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Abstract:  The efficient enumeration of maximal cliques has applications in microarray analysis and 
a number of other foundational problems of computational biology.  In this paper, we analyze and 
test existing maximal clique enumeration algorithms for various classes of graphs. The classic 
branch and bound algorithm of Bron and Kerbosch proves to be relatively fast for sparse graphs, but 
slows considerably as edge density increases.  Attempts to improve this algorithm are discussed.  
Experimental results demonstrate the difficulty of making improvements, especially when analyzing 
the overlap between cliques.  Novel strategies for maximal clique enumeration algorithms are also 
described and placed in the context of ongoing research. 
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1. Introduction and Background 
 
Clique is a well-known NP-complete problem.  Its decision version is typically formulated as 
follows: 

• Input: A graph G = (V, E) and a positive integer k ≤ |V|. 
• Question: Is there a subset V' of V with |V'| ≥ k for which every pair of vertices in V' is joined 

by an edge in E? 
 
In many applications, clique is posed as an NP-hard optimization problem without the parameter k.  
Thus the input is just a graph, and the question asked becomes what is the size of the largest clique in 
G?  Clique may also arise as a search problem, where one seeks to find the largest clique in G.  
These problem variants are termed “maximum clique.” In addition, we often want to solve “maximal 
clique.”  Here the usual goal is to enumerate all maximal cliques, each of which by definition cannot 
be contained as a subgraph in any larger clique.  It is not hard to see that a graph with n vertices can 
have as many as 3n/3 maximal cliques[1], of which some (but very rarely all) are of maximum size.  
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Clique is well known for its utility in a wide variety of application domains [2].   Here we 
concentrate on its relevance to computational biology.  Even a cursory search of the PubMed 
literature (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) reveals a myriad of uses.  Applications for 
powerful new maximum clique tools arise, for example, in the context of cis regulatory motif finding 
[3], microarray analysis [4], and the study of quantative trait loci [5].  They have also been 
incorporated into the construction of ClustalXP [6], a high performance parallel version of the 
highly-popular ClustalW package.  
 
In this paper we investigate, analyze, compare, 
and improve on existing maximal clique 
enumeration algorithms for various classes of 
graphs.  Four algorithms are chosen for our 
study.  The first two are similar recursive 
algorithms [7].  The third is an innovative 
approach that eliminates repetitive search of the 
same problem space [8].  The fourth is a brute 
force algorithm based on random set generation.  
Each of these algorithms is challenged with 
graphs derived from real microarray data, and 
normalized with both the MAS5.0 and RMA 
software packages.  It is worth pointing out that 
each package has its supporters, yet each often 
produces markedly different end results.  This 
can be seen in Figure 1, in which the X axis 
displays subranges of correlation coefficient 
values normalized to [-1,1], and the Y axis 
represents the number of coefficients with values in each subrange. 
 
2. The Base BK Algorithm  
Published in 1973, the base maximal clique enumeration algorithm [7], called herein Base BK, 
utilizes a recursive branching strategy. It mainly consists of maintaining three dynamically changing 
sets:  

• COMPSUB, a global set containing the current growing (or shrinking) clique, 
• CANDIDATES, a local set holding all vertices that will eventually be added to the current 

COMPSUB, and 
• NOT, a local set containing all vertices that have been previously added to COMPSUB.   

The algorithm is performed by a function dubbed EXTEND, which operates as any recursive 
backtracking algorithm.  It can be viewed as a depth-first traversal of a search tree. At each node of 
the search tree, EXTEND selects a vertex, v, from CANDIDATES.  This vertex is removed from 
CANDIDATES and added to COMPSUB.  Local sets NEW_CANDIDATES and NEW_NOT are 
generated, where NEW_CANDIDATES is the intersection of CANDIDATES and the neighborhood 
of v.  Similarly, NEW_NOT, is the intersection of NOT and the neighborhood of v.  If 
NEW_CANDIDATES and NEW_NOT are empty (i.e. no vertex remains that is completely 
connected to COMPSUB), then COMPSUB is a maximal clique, and EXTEND returns.  Otherwise, 
EXTEND is called again, passing sets NEW_CANDIDATES and NEW_NOT as arguments to 
become the child node’s CANDIDATE and NOT sets, respectively.   
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Returning from EXTEND causes the most recently added vertex to be removed from COMPSUB 
and added to NOT.  To illustrate the usefulness of this action, note that for each already-examined 
vertex v of CANDIDATES, EXTEND must have found all maximal cliques containing v. Adding v 
to NOT means that, from the current search tree node, we do not try to find any other maximal clique 
containing v.  EXTEND then selects a new v, iterating through the described actions, returning either 
when, as mentioned, it finds a maximal clique, or when set CANDIDATES is exhausted. 
 
 
3. The Improved BK Algorithm 
 
The second and more popular algorithm, published in the same paper as Base BK and   called herein 
Improved BK, follows the branching blueprint laid out by the Base BK algorithm, but also takes 
some measures to limit the number of branches traversed.  Its worst-case time complexity has only 
very recently been proven to be O(3n/3) [9].  Its main difference from the Base BK algorithm lies in 
its choice of the selected vertex at each node of the search tree.  Instead of function EXTEND 
choosing vertices in the order they are presented in the CANDIDATES set, this algorithm chooses a 
vertex with the largest number of connections to the other vertices in CANDIDATES.  If there is 
more than one such vertex, EXTEND chooses any such vertex found.  Additionally, when EXTEND 
chooses a new selected vertex after a return from a child node, it will only consider vertices that are 
not connected to the current v.  The rationale for this is as follows.  If at any point, the set NOT 
contains a vertex u that is connected to all vertices in the sets CANDIDATES and COMPSUB, then 
it is not possible to generate maximal clique(s) by expanding COMPSUB with the vertices in 
CANDIDATES because any clique so formed could only be maximal if it also contained u (such 
cliques were generated when u was the selected vertex).  Therefore, upon return from a child node, 
EXTEND should ensure that the vertex chosen as the new selected vertex is disconnected from the 
vertex that is being added to NOT.  The initial choice of a highly connected vertex minimizes the 
remaining vertices in CANDIDATES that are valid selections. 
 
Such minimization clearly reduces the number of branches that would otherwise need to be 
traversed.  This modification is, of course, only useful if the time spent finding vertices of maximum 
degree is less than the time that would have been spent exploring the eliminated branches of the 
search space.  The expectation is that this algorithm would be a better choice for graphs with a large 
number of highly overlapping cliques.  Under these settings, the algorithm should encounter the 
boundary condition more frequently to provide the greatest 
advantage.  On the other hand, the Base BK algorithm should 
be faster when there is little overlap among cliques or when 
the number of cliques is sufficiently small. 
 
4. The Kose RAM/Disk Algorithm 
 
The algorithm of [8] takes a very different approach than the 
recursive branching procedures previously described.  It 
takes advantage of the fact that every clique of size k, where 
k ≥ 2, is comprised of two cliques of size k-1 that share k-2 
vertices.  This basic principle is illustrated in Figure 2.  The 
algorithm takes as input an edge list with the edges (2-
cliques) listed in non-repeating, canonical order and builds from it all possible 3-cliques (Top row of 
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Figure 2).  Any 2-clique that cannot become a component of a 3-clique is declared maximal and 
output.  When all 3-cliques are generated, the 2-clique list is deleted.  The algorithm then attempts to 
build 4-cliques from the previously constructed set of 3-cliques using the same procedure (Bottom 
row of Figure 2). This procedure of enumerating maximal cliques is repeated in the increasing order 
of clique size until it is no longer possible to build a larger clique. This algorithm prevents repetitive 
generation of non-maximal clique components in the search for maximal cliques, since it once 
generated, such components are treated as a cohesive unit. This is in direct contrast to the other 
algorithms discussed in this paper.  Unfortunately, the algorithm also has some less than appealing 
features.   

• First, it is evident that building cliques in this manner requires maintaining both the (k-1)- 
and k-clique lists.  This consumes an enormous amount of space if the in-core 
implementation, herein called Kose RAM, is used.  For graphs of any realistic size and 
density (for the target domain of computational biology), it is not feasible for a typical 
workstation to keep these lists in main memory.  If the lists are stored on disk as with the 
Kose Disk implementation, on the other hand, a tremendous amount of overhead would be 
incurred from disk I/O operations.   

• Second, the algorithm has a hidden cost.  Every time a k-clique is formed, all (k-1)-cliques 
contained within the new clique must be marked as used; else they might be mistaken for 
maximal cliques.  This cost is not negligible, because it requires a search of the entire (k-1)-
clique list, which can occupy on the order of 2n memory cells in the worst case.  

 
5. The Brute Force Algorithm 
 
The last method we employ is a brute force algorithm that may seem as the most basic of clique 
enumeration techniques. It has some useful features, however.  The main idea here is to use the 
primary parameter associated with the clique problem: the clique’s size.  Employing a user-
determined maximal clique size, k, this algorithm can eliminate many useless attempts quickly. It 
applies pre-processing techniques that could reduce the graph size, then enumerates maximal cliques 
of size exactly k.   Pre-processing consists of removing all low-degree vertices, that is, vertices 
whose degree is less than k-1.  Such vertices are not members of any k-clique.  Repeating this 
process may lead to more reductions since a vertex of degree more than k-1 may lose some of its low 
degree vertices and in fact could become a low-degree vertex itself. 
 
After preprocessing is applied, the algorithm proceeds by generating all k-sets and testing each to 
determine if it is a maximal clique.  Once all k-sets have been tested, k is decremented by one, and 
the process is repeated.  Although this algorithm was likely to perform poorly in comparison to the 
others employed, it is chosen for its ability to enumerate maximal cliques in descending order of the 
clique size, a feature that would be extremely useful in many applications. 
 
6. Applications and Experimental Analysis 
 
One of the holy grails of cellular biology is the elucidation of gene regulatory networks.  With these, 
all life forms utilize cellular components and modulate interactions to carry out specific functions. 
One of the simplest such networks consists of the set of less than twenty genes and their products 
that are responsible for regulation of lactose metabolism in the bacterium Escherichia coli [10].  
However, most networks, particularly those in advanced organisms, are more extensive and can 
involve hundreds of genes.  Until recently, available experimental methods of investigating such 
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networks allowed researchers to observe only a few genes at a time.  With such limitations, it took 
decades to understand even the smallest of networks. 
 
6.1 Clustering versus Maximal Clique Enumeration 
 
In order to comprehend the interactions within and among larger networks, a way to observe the 
actions of a large number of genes in response to any experimental stimulus is needed.  This is now 
possible with DNA microarrays, which are capable of testing an entire genome (all genes in a cell) 
simultaneously.  Unfortunately, it is not a simple task to interpret such a mass of information, 
particularly considering the noise inherent in all biological experiments, and particularly in 
microarray experiments.  A first goal in analyzing microarray data in relation to gene regulatory 
networks is to be able to group genes that exhibit similar responses to series of specific stimuli.  This 
implies that the genes may be co-regulated and therefore acting within the same network. 
 
In this case, clustering must be accomplished a priori, as typically there is insufficient knowledge 
about the system or systems being studied to permit a training phase.  This lack of information also 
makes determining the correctness of the clustering impossible without extensive and time-
consuming laboratory experiments to verify the results.  Instead, clusters are used for their probative 
value in order either to generate new hypotheses to be tested or to evaluate those that already exist. 
 
For this application, maximal clique enumeration has three attractive features that are lacking in 
other popularly used techniques.  First, cliques are, by nature, one of the most stringent similarity 
measures.  This affords the advantage that any genes that are members of a clique are highly likely to 
be co-regulated.  This level of stringency does not effectively cope with noise, but the noise issue 
can be addressed by a variety of methods.  Second, maximal clique enumeration permits transcript 
membership in multiple cliques.  This is a significant advantage, because it is common for a gene to 
participate in multiple networks.  Forcing such a gene into one cluster not only loses critical 
information, but also has the potential to significantly skew subsequent classifications.  Finally, it is 
not necessary to know or be able to infer in advance the expected number of clusters, a value that is 
rarely available for microarray data.  Supplying an incorrect value to an algorithm that required such 
would clearly invalidate any result. 
 
6.2 Graphs Derived from Microarray Data 
 
The microarray data described in this section was the courtesy of Dr. Robert W. Williams and Dr. 
Elissa J. Chesler from the Department of Anatomy and Neurobiology of the University of Tennessee 
in Memphis.  The Affymetrix U74Av2 array was used to test 12,422 probe sets in samples from the 
brain of Mus musculus (mouse).  Each sample consisted of tissue from three genetically identical 
mice.  One sample was collected from each of the three related recombinant inbred strains of mice, 
bred such that each strain was a genetic mosaic of the parental strains (C57BL/6J and DBA/2J).  In 
other words, a gene in one of the recombinant inbred strains has an equal chance of having been 
inherited from the C57BL/6J or DBA/2J parental strain.  The difference in genetic background of 
each of the three recombinant inbred strains served as changing experimental conditions.  In all other 
aspects, the samples were treated the same.  The experiment was repeated three times and the data 
pooled.  
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The raw data from DNA microarray 
experiments was normalized using the MAS 5.0 
(Microarray Suite) software package.  Pairwise 
Spearman's rank coefficients were calculated, 
resulting in a 12,422 x 12,422 weighted 
adjacency matrix, where 12,422 was the number 
of genes measured in the microarray 
experiment.  A threshold of 0.85 was chosen to 
eliminate all but the highest values.  The 
weighted matrix was filtered using this 
threshold to produce an unweighted matrix 
where an edge (i,j) is present if and only if the 
absolute value of the Spearman rank coefficient 
for (i,j) is greater than or equal to the threshold value.  A vertex degree histogram of the resulting 

unweighted graph is shown in Figure 3, in which 
the X axis lists vertex degrees and the Y axis 
shows the number of vertices with the 
corresponding degree. 
 
Maximal clique enumeration of the unweighted 
graph discussed above resulted in a total of 5,227 
maximal cliques.  The maximum clique size was 
17, with a user-determined minimum clique size of 
3.  The distribution of clique sizes generated is 
shown in Figure 4.  There was a tremendous 
amount of overlap among these cliques, as shown 
in the clique intersection graph (CIG) in Figure 5.  
Cliques of size 15 are shown as green vertices, 

those of size 16 are shown in black, and those of size 17 are shown in red.  Two vertices in the CIG 
are joined by an edge if and only if they have at 
least 13 vertices in common in the original 
graph.  As indicated by a lack of isolated 
vertices in the CIG, every clique of size 15 or 
more overlaps with at least one other clique by 
more than 76%.  Additionally, a very high 
density region containing the three maximum 
cliques of size 17, can be observed.  
Examination of genes occurring most 
frequently in the intersection of the larger 
cliques reveals Veli3 (also known as Lin7c), a 
gene that is crucial to a neurological function 
[11]; Sp3 and Atf2, members of a nuclear 
transcription complex active in mouse neural 
cells [12]; and Strn3, a calmodulin binding 
protein thought to be involved in calcium 
signaling pathways in mouse neural cells [13]. 
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6.3 Performance Results 
 
The five algorithms described above were implemented and tested.  Two versions of the Kose 
algorithm were used to determine the overhead induced by I/O operations when accessing clique 
lists, Kose RAM and Kose Disk.  Results are presented in Tables 1 and 2.   
 

 Threshold 
Algorithm 0.95 0.921954446 0.9 0.87 
Base BK 6 seconds halted after 1 day NA NA 

Improved BK 11 seconds 419 seconds 53220 seconds halted after 1 day 
Kose (RAM) 18632 seconds halted after 1 day NA NA 
Kose (Disk) halted after 1 week NA NA NA 
Brute Force halted after 1 day NA NA NA 

 
Table 1. Performance results for five maximal clique enumeration algorithms applied to the graphs of size 
12,422 derived from RMA-processed microarray data of Mus musculus for different threshold values. 
 

 Threshold 
Algorithm 0.8 0.80 0.75 0.70 
Base BK 6 seconds 193 seconds halted after 1 day NA 

Improved BK 11 seconds 13 seconds 257 seconds 53470 seconds 
Kose (RAM) 17261 seconds halted after 1 day NA NA 
Kose (Disk) halted after 1 week NA NA NA 
Brute Force halted after 1 day NA NA NA 

 
Table 2. Performance results for five maximal clique enumeration algorithms applied to the graphs of size 
12,422 derived from MAS5.0-processed microarray data of Mus musculus for different threshold values. 
 
The three out of five worst performers are the Kose RAM, Kose Disk, and Brute Force algorithms.  
The Brute Force algorithm was halted after a day on all graphs.  The fastest implementation of the 
Kose RAM algorithm that kept its clique lists in core memory finished on the two sparsest graphs, the 
0.95 threshold RMA graph (0.0082 average edge density), and the 0.85 threshold MAS 5.0 graph 
(0.0080 average edge density) in a little over and a little under five hours, respectively.  It was not 
capable of finishing on any other graphs in less than a day.  The implementation of the Kose 
algorithm that stored clique lists on disk (Kose Disk) was still running after a week's time on both the 
0.95 threshold RMA graph and the 0.85 threshold MAS 5.0 graph. 
 
The Base BK algorithm, as anticipated, performed the best on the sparsest graphs.  It was nearly 
twice as fast as the Improved BK algorithm. It finished in six seconds as opposed to eleven.  
However, when challenged with denser graphs, the branch and bound Improved BK algorithm was 
clearly superior to the others tested.  It finished the 0.80 threshold MAS 5.0 graph (0.0371 edge 
density) in thirteen seconds as opposed to the Base BK algorithm's 193 seconds, and was the only 
algorithm capable of finishing the MAS 5.0 graphs with thresholds of 0.75 (0.1178 edge density) or 
0.70 (0.2972 edge density).  Similar results were seen with the RMA graphs, where only the 
Improved BK algorithm finished the 0.921954446 and 0.90 threshold graphs (edge densities of 
0.0743 and 0.2093, respectively) in less than a day.  Note that 0.921954446 was the threshold chosen 
for a recent analysis of the RMA treated data [5].  The Improved BK algorithm was unable to finish 
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enumerating all maximal cliques of the 0.87 threshold RMA graph (0.5526 edge density) in less than 
a day. 
 
7. Conclusions and Ongoing Research 
 
We conclude that, of the existing maximal clique enumeration algorithms tested, the most suited to 
DNA microarray analysis seems to be the branch and bound Improved BK algorithm by Bron and 
Kerbosch.  Although the Base BK algorithm by Bron and Kerbosch performed better on very sparse 
graphs, the branch and bound algorithm was significantly faster on the denser graphs and the loss of 
a few seconds on sparse graphs is not sufficient to rationalize choosing the base algorithm over the 
branch and bound algorithm.  The Kose’s algorithm (Kose RAM/Disk), while interesting is not useful 
for this application.  In addition to being more than 1,000 times slower than either Base BK or 
Improved BK algorithm at its best, it generates cliques in increasing order.  Since, for this 
application, the desired cliques tend to be large, this confers no advantage.  Worse, the fastest 
implementation of the Kose algorithm has memory requirements that are not likely to be met by 
most workstations when running graphs of any realistic density.  Running this algorithm on the 
sparsest graphs was only possible with all the other processes except for system software terminated, 
as it monopolized the available memory.  This would only worsen as the graph density increased.  
Although the Brute Force algorithm (based on k-set enumeration) was not able to enumerate all 
maximal cliques within a day on any provided input, the algorithm has an ample opportunity for 
improvement with the introduction of boundary conditions, such as the ones used in the Bron and 
Kerbosch algorithm.  It is possible that this algorithm could be useful in enumerating cliques when 
tight size boundaries are imposed. 
 
We are currently investigating the use of better algorithms that are based on preprocessing 
techniques and on the use of what we call “small dominating structures.”  The pre-processing rule 
discussed in Section 5 relies on the use of the clique size as a parameter. This raises the question: 
what value of k should we choose? The maximum clique size may be 20, while we may be trying the 
Brute Force algorithm (for example) starting with k = 1000.  This motivates us to start by computing 
the maximum clique size prior to enumeration.  To do this, we are currently employing a few 
techniques to solve the maximum clique problem.  The best technique so far is to take the 
complement of the graph and solve the minimum vertex cover problem on the complement graph.  
See [14] for details.  
 
Another pre-processing that relies on the parameter k is the following. For each edge uv in the graph, 
we compute the common neighborhood, Nuv of u and v.  If Nuv has fewer than k-2 elements, then uv 
is deleted since it cannot be part of a k-clique. Repeating this step until no more such edges are found 
guarantees that we get a graph where any pair of adjacent vertices has at least k-2 common 
neighbors. This is a property that increases the chance of finding maximal cliques of size k.  
Preliminary testing of this pre-processing algorithm shows that it reduces the graph size 
tremendously.  Moreover, the process proves faster when it is interleaved with the low degree-rule 
mentioned in Section 5.  We must admit, however, that applying this algorithm until it cannot reduce 
the graph further takes a long time on some large graphs.  Early testing reveals that this approach is 
most useful and practical if we to limit it to the first few iterations.  
 
It is easy to see that a clique of a graph G is an independent set (i.e., an edgeless set) in G's 
complement.  Therefore, enumeration of maximal independent sets is equivalent to enumeration of 
maximal cliques.  In fact, it has long been known that all maximal independent sets can be 
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enumerated in O(3n/3) time, which is the upper bound on the number of possible maximal 
independent sets (or maximal cliques) in a graph. This algorithm has been modified slightly by 
considering maximal independent sets whose sizes are bounded above by selected parameters [15, 
16].  Of course many graphs do not have these many maximal cliques (or independent sets).  One 
way to detect this property is by looking for small subgraphs, whose complements are nearly 
edgeless. A vertex cover is a set of vertices whose removal yields an edgeless graph. A small vertex 
cover, therefore, is an excellent example of a small dominating structure. If we have a k-vertex 
cover, then we can enumerate all maximal cliques by simply enumerating all cliques of the graph 
induced by the cover. For each generated clique, only one vertex of the cover's complement can be 
added to the clique (then we check if it is maximal). Therefore, the maximum number of maximal 
cliques is bounded above by (n-k)2k (compare with O(3n/3) when k << n).  Moreover, enumerating 
all maximal cliques takes O(2k) in this case.  
 
Vertex cover is not the only potentially small dominating structure.  In some cases we do not want to 
pay the cost of computing a cover prior to enumeration.  One alternative is maximal matching in the 
complement graph.  Here we seek to obtain a maximal matching of small size (say k), and to 
enumerate all maximal independent sets of the complement graph. This takes O(3k) rather than 
O(22k) time.  To illustrate, note that for each matching edge, only one vertex could be a member of a 
(potential) maximal independent set. Therefore we have 3 cases per edge (either add the left vertex, 
or add the right vertex, or none). When the matching size is small, enumeration of all maximal 
independent sets (or maximal cliques in the original graph) can be much faster than the one by 
standard algorithms. Preliminary experiments show that our use of maximal matchings is very 
promising. In some cases, it took only a few minutes to halt while the algorithms of Bron and 
Kerbosch did not terminate after a few hours. Of course, different graphs have different structures.  
We aim to have in hand a large suite of radically different sorts of maximal clique enumeration 
algorithms for future experimentation and testing.  
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