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Abstract 

The analysis of proteome profiles offers a new approach to understanding how cellular machinery functions and responds 
under certain conditions. By combining two-dimensional electrophoresis with mass spectrometry (MS), a snapshot of the cell's 
protein expression status and quantitative proteome profiling can be provided. As the cell's proteome becomes defined in 
normal and altered states, possible utilization of MS proteome profiling as a diagnostic tool becomes a reality. The ability of 
Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) to generate a spectrum with thousands of data 
points, necessitate the development of sophisticated analytical algorithms. In this paper, we describe how MALDI-MS can be 
used in monitoring proteomic profile in patients before and after treatment using a non- invasive sampling method. Because 
data analysis in this process possesses a challenge, we present a novel mathematical approach for analyzing data produced by 
MALDI MS, and discuss current applications of mass spectrometry in clinical medicine as well as challenges faced during 
procedures and experimentation. As a case study, we analyze protein expression patterns in premenopausal versus 
postmenopausal women. We also provide a proteomic profiling of premenopausal women versus postmenopausal women 
treated with estrogen as a hormone replacement therapy.  
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1. Introduction 
 

Traditionally, molecular mass has been measured using size exclusion chromatography (SEC), which measures the 
hydrodynamic volume, and indirectly the actual mass. By coupling high performance liquid chromatography with mass 
spectrometry, Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectroscopy (MS) was developed to measure 
molecular weight averages with very distinct distributions and has been widely used  in both drug development [1] and 
proteomics.  In 1987, Karas and Hillenkamp successfully performed laser desorption ionization on a small organic molecule 
attached to a matrix [2]. One unexpected side effect of the matrix was that it allowed for the laser incidence spot to be refreshed 
between each pulse, greatly enhancing shot-to-shot reproducibility [3]. Subsequently, MALDI was performed on a wide range 
of biological macromolecules [4] and proved to provide a range of opportunities in clinical and scientific studies and mainly 
used for protein analysis. 

Recent advances in mass spectrometry and materials analysis bring new capabilities to monitoring proteomic changes 
associated with human disease.  Many of these advances incorporate technologies acting at the molecular level that facilitate 
the ionization, separation and identification of unknown compounds. Successful processing of unknowns can often depend on 
the specific properties of the sample under study, the method of mass spectroscopy employed, and the reference library used for 
comparison.  Specifically, improvements in mass resolution, detection power and dynamic range are continuously being 
developed by improving time of flight detection, ion trapping efficiency and capacity [5-7].  Ultimately, physicians and 
researchers hope to develop instrumentation that can not only determine the composition of unknown biological samples, but 
also identify salient material characteristics that distinguish healthy from diseased patient tissues.   Changes in peptides and 
proteins, at levels that can be objectively measured and evaluated as indicators of normal and pathogenic processes, provide 
means for molecular diagnostics [8]. Profiling proteomic changes can benefit immensely from advancements in mass 
spectrometry beyond simple measurements of protein molecular weights. 
 
1.1 Diagnostic Proteomics 
 

Protein changes during a disease and/or a treatment can be studied with MALDI, gel electrophoresis and bioinformatics 
tools [9, 10]. Identifying patterns of proteins’ expressions can help reveal correlations of disease risk, disease progression and 
biological response to treatment. Mass spectrometry has an important role in clinical laboratories in areas that range from 
newborn screening [11], to detecting drug usage in athletes [12], and even toxicological and forensic applications [13]. An 
association between immune and oncogenic response and changes in total proteome profile has been established.  In addition, 
correlations between specific protein markers related to specific pathways such as apoptotic cascades and the role of Toll Like 
Receptors in inflammation and high expression of anti-apoptotic protein, BAG-1, in invasive breast carcinomas [14], and CRP, 
the plasma C-reactive protein, for systemic inflammation, were also recognized as strong predictors of heart attack and stroke 
in postmenopausal women.  In cancer research, complex mass spectrometric proteomic patterns have revealed serum 
differences between patients with and without cancer [15].  Currently MS technologies are being utilized in investigating 
proteome over-expressed proteins in lung tumors, and reported two differentially expressed proteins: migration inhibitory 
factor (MIF) and cyclophilin A (CyP-A). Such work represents an early chapter in studying novel molecular targets for cancer 
diagnostics and therapeutics [16]. 
 
1.2. Proteomic Change in Menopause 
 

Menopause is defined as the cessation of menstrual periods in women that occurs about 50 years of age. During menopause, 
many women experience symptoms including mood disorders, osteoporosis, hot flushes, cognitive dysfunction, and 
cardiovascular diseases. Although a vast amount of information is available on menopause, the progression of the above-
mentioned conditions continues to affect the quality of life for millions of women every day. To date, little is known about 
proteome changes during menopause transition.  This promises to open up an expanding field in which MALDI-MS techniques 
can assist in charting the mechanisms of hormonal activities, as well as determining how menopause may be linked with 
diseases related to aging and menopause [17-21]. MALDI can also be used with buffers containing high salt concentrations, 
i.e., at physiologically relevant conditions, such as those found in human blood.  Such assays may facilitate analysis of specific 
protein activities associated in hormonal, homeostatic, disease and aging processes.  For example, physiological changes 
resulting from menopause can now be studied in detail using mass spectrometry.  

Because MS is increasingly used for protein profiling, significant challenges have arisen with regard to analyzing the data 
sets. These include peak identification and alignment, MS spectrum normalization, and data set visualization, among others. 
These pre-processing steps are arguably critical and we are currently evaluating them carefully. The final and most important 
step is the identification of reliable diagnostic markers that can distinguish between two subjects under different treatment 
regiments. Currently there are many publications that explore implementing MS in proteomic diagnosis using serum samples 
from patients.  The need for large sample size from each patient, the need for elimination of immunoglobulin and the 
invasiveness of the technique, diminishes the potential of utilizing MS using serum samples. Here we utilize MALDI MS to 
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obtain a proteomic profiling for the first time from urine samples proving the feasibility of a non- invasive sampling method.  
This technique substantiates the postulation that urine can be used as a source of proteins to monitor pathological changes. 
 
2. Data Acquisition 
 

We have obtained urine samples from women at three different stages of their reproductive life cycles: premenopausal 
women (the negative control group), postmenopausal women (the control group), and women treated with estrogen (the 
experimental group).  The postmenopausal  women were  enrolled in the KEEPs trial [22, 23].  Proteins were extracted from 
urine samples.  The samples were then subjected to automated desalting and MALDI-MS on a Micromass M@LDI-R 
instrument as described generally at http://info.med.yale.edu/wmkeck/prochem/biomarker.htm. This data set consists 
of MS spectra that extend from 800 to 3500 Da (Daltons) obtained on urine samples from random subjects selected from the 
aforementioned groups. Each sample was replicated with MS to average out differences due to technical errors. The MALDI 
analysis was done on a Waters MALDI-L/R mass spectrometer and acquired in both linear and reflectron, positive ion 
detection modes.  The mass range acquired was dependent on the mass analyzer being used, with 700-3500 Da being used for 
reflectron analysis. Linear data over the 3450-28000 Da range was collected and the two spectra were merged at 3500 Da to 
produce a continuous reflectron + linear spectrum ranging from 700 – 28000 Da. Although the mass range was adjustable, 
meaningful data was not usually acquired below about 700 Da due to interference from the matrix. The linear analyzer was 
used for the high mass region because with the reflectron analyzer the sensitivity of detection decreases substantially above 
3,500 Da. The MALDI-L/R sums 10 individual laser shots into one spectra with the laser operating at 20 Hz (i.e., 20 
shots/second), acquiring new spectrum every ½ second.  The laser moves in a random walk around the target well, acquiring 
data from a maximum of 20 different locations within each well.  A spectrum was considered acceptable if it had a signal of 
greater than 2% above background noise, less than 95% of saturation, and at a minimal level of one m/z detected between 
1,125 Da and 3,500 Da. Each (averaged) reflectron and linear MALDI-MS spectrum was converted to a text file listing of m/z 
versus intensity data points spanning the m/z range from 700-3500 and 3450 to 28,000 that was then suitable for further 
analysis.  Data points in the linear MALDI-MS, overlapping with the 3450 to 3500 region of the reflectron spectrum were 
deleted, therefore resulting in the “continuous” spectrum from 700 to 28,000 daltons with the reflectron/linear “breakpoint” 
appearing at 3,500 Da.  The expected mass resolution was 14,000 at M+H 2,465 and the mass accuracy was better than 
approximately +70 ppm. All spectra were visually screened. Poor quality spectra were then re-shot manually from the same 
targets.  If the manually acquired spectrum appeared to be visually superior to the automatically acquired spectrum then the file 
was over-written with the manually acquired spectrum. 

 
3. Pre-Processing 
 

For this pilot study, only reflectron data was employed. In total, 16 spectra were collected from the control group, which 
contained older post-menopausal women without estrogen treatment. Thirteen spectra were from the experiment group, which 
were older post-menopausal women treated with estrogen. The negative control group contained younger pre-menopausal 
patients. Eight spectra were collected from this group. The mass spectra were pre-processed using the PROcess package in 
Bioconductor [24], with some modifications (Figure 1). In brief, both the m/z and intensity values were log-transformed. The 
background of each spectrum was estimated using loess method and then removed.  The set of spectra was re-normalized to 
their median Area Under the Curve (AUC), where an AUC is calculated for all of the m/z values. Peaks were detected and 
aligned using default parameters. Only peaks with intensities greater than the 80th percentile were kept. Centers of the resulting 
intervals were defined as the locations of the aligned peaks (P-Markers). For each spectrum, actual peaks represented by an 
aligned peak were determined and the maximum of those was defined as the height of the (P-Markers). If there were no peaks, 
then the intensity was defined as zero. Only those peaks which had greater than zero intensity in 15% or more of total numbers 
of spectra were kept for further analysis.  
 
4. Peak Scoring 
 

We employ a scoring process to identify peaks that best distinguish one sample type from another.  To accomplish this, we 
start with the scoring method we first developed in [25] for transcriptomic analysis, and modify it appropriately for proteomics 
data.  See procedure peak-score-and-select in Appendix B for details. With this technique, we are able to assign higher scores 
to more highly differentiated peaks   Figure 2 shows a typical histogram of peak scores. A series of thresholds (0, 0.2, 0.4 and 
0.6) was applied to search for appropriate cutoff values. Visual inspection of the separation of distributions of weights between 
groups and within groups suggested 0.4 as an appropriate score cutoff value (Figure 3). Weights are then assigned to pairs of 
peaks. The assignment of such weights was performed also using methods adapted from our work in [25].  In this weighting 
technique the weight between samples i and j indicates the degree of similarity in their peak profiles: 

∑ −−•= |)_int_int|1()(),( jkikk valueensityvalueensitypeakscorejiweight  
The R statistical package [26] was used to help make score and weight calculations. 
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This process produces three symmetric matrices containing respectively the weights between patients in the experiment and 
negative control, control and negative control, and control and experiment groups, respectively.  These weight values are then 
scaled to the interval [0, 1].  Higher weighted sample pairs tend to be homogeneous, with both samples being in either 
experiment or control group, for example. Figures 4A and 4B closely resemble what we would expect, with the mixed sample 
pairs not being as highly represented on the upper end of the scale. The high frequency of mixed sample pairs on both the upper 
and lower end of the scale in Figure 4C indicates that there might be more difficulty in differentiating between sample types in 
the control versus experiment group. 
 
5. Graph Algorithms 
 

There are advantages to placing our work in a graph-theoretic framework. Not only does this make it amenable to 
algorithms based on decades of basic research, but this representation is known to be appropriate for probing and determining 
the structure of biological networks (see, for example, [27-29]).  In the present context, we used each of the afore-mentioned 
matrices to build an edge-weighted graph, with patients represented by vertices, and with edges assigned the previously-
calculated weights.  Edges with weight less than a preset threshold T were eliminated.   
 
5.1 Clique-Centric Analysis 
 

On the resulting unweighted graph we consider clique, a well-known NP-complete problem.  Clique is typically formulated 
as a decision problem.  Its inputs are a graph G=(V,E) and a positive integer k ≤ |V|.  The question asked is whether there a 
V’⊆V with |V’|≥ k for which every pair of vertices in V’ is joined by an edge in E.  Clique is widely recognized for its relevance 
in bioinformatics (in fact it is employed by Bioconductor in the aforementioned default peak alignment process).  In the present 
application, we search for all maximal cliques. A maximal clique is one to which no new vertex can be added.  It need not be 
one of maximum size.  Recent work on fast maximal clique finding methods is described in [30, 31].  

A central goal in this approach to put MS into practice as a potential diagnostic too is to find a set of cliques that covers 
each group with minimal overlap of the cliques between the groups.  Thus, in order to distinguish accurately between sample 
groups, edges in this unweighted graph should connect mainly members of the same group.  This is achieved in part by 
selecting a meaningful threshold.  A visual inspection of the distribution of weights within the various data sets (see Figure 4) 
and prior experience in handling biological data [32, 33] leads us to select the initial value T= 0.85.  Using a modification of the 
analysis procedure we first devised [25] (see procedure clique-analysis in Appendix B for details), we iterated on each of the 
three graphs until a set of cliques meeting our criteria was found.  The optimal threshold was found to be 0.90 for the control 
versus experiment and control versus negative control data, while a much lower value of 0.78 was discovered to be optimal for 
experiment versus negative control.  Although overlap still exists in the cliques between different groups, modifications to the 
threshold offered no improvement. 
 
5.2 Refinement with Dominating Set  
 

Scoring, weighting and clique help us to identify a set of peaks that discriminate between patient populations.  To reduce 
this set to a core of its most promising elements, we seek to pinpoint those peaks that best cover the patient data.  We rely on 
our previous work on cancer microarray data to develop an effective procedure for this task using dominating set, another 
well-known NP-complete problem.  Its decision version can be defined as follows. The inputs are a graph G=(V,E) and a 
positive integer k ≤ |V|. The question asked is whether there a V’⊆V with |V’|≤ k for which every vertex in V is either in V’ or 
adjacent to a vertex in V’.  The version we face is properly known as nonplanar red/blue dominating set, because our graphs are 
bipartite.  (See procedure dominating-set-winnow in Appendix B for details).  

In brief, we checked the data using the Shapiro-Wilk test for normality, based on that assumed a normal distribution of the 
intensity values of each peak, and estimated for it the mean and standard deviation. This was done separately for each of the 
two patient groups. Then, based on the estimated normal distribution, we calculated the p-values for the original individual 
intensity values. This approach may be illustrated by constructing the aforementioned bipartite graph. As shown in Figure 5, 
one set of vertices represents peaks, the opposing set represents patient samples. We place an edge between a peak and a 
sample if and only if the p-value of the intensity corresponding to that peak-patient pair was greater than 0.05. Following 
statistical convention, we considered a p-value below this cutoff to indicate an outlier. In this setting, we want to identify the 
peaks that dominate all (or nearly all) of the samples. Therefore, we winnow out from consideration any peak vertex not 
adjacent to at least 90% of the patient vertices. 

Also, to remove any peaks with a low possibility of discriminating between the two groups, we calculated the p-values for 
tests of equal means using both the Wilcoxon and t-test methods. We used both since the t-test assumes a normal distribution, 
while the Wilcoxon test does not. Only peaks for which both p-values were less than 0.01 were retained. We further filtered out 
peaks by controlling the false discovery rate at 0.01 based on the calculation on the complete list of final p-values. Q-values 
were calculated using software Q-VALUE [34]. 
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After winnowing, we take the intersection of the peaks identified via clique with those selected via dominating set. This 
produces our best estimate of potentially meaningful diagnostic indicators.  The three matrices of weights between patients are 
once again calculated using this smaller set of selected peaks.  We examine the weight distributions for each data set and see 
that there is a greater separation between the sample groups, with an increased number of homogeneous sample pairs with 
higher weights.  See Figure 6.  Using the clique-analysis procedure described in Appendix B, we iterate on each of the three 
graphs to find a suitable set of maximal cliques.  In this instance, a threshold value of 0.83 was found to be optimal for each of 
the graphs.   
 
6. Results 
 

For the comparison between experiment and negative control groups, 90 peaks were identified by the clique analysis 
approach, with 67 peaks left after dominating set refinement (See Table 1 in Appendix A for the complete list of those peaks). 
The enumeration of maximal cliques resulted in a total of seven cliques for the experiment versus negative control graph.  Five 
were comprised only of experiment patient samples; two were comprised only of negative control patient samples.  There was 
no clique mixed with patients from two groups.  Thus for all practical purposes the two groups of patients were completely 
separated based on their MS profile using our algorithm. This suggests an exceedingly high level of correlation within and 
separation between sample types.  See Figure7A. 

Similarly, we identified 182 peaks using the clique analysis approach on control and negative control groups. Dominating 
set trimmed the list significantly down to only 6 peaks (See Table 2 in Appendix A). There were eight maximal cliques in the 
control versus negative control graph.  Six were comprised exclusively of control patient samples, one contained only negative 
control patient samples, and one was mixed with patients from both groups.  This too is suggestive of highly meaningful 
correlation and separation.  See Figure 7B.

Eleven maximal cliques were found in the control versus experiment graphs, with one being comprised of only control 
patient samples and one comprised of only experiment patient samples.  The other nine cliques were made up of a mix of 
control and experiment samples, although six were biased toward control and two were comprised of mostly experiment patient 
samples.  See Figure 7C.  This is not unexpected, because only a very small number of peaks were identified. Only five peaks 
were selected by clique analysis, with a single peak retained after dominating set refinement (See Table 3 in Appendix A). 
Such a small number of peaks generally leads to unstable clustering. However, this project is intended primarily as a pilot study 
to help determine the viability of this general approach.  Much more data is needed to obtain larger repeatable peak profiles and 
thus more comprehensive peak spectra between all groups.  We are satisfied with our methodology given the results using 
peaks for experiment and negative control. 
 
7. Discussion and Conclusions 

The ability to monitor changes at the molecular level provides an unprecedented chance to monitor vital processes such as 
organ and tissue modulation over the progression of disease and the metabolization of drugs. The multi dimensionality and 
complexity of biological processes necessitate the usage of more holistic approaches in diagnostics tools.  In addition, 
contemporary problems of increasing drug tolerance and current advances in genetic polymorphisms necessitate the 
development of individualized medicine by which patients are treated on a case by case basis.  The fact that some drugs might 
cure some patients while harming or even killing others also substantiates the development of holistic yet individualized 
diagnostic schemes. Such diagnostic systems that would provide reliable markers pinpointing differences between healthy and 
diseased states would allow risk assessment, early detection, and more precise monitoring of these diseases and their 
progression. 

For a scientist to obtain such a holistic view of cell machinery under certain conditions, a transcriptome or proteome needs 
to be profiled. The ability of microarray technology to monitor expression of thousands of genes in a single experiment has 
attracted tremendous interest.  Microarrays by nature are directed at analyzing mRNA rather than proteins, which are the actual 
biological facets that drive cellular machinery. Not all transcripts are functional at all times.  Moreover, proteins are often post-
translationally modified.  These facts diminish the potential of microarray technology as a diagnostic tool, and minimize its 
potential to capture many intra-cellular mechanisms.  The need for a tool that can directly monitor changes at the protein levels 
has motivated scientists to seek alternative technologies that work directly with proteins.  Mass Spectroscopy is among those 
technologies that are assured to help understanding diseases progression through portraying a proteome profile for any desired 
tissue.  The ability of MS to profile a whole proteome and provide a way of comparing two states (diseased versus healthy) has 
moved this technology to the forefront in biomedicine.  Currently, MS data sets are increasingly used for protein profiling in 
diseased versus normal tissues.  MALDI MS was utilized in the identification of phenotypic expression patterns for many 
pathological condition especially cancer. There is a rapidly growing literature on the use of MS in proteomic profiling of 
healthy and diseased state. However, in these reports there is single reliable algorithm through which single samples can be 
analyzed for diagnostic purposes. 

Advances in MS, protein 3D technologies, computational methods and bioinformatics have the potential to improve the 
way we understand the differences between healthy and diseased states. This will allow us to screen total proteome profiles in 
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a biologic sample. Using reliable algorithms and suitable bioinformatics tools will advance our ability to diagnose diseases and 
identify risk factors early on that are essential for effective treatment and for the development of novel therapies. 

As we develop our knowledge of the molecular basis for most human disease, mass spectrometry provides new capabilities 
for discovering novel proteins and processes. Mass spectrometry and specifically MALDI-MS; demonstrate great potential as a 
diagnostic tool in a wide range of clinical settings. Likewise, clique-centric methods are gaining rapidly in popularity due to the 
purity of the results they generate and the scalability now achievable on immense data sets via advances in fixed-parameter 
tractability [35-37].  That we have found our scoring and weighting techniques useful on both transcriptomics data as in [25] 
and now here on proteomics data is especially encouraging.  Disease characterization and mapping by depicting specific 
protein profiles can aid researchers in understanding how biological processes were governed.  Research pertaining to disease 
associated with menopause is a fertile area for further applications of molecular diagnosis exploration. 
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Figures and Tables 
 
  

 
 
 
Figure 1: A graphic example of spectrum preprocessing. A. Background correction. Horizontal axes are 
log-transformed m/z values and vertical axes are log-transformed intensity values. The raw, estimated and 
background corrected spectra are showed in color green, red and blue, respectively. B. Peak extraction. 
Smoothed and background corrected spectrum is in cyan and extracted peaks are labeled as red circles. 
Estimated local variation is in black. The 80 percent quantile is shown as the horizontal line. 
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Figure 2: Histograms of peak scores for all three pair-wise group comparisons. Peak scoring was 
performed as described in Appendix B.  
 

 
 
 
Figure 3: Distributions of inter-subject weights under different peak score threshold values. A series of 
score thresholds (0, 0.2, 0.4 and 0.6) was applied to search for the appropriate cutoff values. Visual 
inspection of the distributions of weights between groups and within groups suggests the best separation 
is when 0.4 was chosen as the score cutoff value. 
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Figure 4A: Experiment versus negative control weight distributions 
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Figure 4B: Control versus negative control weight distributions 
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Figure 4C: Control versus experiment weight distributions 

 

Figure 4: Histograms of the number of sample pairs (edges) between each of the sample groups.  Those 
pairs with high scores are predominantly homogeneous (the edges connect samples within the same 
group.)  Visual inspection is used to select a satisfactory initial threshold. 
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Figure 5: Examples of patient-peak bipartite graphs. (A) Before winnowing. Peak vertices are shown in red.  
Patient samples are represented by blue vertices. Patient vertices shaded with horizontal lines are from one 
group. Those shaded with small grids are from another. Edges connect only patients and peaks (no peak-
peak or patient-patient edge is possible).  (B) After winnowing. Only peak vertices that dominate at least 
90% of patient vertices are retained. 
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Figure 6A: Experiment versus negative control weight distributions 
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Figure 6B: Control versus negative control weight distributions 
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Figure 6C: Control versus experiment weight distributions 

 

Figure 6:  Histograms of the number of sample pairs (edges) between each of the sample groups using 
weight calculated from peaks selected after dominating set refinement.  The increased prevalence of 
homogeneous sample pairs at higher weights suggests a greater separation between the sample groups 
and confirms the validity of dominating set. 
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Figure 7A: Experiment versus negative control cliques 
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Figure 7B: Control versus negative control cliques 
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Figure 7C: Control versus experiment cliques 
 
 

Figure 7: Bar graphs illustrating the size and type of the maximal cliques.  The experiment versus negative 
control graph contained all homogeneous cliques while the control versus negative control graph 
contained just one mixed clique.  Maximal clique enumeration on the control versus experiment graph 
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resulted in one clique containing only control patient samples, one clique comprised of only experiment 
patient samples, and nine mixed cliques. 
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Appendix A.  Tables of Peak Results (Putative Biomarkers) 
 
Table 1: Experiment versus negative control selected peaks 
 
 m/z Score  m/z Score  m/z Score 
M6.901420936 993.6857 0.4976 M7.567743191 1934.7689 0.4457 M7.7094751205 2229.3718 0.4397
M6.90241193 994.6709 0.4982 M7.5680349 1935.3334 0.4457 M7.710392673 2231.4183 0.4397
M7.371684679 1590.3107 0.4506 M7.568072897 1935.4070 0.4417 M7.7112443425 2233.3195 0.4397
M7.372186159 1591.1084 0.4506 M7.568409389 1936.0583 0.4417 M7.7174674745 2247.2611 0.4397
M7.3735444595 1593.2711 0.4471 M7.569355563 1937.8910 0.4415 M7.7213213185 2255.9384 0.4397
M7.374150006 1594.2362 0.4471 M7.572015788 1943.0531 0.4415 M7.7219168315 2257.2823 0.4397
M7.376087102 1597.3273 0.4243 M7.57479908 1948.4687 0.4418 M7.724766979 2263.7250 0.4397
M7.377346123 1599.3397 0.4243 M7.5753595695 1949.5611 0.4418 M7.7283787805 2271.9159 0.4397
M7.377962237 1600.3254 0.4243 M7.5754733385 1949.7830 0.4411 M7.734302048 2285.4130 0.4397
M7.3786385435 1601.4080 0.4243 M7.5757644945 1950.3507 0.4411 M7.740653997 2299.9761 0.4397
M7.378871598 1601.7813 0.4275 M7.5763256745 1951.4455 0.4411 M7.7454016575 2310.9215 0.5547
M7.3792338945 1602.3617 0.4275 M7.5767688215 1952.3105 0.4411 M7.747771895 2316.4055 0.5547
M7.379520607 1602.8212 0.4275 M7.5772998485 1953.3475 0.4411 M7.8578619845 2585.9856 0.6917
M7.379560601 1602.8853 0.4275 M7.577617825 1953.9687 0.4411 M7.858987293 2588.8973 0.6917
M7.379828336 1603.3145 0.4275 M7.578369545 1955.4381 0.4411 M7.867297957 2610.5024 0.6917
M7.3801011055 1603.7519 0.4275 M7.696364838 2200.3349 0.4386 M7.871301935 2620.9757 0.6917
M7.3804608735 1604.3290 0.4275 M7.6970022305 2201.7378 0.4397 M7.8725910795 2624.3567 0.6917
M7.38075258 1604.7971 0.4275 M7.701045805 2210.6587 0.4397 M7.873368728 2626.3983 0.6917
M7.381294571 1605.6671 0.4388 M7.70132827 2211.2832 0.4397 M8.1113965895 3332.2285 0.7658
M7.5641876055 1927.9019 0.4307 M7.704012552 2217.2269 0.4397 M8.11354684 3339.4014 0.7658
M7.566852434 1933.0463 0.4705 M7.7076545325 2225.3167 0.4397 M8.1155585715 3346.1261 0.7658
M7.5672678455 1933.8495 0.4705 M7.7094041295 2229.2135 0.4397 M8.1271498955 3385.1378 0.7658

 

Table 2: Control versus negative control selected peaks  
 

 m/z score  m/z score  m/z Score 
M7.8578619845 2585.9856 0.5393 M7.867297957 2610.5024 0.5605 M7.8725910795 2624.3567 0.6277
M7.858987293 2588.8973 0.5393 M7.871301935 2620.9757 0.6277 M7.873368728 2626.3983 0.6277
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Table 3: Control versus experiment selected peaks 
 
 mz score 
M7.283268882 1455.7389 0.4057 
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Appendix B.  Computational Procedures Employed 
 
procedure peak-score-and-select  
let A be the n x m data matrix, where rows are patient and columns are peaks 
for j=1 to m  

normalize intensity values in column j to the range [0, 1]  
compute median expression value (vj) and standard deviation (σj) on group 1 sample data for peak j  
repeat computation on group 2 sample data for peak j  
set score(peak j) = |vj(group 1) – vj(group 2)| – |σj(group 1) + σj(group 2)|  
delete peaks with scores not exceeding some lower limit  
return remaining peaks and their scores 

 
procedure clique-analysis  
initialize edge-weighted graph of order n  
for i=1 to n  

for j = 1 to n  
set the weight of each edge  

for a user-specified number of iterations do  
use T to delete edges with low weight  
find in resulting undirected graph all maximal cliques, C  
analyze C to refine the choice of T  

return T 
 
procedure dominating-set-winnow  
let n be the number of patients 
let m be the number of peaks 
initialize edge-weighted bipartite graph of order n+m  

for i=1 to m  
for j = 1 to n  
determine the p-value (weight) of each peak (i,j)  

set threshold to 0.05 and eliminate edges of low weight  
flag peaks that dominate < 90% of patients from group 1 
flag peaks that dominate < 90% of patients from group 2  

for i=1 to n  
generate p-value of equal mean using Wilcoxon and t-test  
set the final p-value of each peak as the maximum p-value of two test 

flag peaks with the final p-value greater than 0.05 
calculate q-vlaues of peaks based on the list of final p-values 
flag peaks with q-value greater than 0.01  
delete all of flagged peaks  
return remaining peaks 
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