum scheme is usually
better.

4. A FAULT SURVIVABLE ITERATIVE
EQUATION SOLVER

In this section, we give a detailed presentation on how
to incorporate fault tolerance into applications by using a
preconditioned conjugate gradient equation solver as an ex-
ample.

4.1 Preconditioned Conjugate Gradient Algo-
rithm

The Preconditioned Conjugate Gradient (PCG) method
is the most commonly used algorithm to solve the linear sys-
tem Az = b when the coefficient matrix A is sparse and sym-
metric positive definite. The method proceeds by generating
vector sequences of iterates (i.e., successive approximations
to the solution), residuals corresponding to the iterates, and
search directions used in updating the iterates and resid-
uals. Although the length of these sequences can become
large, only a small number of vectors needs to be kept in
memory. In every iteration of the method, two inner prod-
ucts are performed in order to compute update scalars that
are defined to make the sequences satisfy certain orthogo-
nality conditions. The pseudo-code for the PCG is given in
Figure 4. For more details of the algorithm, we refer the
reader to [2].

4.2 Incorporating Fault Tolerance into PCG

We first implemented the parallel non-fault tolerant PCG.
The preconditioner M we use is the diagonal part of the co-
efficient matrix A. The matrix A is stored as sparse row
compressed format in memory. The PCG code is imple-
mented such that any symmetric, positive definite matrix
using the Harwell Boeing format or the Matrix Market for-
mat can be used as a test problem. One can also choose to
generate the test matrices in memory according to testing
requirements.



Compute 70 = b — Az for some initial guess (%)
fori=1,2,...
solve Mz(i—1) = p(i—1)
pi_1 = rG=DT ,G=1)
ifi=1
p1) = 20
else
Bi—1 = pi—1/pi—2
p(l) = z(i_l) + ﬂi—lp(i_l)
endif
¢ = Ap®
ai = pi_1 /p®Tg®
r@® = (=1 _ g4
check convergence; continue if necessary

end

Figure 4: Preconditioned Conjugate Gradient Algo-
rithm

We then incorporate the basic weighted checksum scheme
into the PCG code. Assume the PCG code uses n MPI
processes to do computation. We dedicate another m MPI
processes to hold the weighted checksums of the local check-
point of the n computation processes. The checkpoint ma-
trix we use is a pseudo random matrix. Note that the sparse
matrix does not change during computation, therefore, we
only need to checkpoint three vectors (i.e. the iterate, the
residual and the search direction) and two scalars (i.e. the
iteration index and pi~") in Figure 4).

The communicator mode we use is the REBUILD mode.
The communication mode we use is the NOOP/RESET
mode. Therefore, when processes failed, FT-MPI will drop
all ongoing messages and re-spawn all failed processes with-
out changing the rank of the surviving processes.

An FT-MPI application can detect and handle failure
events using two different methods: either the return code
of every MPI function is checked, or the application makes
use of MPI error handlers. The second mode gives users the
possibility to incorporate fault tolerance into applications
that call existing parallel numerical libraries which do not
check the return code of their MPI calls. In PCG code, we
detect and handle failure events by checking the return code
of every MPI function.

The recovery algorithm in PCG makes use of the longjmp
function of the C-standard. In case the return code of an
MPI function indicates that an error has occurred, all sur-
viving processes set their state variable to RECOVER and
jump to the recovery section in the code. The recovery al-
gorithm consists of the following steps:

1. Re-spawn the failed processes and recover the FT-MPI

runtime environment by calling a specific, predefined
MPI function.

2. Determining how many processes have died and who
has died.

3. Recover the lost data from the weighted checksums
using the algorithm described in Section 4.3.1.

4. Resume the computation.

Another issue is that how a process can determine whether
it is a survival process or it is a re-spawned process. FT-MPI
offers the user two possibilities to solve this problem:

e In the first method, when a process is a replacement
for a failed process, the return value of its MPI_ Init
call will be set to a specific new FT-MPI constant
(MPIINIT RESTARTED_PROCS).

e The second possibility is that the application intro-
duces a static variable. By comparing the value of
this variable to the value on the other processes, the
application can detect, whether everybody has been
newly started (in which case all processes will have the
pre-initialized value), or whether a subset of processes
have a different value, since each processes modifies
the value of this variable after the initial check. This
second approach is somewhat more complex, however,
it is fully portable and can also be used with any other
non fault-tolerant MPI library.

In PCG, each process checks whether it is a re-spawned pro-
cess or a surviving process by checking the return code of
its MPI Init call.

The relevant section with respect to fault tolerance is
shown in the source code below.

/* Determine who is re-spawned */
rc = MPI_Init( &argc, &argv );
if (rc==MPI_INIT_RESTARTED_NODE) {
/* re-spawned procs initialize */
} else {
/* Original procs initializex/

}

/*Failed procs jump to here to recover*/
setjmp( env );

/* Execute recovery if necessary */
if ( state == RECOVER ) {

/*Recover MPI environment*/
newcomm = FT_MPI_CHECK_RECOVER;
MPI_Comm_dup (oldcomm, &newcomm) ;

/*Recover application data*/
recover_data (A, b, r, p, x, ...);

/*Reset state-variable*/
state = NORMAL;
}

/*Major computation loop*/
do {

/*Checkpoint every K iterations*/
if ( num_iter % K == 0 )
checkpoint_data(r, p, x, ...);

/*Check the return of communication
calls to detect failure. If failure
occurs, jump to recovery point#*/

rc = MPI_Send ( ...)



if ( rc == MPI_ERR_OTHER ) {
state = RECOVER;
longjmp ( env, state );

}

} while ( not converge );

5. EXPERIMENTAL EVALUATION

In this section, we evaluate both the performance over-
head of our fault tolerance approach and the numerical im-
pact of our floating-point arithmetic encoding using the PCG
code implemented in the last section.

We performed four sets of experiments to answer the fol-
lowing four questions:

1. What is the performance of FT-MPI compared with
other state-of-the-art MPI implementations?

2. What is the performance overhead of performing check-
pointing?

3. What is the performance overhead of performing re-
covery?

4. What is the numerical impact of round-off errors in
recovery?

For each set of experiments, we test PCG with four different
problems. The size of the problems and the number of com-
putation processors used (not include checkpoint processors)
for each problem are listed in table 1.

All experiments were performed on a cluster of 64 dual-
processor 2.4 GHz AMD Opteron nodes. Each node of the
cluster has 2 GB of memory and runs the Linux operating
system. The nodes are connected with a Gigabit Ethernet.
The timer we used in all measurements is MPI_Wtime.

Table 1: Experiment Configurations for Each Prob-
lem

Size of the Problem | Num. of Comp. Procs
Prob #1 164,610 15
Prob #2 329,220 30
Prob #3 658,440 60
Prob #4 1,316,380 120

5.1 Performance of PCG with Different MPI
Implementations

The first set of experiments was designed to compare the
performance of different MPI implementations and evaluate
the overhead of surviving single failure with FT-MPI. We
ran PCG with MPICH-1.2.6 [14], MPICH2-0.96, FT-MPI,
FT-MPI with one checkpoint processor and no failure, and
FT-MPI with one checkpoint processor and one failure for
2000 iterations. For PCG with FT-MPI with checkpoint,
we checkpoint every 100 iterations. For PCG with FT-MPI
with recovery, we simulate a processor failure by exiting one
process at the 1000-th iteration. The execution time of all
tests are reported in table 2.

Table 2: PCG Execution Time (in seconds) with
Different MPI Implementations

Time Prob#1 | Prob#2 | Prob#3 | Prob#4
MPICH-1.2.6 916.2 1985.3 4006.8 | 10199.8
MPICH2-0.96 510.9 1119.7 2331.4 7155.6
FT-MPI 480.3 1052.2 2241.8 6606.9
FT-MPI ckpt 482.7 1055.1 2247.5 6614.5
FT-MPI rcvr 485.8 1061.3 2256.0 6634.0

Figure 5 compares the execution time of PCG with MPICH-
1.2.6, MPICH2-0.96, FT-MPI, FT-MPI with one checkpoint
processor and no failure, and FT-MPI with one checkpoint
processor and one failure for different size of problems. Fig-
ure 5 indicates that the performance of FT-MPI is slightly
better than MPICH2-0.96. Both FT-MPI and MPICH2-
0.96 are much faster than MPICH-1.2.6. Even if with check-
pointing and/or recovery, the performance of PCG with FT-
MPI is still at least comparable to MPICH2-0.96.

PCG Performance on AMD Opteron Cluster
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Figure 5: PCG Performance with Different MPI Im-
plementations

5.2 Performance Overhead of Taking Check-
point

The purpose of the second set of experiments is to mea-
sure the performance penalty of taking checkpoints to sur-
vive general multiple simultaneous processor failures. There
is no processor failures involved in this set of experiments.
At each run, we divided the processors into two classes. The
first class of processors are dedicated to perform PCG com-
putation work. The second class of processors are dedicated
to perform checkpoint. In table 3 and 4, the first column
of the table indicates the number of checkpoint processors
used in each test. If the number of checkpoint processors
used in a run is zero, then there is no checkpoint in this
run. For all experiments, we ran PCG for 2000 iterations
and checkpoint every 100 iterations.

Table 3 reports the execution time of each test. In order to
reduce the disturbance of the noise of the program execution
time to the checkpoint time, we measure the time used for
checkpointing separately for all experiments. Table 4 reports
the individual checkpoint time for each experiment. Figure 6
compares the checkpoint overhead (%) of surviving different
numbers of simultaneous processor failures for different size
of problems.



Table 3: PCG Execution Time (in seconds) with
Checkpoint

Time | Prob #1 | Prob #2 | Prob #3 | Prob #4
0 ckpt 480.3 1052.2 2241.8 6606.9
1 ckpt 482.7 1055.1 2247.5 6614.5
2 ckpt 484.4 1057.9 2250.3 6616.9
3 ckpt 486.5 1059.9 2252.4 6619.7
4 ckpt 488.1 1062.2 2254.7 6622.3
5 ckpt 489.9 1064.3 2256.5 6625.1

Table 4: PCG Checkpointing Time (in seconds)

Time | Prob #1 | Prob #2 | Prob #3 | Prob #4
1 ckpt 2.6 3.8 5.5 7.8
2 ckpt 4.4 5.8 8.5 10.6
3 ckpt 6.0 7.9 10.2 128
Zckpt | 7.9 9.9 126 5.0
5 ckpt 9.8 11.9 14.1 16.8

Table 4 indicates, as the number of checkpoint processors
increases, the time for checkpointing in each test problem
will also increases. The increase in time for each additional
checkpoint processor is approximately the same for each test
problem. However, the increase of the time for each ad-
ditional checkpoint processor is smaller than the time for
using only one checkpoint processor. This is because from
no checkpoint to checkpoint with one checkpoint processor
PCG has to first set up the checkpoint environment and then
do one encoding. However, from checkpoint with k (where
k > 0) processors to checkpoint with k + 1 processors, the
only additional work is to perform one more encoding.
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Figure 6: PCG Checkpoint Overhead

Note that we are performing checkpoint every 100 itera-
tions and run PCG for 2000 iterations, therefore, from Table
3, we can calculate the checkpoint interval for each test. Our
checkpoint interval ranges from 25 seconds (Prob #1) to 330
seconds (Prob #4). In practice, there is an optimal check-
point interval which depends on the failure rate, the time
cost of each checkpoint and the time cost of each recovery.
Much literature about the optimal checkpoint interval [13,
22, 25] is available. We will not address this issue further
here.

From figure 6, we can see, even if we checkpoint every

25 seconds (Prob #1), the performance overhead of check-
pointing to survive five simultaneous processor failures is
still within 2% of the original program execution time, which
actually falls into the noise margin of the program execution
time. If we checkpoint every 5.5 minutes (Prob #4) and
assume a processor fails one after another (one checkpoint
processor case), then the overhead is only 0.1%.

5.3 Performance Overhead of Performing Re-
covery

The third set of experiments is designed to measure the
performance overhead to perform recovery. All experiment
configurations are the same as previous section except that
we simulate a failure of k& (k equals the number of checkpoint
processors in the run) processors by exiting k processes at
the 1000-th iteration in each run.

Table 5 reports the execution time of PCG with recovery.
In order to reduce the disturbance of the noise of the pro-
gram execution time to the recovery time, we measure the
time used for recovery separately for all experiments. Table
6 reports the recovery time in each experiment. Figure 7
compares the recovery overhead (%) from different number
of simultaneous processor failures for different size of prob-
lems.

Table 5: PCG Execution Time (in seconds) with
Recovery

Time | Prob #1 | Prob #2 | Prob #3 | Prob #4
0 proc 480.3 1052.2 2241.8 6606.9
1 proc 485.8 1061.3 2256.0 6634.0
2 proc 488.1 1063.6 2259.7 6633.5
3 proc 490.0 1066.1 2262.1 6636.3
4 proc 492.6 1068.8 2265.4 6638.2
5 proc 494.9 1070.7 2267.5 6639.7

Table 6: PCG Recovery Time (in seconds)

Time | Prob #1 | Prob #2 | Prob #3 | Prob #4
1 proc 3.2 5.0 8.7 18.2
2 proc 3.7 5.5 9.2 18.8
3 proc 4.0 6.0 9.8 20.0
4 proc 4.5 6.5 10.4 20.9
5 proc 4.8 7.0 11.1 21.5

From table 6, we can see the recovery time increases ap-
proximately linearly as the number of failed processors in-
creases. However, the recovery time for a failure of one pro-
cessor is much longer than the increase of the recovery time
from a failure of k (where k£ > 0) processors to a failure of
k+1 processors. This is because, from no failure to a failure
with one failed processor, the additional work the PCG has
to perform includes first setting up the recovery environment
and then recovering data. However, from a failure with &
(where k£ > 0) processors to a failure with k£ + 1 processors,
the only additional work is to recover data for an additional
Processor.

From figure 7, we can see the overheads for recovery in all
tests are within 1% of the program execution time, which



is again within the noise margin of the program execution
time.
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Figure 7: PCG Recovery Overhead

5.4 Numerical Impact of Round-Off Errorsin
Recovery

As discussed in Section 3, our diskless checkpointing schemes

are based on floating-point arithmetic encodings, therefore,
introduce round-off errors into the checkpointing system.
The experiments in this sub-section are designed to measure
the numerical impact of the round-off errors in our check-
pointing system. All experiment configurations are the same
as previous section except that we report the norm of the
residual at the end of each computation.

Note that if no failures occur, the computation proceeds
with the same computational data as without checkpoint.
Therefore, the computational results are affected only when
there is a recovery in the computation. Table 7 reports the
norm of the residual at the end of each computation when
there is 0, 1, 2, 3, 4, and 5 simultaneous process failures.

Table 7: Numerical Impact of Round-Off Errors in
PCG Recovery

Residual | Prob #1 | Prob #2 | Prob #3 | Prob #4
0 proc 3.050e-6 | 2.696e-6 | 3.07le-6 | 3.944e-6
1 proc 2.711e-6 | 4.500e-6 | 3.362e-6 | 4.472e-6
2 proc 2.973e-6 | 3.088e-6 | 2.731le-6 | 2.767e-6
3 proc 3.036e-6 | 3.213e-6 | 2.864e-6 | 3.585e-6
4 proc 3.438e¢-6 | 4.970e-6 | 2.732e-6 | 4.002¢-6
5 proc 3.035e-6 | 4.082e-6 | 2.704e-6 | 4.238e-6

From table 7, we can see that the norm of the residuals
are different for different number of simultaneous process
failures. This is because, after recovery, due to the impact
of round-off errors in the recovery algorithm, the PCG com-
putations are performed based on different recovered data.
However, table 7 also indicates that the residuals with recov-
ery do not have much difference from the residuals without
recovery.

6. DISCUSSION

The size of the checkpoint affects the performance of any
checkpointing scheme. The larger the checkpoint size is, the
higher the diskless checkpoint overhead would be. In the

PCG example, we only need to checkpoint three vectors and
two scalars periodically, therefore, the performance overhead
is very low.

Diskless checkpointing is good for applications that mod-
ify a small amount of memory between checkpoints. There
are many such applications in high performance computing
field. For example, in typical iterative methods for sparse
matrix computation, the sparse matrix is often not modi-
fied during the program execution, only some vectors and
scalars are modified between checkpoints. For this type of
application, the overhead for surviving a small number of
processor failures is very low.

Even for applications which modify a relatively large amount
of memory between two checkpoints, decent performance re-
sults to survive single processor failure were still reported in
[16].

The basic weighted checksum scheme implemented in the
PCG example has a higher performance overhead than other
schemes discussed in Section 3. When an application is exe-
cuted on large number of processors, to survive general mul-
tiple simultaneous processor failures, the one dimensional
weighted checksum scheme will achieve a much lower perfor-
mance overhead than the basic weighted checksum scheme.
If processor fails one after another (i.e. no multiple simul-
taneous processor failures), the neighbor based schemes can
achieve even lower performance overhead. It was shown in
[6] that a neighbor-based checkpointing was an order of mag-
nitude faster than a parity-based checkpointing, but takes
twice as much storage overhead.

Diskless checkpointing could not survive a failure of all
processors. Also, to survive a failure occurred during check-
point or recovery, the storage overhead would double. If an
application needs to tolerate these types of failures, a two
level recovery scheme [24] which uses both diskless check-
pointing and stable-storage-based checkpointing is a good
choice.

Another drawback of our fault tolerance approach is that
it requires the programmer to be involved in the fault tol-
erance. However, if the fault tolerance schemes are imple-
mented into numerical softwares such as LFC [5], then trans-
parent fault tolerance can also be achieved for programmers
using these software tools.

7. CONCLUSION AND FUTURE WORK

We have presented how to build fault survivable high per-
formance computing applications with FT-MPI using disk-
less checkpointing. We have introduced floating-point arith-
metic encodings into diskless checkpointing and discussed
several checkpoint encoding strategies with detail. We have
also implemented a fault survivable example application (PCG)
which can survive general multiple simultaneous processor
failures. Experimental results show that FT-MPI is at least
comparable to other state-of-the-art MPI implementations
with respect to performance and can support fault surviv-
able MPI applications at the same time. Experimental re-
sults further demonstrate that our fault tolerance approach
can survive a small number of simultaneous processor fail-
ures with low performance overhead and little numerical im-
pact.

For the future, we will evaluate our fault tolerance ap-
proach on systems with larger number of processors. We
would also like to evaluate our fault tolerance approach with
more applications and more diskless checkpointing schemes.



8.
[1]

[2]

[3]

[4]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

N. R. Adiga and et al. An overview of the BlueGene/L
supercomputer. In Proceedings of the Supercomputing
Conference (SC’2002), Baltimore MD, USA, pages
1-22, 2002.

R. Barrett, M. Berry, T. F. Chan, J. Demmel,

J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. V. der Vorst. Templates for the
Solution of Linear Systems: Building Blocks for
Tterative Methods, 2nd Edition. STAM, Philadelphia,
PA, 1994.

G. Bosilca, Z. Chen, J. Dongarra, and J. Langou.
Recovery patterns for iterative methods in a parallel
unstable environment. Technical Report ut-cs-04-538,
University of Tennessee, Knoxville, Tennessee, USA,
2004.

Z. Chen and J. Dongarra. Condition numbers of
gaussian random matrices. Technical Report
ut-cs-04-539, University of Tennessee, Knoxville,
Tennessee, USA, 2004.

Z. Chen, J. Dongarra, P. Luszczek, and K. Roche.
Self-adapting software for numerical linear algebra
and LAPACK for clusters. Parallel Computing,
29(11-12):1723-1743, November-December 2003.

T. cker Chiueh and P. Deng. Evaluation of checkpoint
mechanisms for massively parallel machines. In FTCS,
pages 370-379, 1996.

J. Dongarra, H. Meuer, and E. Strohmaier. TOP500
Supercomputer Sites, 24th edition. In Proceedings of
the Supercomputing Conference (SC’2004), Pittsburgh
PA, USA. ACM, 2004.

A. Edelman. Eigenvalues and condition numbers of
random matrices. STAM J. Matriz Anal. Appl.,
9(4):543-560, 1988.

G. E. Fagg and J. Dongarra. FT-MPI: Fault tolerant
MPI, supporting dynamic applications in a dynamic
world. In PVM/MPI 2000, pages 346-353, 2000.

G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun,

Z. Chen, J. Pjesivac-Grbovic, K. London, and J. J.
Dongarra. Extending the MPI specification for process
fault tolerance on high performance computing
systems. In Proceedings of the International
Supercomputer Conference, Heidelberg, Germany,
2004.

G. E. Fagg, E. Gabriel, Z. Chen, , T. Angskun,

G. Bosilca, J. Pjesivac-Grbovic, and J. J. Dongarra.
Process fault-tolerance: Semantics, design and
applications for high performance computing.
Submitted to International Journal of High
Performance Computing Applications, 2004.

A. Geist and C. Engelmann. Development of naturally
fault tolerant algortihms for computing on 100,000
processors. Submited to J. Parallel Distrib. Comput.,
2002.

E. Gelenbe. On the optimum checkpoint interval. J.
ACM, 26(2):259-270, 1979.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the
MPI message passing interface standard. Parallel
Computing, 22(6):789-828, September 1996.

I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kauffman,

[16]

[17]

18]

[19]

20]

[21]

[22]

23]

[24]

25]

San Francisco, 1999.

Y. Kim. Fault Tolerant Matriz Operations for Parallel
and Distributed Systems. Ph.D. dissertation,
University of Tennessee, Knoxville, June 1996.
Message Passing Interface Forum. MPI: A Message
Passing Interface Standard. Technical Report
ut-cs-94-230, University of Tennessee, Knoxville,
Tennessee, USA, 1994.

J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software —
Practice & Ezperience, 27(9):995-1012, September
1997.

J. S. Plank, Y. Kim, and J. Dongarra. Fault-tolerant
matrix operations for networks of workstations using
diskless checkpointing. J. Parallel Distrib. Comput.,
43(2):125-138, 1997.

J. S. Plank and K. Li. Faster checkpointing with n+1
parity. In FTCS, pages 288-297, 1994.

J. S. Plank, K. Li, and M. A. Puening. Diskless
checkpointing. IEEE Trans. Parallel Distrib. Syst.,
9(10):972-986, 1998.

J. S. Plank and M. G. Thomason. Processor allocation
and checkpoint interval selection in cluster computing
systems. J. Parallel Distrib. Comput.,
61(11):1570-1590, November 2001.

L. M. Silva and J. G. Silva. An experimental study
about diskless checkpointing. In EUROMICRO’98,
pages 395-402, 1998.

N. H. Vaidya. A case for two-level recovery schemes.
IEEE Trans. Computers, 47(6):656-666, 1998.

J. W. Young. A first order approximation to the
optimal checkpoint interval. Commun. ACM,
17(9):530-531, 1974.



