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Abstract

Synthetic ethology was developed as a methodology for constructing experi-

ments in which artificial agents could exhibit real (i.e., not simulated) intention-

ality and other mental phenomena. This report has two purposes. The first is to

review the motivations for synthetic ethology as an experimental methodology

and to explain how it can be used to investigate intentionality and meaning, and

the mechanisms from which they emerge, with an especial emphasis on commu-

nication and language. The second purpose is to reconsider these issues with the

hindsight of fifteen years, and discuss new approaches to the use of synthetic

worlds in the scientific investigation of problems in epistemology and cognitive

science.
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1 Introduction
Synthetic ethology was developed as a methodology for constructing experiments in

which artificial agents could exhibit real (i.e., not simulated) intentionality and other

mental phenomena. Our first experiments using this methodology demonstrated the evo-

lution of communication in a population of simple machines and illustrated ways of re-

lating the emergence of meaning to underlying mechanisms (MacLennan, 1990, 1992,

2001, 2002; MacLennan and Burghardt, 1993). In these experiments, as I will explain,

the communications were meaningful to the artificial agents themselves, but they were

only secondarily and partly meaningful to the experimenters.

This report has two purposes. The first is to review the motivations for synthetic

ethology as an experimental methodology and to explain how it can be used to investigate

intentionality and meaning, and the mechanisms from which they emerge, with an espe-

cial emphasis on communication and language. The second purpose is to reconsider these

issues with the hindsight of fifteen years, and discuss new approaches to the use of syn-

thetic worlds in the scientific investigation of problems in epistemology and cognitive

science.

2 Background

2.1 Definition of Synthetic Ethology

Synthetic ethology can be defined as an experimental methodology in which the mecha-

nisms underlying cognitive and intentional phenomena are investigated by constructing

synthetic agents and observing them in their environment of evolutionary adaptedness

(EEA, the environment in which they have evolved), which is also synthetic. These syn-

thetic worlds are commonly constructed inside a computer. I will briefly summarize the

most important considerations motivating the synthetic ethology paradigm (a fuller dis-

cussion can be found in MacLennan, 1992).

In discussing his research program in synthetic psychology, which was a direct in-

spiration for synthetic ethology, Braitenberg (1984, p. 20) distinguished “uphill analysis

and downhill invention.” By this he meant to distinguish the enormous difficulty of ana-

lyzing natural systems, as opposed to the comparative simplicity of synthesizing systems

exhibiting a behavior of interest. His intention was to advocate the synthesis of neural

networks and robots exhibiting intelligent behavior as an important adjunct to the analy-

sis of intelligent agents in nature. Synthetic ethology extends this approach to phenomena

for which populations and their evolution are relevant, such as communication.

The synthetic approach is especially valuable for investigating phenomena that

depend essentially on the evolutionary history of the agents. Our ability to test evolution-

ary hypotheses about natural species is limited; we cannot go back into the past and re-

start the evolution of a species with different initial or boundary conditions, but we can

do this with synthetic populations. That is, in synthetic ethology we can make systematic

investigations of the effects of various parameters on the evolutionary outcome. Syn-

thetic-ethology experiments are also facilitated by the rapid pace of evolution in synthetic

worlds.

The ability to rerun evolution is just one example of the greater experimental

control afforded by synthetic ethology over ordinary ethology. Because synthetic ethol-
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ogy constructs the world in which the experiments take place, every variable is under

control, and we can intervene in the experiment whenever it’s advantageous to do so.

Some examples of useful control include the ability to determine the genotypes in the

population, to allow genetically identical initial populations to evolve under different

conditions, and to inspect, control, or alter the behavioral mechanism (e.g. neural net-

work) of an agent. Furthermore, since the entire synthetic world is contained in the com-

puter, any mechanism underlying intentional or meaningful behavior is potentially open

for inspection. This characteristic is critical, because it allows connecting the behavioral

mechanisms (corresponding in natural organisms to neuron-level structures and proc-

esses) to the social-evolutionary level (that is, the evolution of a population over many

generations). When meaningful behavior is observed in the population, there need be no

“ghost in the machine”; the underlying mechanism is transparent.

Even in a philosophical context, intentionality has several (interrelated) meanings.

For our purposes we may define intentionality informally as the property of a physical

state when it is about something else. For example, states in our brains may instantiate

propositional attitudes about real or imaginary objects; and our linguistic expressions are

generally about something (their semantics), and therefore potentially meaningful to us

(if we understand the expression). However, the states of a computer memory are also

almost always about something — for example, a student’s academic record is about that

student — but no one claims that the computer understands the information in the same

sense that a person does.

Therefore philosophers (e.g., Dennett, 1987) distinguish derived intentionality

from intrinsic (or original, authentic, etc.) intentionality. Our intentional states (e.g., brain

states, linguistic expressions) normally have intrinsic intentionality, because they are

meaningful to us (the bearers, producers, or consumers of the states). In contrast, infor-

mation in a computer memory or database has derived intentionality, because it is not in-

trinsically meaningful to the computer, and derives its intentionality only from its mean-

ingfulness to us, the users of the computer.

Intrinsic intentionality is a fundamental (even defining) property of mental states,

cognition, communication, and many related phenomena and processes. We can judge the

intrinsic intentionality of our internal states by introspection (the basis of the Chinese

Room Argument), but this approach cannot be applied to artificial agents or even to most

animals; this complicates the scientific investigation of intrinsic intentionality’s physical

basis. One of the principal motivations of synthetic ethology is the creation of systems

that exhibit intrinsic intentionality, but are simple enough to permit complete explication

of the underlying mechanisms. To accomplish this, we must identify non-introspective

criteria of intrinsic intentionality.

How can we determine if physical states are intrinsically meaningful to agents,

natural or artificial? For the purposes of this article, the argument must be abbreviated

(see MacLennan, 1992, for a fuller discussion), but we can begin by looking at the ways

that ethologists answer these kinds of questions about non-human animals. In this con-

text, questions of whether meaningful communication, for example, is taking place are

answered by looking at its effect on the inclusive fitness of a group of animals in their

EEA (Burghardt, 1970). In broad terms, we may say that an animal’s behavior is mean-

ingful if it is, has been, or has the probability of being relevant to the survival of that

animal or its group. We can apply a similar criterion in synthetic ethology, indeed more
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rigorously than it is applied in natural ethology; for we can test directly whether particu-

lar behaviors or internal states of the agents contribute to their survival in the environ-

ments in which they have evolved. Such experiments can also reveal the meaning of

these states or behaviors to the agents, that is, their specific relevance to the agents’ in-

clusive fitness.

Ecological validity refers to the fact that many behaviors are adaptively meaning-

ful only in a species’ EEA, that is, only in the environment that has conditioned the spe-

cies’ adaptations. When agents are placed in conditions that are too different from their

EEA, they behave in abnormal ways, from which it may be difficult to draw valid con-

clusions about normal behavior. Indeed, this is the motivation for ordinary (natural)

ethological methods, which relate behavior to its EEA, as opposed to behaviorist meth-

ods, which typically study behavior in unnatural laboratory settings. Internal (“mental”)

states and external signals acquire meaning through their functional role in the life of the

agents, and so they can be understood best in relation to their EEA. Therefore synthetic

ethology strives for ecological validity by studying behaviors and cognitive phenomena

in their synthetic EEA.

A related issue is the pragmatic context of a behavior. In particular, when we are

dealing with communication, and especially when we are concerned with non-human

communication, we must recognize that communication is rarely purely semantic, that is,

serving the purpose of transmitting a proposition (truth-bearing signal). Indeed, commu-

nication may be deceptive, among humans as well as other animals, and often serves non-

propositional purposes. This is well known from studies of animal communication as

well as from philosophical investigations of ordinary language use (e.g., Wittgenstein,

Austin). Now, pragmatics refers to the purpose served by a communication or other be-

havior, and, as for intentionality, this purpose can be derived or intrinsic, that is, derived

from the designer of an artificial agent, or intrinsic to the agent itself. Therefore, in order

to investigate behaviors with an intrinsic pragmatic context, those behaviors must be ful-

filling some purpose intrinsic to the agents, considered either individually or as a popula-

tion. Synthetic ethology addresses these issues by investigating agents in an environment

in which their behaviors matter to them. This is so because an agent’s behaviors affect its

inclusive fitness, that is, the reproductive fitness of itself or related agents. (It is not nec-

essary, of course, that the agents be aware that the behavior matters to them.)

Since most synthetic ethology experiments take place on general-purpose digital

computers, there is a danger of confusing them with simulations. The distinction is im-

portant because, as has been remarked often, no one gets wet when a meteorologist

simulates a hurricane on a computer. If we are using simulated agents to investigate in-

tentional phenomena, then the objection may be made that although the agents may

simulate understanding (for example), they do not really understand anything, since

nothing real is taking place in the computer; it’s all simulated. For example, it may be

claimed, there is no true meaningful communication, only simulated communication; any

apparent intentionality is either derived or simulated (i.e., illusory).

In contrast, synthetic ethology makes use of the fact that a computer is a physical

device, and therefore that the states and program-controlled state-changes within the

computer are (real) physical states and state-changes. In effect, the program determines

the way in which physical law operates within the confines of the computer. In particular,

the computer is a non-equilibrium thermodynamic system, and the program controlling
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the computer can deploy physical law in such a way that synthetic agents are also (literal,

physical) non-equilibrium structures, which must behave in a specified manner in order

to maintain their structure. Thus the behavioral and cognitive processes in the synthetic

agents have real relevance to their continued existence (“survival”) as real, physical non-

equilibrium systems.

It is on this basis that we can claim that agents in synthetic ethology exhibit in-

trinsic and not just derived intentionality. That is, within the synthetic world constructed

in the computer (which is physically real, despite being synthetic), the internal states and

behaviors of the agents will have a real influence on their persistence as definite physical

structures (particular arrangements of matter and energy in the computer). Therefore

these states and behaviors are meaningful to them. By observing the relevance of these

states and behaviors to the agents, we, as outside observers, may infer (more or less cor-

rectly and more or less precisely) the meaning of the states and behaviors for the agents,

much as if we were observing another animal species. The meaning we attribute to the

states and behaviors will be derived from their meaning to the agents. For us the states

and behaviors have only derived intentionality, but for the agents they have intrinsic in-

tentionality.

Since synthetic ethology makes no attempt to simulate specific natural systems,

its scientific relevance requires some justification. In fact, it is directed toward basic sci-

ence, for synthetic ethology is based on the observation that fundamental, general scien-

tific laws have usually been discovered and confirmed by means of experiments in which

there are relatively few variables, which can be controlled precisely. Behaviorist experi-

ments have the control but lack ecological validity. Ethological field studies have eco-

logical validity, but the number of variables is enormous and difficult to control. Syn-

thetic ethology maintains both control and ecological validity by having the agents evolve

in a complete but simple synthetic world. Furthermore, because the mechanisms of be-

havior are transparent, synthetic ethology may facilitate the discovery of causal laws,

whereas the nervous-system complexity of animals defeats a detailed causal account of

behavior (at least with current technology). The goal of synthetic ethology, therefore, is

to discover fundamental scientific laws of great generality underlying intentional phe-

nomena in natural and synthetic systems. Once discovered, their applicability to natural

systems could be confirmed through ordinary ethological investigations and simulations.

3 Review of Early Results
In this section I will review, very briefly, our experiments demonstrating the evolution of

intrinsically meaningful communication in a population of simple machines (MacLennan,

1990, 1992, 2001, 2002; MacLennan and Burghardt, 1993). I will also mention some re-

lated experiments by other investigators, but I will not attempt a comprehensive literature

review.

3.1 One-symbol Communication

3.1.1 Method

In our first experiments we wanted to determine if it was even possible for genuine com-

munication to evolve in an artificial system (for additional detail, see MacLennan, 1990,

1992, 2001, 2002; MacLennan and Burghardt, 1993). Therefore, in order to put selective
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pressure on the evolution of communication we decided to select for behavior that would

be aided by communication, but could be accomplished less effectively without it. That

is, there should be something relevant to the agents for them to communicate about.

Therefore we decided to select for a kind of cooperation that would be more likely if one

agent had information about another agent that was not directly accessible to the first

agent.

Figure 1: Schematic of environment structure: outer ovals are local environments, central

circle is global environment, and spheres are agents.  This diagram shows only eight

agents and their local environments.

This requirement was satisfied by placing each agent in a local environment, the

state of which was directly accessible only to that agent. In accord with our goal of

keeping the experiments as simple as possible, each local environment was defined to be

in one of a small number L of discrete states; in this first series of experiments, L = 8.

Each agent could sense the state of its local environment, but not alter it. The states of the
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local environments were randomized periodically so that there would be no way to pre-

dict them.

In addition to the local environments associated with each agent, there was a sin-

gle global environment to which all the agents had access. It could be sensed by all the

agents but also modified by them. Thus the global environment provided a potential me-

dium for communication, but of course there was no built in requirement that the agents

use it for this or any other purpose. For simplicity, the global environment was restricted

to a small number G of discrete states; in these experiments, G  = 8.  See Fig. 1 for a

schematic diagram of the relation of the agents and environments.

Our agents were capable of only two kinds of behavior: they could emit (that is,

change the global environment) or they could act (attempt cooperation). An agent A at-

tempted to cooperate by trying to match the local environment state of a specific other

agent B. Since B’s local environment state was unpredictable, in the absence of some

form of communication the chances of a successful cooperation were 1/L. The object of

the attempted cooperation B was required to be the last emitter, that is, the last agent to

have changed the global environment.

These rules for cooperation may seem somewhat abstract and arbitrary. They

were chosen for their simplicity, since synthetic ethology does not require us to simulate

any particular natural system. Nevertheless, there is a sort of story we can tell that may

make them more comprehensible. When an agent A emits, it can be thought of as a call

that it needs help in dealing with something in its local environment. Another agent B

may respond by acting, but it will succeed in cooperating only if it acts in a way appro-

priate the agent A’s local environment. Be that as it may, in synthetic ethology we are

free to define the “laws of nature” in our synthetic world in whatever way required for

our experiments.

Our agents require some behavioral control mechanism, which allows them to

sense the state of the global environment and of their own local environment, and then to

behave in either of two ways: change the global environment to a particular value or at-

tempt cooperation of a particular kind. We use the notation emit (g) to denote the action

of changing the global environment to state g, and act (l) for the action of attempting co-

operation of kind l. In addition, it is useful if an agent’s actions depend on its own inter-

nal state, which can be thought of as the contents of its short-term memory. (In this first

series of experiments the agents did not have any memory, however.)

We have used two behavioral control mechanisms in our experiments, finite-state

machines (FSMs) and artificial neural networks (ANNs). In this first series of experi-

ments we used FSMs. If the machines have I internal states then there are IGL possible

conditions to which the machine must respond, and therefore IGL entries in its state tran-

sition table. In each of these conditions the table must determine a new internal state (I

possibilities) and either emit (G possibilities) or act (L possibilities). So there are I(G + L)

different ways the machines can respond to each condition. Since in this first series of

experiments I = 1 (no memory), there are GL table entries and G + L possible responses.

In particular, since G = 8 = L, there are 64 entries, each defining one of 16 responses.

(Henceforth we will assume I = 1 unless otherwise stated.)

It is worth observing that although the FSM is a simple behavioral control mecha-

nism, it has some subtlety in this application. This is because the behavior of an agent is

always determined by the combination of global, local, and internal state. Therefore, for
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example, the signal emitted for a particular local environment state depends also on the

global state and the internal state; that it, the signal emission is context-dependent. So

also, the way an agent responds to a signal in the global environment depends on its own

internal state (as we would expect), but also on its own local environment, another kind

of context-dependence. An agent’s response to each particular combination of circum-

stances is potentially unique; there is no built in ability to generalize over similar situa-

tions. Therefore if agents have evolved that are able to signal their local environment in a

context-free way, that is, independently of the global environment and their internal state,

it is because they have adapted to do this in every combination of global and internal state

with this local state. Likewise, to respond to a signal independent of context, the agents

must have this response for every combination of local and internal state. So the evolu-

tionary problem that the population has to solve is actually quite difficult. (We have also

investigated behavioral control mechanisms, such as ANNs, which do have some ability

to generalize.)

We also experimented with a simple form of single-case learning, which could be

enabled or disabled as an experimental control. When learning was enabled, it operated in

the following way. Suppose in global environment state g and local environment state l

the table for an agent defined the response act (m), that is, attempt to cooperate with ac-

tion m. Further suppose that this was the incorrect action, because the last emitter’s local

environment state was n. In this case the table for this agent will be changed to act (n)

under conditions (g, l). In other words, it is changed to what would have been the correct

action in these conditions. This is actually a very weak form of learning, since there is no

guarantee that action n will be correct the next time the global environment is g and this

agent’s local environment is l.

Our goal was to investigate communication in its environment of evolutionary

adaptedness, and therefore it was necessary for our population of agents to evolve. The

behavioral table of an FSM is represented simply by a “genetic string” of GL genes (rep-

resenting the possible conditions), each of which has G + L alleles (representing possible

responses to those conditions). This was coded simply as a string of GL numbers in the

range 0 to G + L – 1. This string defines the genotype of an agent, which is used to ini-

tialize its behavioral table when it is “born” (see below). The behavioral table, represent-

ing the agent’s phenotype is constant throughout the agent’s “life” if learning is disabled,

but if learning is enabled, the behavioral table (phenotype) may change according to the

learning rule.

Our goal was to select for cooperative activity, therefore we counted the number

of successful cooperations for each agent over a specified interval of simulated time.

Specifically, each agent was given several opportunities (5, in these experiments) to re-

spond to a given configuration of (randomly determined) local environment states. Then

the local environments were re-randomized and the agents were tested again; this was

repeated several times (10, in these experiments). The fitness of an agent was defined to

be the number of successful cooperations in this interval of simulated time, and thus re-

flects the rate of cooperation.

The preceding events are called a breeding cycle because at the end of them two

agents are chosen to “breed,” producing a single “offspring,” and one agent is chosen to

“die” and be replaced by that offspring. Thus the population size is constant (100 in these

experiments). The probability of choosing an agent to breed was made proportional to its
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fitness (rate of cooperation), and the probability of dying was inversely related to its fit-

ness. (Preliminary experiments showed that always choosing the most fit to breed and the

least fit to die led to premature convergence in the population.) After replacement of the

“dead” agent by the parents’ offspring, a new breeding cycle began, and the simulation

continued for a specified number of breeding cycles (5000, in most experiments).  The

initial populations had randomized genomes.

Genetic algorithms (GAs) typically replace the entire population after breeding,

thus defining non-overlapping generations. We decided to use incremental replacement

— one individual at a time — to allow a simple form of “cultural transmission” of learn-

ing, which we thought might be important when learning was enabled.

It remains to say how the genotype of the offspring was determined. The genetic

operators were similar to those used in GAs, but with minor differences. First, a genetic

string for the offspring was determined by two-point crossover of the parents’ genotypes.

That is, two uniformly random numbers k, l were chosen in the range 1 to GL. The off-

spring’s genes in the range k to l were taken from one parent, and those in the range 1 to k

– 1 and l + 1 to GL from the other. Finally, with low probability (typically 0.01) a random

gene was mutated by replacing it with a randomly chosen allele in the range 0 to G + L –

1. The resulting genetic string became the genome of the offspring and determined its

phenotype (initial behavioral table).

During these experiments we gathered several kinds of data in order to assess

whether communication had evolved in the population.  According to Burghardt’s defini-

tion of communication, if genuine communication is taking place then it ought to have a

demonstrable positive effect on the inclusive fitness of the population. Therefore the most

fundamental information we gathered was degree of coordination, defined as the average

number of cooperations per breeding cycle. We computed both the maximum and aver-

age for the population. The time series of these quantities (smoothed by a moving aver-

age) allowed us to track any progressive changes in the rate of cooperation in the popula-

tion and its best representative.

In order to be able to investigate any communication that might evolve, we also

compiled a co-occurrence table during each simulation. This was a G  L matrix in

which the (g, l) entry reflected the frequency with which global environment state g and

local environment state l co-occurred in a successful cooperation (that is, the correct ac-

tion l was performed). If no communication were taking place, then one would expect all

(g, l) pairs to be equally likely. On the other hand, if systematic communication were

taking place, in which certain global states g (“symbols”) are used to denote certain local

environment states l (“situations”), then one would expect a non-uniform distribution.

Furthermore, if communication were evolving in the population, then one would

expect to see a change in the co-occurrence matrix over time, from a uniform distribution

at the beginning of the simulation and becoming progressively more structured as com-

munication emerged. Therefore, we computed the co-occurrence table over the recent

history of the simulation (50 breeding cycles), so that it would reflect the behavior of the

population at a particular time. To quantify the degree of structure in the matrix we used

several measures, including entropy, coefficient of variation, and chi-square. By plotting

these quantities as a function of time we were able to see changes in degree of structure

as evolution progressed.
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Synthetic ethology affords much easier experimental control than natural ethol-

ogy, and we made use of it in these experiments.  The fundamental control addressed

Burghardt’s definition of communication: for genuine communication to be taking place

we would have to show that it was contributing to the inclusive fitness of the population.

Therefore we wanted to be able to compare the evolution of the population under condi-

tions in which it was possible for communication to evolve with those under which it was

impossible. Therefore we designed the experiments so they could be run with communi-

cation suppressed or not. To suppress communication, we randomized the global envi-

ronment state at every opportunity, in effect raising the noise level so high that the only

potential medium of communication was unusable. This allowed us to run parallel simu-

lations with genetically identical (random) initial populations differing only in whether

communication was suppressed or not.  The second major control that we used in this se-

ries of experiments was to enable or disable the simple learning rule described above.

This allowed us to do some preliminary investigations of whether learning facilitated the

evolution of communication or not.

3.1.2 Results

We ran over one hundred experiments with the parameters as described above. In most

cases we made three parallel runs with the same random initial populations: (1) commu-

nication suppressed, (2) communication not suppressed and learning disabled, and (3)

communication not suppressed and learning enabled. This allowed us to investigate the

effects of communication and learning independently of the initial population. Although

there was considerable quantitative difference from experiment to experiment, due to the

random initial populations and the many other random factors, nevertheless the qualita-

tive results were quite predictable. Therefore, in the following I will discuss a typical ex-

periment.

Analysis (MacLennan, 1990) shows that in the absence of communication agents

can be expected to exhibit a degree of coordination of 6.25 cooperations per unit time (1

breeding cycle, in this case). Indeed, when communication is suppressed we find that the

average degree of coordination begins at this value and stays very close to it. Neverthe-

less, linear regression shows a slight upward trend, 3.67  10
–5

 coops. / unit time / unit

time, a somewhat surprising result discussed later. The degree of coordination was up to

6.6 coops. / un. time after 5000 breeding cycles, and had been as high as 6.95 (see Fig. 2).
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Figure 2: Degree of Coordination: Communication Suppressed.

When communication was not suppressed (but learning was still disabled) the de-

gree of coordination began at the chance level, but increased at a rate of 9.72  10
–4

 coop.

/ un. time / un. time, a rate 26 times as great as when communication was suppressed.

After 5000 breeding cycles the degree of coordination was up to 10.28 coop. / un. time,

which is 60% higher than when communication was suppressed, and had been as high as

10.6 (see Fig. 3). This significant difference shows that the population is using the global

environment for genuine communication, since it has increased the agents’ inclusive fit-

ness.

Figure 3: Degree of Coordination: Communication Permitted with Learning Disabled.
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Figure 4: Degree of Coordination: Communication Permitted with Learning Enabled.

When communication was not suppressed and learning was enabled, the degree of

coordination began at about 45 coop. / un. time, which is much higher than the 6.25 ex-

pected with neither communication nor learning. This high level of coordination,

achieved before communication has evolved, is a consequence of the fact that an agent

has several opportunities to respond to a local environment configuration before the local

environments are re-randomized. So there is a baseline advantage to learning even in the

absence of communication. Over the 5000 breeding cycles, the degree of coordination

increased at a rate of 3.71  10
–3

 coop. / un. time / un. time, which is 3.82 times the rate

when learning was disabled and approximately 100 times the rate when communication

was suppressed. By the end of the simulation the degree of coordination had reached

59.84 coop. / un. time, which is 857% above that achieved when communication was

suppressed (see Fig. 4). Therefore learning reinforces the selective benefits of communi-

cation.

Finally, we must consider why there is a very slow increase in the degree of coor-

dination even when communication is suppressed. This results from the population

evolving to exploit a loophole in fitness determination rule by means of partial coopera-

tion. Recall that a cooperation is judged to have taken place only if the action of an agent

matches the local environment of the last emitter. (To allow it to match any local envi-

ronment would increase the probability of chance cooperation too much, decreasing the

selective pressure.) Therefore the population can increase the probability of cooperation

by co-evolving so that agents emit only in a small subset of local environment states and

only act in ways appropriate to this same subset. As a further consequence we observed

that in long simulations with communication suppressed, the uniform co-occurrence ma-

trix would become slightly structured due to attempted cooperations being attempted in

only a subset of the local environment states (see below). This explanation was confirmed

by Noble and Cliff (1996). It is worth emphasizing that these simple agents found a way

to improve their performance that was not anticipated when we designed the experiment,

and that required some investigation in order to explain.
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We can get more information about the agents’ evolved ability to communicate by

inspecting the co-occurrence tables. As previously mentioned, we quantified the structure

of the tables by several measures, including entropy. For G  = 8 = L the maximum en-

tropy, which occurs with a uniform distribution, is Hmax = 6 bits. For comparison, we can

compute the entropy for an ideal code, in which there is a one-to-one correspondence

between global and local environment states; it is Hideal = 3 bits.

Table 1: Co-occurrence Matrix: Communication Suppressed

sym. 0 1 2 3 4 5 6 7

0 94 130 133 34 166 0 150 682

1 16 105 279 228 261 307 0 118

2 0 199 229 12 0 0 161 274

3 95 19 93 283 669 89 0 201

4 1 97 212 200 112 0 0 0

5 28 135 84 8 600 215 0 351

6 0 0 0 118 59 70 0 690

7 0 33 41 0 371 0 0 0

When communication was suppressed, the entropy started at approximately 6 bits, but by

the end of 5000 breeding cycles had decreased to 4.95. This resulted from partial coop-

eration, as already discussed. An inspection of the co-occurrence matrix (Table 1)

showed that there was little or no cooperation in a subset of the local environment states

(e.g., 0 and 6).

Figure 5: Entropy: Communication Permitted with Learning Disabled.
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Table 2: Co-occurrence Matrix: Communication Permitted with Learning Disabled

sym. 0 1 2 3 4 5 6 7

0 0 0 2825 0 500 20 0 0

1 206 0 0 505 999 231 2 0

2 1 0 0 277 39 4935 1 2394

3 385 1 1 94 0 0 1483 1

4 0 292 0 0 19 555 0 0

5 0 0 1291 0 0 144 0 0

6 494 279 0 403 0 1133 2222 0

7 140 2659 0 202 962 0 0 0

When communication was not suppressed (but learning was disabled) the entropy de-

creased to 3.87 bits, which is much closer to Hideal = 3 bits (see Fig. 5). Visual inspection

of the co-occurrence matrix (Table 2) reveals much more systematic use of the global en-

vironment as a communication medium. Sometimes a global environment state denotes a

single local environment state almost exclusively, and vice versa. We also find examples

of ambiguity, in which a global state denotes primarily two local states, and synonymy, in

which two global states denote the same local state. Other complexities, typical of natural

communication, also appear. The occurrence of ambiguity and synonymy in the popula-

tion’s communication could result from competing “dialects” in the population or from

inconsistent signal use by individual agents (or by both in combination). Experiments by

Noble and Cliff (1996) seem to have ruled out the dialect explanation.

Table 3: Co-occurrence Matrix: Communication Permitted with Learning Enabled

sym. 0 1 2 3 4 5 6 7

0 3908 29172 1287 12281 2719 1132 93 3836

1 191 634 107 1039 0 0 2078 0

2 4675 1306 0 37960 85 410 7306 26611

3 0 410 0 0 0 126 1306 304

4 0 0 353 62 575 1268 420 519

5 36 0 46 469 0 0 0 26

6 1075 156 0 0 0 951 0 1086

7 0 73 54 0 2764 135 461 102

When communication was not suppressed and learning was enabled, then the entropy

achieved in this experiment was 3.91 bits, about the same as in the non-learning case (see

Table 3). This is typical; sometimes it is a little larger than the non-learning entropy,

sometimes a little less. Table 4 summarizes the entropy and coefficient of variation under

the three experimental conditions.

Table 4: Summary of Order Measures

Communication/Learning
Measurement Random

N/N Y/N Y/Y
Ideal

Coefficient of Variation, V  0  1.27  2.13  2.39  2.65

Entropy, H (bits)  6  4.95  3.87  3.91  3
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It is worth stepping back from these experiments to stress an important point. The sym-

bols used by the population, as recorded in the co-occurrence matrices, are meaningful to

the agents themselves, because they are relevant to the inclusive fitness, indeed to the

continued existence, of the agents. That is, the symbols exhibit intrinsic intentionality, not

a derivative intentionality coming from us as designers or observers of the system. In-

deed, we cannot know the meaning of the individual symbols except by studying their

use as reflected, for example, in a co-occurrence matrix, and compiling a “dictionary”

based on observation (see MacLennan, 1990, for examples). Indeed, any meaning the

symbols have for us is derived from the intrinsic meaning of the symbols to the synthetic

agents.

Now certainly these agents are very simple, and they do not have any awareness

of the meaning of the symbols; their response is purely mechanical. But conscious

awareness is not necessary for intrinsic intentionality and meaningful communication,

which can be found in microorganisms with no (or very little) awareness. Thus synthetic

ethology provides a means of investigating intrinsic intentionality in its barest, simplest

form, which is exactly where experimental investigations should begin.

Neuroethology seeks to understand the neural basis of a species’ behavior in an

evolutionary context, but neuroethological investigations are difficult because of the

complexity of nervous systems, the slow pace of evolution, and the difficulty of doing

controlled experiments. On the other hand, in synthetic ethology we are dealing with

simpler agents and their behavioral control mechanisms are completely transparent for

investigation. If some interesting behavior evolves in a population, then we can “dissect”

the members of the population and determine their entire behavioral control system (see

MacLennan, 1990, for examples). In particular, if, as in these experiments, the agents

evolve to exhibit intrinsic intentionality, then we can completely explicate the mechanism

underlying that intentionality; there can be no “ghost in the machine.” Thus synthetic

ethology provides a means of bridging the gap between inherently mental phenomena,

such as intentionality, and the physical processes supporting them.

3.2 Other Experiments

I’ll briefly review some of our other early experiments in synthetic ethology.  One simple

extension to the preceding experiments was to test the population’s evolution of the abil-

ity to communicate by emitting and recognizing sequences of two signals. To create se-

lective pressure toward this result, we reduced the number of global environment states to

G = 4 while keeping the local environment states L = 8; thus there were not enough

global environment states to uniquely denote the local environment states. Of course, us-

ing sequential signals requires that the agents be able to remember the signals they have

already generated as well as those they have already recognized. Therefore we increased

the number of internal (memory) states to I = 4. As a consequence, the agents’ genomes

contained 128 genes with 48 alleles each. In other respects the setup was the same as our

previous experiments.
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Table 5: Co-occurrence Matrix: Communication Permitted with Learning Disabled

(Two Symbols)

sym. 0 1 2 3 4 5 6 7

0/0 31 22 42 0 144 0 0 0

1/0 26 15 62 0 175 0 0 0

2/0 119 23 44 0 47 0 0 0

3/0 8 9 18 0 31 0 0 0

0/1 0 54 106 2 74 59 516 0

1/1 0 33 174 3 423 227 1979 0

2/1 0 23 65 17 139 74 125 0

3/1 0 1 24 0 48 96 51 0

0/2 50 4 4 366 7 0 8 42

1/2 35 9 0 32 1 0 6 44

2/2 52 76 0 112 7 0 13 135

3/2 52 6 1 215 2 0 2 78

0/3 0 2 13 17 0 3 0 0

1/3 0 66 19 6 0 4 0 0

2/3 0 33 61 27 0 2 0 0

3/3 0 39 38 8 0 0 0 0

Two-symbol communication was comparatively slow to evolve and never reached the

same degree of organization as we observed for single-symbol communication. For ex-

ample, the co-occurrence matrix (Table 5) shows that, for the most part, the meaning is

conveyed by the second (i.e., most recently received) symbol. Thus the local environment

state 5 is denoted primarily by signals 0/1, 1/1, 2/1, and 3/1. On the other hand, there are

some cases in which both symbols have meaning: although 0/0, 1/0, and 3/0 denote pri-

marily state 4, 2/0 denotes primarily state 0. Furthermore, order is significant, because

0/2 denotes primarily state 3.

Figure 6: Entropy: Two-symbol Communication.
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Although we ran experiments considerably longer than the 5000 breeding cycles

used in the preceding experiments, two-symbol communication never seemed to evolve

much beyond the level of organization shown in Table 5. This is displayed clearly in Fig.

6, which shows the entropy of the co-occurrence matrix. Over 5000 breeding cycles it

decreases from Hmax = 7 bits to about H = 4.5 bits, at which point it stalls, still well above

Hideal = 3 bits. Changes to the fitness calculation formula and other experimental pa-

rameters (such as population size) did not seem to have much effect on the qualitative

result.

In retrospect it is not surprising that these agents did not do better (indeed, it is

somewhat remarkable they did as well as they did), for they were being asked to solve a

very hard problem. Consider the problem of an agent trying to transmit its local environ-

ment state by a two-symbol signal. Since every emission depends on the combination of

local, global, and internal state, any change by another agent to the global environment

will probably disrupt the first agent’s emission of the second symbol. Also observe that

there is no global environment state that represents the absence of a symbol; therefore

there is no way to determine the beginning or ending of a transmission, which means that

it is difficult for the population to make use of the distinction between, for example, 2/0

and 0/2. Finally, since every agent must act or emit on every cycle (there is no “do noth-

ing” operation), the only way an agent can avoid a premature attempt at cooperation after

receiving the first symbol is be emitting a symbol, which will probably change the global

environment and prevent any other agents from receiving the first symbol. Clearly the

experiments could be designed differently to avoid these difficulties, and so we explored

several alternatives.

For example, Crumpton (1994) studied a system in which (1) in each time slice

the agents cycled twice, thus giving them the opportunity to emit or recognize two sym-

bols without interference from other agents, and (2) agents could “do nothing” in addition

to acting or emitting; other parameters were the same. In these experiments he observed a

significantly higher use of non-repeating symbol pairs than in the preceding experiments,

but the entropy level attained was about the same.

3.3 Related Work

As previously noted, Noble and Cliff (1996) replicated our earliest experiments on the

evolution of communication (Maclennan, 1990, 1992; MacLennan & Burghardt, 1993)

and extended them in several informative ways. In addition to investigating partial coop-

eration and ambiguous and synonymous symbols use, as already mentioned, they investi-

gated the effect of the order in which agents were serviced in the simulations.

Werner and Dyer (1992) also demonstrated the evolution of communication by

synthetic ethology. They used neural network-controlled agents of two kinds, “male” and

“female,” which had to find each other in order to mate. The females were immobile, but

could determine the location of the males, who were blind but mobile. In their experi-

ments the population evolved so that the females signaled the males how to find them.

Their experiments contrast with ours in a number of ways. For example, they

chose to select for a more naturalistic process (mating), whereas we used a more abstract

form of cooperation, as permitted by synthetic ethology. Also, they used ANNs, whereas

we used FSMs, because they are more easily “dissected.” Nevertheless, Werner and

Dyer’s experiments demonstrate that the evolution of communication in synthetic worlds
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is not restricted to the kinds of agents, selective pressures, etc. that we designed into our

experiments. Rather, it suggests that synthetic ethology may reveal general phenomena

that transcend the particular details of individual experimental designs. To confirm this

hypothesis we will have to perform many diverse synthetic ethology experiments.

4 Reconsideration and New Directions
In this section I will address some lessons that we learned from our synthetic ethology

experiments and consider some important new directions.

4.1 Making Real Worlds Inside a Computer

In the spirit of keeping the experiments as simple as possible while still exhibiting the

phenomena of interest, most of our synthetic ethology experiments have made use of a

very simple world, in which the states about which the agents communicated were simple

and unstructured. The communication system that they evolved was similarly simple, as

were the agents’ “psychological states.” More structured systems of communication and

psychological states would be expected to evolve in order to cope with a more structured

environment. For example, we would not expect to observe the evolution of a language

including nouns, adjective, and verbs unless the synthetic world included objects, proper-

ties, and actions of various kinds. Nor, in the absence of these, would we expect the evo-

lution of propositional mental states. We could, of course, build a more structured syn-

thetic world, but there is a pitfall we must avoid in order to investigate these more com-

plex phenomena through synthetic ethology.

As mentioned, the obvious approach to studying more complex communication,

psychological states, etc. is to populate the synthetic world with various sorts of macro-

scopic objects (including other agents) with various sorts of properties. However, no

matter how many objects and properties we build into such a system, it will still be unre-

alistically simple compared to any natural environment. The sum-total of things that can

occur in such a world will be limited to the combinations of built-in objects and proper-

ties. This is not a problem for some investigations, but if are trying to understand how

animals parse the complexity of the natural world into meaningful categories, then by

constructing our synthetic world in this way we will be begging the question, since we

will have built the categories into the basic structure of the world. For example, if we

build into our system two kinds of agents (which we think of as predator and prey), and

we build in a behavior (which we think of as the predator killing the prey), then it is not

such a surprise if our agents discover categories corresponding to predator, prey, and

predator-kills-prey. In the natural world, in contrast, there is not such a simple relation-

ship between the structure of the world and the categories used by humans and other

animals. Even simple sensory categories are radically underdetermined (Steels, 1997a,

1997b). Therefore, if we want to use synthetic ethology to study the emergence of catego-

ries, we must be careful not to build them in from the beginning.

If we don't build objects and properties into our synthetic world, how will they get

there? Here we may take a hint from the natural world, in which objects and properties

are emergent phenomena arising from the interaction of fundamental particles. Thus, in

physical terms, when we say, “the fox sees the hare,” we are giving a high-level, ap-

proximate description of a situation in which the particles constituting the hare are inter-

acting with the particles of the fox through the intermediary of photons. From a physical
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perspective, only the particles and their interactions are real in a primary sense; the fox,

hare, and act of seeing have only derivative reality, as high-level descriptions of funda-

mental physical reality. Therefore, if we want to study the emergence of meaning (for the

hare, in this example, is meaningful to the fox), then we cannot begin with macroscopic

objects and relations (e.g., fox, hare, sees), for then we have simply encoded our mean-

ings in the synthetic world. Rather, we must allow meaning to emerge from underlying,

fundamentally meaningless processes, as it does in the natural world.

How can this be accomplished? One way would be to simulate the real world at

the level of elementary particles (or strings) and allow meaning to emerge in macroscopic

objects, just as it does in the natural world. However, aside from the computational im-

possibility of doing such a simulation, the shear complexity of the system (comparable to

nature itself) would limit our ability to understand it. The goal of synthetic ethology is to

investigate experimentally systems that are as simple as possible while still exhibiting the

phenomena of interest (in this case, the emergence of meaning).

We do not want (and cannot have) the complexity of the natural world in our

synthetic worlds, but we can use a simpler version of the same separation of levels. By a

judicious choice of microscopic objects and interactions to build into our world, we can

have emergent macroscopic objects and interactions with a rich and unpredictable struc-

ture. The agents, which are macroscopic objects whose fundamental interactions with the

environment are at the microscopic level, will have to construct whatever macroscopic

categories they need. In this way we will not “rig the game” by building them in from the

beginning, although of course they are implicit in the microscopic objects and interac-

tions.

It may seem implausible that we could design a synthetic world that is, on the one

hand, complex enough to exhibit emergent objects, properties, and interactions, and is, on

the hand, simple enough to be computationally tractable and transparent to investigation.

At present, this is a topic for investigation, but I can offer one example of a possible ap-

proach.

It is well known that cellular automata (CAs), such as Conway’s “Game of Life,”

can exhibit rich emergent behavior. Although the individual cells interact with their

neighbors in a simple way, in “Life” we can observe the emergence of moderately-sized

macroscopic objects that are able to maintain their shape, move through space, and inter-

act with other macroscopic objects. This emergent behavior is especially characteristic of

CAs whose transition rules have been designed to place them at the “edge of chaos”

(Wolfram’s class IV).

Therefore we can imagine designing a synthetic world based on CAs in which

agents interact with the emergent objects in terms of cell-level interactions. The agents

themselves need not be modeled by CAs (although I will consider that possibility below),

but their sense organs and effectors must operate at the cell level, for that is the only level

of the environment that is real (in the synthetic physics). Higher-level interactions are

emergent from these lower level ones, presumably through adaptive processes such as

evolution and learning. Just as, according to our interests, we may categorize macro-

scopic “Life” configurations (e.g., as “gliders”) and their group behavior (e.g., as “trans-

lation”), so we can expect synthetic agents to develop categories of objects, relations, and

actions that are relevant to them. The behavior of the agents may be controlled by non-

cellular processes, such as neural networks, production rules, or FSMs. We may construct
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the physics of our synthetic world so that agents must interact with the environment (or

with other agents via the environment) in certain ways (defined in terms of elementary

cell properties) in order to survive and reproduce.

It might be argued that CAs are not much like the physics of the natural world

(although Wolfram has argued the contrary), but that is not important. Again, our goal in

synthetic ethology is not to simulate any specific natural system. So for studying the

emergence of meaning it does not matter that the CA does not model the fundamental

physical processes of our world, or that the emergent objects do not correspond with

macroscopic objects in our world.

4.2 Artificial Embodiment

A similar limitation of conventional simulations arises in connection with embodiment.

We understand better now the essential role played by embodied interaction with an envi-

ronment as a foundation for genuine intelligence (see below). Also, the fundamental test

of an agent’s intelligence is how well it can cope with the natural world (especially its

EEA), and it is arguable whether a truly intelligent system can exist in the absence of

embodiment. This had led some researchers to conclude that artificial intelligence re-

search should be conducted in the context of autonomous robots operating in the natural

world (e.g., Brooks, 1986, 1997; Steels, 1997a, 1997b). I’ll briefly consider the issues.

We agree that autonomous robotics provides the fundamental benchmark of

genuine intelligence, but it is a complex and difficult approach, because the building of

robots may be slowed by problems of mechanical and electrical engineering and physical

construction that have no direct relevance to artificial intelligence. On the other hand,

decades of AI research have shown that investigation of simulated agents in simulated

worlds (micro-worlds) is inadequate to address the fundamental issues of embodied in-

telligence; simulated worlds do not have the complexity, unpredictability, uncertainty,

openness, and genuine novelty of the natural world (Dreyfus, 1997).

For example, in a micro-world, if an agent is told move-to (23, 488), it can be ex-

pected to move to that location; if it tests ahead (rock) it can be expected to determine

reliably whether there is an object of type rock in front of it; and if it executes grasp

(rock) it can be expected to be in the state of holding the rock. However, for an autono-

mous robot moving in a natural environment, all these assumptions are problematic. In

attempting to move to a location, it may encounter an obstruction, get stuck, or topple

over; it may be difficult to determine if there in an object ahead of it, and if it is a rock;

and the attempt to grasp the rock may fail, or the rock may slip out of its grip later. These

are among the myriad problems faced by real autonomous robots (and by insects crawl-

ing through the undergrowth), which are left out of micro-world simulations. Of course,

we can build such hazards into the simulation: randomly distribute some simulated ob-

stacles, introduce noise or a probability of misclassification, allow an object to be

dropped with some probability, etc. However, the problems that occur will be just those

we have built into the simulation; genuine surprises cannot arise, because the modes of

failure are predefined, just like the objects, properties, and actions.

In the foregoing I have focused on the problems that are faced by autonomous ro-

bots, but are missing from micro-world simulations. However, autonomous robots may

have some advantages compared to their disembodied counterparts. There is a great deal
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of information that every animal knows implicitly just by virtue of having a physical

body.

In both biology and situated, embodied robotics (Brooks, 1997), higher-level fac-

ulties are built upon lower-level faculties, and intelligence emerges from the interaction

of less intelligent components. The foundation of this pyramid consists of low-level sen-

sory and motor modules in direct, dynamic physical interaction with the real world. As a

consequence, such intelligence is always grounded in the real world. Further, low-level

sensory-motor competencies, such as the ability to perceive structure in visual and audi-

tory inputs, and the ability to sequence and coordinate motor activities, provide a neuro-

logical basis for higher faculties such as language, propositional thought, and planning

(see also Moravec, 1984).

Another advantage of embodiment is that by being situated in the real world, a

robot can often avoid having an internal model of the world; the external world provides

the only model necessary (Brooks, 1997). This is one of the ways that simple animals,

such as insects, are able to accomplish complex tasks without elaborate mental models (a

principle called stigmergy; see Camazine, Deneubourg, Franks, Sneyd, Theraulaz, and

Bonabeau, 2001, pp. 56–59, ch. 19). As Simon (1969) and others have observed, complex

behavior may emerge from a simple agent interacting with a complex environment, and

so complex intelligent behavior may arise as much from the interaction of the agent with

its environments as from the agent itself (insects, especially social insects, are again an

example).

As a consequence of the foregoing considerations, we are faced with a research

dilemma. On the one hand, we realize the inadequacy of micro-world approaches and the

necessity of studying intelligence in the context of embodied agents situated in a com-

plex, unpredictable environment. On the other, autonomous robotics research is difficult

and expensive, and plagued by many engineering problems only peripherally related to

the scientific study of intelligence. Therefore we would like is to bring the relative sim-

plicity of micro-worlds to the investigation of embodied, situated intelligence.

We believe that synthetic ethology may provide such a compromise. The goal is a

real but synthetic world (inside the computer) that is simpler than the natural world, but is

unpredictable and open, and so can serve as an environment in which genuine intelli-

gence may function. As before, the approach is to construct the synthetic world at the mi-

cro level, so relevant objects and behaviors emerge at the macro level; in this way we

may expect genuine novelty, open-endedness, unpredictability, and uncertainty. However

these objects must include the agents themselves, so that the microscopic physics of the

synthetic world is sufficient for everything that takes place in it, agent behavior as well as

environmental processes. The result will be a synthetic real world, simple but complete,

in which we can investigate the evolution and adaptive functioning of (genuinely) intelli-

gent agents.

It seems likely the CA model previously described could be extended to incorpo-

rate the agents. An agent would correspond to a macroscopic configuration of CA cells,

which would define the agent’s behavior. It is well known that the “Life” CA can be con-

figured to compute (e.g., implementing logic gates or simulating a Turing machine), but

we have not decided the best approach to use for synthetic ethology. We do not necessar-

ily need computational universality, and it should be as simple as possible, for the sake of

experimental control as well as computational efficiency. Further, to ensure that the
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agents become coupled with their environment, the synthetic world must support the

evolution of the population in some form.

5 Conclusions
We have described synthetic ethology, a scientific methodology in which we construct

synthetic worlds in which synthetic agents evolve and become coupled to their environ-

ment. Such a world is complete — in that it defines all the conditions for the survival and

reproduction of the agents — but it is simple, which permits greater experimental control

than does the natural world. As a result we can perform experiments relating the mecha-

nisms of behavior to social phenomena in an evolutionary context. We presented several

examples of such experiments, in which genuine (i.e., not simulated) meaningful com-

munication evolved in a population of simple agents. The communication was intrinsi-

cally meaningful to the agents, but only indirectly meaningful to us, as observers. These

experiments demonstrate intrinsic intentionality arising from a transparent mechanism.

Finally we discussed the extension of the synthetic ethology paradigm to the problems of

structured communications and mental states, complex environments, and embodied in-

telligence, and suggested one way in which this extension could be accomplished. In-

deed, synthetic ethology offers a new tool in a comprehensive research programme in-

vestigating the neuro-evolutionary basis of cognitive processes.
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