
Using Quadtree Encoding for MPI Collective

Algorithm Selection Process

Jelena Pješivac–Grbović, Graham E. Fagg, Jack J. Dongarra

May 15, 2006

Abstract

The performance of an MPI collective operation depends on a num-
ber of different factors, some of which are at the hardware level such
as network characteristics and topology, while some others are at the
software level: algorithm implementation, choice of segment size (if ap-
plicable), and the collective operation parameters. Selecting the best
possible collective implementation for the particular set of parameters
is important for overall application performance. In this paper, we
focus on MPI collective algorithm selection process and explore the
applicability of the quadtree encoding method to this problem. We
construct quadtrees with different properties from the measured algo-
rithm performance data and analyze the quality and performance of
decision functions generated from these trees. The experimental data
shows that in some cases, the decision function based on a quadtree
structure with a mean depth of 3 can incur as little as a 5% per-
formance penalty on average. The exact, experimentally measured,
decision function for all tested collectives could be fully represented
using quadtrees with a maximum of 6 levels. We also evaluate the per-
formance of prototype version of quadtree-based in-memory decision
systems, and find that that the decision can be obtained from a 6-level
quadtree in close to 170ns. In comparison, fixed reduce decision in FT-
MPI takes 45ns to evaluate and is not an exact decision. Our results
indicate that quadtrees may be a feasible choice for both processing of
the performance data and automatic decision function generation.

Contents

1 Introduction 3

2 Related work 4

3 Quadtrees and MPI collective operations 6
3.1 Building the quadtree decision structure 6
3.2 Decision quadtree properties 7
3.3 Generating decision function source code 7
3.4 In-memory quadtree decision structure 7

4 Experimental results and analysis 8
4.1 Broadcast decision maps . 8
4.2 Performance penalty of decision quadtrees 9
4.3 Quadtree accuracy threshold 10
4.4 Accuracy threshold vs. limiting maximum depth 11
4.5 In-memory quadtree-based decision system 12

5 Discussion and future work 13

A Library Information 15
A.1 Implementation Details . 15
A.2 Installation . 16

List of Figures

1 Reduce decision map . 5
2 Broadcast decision maps . 9
3 Performance penalty broadcast decision functions 10
4 Accuracy threshold and quadtree performance penalty 11
5 Accuracy threshold vs. maximum depth 12

List of Tables

1 Algorithm Selection Problem as a Classification Problem . . . 5
2 Decision map example . 6
3 Broadcast decision tree statistics 11
4 In-memory decision system performance 13

2

1 Introduction

The performance of MPI collective operations is crucial for good perfor-
mance of MPI application which use them [1]. For this reason, significant
efforts have been put on design and implementation of efficient collective
algorithms both for homogeneous and heterogeneous cluster environments
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Performance of these algorithms varies with
the total number of nodes involved in communication, system and network
characteristics, size of data being transferred, current load, and if applica-
ble, the operation that is being performed as well as the segment size which
is used for operation pipelining. Thus, selecting the best possible algorithm
and segment size combination (method) for every instance of collective op-
eration is important.

To ensure good performance of MPI applications, collective operations
can be tuned for the particular system. The tuning process often involves de-
tailed profiling of the system possibly combined with communication model-
ing, analyzing the collected data, and generating a decision function. During
run-time, the decision function selects close-to-optimal method for a partic-
ular collective instance. This approach relies on the ability of the decision
function to accurately predict algorithm and segment size to be used for
the particular collective instance. Alternatively, one could construct an in-
memory decision system which could be queried/searched at the run-time
to provide the optimal method information. In order for either of these ap-
proaches to be feasible, the memory footprint and the time it takes to make
decisions need to be minimal.

This paper studies the applicability of the quadtree encoding method as a
storage and optimization technique within the MPI collective method selec-
tion process. We assume that the system of interest has been benchmarked
and that detailed performance information exists for each of available collec-
tive communication algorithm. With this information, we focus our efforts
on investigating whether the quadtree encoding is a feasible way to gener-
ate static decision functions as well as, to represent the decision function in
memory.

We implemented a prototype quadtree implementation and programs to
analyze the experimental performance data, construct the quadtree deci-
sion functions, and analyze their performance penalty in comparison to the
exact decision function. We collected detailed profiles for broadcast and re-
duce MPI collective algorithms on two different clusters, and analyzed the
quality of decisions from quadtrees built using this data but under different
constraints.

3

The experimental data collected on Grig cluster located at the University
of Tennessee at Knoxville for broadcast and reduce MPI collectives, shows
that the decision function based on quadtree structure with a mean depth of
3, on average can incur as little as a 5% performance penalty. The exact, ex-
perimentally measured, decision function for both collectives on this system
could be fully represented using quadtrees with a maximum of 6 levels. We
also measured performance of the prototype version of in-memory quadtree-
based decision system and found that 6-level tree can return decision in close
to 170ns on average. The 3-level tree search for both reduce and broadcast
took around 150ns on average. This is comparable to 45.22ns and 110.53ns
for fixed decision functions in FT-MPI for reduce and broadcast collectives
respectively. These results indicate that quadtrees may be a feasible choice
for processing of the performance data and decision function generation.

The paper proceeds as follows: Section 2 discusses existing approaches
to the decision making/algorithm selection problem; Section 3 describes the
quadtree construction and analysis of quadtree decision function in more
detail; Section 4 presents experimental results; Section 5 concludes the pa-
per with discussion of the results and future work; finally the appendix A
provides some implementation details about the library.

2 Related work

The MPI collective algorithm selection problem has been addressed in many
MPI implementations.

In the FT-MPI [12], the decision function is generated manually using
visual inspection method augmented with Matlab scripts used for analysis
of the experimentally collected performance data. This approach results
in a precise albeit complex decision functions. In the MPICH-2 MPI im-
plementation, the algorithm selection is based on bandwidth and latency
requirements of an algorithm, and the switching points are predetermined
by the implementers [7]. In the tuned collective module of the Open MPI
[13], the algorithm selection can be done in either of the following three
ways: via compiled decision function, via user-specified command line flags,
or using rule-based run-length encoding scheme which can be tuned for par-
ticular system.

It is also possible to view this problem as a data mining task in which the
algorithm selection problem is replaced by an equivalent classification prob-
lem. The new problem is to classify collective parameters, (collective oper-
ation, communicator size, message size), into a correct category, a method

4

Non-categorical Categorical
attributes attributes

Collective Communicator Message Algorithm Segment Method
size size name size index

Broadcast 24 1024 Linear 0 1
Broadcast 27 2048 Linear 0 1
Broadcast 28 131072 Binomial 8192 12

Reduce 11 122880 Pipeline 1024 32

Barrier 96 N/A Bruck N/A 64

Table 1: Interpreting the algorithm selection problem as a classification
problem.

in our case, to be used at run time. The major benefit of this approach
is that the decision making process is a well studied topic in engineering
and machine learning fields. Decision trees are extensively used in pattern
recognitions, CAD design, signal processing, medicine, biology, and search
engines [14].

Alternatively, one can interpret the optimal collective implementation on
a system, i.e. a decision map, as an image and apply a standard compression
algorithms to it. Figure 1 illustrates a decision map for the reduce operation
on Nano cluster. We then use the encoded structure to generate decision
function code. To the best of our knowledge, we are the only group which
has approached the MPI collective tuning process in this way.

Figure 1: Reduce decision map from Nano cluster. Different colors corre-
spond to different method indexes.

5

Communicator size Message size Algorithm Segment Method
(y-axis) (x-axis) size index

3 1 Linear none 1
3 2 Linear none 1
...
16 128 Linear none 1
...

128 64KB BinaryTree 8KB 13
...

Table 2: Decision map example. The axis information relates to the decision
maps in Figure 2.

3 Quadtrees and MPI collective operations

We use the collective algorithm performance information on a particular
system to extract the information about the optimal methods and construct
a decision map for the collective on that system. An example of a decision
map is displayed in Table 2. The decision map which will be used to initialize
the quadtree must be a complete and square matrix with a dimension size
that is a power of two, 2k × 2k. Complete decision map means that tests
must cover all message and communicator sizes of interest. Neither of these
requirements are real limitations, as the missing data can be interpolated
and the size of the map can be adjusted by replicating some of the entries.
The replication process does not affect the quadtree decisions, but may affect
efficiency of the encoding (both in positive and negative manner).

3.1 Building the quadtree decision structure

Once a decision map is available, we initialize the quadtree from it using user
specified constraints such as accuracy threshold and maximum allowed depth
of the tree. The accuracy threshold is the minimum percentage of points
in a block with the same “color”, such that the whole block is “colored” in
that “color”. The quadtree with no maximum depth set and threshold of
100% is an exact tree. The exact tree truthfully represents the measured
data. A quadtree with either threshold or maximum depth limit set allows
us to reduce the size of the tree at the cost of prediction accuracy, as it is no
longer an exact copy of the original data. Limiting the absolute tree depth
limits the maximum number of tests we may need to execute to determine
the method index for specified communicator and message size. Setting the
accuracy threshold helps smooth the experimental data, thus possibly mak-
ing the decision function more resistant to inaccuracies in measurements.

6

Applying the maximum depth and/or the accuracy thresholds is equivalent
to applying low-pass filters to the original data set.

3.2 Decision quadtree properties

A property of any decision tree is that an internal node of the tree cor-
responds to an attribute test, and the links to children nodes correspond
to the particular attribute values. In our encoding scheme, every non-leaf
node in the quadtree corresponds to a test which matches both communica-
tor and message size values. The leaf nodes contain information about the
optimal method for the particular communicator and message size ranges.
Thus, leaves represent the rules of the particular decision function. In effect,
quadtrees allow us to perform a recursive binary search in a two-dimensional
space.

3.3 Generating decision function source code

We provide functionality to generate decision function source code from the
initialized quadtree. Recursively, for every internal node in the quadtree we
generate the following code segment:

if (NW) {...} else if (NE) {...} else if (SW) {...} else if (SE) {...} else {error}.
The current implementation is functional but lacks optimizations, i.e. ability
to merge conditions with same color1. The conditions for boundary points
(minimum and maximum communicator and message sizes) are expanded
to cover that region fully. For example, the rule for minimum communi-
cator size will be used for all communicator sizes less than the minimum
communicator size.

3.4 In-memory quadtree decision structure

Alternative to generating the decision function source code is maintaining
an in-memory quadtree decision structure which can be queried during the
run time.

An optimized quadtree structure would contain 5 pointers and 1 method
field, which could probably be a single byte or an integer value. Thus, the
size of a node of the tree would be around 44B on 64-bit architectures2.

1The code segment generated for each internal node contains at least 21 lines – 5 lines
for conditional expressions, 10 lines for braces, a line for error handling, and at least a line
per condition.

2In this analysis, we ignore data alignment issues which would lead to even larger size
of the structure.

7

Additionally, the system would need to maintain in memory the mapping of
(algorithm, segment size) pairs to method indexes as well. The maximum
depth decision quadtree we encountered in our tests had 6 levels. This means
that in the worst case, the 6-level decision quadtree could take up to 47−1

4−1 =
5461 nodes, which would occupy close to 235KB of memory. However, our
results indicate that the quadtrees with 3 levels can still produce reasonably
good decisions. Three-level quadtree would occupy at most 3740B and as
such could fit into 4 1KB pages of main memory. Even so, the smaller
quadtree if cached could still occupy significant portion of the cache.

Our prototype implementation provides program for managing the in-
memory decision function - however the node structure has 104B instead of
minimal 44B. We believe that optimized version should achieve significantly
better performance than the prototype version.

4 Experimental results and analysis

In order to determine whether quadtrees are a feasible choice for encoding
the automatic method selection process for MPI collective operations, we
analyzed the accuracy and the performance3 of quadtrees built from the
same experimental data but under different constraints.

Under the assumption that the collective operations parameters are uni-
formly distributed across communicator size and message size space, we
expect that the average depth of the quadtree is the average number of con-
ditions we need to evaluate before we can determine which method to use.
In the worst case, we will follow the longest path in the tree to make the
decision, and in the best case the shortest.

The performance data for broadcast and reduce collective algorithms was
collected on Grig cluster located at the University of Tennessee at Knoxville
and Nano cluster located at the Lawrence Berkeley National Laboratory.

4.1 Broadcast decision maps

Figure 2 shows six different quadtree decision maps for a broadcast collective
on the Grig cluster. We considered five different broadcast algorithms (Lin-
ear, Binomial, Binary, Splitted-Binary, and Pipeline),4 and four different
segment sizes (no segmentation, 1KB, 8KB, and 16KB). The measurements

3Performance of quadtree is the time it takes to make a decision, should not be confused
with performance penalty which is related to the accuracy of the quadtree-based decision
function.

4For more details on these algorithms, refer to [11]

8

covered all communicator sizes between 2 and 28 processes and message sizes
in 1B to 384KB range.

Figure 2: Broadcast decision maps from Grig cluster. Different colors cor-
respond to different method indexes. The trees were generated by limiting
the maximum tree depth. The x-axis scale is logarithmic. The crossover
line for 1-level quadtree is not in the middle due to the “fill-in” points used
to adjust the original size of the decision map from 25× 48 to 64× 64 form.

The exact decision map in Figure 2 exhibits trends, but there is a con-
siderable amount of information for intermediate size messages (between
1KB and 10KB) and small communicator sizes. Limiting the maximum tree
depth smoothes the decision map and subsequently decreases the size of the
quadtree. Table 3 shows the mean tree depth and related statistics for the
decision maps presented in Figure 2.

4.2 Performance penalty of decision quadtrees

One possible metrics of merit is the performance penalty one would incur by
using a restricted quadtree instead of the exact one. To compute this, one
can use the performance information for methods suggested by the restricted
tree for particular set of communicator and message size values, and compare
them to the performance results for methods suggested by the exact tree.

The reproducibility of measured results is out of scope of this paper, but
we followed the guidelines from [15] to ensure good quality measurements.

9

Even so, the “exact” decision function corresponds to a particular data
set, and the performance penalty of other decision functions was evaluated
against the data that was used to generate them in the first place.

Figure 3 shows the performance penalty of decision quadtrees from Fig-
ure 2 and the Table 3 summarizes the properties and performance penalties
for the same data. The analysis shows that even for noisy decision map in

Figure 3: Performance penalty of broadcast decision function from Grig
cluster. Colorbar represents relative performance penalty in percents. White
color means less than 25%, yellow is between 25% and 75%.

Figure 2, a 3-level quadtree would have less than 9% performance penalty
on average, while the exact decision could be represented with a total of 6
levels.

4.3 Quadtree accuracy threshold

In Section 3.3 we mentioned that an alternative way to limit the size of
quadtree is to specify the tree accuracy threshold.

Figure 4 shows the effect of varying the accuracy threshold on the mean
performance penalty of a reduce quadtree decision function on two different

10

Tree Depth Performance Penalty [%] Number of Function size
Max Min Mean Min Max Mean Median Leaves [# of lines]

1 1 1.0000 0.00 346.05 37.11 0.00 4 24
2 2 2.0000 0.00 436.02 18.63 0.00 16 82
3 2 2.9655 0.00 436.02 08.83 0.00 58 330
4 2 3.8554 0.00 391.53 06.29 0.00 166 932
5 2 4.7783 0.00 356.47 05.41 0.00 442 2,496
6 2 5.6269 0.00 000.00 00.00 0.00 973 5,505

Table 3: Statistics for broadcast decision quadtrees in Figure 2. The number
of leaves corresponds to the number of regions we divided the (communicator
size, message size) space into. The number of lines in decision function
includes lines containing only braces, error handling, etc.

systems. On both systems, the mean performance penalty of the reduce de-
cision was below 10% for an accuracy threshold of approximately 45%. This
threshold corresponds to the quadtree structures of maximum depth 3. This
means that the quadtree decision which would on average potentially cause
a 10% performance penalty would be evaluated at most in 3 expressions.

Figure 4: Effect of the accuracy threshold on mean quadtree performance
penalty.

4.4 Accuracy threshold vs. limiting maximum depth

Figure 5 shows the mean performance penalty of broadcast and reduce deci-
sions on Grig cluster (See Figures 2, 3, and 4, and Table 3) as a function of
the mean quadtree depth for quadtrees constructed by specifying accuracy
threshold and maximum depth. The results indicate that in the cases we
considered, constructing the decision quadtree by restricting the maximum
depth of the tree directly incurs a smaller mean performance penalty than

11

Figure 5: Accuracy threshold vs. maximum depth quadtree construction.

the tree of similar mean depth constructed by setting the accuracy threshold.
The results for the broadcast decision function show that when the

quadtree is deep enough to cover almost the whole initial data set, the tree
constructed using an accuracy thresholds achieves the smaller mean perfor-
mance penalty. This is not the case for the quadtree-based reduce decision
functions. This is probably due to the fact that the reduce decision function
was smoother to start with, so smoothing it with an accuracy threshold had
no further positive effects. Still, we believe that the example of the broad-
cast decisions indicates that the accuracy threshold setting could be used to
avoid over-fitting the data when the tree depth is not a concern.

4.5 In-memory quadtree-based decision system

Table 4 contains the performance results for in-memory quadtree-based de-
cision system for reduce collective on Grig cluster. The reported decision
time value is the average time it took for the quadtree to make decision for
a random communicator and message size from the 2 − 32 and 1 − 16MB
ranges respectively. Even though the broadcast decision function was more
complex than reduce on this cluster, the time to decision was actually lower.

The results in Table 4 show that using even unoptimized quadtree im-
plementation the time to decision for these quadtrees was around 30ns per
level. Furthermore, the time to decision for the complete tree with 6 levels
took less than 175ns for reduce and 165ns for broadcast collective. The
3-level trees, which incur less than 10% performance penalty, took around
150ns for both collectives.

In comparison, the fixed reduce and broadcast decisions in FT-MPI took
45.22ns and 110.53ns on average. Even though we did not compute the

12

Mean Mean Number Number Memory Decision Decision time
tree performance of of [Bytes] time per level
depth penalty [%] leaves nodes [nsec] [nsec]
0.00 561.67 1 1 104 22.22 22.22
1.00 143.59 4 5 520 66.38 33.19
2.00 12.51 16 21 2,184 109.26 36.42
2.95 3.23 55 73 7,592 146.78 37.16
3.84 0.96 157 209 21,736 161.84 33.44
4.63 0.37 334 445 46,280 170.02 30.20
5.40 0.00 610 813 84,552 174.95 27.34

Table 4: Performance of prototype implementation of in-memory, quadtree-
based decision system for reduce collective on Grig cluster. Time per level
was computed as decision time

mean depth+1 .

performance penalty for the fixed decision functions, we know they perform
well on Grig cluster. Still, the results using unoptimized quadtree-based
decision system are comparable to the fixed ones.

The optimized quadtree implementation will have both smaller memory
footprint and better memory layout due to non-recursive construction. We
expect that this quadtree implementation will decrease the time to make
decision considerably.

5 Discussion and future work

In this paper, we studied the applicability of a modified quadtree encoding
method to the algorithm selection problem for the MPI collective function
optimization. We analyzed the properties and performance of quadtree de-
cision functions constructed by either limiting the maximum tree depth or
specifying the accuracy threshold a the construction time.

Our experimental results for broadcast and reduce collectives, show that
in some cases, the decision function based on a quadtree structure with a
mean depth of 3, incurs less than a 5% performance penalty on the average.
In other cases, deeper trees (5 or 6 levels) were necessary to achieve the
same performance. However, in all cases we considered, a quadtree with
3-levels would incur less than a 10% performance penalty on average. Our
results indicate that quadtrees may be a feasible choice for processing the
performance data and decision function generation.

Our analysis of the performance of the in-memory quadtree decision
systems was based on unoptimized quadtree implementation, and as such
should be interpreted as worst case scenario. The results with this sys-

13

tem show that in around 170ns on average, we can get the experimentally
optimal decision. Not surprisingly, the fixed decision function in FT-MPI
outperformed the in memory system in terms of performance. Even so, the
current results are good enough to persuade us to explore this track further.
We expect that the performance of an in-memory system will depend greatly
on the implementation efficiency and the application access pattern. It is
possible that in some cases and or in combination with other methods, it
could achieve very good performance. n

One of the limitations of the quadtree encoding method is that since
the decision is based on a 2D-region in communicator size - message size
space, it will not be able to capture decisions which are optimal for single
communicator values, e.g. communicator sizes which are power of 2. The
same problem is exacerbated if the performance measurement data used
to construct trees is too sparse. The sparse data set is a high-frequency
information and applying low-pass filters to it can cause loss of important
information.

The decision map reshaping process to convert measured data from n×m
shape to 2k × 2k affects encoding efficiency of the quadtree. In our current
study, we did not address this issue, but in future work we plan to further
improve the efficiency of the encoding regardless of initial data space.

The major focus of future research will be comparing the quadtree-based
decision functions, to the ones generated using run-length encoding and
standard decision tree algorithms such as C4.5.

Finally, if one is interested in an application level optimization, assump-
tions based on the premise that the communication parameters are uniformly
distributed across the communicator and message size space are probably
optimistic. Thus, it is possible that it would make sense to refine the trees
for frequently used message and communicator sizes while the rest of the
domain is more sparse. Quadtrees may or may not be right structure for
this type of approach, but we plan to investigate this approach additionally.

14

A Library Information

A.1 Implementation Details

Data Structures

The following data structures represent the core of the quadtree decision
function library:

Decision map/Decision structure. The decision map in this context it
is a one-dimensional array whose value at location n represent the
method index to be used for communicator size commsize[n/nummsgsizes]
and message size msgsize[n%nummsgsizes]. The decision structure
contains the additional information neccessary to interpret the deci-
sion map, eg. communicator and message sizes, topology and segment
sizes, etc.

Experimental performance data. The structure exp perf data t main-
tains the experimental performance data information. It maintains the
array of linked list where exp data[i][j] contains sorted performance
information for communicator size
commsize[i] and message size msgsize[j]. The requested timer val-
ues can be obtained using appropriate functions (epd find perf data
and epd find perf timer). The structure also provides functionality
to compute the performance penalty of external decision map. How-
ever, we can only get the performance penalty for the map whose
sample points (communicator and message sizes) are covered by the
performance data.
Currently, the experimental performance data structure can be initial-
ized only from the OCC performance data files [16].

Quadtree. The quadtree structure is basic quadtree implementation which
supports the maximum tree length and the tree accuracy threshold as
explained in Section 3.2.

Full decision. This is an composite data structure which contains the ex-
perimental performance data, decision, and quadtree data structures,
and provides the functionality to query the quadtree using the com-
municator and message size, as well as to generate the source code of
the decision function using this particular combination of experimental
data and quadtree parameters.

15

Utility Programs

We have provided three utility programs with the code:

analyze qt dec quality.c – analyzes the quality of decisions generated by
the quadtree decision functions,

output single decision function.c – generates source code for the spec-
ified decision function, and

measure in memory decision time – measures the time it takes to come
to a decision.

All three programs have similar look and feel, and they support same input
arguments for describing the quadtree structure. We have also provided a
shell script, bin/generate qt decision tree stats.sh which allows user
to run analyze qt dec quality.c program for range of threshold values.

A.2 Installation

The Quadtree Decision Function V2 software can be obtained by contacting
the author via email.

To install the software follow the steps below:

1. unpack the archive containing the source code:
tar -xzvf qtdec v2.tar.gz

2. enter the newly created root directory for the library
cd quadtree decision function analysis

3. review Makefiles in root, src/, and tests/ directory.

4. make program from the root directory
make

5. If everything goes as planned, executables will be generated in bin/
directory. The generate qt decision tree stats.sh will be in the
same directory.

References

[1] Rolf Rabenseifner. Automatic MPI counter profiling of all users: First
results on a CRAY T3E 900-512. In Proceedings of the Message Passing
Interface Developer’s and User’s Conference, pages 77–85, 1999.

16

[2] J. Worringen. Pipelining and overlapping for MPI collective operations.
In 28th Annyal IEEE Conference on Local Computer Network, pages
548–557, Boon/Königswinter, Germany, October 2003. IEE Computer
Society.

[3] Lars Paul Huse. Collective communication on dedicated clusters of
workstations. In Proceedings of the 6th European PVM/MPI Users’
Group Meeting on Recent Advances in PVM and MPI, pages 469–476.
Springer-Verlag, 1999.

[4] Rolf Rabenseifner and Jesper Larsson Träff. More efficient reduction al-
gorithms for non-power-of-two number of processors in message-passing
parallel systems. In Proceedings of EuroPVM/MPI, Lecture Notes in
Computer Science. Springer-Verlag, 2004.

[5] Sándor Juhász and Ferenc Kovács. Asynchronous distributed broad-
casting in cluster environment. In Dieter Kranzlmüller, Péter Kacsuk,
and Jack Dongarra, editors, PVM/MPI, volume 3241 of Lecture Notes
in Computer Science, pages 164–172. Springer, 2004.

[6] Ernie W. Chan, Marcel F. Heimlich, Avi Purkayastha, and Robert M.
van de Geijn. On optimizing of collective communication. In Cluster,
2004.

[7] Rajeev Thakur and William Gropp. Improving the performance of col-
lective operations in MPICH. In Jack Dongarra, Domenico Laforenza,
and Salvatore Orlando, editors, Recent Advances in Parallel Virtual
Machine and Message Passing Interface, number 2840 in LNCS, pages
257–267. Springer Verlag, 2003. 10th European PVM/MPI User’s
Group Meeting, Venice, Italy.

[8] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and
Raoul A. F. Bhoedjang. MagPIe: MPI’s collective communication op-
erations for clustered wide area systems. In Proceedings of the seventh
ACM SIGPLAN symposium on Principles and practice of parallel pro-
grammin g, pages 131–140. ACM Press, 1999.

[9] Massimo Bernaschi, Giulio Iannello, and Mario Lauria. Efficient im-
plementation of reduce-scatter in MPI. J. Syst. Archit., 49(3):89–108,
2003.

[10] Sathish S. Vadhiyar, Graham E. Fagg, and Jack J. Dongarra. Auto-
matically tuned collective communications. In Proceedings of the 2000

17

ACM/IEEE conference on Supercomputing (CDROM), page 3. IEEE
Computer Society, 2000.

[11] Jelena Pješivac-Grbović, Thara Angskun, George Bosilca, Graham E.
Fagg, Edgar Gabriel, and Jack J. Dongarra. Performance analy-
sis of mpi collective operations. In IPDPS ’05: Proceedings of the
19th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS’05) - Workshop 15, page 272.1, Washington, DC, USA,
2005. IEEE Computer Society.

[12] Graham E Fagg, Edgar Gabriel, George Bosilca, Thara Angskun,
Zizhong Chen, Jelena Pješivac-Grbović, Kevin London, and Jack Don-
garra. Extending the mpi specification for process fault tolerance on
high performance computing systems. In Proceedings of the Interna-
tional Supercomputer Conference (ICS) 2004. Primeur, 2004.

[13] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun,
Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kam-
badur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J.
Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI:
Goals, concept, and design of a next generation MPI implementation.
In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[14] Sreerama K. Murthy. Automatic construction of decision trees from
data: A multi-disciplinary survey. Data Mining and Knowledge Dis-
covery, 2(4):345–389, 1998.

[15] William Gropp and Ewing L. Lusk. Reproducible measurements of
MPI performance characteristics. In Proceedings of the 6th European
PVM/MPI Users’ Group Meeting on Recent Advances in PVM and
MPI, pages 11–18. Springer-Verlag, 1999.

[16] Optimized Collective Communication Library.
http://www.cs.utk.edu/∼pjesa/projects/occ/. Accessed on March
2006.

18

