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Abstract:

Recent versions of microprocessors exhibit perfoceacharacteristics for 32 bit

floating point arithmetic (single precision) that substantially higher than 64 bit
floating point arithmetic (double precision). Exdegpinclude the Intel’'s Pentium IV

and M processors, AMD’s Opteron architectures &iedBM'’s Cell processor. When

working in single precision, floating point opemts can be performed up to two
times faster on the Pentium and up to ten timetefasn the Cell over double

precision. The performance enhancements in theslitestures are derived by
accessing extensions to the basic architecturdy agcSSE2 in the case of the
Pentium and the vector functions on the IBM CelieTnotivation for this paper is to

exploit single precision operations whenever pdssiimd resort to double precision
at critical stages while attempting to provide th# double precision results. The

results described here are fairly general and eaagplied to various problems in
linear algebra such as solving large sparse systesitgy direct or iterative methods
and some eigenvalue problems. There are limitatiorthe success of this process,
such as when the conditioning of the problem exsdld reciprocal of the accuracy
of the single precision computations. In that cHee double precision algorithm

should be used.

Introduction

The motivation behind this work is the observatitat a number of recent processor
architectures exhibit single precision performatie is significantly higher than for double
precision arithmetic. An example of this include tlBM Cell multiprocessor which was
announced with a theoretical peak of 204.8 GFLQPSgle precision (32 bit floating point
arithmetic) and a peak of only 20 GFLOPS in douptecision (64 bit floating point
arithmetic)[7]. Even the Intel x87 processor with the use ofShreaming SIMD Extensions
(SSE) unit on the Pentium Il does 4 flops/cycle &ngle precision, and SSE2 does 2
flops/cycle for double. Therefore, for any processtth SSE and SSE2 (e.g. Pentium V),
the theoretical peak of single is twice that of ldeu and on a chip with SSE and without
SSE2 (e.g. some Pentium Ill), the theoretical p#adingle is four times that of double. AMD
Opteron processors share the same relation bet®@8&nand SSE2. Appendix 1 contains
additional information on the extensions to the3Ainstruction set.



Another advantage of computing in single versusbtoprecision is that data movement is
cut in half. This helps performance by reducing ragntraffic across the bus and enabling
larger blocks of user’s data to fit into cache.plbrallel computations, the total volume of
communication is reduced by half and the numbenitiited communication is reduced as
well (if block sizes are doubled). The effect imtththe communication behaves as if the
bandwidth is multiplied by two and latency halvedio.

The use of extensions to the ISA of x86-x87 hambmet into practice in a number of
implementations of the BLAS. This provides a speegoirovement of a factor of two in single
precision compared to double precision for basierafions such as matrix multiply. Some
experimental comparisons of SGEMM versus DGEMM arious architectures are given in
Table 2

The motivation for this paper is to exploit singlescision operations whenever possible and
resort to double precision at critical stages wlateempting to provide the full double
precision results.

Iterative refinement for Systems of Dense Linear
Equations

Iterative refinement for the solution of linear atjons is a practical technique that has been
in use for many years. Suppode = b has been solved via Gaussian Elimination with phrti
pivoting and we have the standard factorizatih = LU, wherelL is a lower triangular
matrix, U an upper triangular matrix, arfd a permutation matrix used for pivotinghe
iterative refinement process is:

r=b—Ax
Solve Ly = Pr
Solve Uz =y
X=X+ 2.

As Demmel[13, pp.60] points out the iterative refinement process isvedent to Newton’s
method applied td(x) = b - Ax If we could compute the residual exactly and sdhr z
exactly we would be done in one step, which is whatexpect from Newton's method
applied to a linear problem.

We are planning to use a mixed precision iteratieinement process. That is the
factorization,PA = LU, and the triangular solvés = Pr andUz = ywill be computed using
single precision and the residual (using the odbitata) and updating of the solution will be
computed using double precision. Most of the flogipoint operations, the factorization of
the matrix A and the forward and back substitutiani be performed in single precision.
Only the residual computation and solution updaie performed in double precision. The
mixed precision approach was analyzed by Wilkinggnand Moler[1]; they showed that,
providedA is not too ill—conditioned, it produces a compusetlition correct to the working
precision, in this case single precision. As panteit in Demmel6], the behavior of the
method depends strongly on the accuracy with whiehresidual is computed. The input
variablesA andb are stored in double precisien The basic solution method is used to solve
Ax = bandAz = rin single precisior.. The residual is computed in double precisipand
the solution updated in double precisign

Iterative refinement is a fairly well understoody@ithm. For example, Highafi4] gives



error bounds in single precision (resp. double) figed precision iterative refinement
performed in single precision arithmetic (resp. ey and Highani14] also gives error
bounds in single precision arithmetic for mixed gs®n iterative refinement (when the
refinement is performed in double precision aritiole However we did not find in the
literature any error bound in double precision hemietic when mixed precision iterative
refinement (single/double) is performed.

Stewart[8] provides an error analysis of iterative refinemdiftis analysis can be adapted to
our context and the details are providgzhbendix 2. The bottom line is that we can achieve
the same accuracy using this approach as if we bawguted the solution fully in 64 bit
floating point precision, provided that the maigxot too badly conditioned.

The impact of this result is that if the factoripat and the forward and back substitutions are
performed in single precision and the residual apdate for the solution are performed in
double precision, then the iterative refinementcpss will, as long as the matrix is not too
badly conditioned, produce the same accuracy inctimaputed solution as if the double
precision computation has been performed on thraation, and the forward and back
substitutions. The disadvantage is that we mustinmea copy of the original matrix to
compute the residual. So, the space cost is inetleby 1.5 and the potential saving of
computational time is a factor of 2 (assuming ®nglecision computations are twice as fast
as double precision computations).

It is important to note that we are computing a@ction to the solutiorg, and then use that
correction to update the solution, A key point is that, while the correction is camgd in
single precision, the update is computed using ldopicision.

An aspect of iterative refinement is that slow @ngence of the process is an indicator of ill-
conditioning. Ricg12, pp.98] conjectures that the maximum number of iteratioesessary

for iterative refinement to converge can be bouydilx cell(—kj, wherei is the number

of iterations,t is logyo of the precisiont(-16), andk is logyo of the condition number of the
matrix (k=logio( K )). We can extend this formula in the context okexdi precision iterative
refinement with the following formula

(1) i< ceil[tstj kj

wheret, is log, of the double precision«16), andt, is log, of the double precision~+8).
Equation (1) indicates that the maximum number of iterationsobges infinite when
k (10" comes close to 1 as expected.

To verify the tightness of the bouriely. (1), we have taken 150 random matrices with

condition numbers from 1 16, and size from n=[100 250 500], and for each efrihwe
have plotted with blue crosses kfigure 1 the number of iterations needed by iterative
refinement to converge with respect to the conditimumber (seeSection Practical
Implementation for a rigorous definition of convergence). The cedve is the boungq (1).
We observe that this bound is tight.
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Figure 1: The bound in Eq (1) (red curve) and the number ofterations needed by DSGESV with
respect to the condition number (blue crosses) fararious matrices.

Practical Implementation

A practical implementation of the method can benfbathttp://www.cs.utk.edu/~julie/iter-
ref. The code is in Fortran 77 and uses LAPACK and BhAS routines. The iterative
refinement is stopped either if the number of iieraexceeds ITERMAX (=30 by default), or

” Ib-Ad, <1, 04, “"‘”(4’%'

If the iterative refinement procedure does not sad¢ that is fails to converge, then the
procedure will automatically switch to solving tegstem of linear equations using double
precision arithmetic.

Some Numerical Experiments

Testing

The driver routine, DSGESV, given ikppendix 3 successfully passed the LAPACK testing
for DGESV. This consists of 147 matrices and 3 micaktests are checked. Since those
matrices are most of the time pathological, it goad exercise for the routine to check if it is
able to switch to a double precision solve whenessary. Out of those 147 matrices, 15

matrices have a condition number clos&d3, so the iterative refinement does not converge.
18 matrices produce overflow when converted frombdi® to single, and 18 matrices fail in
the single LU factorization. For all those matricBSGESV switches, as expected, to
DGESV. The 96 remaining matrices converge fine wéhative refinement.

LAPACK Kernels used
In Table 1, we give the description of the LAPACK kernels dise



Subroutine names | Description

[S,D]JGEMM Single/Double precision matrix-matrix niply

[S,D]GETRF Single/Double precision LU factorizatioyutine

[S,D]JGETRS Single/Double precision backward anavéid solve routine

[S,DIGESV Solve a linear system of equations = [SPTRF + [S,D]JGETRS

DGEMV Double precision matrix-vector multiply

DSGESV Single precision LU factorization followedy louble precision
iterative refinement = SGETRF + ITER.(DGEMV+SGETRS)

Table 1: Description of the different LAPACK kernels used h DSGESV and DGESV

Performance Results

The first set of experiments show the performarfdde sequential algorithm on a number of
systems. In the third and fourth columnsTeible 2, for each system, we report the ratio of
the time to perform SGEMM (Single precision Mathatrix multiply for GEneral matrices)
over the time to perform DGEMM (Double precision tkileMatrix multiply for GEneral
matrices) and the ratio of the time to perform S&ETSingle precision LU Factorization for
GEneral matrices) over the time to perform DGETRBuble precision LU Factorization for
GEneral matrices). As claimed in the introductibis tratio is often 2 (Katmai, Coppermine,
Northwood, Prescott, Opteron, UltraSPARC, X1), whineans single are twice as fast as
double. Then in the fifth and sixth columns we mepbe results for DGSEV over DSGESV.
The results from Table 1 show that this methodlmmery effective on a number, but
not all, architectures. The Intel Pentium, AMD Qptg Sun UltraSPARC, Cray X1,
and IBM Power PC architectures, all exhibits a sigant benefit from the use of
single precision. Systems such as the Intel Itap8@l Octane, and IBM Power3 do
not show the benefits.

It is to note that single precision computationsignificantly slower than double
precision computation on Intel Itanium 2.

Architecture (BLAS) n DGEMM DGETRF DGESV | #iter

/ISGEMM | /SGETRF | /DSGESV
Intel Pentium 11l Coppermine (Goto) 3500 2.10 2.24 1.92 4
Intel Pentium 1l Katmai (Goto) 3000 2.12 2.11 1.79 4
Sun UltraSPARC lle (Sunperf) 3000 1.45 1.79 1.58 4
Intel Pentium IV Prescott (Goto) 4000 2.00 1.86 1.57 5
Intel Pentium 1V-M Northwood (Goto) 4000 2.02 1.98 1.54 5
AMD Opteron (Goto) 4000 1.98 1.93 1.53 5
Cray X1 (libsci) 4000 1.68 1.54 1.38 7
IBM Power PC G5 (2.7 GHz) (VecLib) 5000 2.29 2.05 1.24 5
Compag Alpha EV6 (CXML) 3000 0.99 1.08 1.01 4
IBM SP Power3 (ESSL) 3000 1.03 1.13 1.00 3
SGI Octane (ATLAS) 2000 1.08 1.13 0.91 4
Intel Itanium 2 (Goto and ATLAS) 1500 0.71

Table 2: Ratio of execution times (speedup) for DGEMM/SGEMMm=n=k),
DGETRF/SGETRF and DGESV/DSGESV on various architeaires, the number of iterations of
iterative refinement in DSGESV is given in the lastolumn.
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Figure 2: Performance comparison and gain versus DGESV for BGESV and its kernels on
three different machines.

In Figure 2, the left graphs show the performance in GFLOPSaoious kernels. All the

single precision-based routines are in dashed lirfele the double-precision based routines
are represented with solid lines. Ultimately onentsato compare the dashed blue line
(DSGESV) with the solid blue line (DGESV). One csee that the performance of the
DSGESV (dashed blue line) comes close to the pednce of SGETRF (red dashed line).

The difference between DSGESV and SGETRF is maingyto th€(n”) components in the
iterative refinement; those terms turn out to bgeneral small but not negligible.

The graphs on the right gives the percent of thetimaportant kernels versus DGETRF. The
blue line represents DGESV and is close to 1008 DGETRS is negligible with respect to
DGETRF). The black line (DSGESV) is the sum of gneen line (SGETRF), the magenta
line (SGETRS), the cyan line (DGEMV), and the rieek I(conversion double-single, copies,

DAXPY, ...). We observe that th®(n®) operations in iterative refinement take up to 10%
of the time of DGETRF arO(n®) operation. This phenomenon is due to the fact that



iterative refinement uses kernels that are hardptomized; SGETRS, DGEMV and Level 1

BLAS). As can be expected, as n increases the npeaftce of DSGESV becomes close to the

performance of SGETRF.

The penalty of this method is that storage is iasee by a factor 1.5 over what is required for
the standard double precision solution method. péadormance enhancements primarily

come about when the speed of single precisionraetit is significantly greater than double

precision arithmetic.

The next set of experiments is for a parallel impatation along the lines of ScaLAPACK

[11]. In this casen is in general fairly large and, as we can obsémveable 3 or Figure 3,
the cost of the iterative refineme@(n®) becomes negligible with respect to PDGETRF

O(n®) . Using PDSGESV is almost twice (1.83) as fastm®osed to using PDGESV for the

same accuracy.

Architecture (BLAS-MPI) # procs n PDGETRF | PDGESV #
/IPSGETRF | /PDSGESV | iter
AMD Opteron (Goto — OpenMPI MX) 32 226271 1.85 1.79 6
AMD Opteron (Goto — OpenMPI MX) 64 3200( 1.90 1.83 6

Table 3: Performance comparison between PDGETRF/PSGETRF anBEDGESV/PDSGESV on
an AMD Opteron cluster with Myrinet interconnects, the number of iterations of the refinement
technique in PDSGESYV is given in the last column.
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Figure 3: Performance comparison between PDGETRF/PSGETRF anBEDGESV/PDSGESYV on
an AMD Opteron cluster with Myrinet interconnects.

Quadruple Precision

As an extension to this study, we present in tbidisn results for iterative refinement in

quadruple precision on an Intel Xeon 3.2GHz. Tleeative refinement code computes a

condition number estimate; the input matrices arelom matrices with uniform distribution.
For quadruple precision arithmetic, we use theresfee BLAS compiled with ’ifort -O3’ the

Intel Fortran compiler (with -O3 optimization flags) since we do not have an optimized

BLAS in quadruple precision. Results are presemethble 4. The obtained accuracy is of
about 10” for QGETRF and QDGETRF as expected. No more thateps of iterative
refinement are needed. The speedup goes from I®Drfatrix of size 100 to close to 100 for




a matrix of size 1000. Iivable 5 we give the time for the different kernels used)JGESV
and QDGESV. Interestingly enough the time for QD&ESdominated by QGEMV and not
DGETRF!

QGESV |QDGESV,

n | time(s) | time(s) | speedup
100/ 0.29 0.03 9.5
200| 2.27 0.10 20.9
300] 7.61 0.24 30.5
400| 17.81 0.44 40.4
500/ 34.71 0.69 49.7
600| 60.11 1.01 59.0
700] 94.95 1.38 68.7
800| 141.75 1.83 77.3
900| 201.81 2.33 86.3

100¢ 276.94| 2.92 94.8

Table 4: Iterative refinement in quadruple precision on alntel Xeon 3.2GHz.

driver nam¢ time (s) | kernel name time (s)

QGESV 201.81 QGETRF 201.1293
QGETRS 0.6845

QDGESV | 2.33 DGETRF 0.3200
DGETRS 0.0127
DLANGE 0.0042
DGECON 0.0363
QGEMV 1.5526
ITERREF 1.9258

Table 5: Time for the various kernels in the quadruple acaracy versions.

Extensions

The ideas expressed here for solving systems faergedense problems can be extended to
the case of solving symmetric positive definite meat using Cholesky factorization, dealing
with linear least squares problems with the QRdiazation. In addition the iterative
refinement concept can be applied to eigenvalugiéam value computation (s€2,3,4,5).
Applying these ideas to sparse matrices is alsapéion that will be pursued in the future.

To summarize, the main benefit comes from perfogntire bulk of the computation in single
precision where the rate of execution is usualghbr, perhaps by a factor of 2 and achieving
the same accuracy as if the entire computationpgesrmed in double precision. The
disadvantage is that the storage requirementsiareased by a factor of 1.5 and the input
need to be not too ill conditioned.

Conclusion

Exploiting 32 bit floating point arithmetic for germance reasons and obtaining full
precision (64 bit results) are desirable goals. fHselts described here are fairly general and



can be applied to various problems in linear algedrch as solving dense and large sparse
systems using direct or iterative methods and saigenvalue problems. There are
limitations to the success of this process, suchviasn the conditioning of the problem
exceeds the reciprocal of the accuracy of the sipgécision computations. In that case the
double precision algorithm should be used.

The use of these techniques will have applicationthee IBM Cell and perhaps extend to
Graphical Processing Units (GPUs), such as Nvidid ATI, where 32 bit floating point
arithmetic is native and performed extremely fadstese GPUs may not even have 64 bit
floating point hardware and as such the 64 bit agpans would have to be emulated in
software.

Notes and Comments

The authors would like to thank Clint R. Whaley fixsightful comments on machine
hardware specification. Neither equilibration naralgng is performed in the routine
DSGESYV. Adding equilibration and scaling will cenlgt enhanced the range of applicability
of the method. This remains to be evaluated.
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Appendix 1

Here is a summary of the x86-x87 ISA Extensions:

MMX
Set of "MultiMedia eXtensions" to the x86 ISA. MBimew instructions for integer
performance, and maybe some prefetch. For Intethgls starting with the
PentiumMMX processor possess these extension®A\MDY, all chips starting with
the K6 possess these extensions.

SSE
Streaming SIMD (Single Instruction Multiple DatajtEnsions. SSE is a superset of
MMX (i.e., a chip with SSE automatically possedgi8X) These instructions are
used to speed up single precision (32 bit) floagioot arithmetic. By operating on 4
single precision values with one instruction, th#gw for a theoretical peak of 4
FLOPs (FLoating point OPerations) every cycle &§00Mhz Plll can theoretically
perform 2GFLOPS (2 billion FLoating point Operasdher Second)). The results
returned by SSE are IEEE compliant (as are cldssBéafloating point results). For
Intel, all chips listed starting with the Pentiuthdossess SSE extensions. For AMD,
all chips starting from Athlon4 possess SSE.

3DNow!
AMD's extension to MMX that does almost the exarhs thing SSE does, except
the single precision arithmetic is not IEEE complié.e. it is not as fault-tolerant as
x86 arithmetic). It is also a superset of MMX (Imatt of SSE; 3DNow! was released
before SSE). It is supported only on AMD, startwith the K6-2 chip.

Enhanced 3DNow!
An extension to 3DNow! starting with the Athlon oand. Some additional prefetch
commands.

3DNow! Professional
AMD's extension that is essentially Enhanced 3DN&WSE. Available on AMD
chips starting with the Athlon4.

SSE2
Additional instructions that perform double precisiloating arithmetic. Allows for
2 double precision FLOPs every cycle. For Intehpsrted on the Pentium 4 and for
AMD, supported on the Opteron.

The following table lists some of the some of thegessors, and the constant to multiply the
cycle time by to get peak performance (an entr ifdicates that processor does not have
the given ISA extension).

| Processor | x87SSE/3DNOW!
| Pentium 1| O|
| Pentium 1| 1| O]
| Pentum IIl| 1| 4
| Pentum< 1| 4
|
|
|
|

Athlon| 2| 0|
Enhanced Athlon 2| 0|
Athlon4| 2| 4]
AthlonMP| 2| 4]

Al OO OO
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For double precision (64 bit) arithmetic the taislgiven below.

| Processor | x87SSEZ
Pentium 1| 0

|

| Pentium 1| 1| 0
| Pentiumll| 1| 0
| Pentium4 1| 2
| Athlon| 2| 0
[Enhanced Athlon 2| 0
| Athlon4| 2| 0
| AthlonMP| 2| 0O




Appendix 2

We reproduce and expand here a classical proott dieoative refinement. Original proofs
can be found inStewart “Introduction to Matrix Computations’ page 200-205%or Stewart
“Matrix Algorithms: VolumeI: Basic Decompositons’ page 221-223r Higham
“Accuracy and Stability of Numerical Algorithms’, 2nd edition, Chapter 12, page 231-
243

Originality of the proof given here is two folds:

1. while most of the error analysis results oreitige refinement are given in term of the
lower accurate precision, we provide here errotyaigin term of the higher accurate
precision,

2. To keep the analysis simple, we provide normwiser bounds (as opposed to
Higham for example who deals with componentwiserdspunds), we believe that
the resulting proof is less powerful in term ofukés but is more easily readable for a
standard and non expert reader. Extending thetsasutomponentwise error bound
can be done following Higham proof.

Algorithm and floating-point arithmetic relations

We are considering the iterative refinement al¢onit

Initialize X

for k=1, 2, ...
(1) r, =b-Ax (&d)
(2) Solve Ad, =r, (&s)
(3)Xk+l:Xk+dk (&4)

end for

performed in floating-point arithmetic where theidwal r, (step 1) and the new approximate
solution X, (step 3) are computed using double precisig) @rithmetic, and the
correction vectord, (step 2) is computed using in single precisien)(arithmetic.

We assume thatep 2is performed using a backward stable algorithmef@mple Gaussian
elimination with partial pivoting, the GMRES iteiizg¢ method, ... Backward stability implies

that there existdd, such that

(1) (A+H,)d, =1, where|H, | < gn)e]|Al,
where ¢(n) is a reasonably small function of. In other wordsEquation (1) states that the
computed solutiord, is an exact solution for an approximated problem.

Step 1 and step 3 are performed in double precggitimmetic and thus the classical error
bounds hold:

() 1, = fi(b— Ax) =b— Ax +8&, where|e < g, (e, (| A Ox | +[b]) .
(3) Xy = fl(x +d,) =x +d, + f, where| f,| < d,(N)&, (%] +|d[)-
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Results and interpretation

UsingEquation (1), (2) and(3), for anyk, we will prove that
(@) %= %ol < @elx =] + Be[H
wherea and £ are defined as
¢k (A&,
1-@n)k (A&,

(6) B: = A (NK(A)Ey + P, (N)Ey + AL+ B (N, )P, (MK (A)E, .

5 ap = + 20, (NK(AE, + PN, + 2L+ B (N)g, ), (MK (A)E,

Note thata. and - are of the form
(7) @ =@ (MK (Ae, and B = pe (VK(A)E, .

For Equation(4) to hold, we will need to assume that the ma#ixs not too-ill
conditioned with respect to the singlecision (g ) arithmetic used, namely we will
assume that

®) (o (MK(AE)L-¢e (MK(A)e, )" <1
This results is proved iSection Forward Error Analysis.

Assuminga, <1, it will then follow that

1-a.*
O) =Xl < @ fx =]+ 57— A,
and sox, converges toX = innilmxk where
- a1 = Pe (KA,
i Jx-x] = 3] .- ) =g 2T
This last result is a standard result for the tteearefinement algorithm. This result states that

assumingé, < 552 , So thatp: (N)k(A)¢, < &, one can drive the forward error to the
level:

(10) I|m ” _ X"" <0O(e,) .

I

a. is the rate of convergence and depends on thet@amdumber of the matrix AK(A) )

and the single precision uses,(. - is the limiting accuracy of the method and depems
the double precision usedy).

Result(6) is of interest in mixed precision iterative refiment when one wants to reduce the
forward error with respect to the single precisised (g5 ). However in our case, we are
interested in double precisior{) accuracy, thus we will write:

(11) jim X% px(Re,
e X T 1-g(n)k(A)e,
Unfortunately this bound offers nothing surprisargl states that one can not reduce the

forward error less than the machine precision tiseel the condition number. To have more
insight in the iterative refinement procedure wé meéed to move to backward error analysis.

(In practice we would have liked to get rid of fbeward analysis of the iterative refinement
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algorithm since it leads us to a bound that we deéhteresting in our case. However we will
need the forward analysis to bouha || and || d|| in term of || &1 ||, which turns to be
useful in the backward analysis.)

Regarding the backward error analysis we will priov&ection Backward Error
Analysis that

[b— A% _ EN\b-AXkII
(12) < +Bs,
| Al Dt A O
where
13)  ap=-HKAE o e,

1-@n)k(A)E,
(14) Bs = [88,(n)y+ 8, (0(1+ 22~ g, (e, ) e,

Note thata, and 5, are of the form

(15) ag =g (MK (A&, and Sy = pg ()&, .
For Equation(11)to hold, we will need to assume that the matixs not too-ill
conditioned with respect to the singlecision (g ) arithmetic used, namely we will
assume that

(16) e (MK(A)E, + (o MK(AEJL-w, (MK(Ae,)™ <1, and
(17) (o5 (M, JA-ws (MK (A)e,) <1

ais the rate of convergence and depends on thet@mdumber of the matrix AK(A))

and the single precision uses (. [, is the limiting accuracy of the method and depesrts
the double precision usedy).

At convergence we have
18 lim - Ax] _ (l-a,)" = Pe (1) £,
a8 Jm ] TP ) o e, &

Equation(15) means that the solver is normwise backward stable.
This analysis also confirms the heuristic aboutlie numbers of steps needed to converge.

Forward error analysis

From StewarfMatrix Algorithms, Vol. 1, Ch. 1, Th 4.18]we know that if
¢(n)k(A)e, <1/2then (A+H,) is nonsingular and
(19) (A+H,) = (1 +F)AT where|F,| < - AK(AE )
1-@n)k (A&,
FromEquation (1) andEquation (3) we have
X=Xy = X=X —(A+H) 7T, = f,,
then usingequation (2) andEquation (18), we get
X=X =X =% (I +F)AT(b- Ax +§) = f,
rearranging a litltle bit, we have
X=Xeq = X=X = (I + F)(X=x + A7g) - f,,
and this finally gives us:
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X=X = _Fk(x_ Xk) =+ Fk)A_l% - fk :
Taking the norms of both sides and using the feati|f | <1 gives us

%=Xl < Fill B = x| + 20047 e+ ]

UsingEquation (2) andEquation (3), we get
(20)  [x= sl <Rl s + 20um)eg [A7 A D[+ o) + 82 (M (x] + )

In Equa.tion (20), (21), and(22), we are going to bounitk, |, | A| dix | +[b| and |d,|

respectively byjx - x| and|X|. Next step will be to inject those three bounds in
Equation (19), and then we will be done with our final resultforward error.

Triangle inequality gives us

@D e =%+
Then using the fact thalx=b,

22) AT+ [l <Al gx-x ]+ 20A ] -

Finally usingEquation (1) andEquation (4),
d =[Aa+HO | =0+ R)A™] < 2 A7) -
Since fromEquation (2) we have

[l = [l + 1A x| + ] < (1-+ 4 (), )L A x| + ]

usingEquation (20)in this latter inequality we obtain

23)  |d] <20+ g (n)e,) k(A jx - x| +21X]).
InjectingEquation (20), (21), and(22) in Equation (19) leads us to our first result:

s{%u@(mmm + g, (N)E, + 201+ g (e, )¢2(n>K(A>edjq1x— x|

+ (48, (NK(Ag, + @, (N)g, + AL+ B,(N)e, ), (MK (A, )TN .
If we definea and S: as
g = HUK(A)E,
T 1-@nk(AE,

”X_ X1

+2¢, (MK (A)g, + BN, + 2L+ B (N)g, ), (MK (A)g,

(24)

25) [ =4 (K(A)E, + B,(N)E, + AL+ BB (MK (A,

then we find that
= %] < e x = + e
wherea, =¢/(n)k(A)&, and S: = p(N)K(A)E, .

Bound on || % || and || & || in term of || %1 ||

A result that will be useful later is to note thassumingx, =0 for simplicity and
without loss of too much generality, froguation(9), we can write the two
following inequalities:
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-1

1-a.*
1

e

|

1-a. )
<[1-a A 0]

Assuming thatar; +18—F <1, we get
F
k-1
(1+aFk'l+/3F 1-a. J
1-a;
Il = 2 .
ey
1-a;

and, by defining

k-1
(1+apk'l+ﬁF1 ag ]D

W= . <Yy,
(l_aFk _,BFl o J

1-a,

we have, for ank,
(26) % < ¥ Q% -
UsingEquation (3) we have
ldi] =% =% = il <]
so withEquation (26) this gives us
@7 [ds@-gn)e, ) L+ y+ gape, )X

+(L+ 4, (e Jx ] + 8. (e,

Xk +1

Note that here we have assumed

(28) a: +i <1.
1-a;

Backward error analysis

From Stewar{Matrix Algorithms, Vol. 1, Ch. 1, Th 4.18]we know that if
¢(n)k(A)e, <1/2then (A+H,) is nonsingular and
(29) (A+H,) = A1 +G,) whereG,|< - AWK(NE
1-@n)k (A&

( Note:
As Stewart mentioned, thg + X, ) matrix can be put on the left or on the right sifié.
SeeEquation (19) for the left side an&quation (29) for the right side. Here the proof.

-1 -1
SinceHA’lHkH <1, we have”(A+ Hk)_l“ < w (see Stewart).

1-[a7ry]
For the right sideKquation (29)), one goes as
(A+H) = A =(I =AM A+ H))A+H,) " ==-A"H, (A+H)™,
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(A+ Hk)_1 =AY +G,) whereG, =-H, (A+ Hk)_l .

For the right sideEquation (19)), one goes as
(A+ Hk)_l -AT=(A+ Hk)_l(l —(A+ Hk)A_l) =-(A+ Hk)_lHkA_l’
(A+H,)* = +F)A™" whereF, =—(A+H,)™"H, .

FromEquation (1) andEquation (3) we have
X=Xy = X=X~ (A+ Hk)_lrk - fi.
then usingequation (2) andEquation (29), we get
X=X =X= X%~ A1 +G)(b- Ax +g) = T,
multiplying (on the leftA) we finally get
b= A%, = -G (b= Ax) - (I +G/)g — Af,.
Taking the norms of both sides and using the fmlt"tF” <1 gives us

o= A%l < |G| Qo - Ax | + 2Tje ] + | A1

UsingEquation (2) andEquation (3) we have

I A | <G, b~ x| + (2,0 + g (), A | + 26, Tl + 6, (e, A |

AssumingEquation (28) holds, we can usequation (26) (we recall :|| X | < ¥ 0ix,.|).
Equation (27) (we recall:”dk" < (1— @,(n)&, )_1(1+ y+ ¢2(n)y£dx X1
that [b] = b~ Ax |+ Altx | we get:

). Using the fact

b= Ax.J| < (G| + 26, (e, ) b - Ax |
+(4g,(My+ 8, (V) + B, (V1= 8, (e, ) 2 (WL+ y+ 8, (), ) A ik

So finally

lo-Ax.| . db-Ax],

IniSay S Y Bs,

A O%cs A x|
where

_ gk(A)e,

B~ 1- (dn)K(A)ES + 2¢1(n)Wd ’

Bs = 8,y + g, 1+ 2)1- 4, ()<, ) e, -
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Appendix 3: Algorithm

Algorithm DSGESV Mixed precision iterative refinement

Input: ALJR™" 64y, bBLIR" 64y (64-bit precision)
Output: XLIR"4) accurate in 64-bit precision (in the backwar@esense)

Make 32-bit precision copy of A and b
Aga), ba— A, b
Compute LU factorization in 32-bit precisiongz) Ugs2) = PeaAis2)
L(s2y U2y Praz) — SGETRF(Agy)
Apply back-solve in 32-bit precision with 32-biepision factors
XM a2) <~ SGETRY(L(32), Ugaz), Piazy biaz)
Promote the solution from 32-bit precision to 644recision
NOPERV
(32)
i—0
repeat
i — i+l
Compute residual in 64-bit precision
(0 b - AP
Demote the residual from 64-bit precision to 32gsicision
10 gp 10
Back-solve on 32-bit precision residual and 32gécision factors
2% 33y« SGETRS(L(s2), Ugsz), Piazy, 1 (32))
Promote the correction from 32-bit precision to Ieiprecision
Z(I) <« Z(I)(Qg)
Update solution in 64-bit precision
XDy g (0
until (JIr®||2 < min( 4 , sart(n) / 6} [|All [IX"]]2) or (i > 30)

if (Ir®ll2 =min( 4, sart(n) / 6} ||Allso |1x"]|2) then
Refinement procedure failed to converge
Compute solution in 64-bit precision using LU faization
X" — DGESV(A, b)

end if
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