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Abstract

Ordinary requirements come in many forms, natural langsiagguations, tables, charts, predecessor systems, and
ideas in the minds of domain experts. All forms can contairbigmities, errors, and omissions. They change
both during and after a phase of development. Sequence-isaseification has in many field applications been
effective in converting ordinary requirements to precipecifications through a constructive process. Algorithms
for managing requirements changes meet a very great neguplications of sequence-based specification. In this
paper we explore the change theory developed with the aid akmm system for sequence-based specification, and
present algorithms for managing requirements changegsioixakinds. This has established the basis for maximizing
potential automation support and producing benefits in éiplalications as well as further development of sequence-
based specification.

Keywords Software specification, requirements management, chgrstéte diagrams, automata.

Introduction

At an age when software is embedded in everything from coes@appliances to automobiles to medical devices,
dependability of software has become an urgent requirenMetthodologies and tools are in great demand to make
sure conceptual mistakes are avoided in software develojpamel code is correct by design. The sequence-based
specification method [1] was developed to contribute togleial converting ordinary, or typical requirements and re-
guirements statements into mathematically precise spatitins at an acceptable level of abstraction for detestiini
systems, and has proven very useful and efficient in praf@i€d. Meanwhile due to the iterative nature of modern
software development, the need for managing changes ofeagents in sequence-based specifications arises both as
a consequence of practicing this method and as a generalitogaftware requirements engineering.

Requirements documents of all forms usually contain amtigg,errors, and omissions. The goal of requirements
analysis is to discover a precise specification from therin#d requirements that resolves all these problems, assure
completeness and consistency, yet remains understarstethigt it can then be validated for correctness by apptinati
domain experts. The method of sequence-based specifivedi®developed to bridge this gap through a constructive
process.

The behavior of a software system can be specified in termaefreal stimuli and responses [8]. Itis fully encoded
in a black box function that maps every possible sequendaafiéto a response. To derive the black box function and
a formal specification we apply two central techniques: saga enumeration and sequence abstraction. Sequence
enumeration involves systematically considering all atins sequences for any externally observable response and
partitioning the infinite stimulus sequence space into agfinumber of equivalence classes based on future behavior.
Sequence abstraction further helps in controlling the ¢li@#this inherently combinatorial process and avoiding an
inefficient work. The foundations of the sequence-basecipation method are laid out in [1]. Specifications written
with this method are proven to be complete, consistent, r@oaably correct.

If a sequence does not generate any externally observaglernrse, we map it to a special null respofis# the
response to a sequence is physically impossible or othemékes no sense with respect to operational behavior, we
map it to another special responséor being illegal. When enumerated according to some pfixei@total ordering,
each sequence is mapped either to an externally obseresplense, di, orw, and checked to see if it is equivalentin
the sense of Mealy state machines [9] to (and hence redufagteviously enumerated sequence. Two sequences are
Mealy equivalent if and only if they always give the same oese value however far extended by the same non-empty
sequence, i.e., their future behaviors will not differ freach other. Four rules guide the enumeration process:

1. (Reduction). A sequence can only be reduced to an unreduced sequence.
2. (lllegal Prefix). A sequence mapped toneed not be extended.

3. (Reduced Prefix). A reduced sequence need not be extended.



4. (Extension). Otherwise, a sequence must be extended by every stimulus.

The enumeration terminates (and is said to be complete)) segluences of a certain length are either mapped to
or reduced to prior sequences. Traces to tagged requirsraederived requirements are noted to justify decisions
regarding any mapped value for responses or equivalenodis tiie black box and the state box functions of Mills [8]
are thereby constructed with traceability to the basisHerresponse and equivalence decisions, as illustrated.belo

With a complete enumeration it is easy to obtain the mappgabrese for any stimulus sequence, no matter whether
the sequence itself shows up in the enumeration or not. Hoeitdm (referred to agl hereafter) is put forward in [1]
and proceeds as follows. We first check to see if the sequencetie table; if so we read off its response value,
otherwise we find its longest prefix that is in the table. If finefix is mapped tdlegal, the sequence is also mapped
to illegal, otherwise we replace the prefix with its reduced value (@etuivalence column) in the original sequence
and repeat the process on the new sequence until a mappetsesp identified. Since reductions in the table are
declared based on Mealy equivalence and the unreducedresguienply equivalence classes that further represent
states of the automaton, this process amounts to travet@ngderlying Mealy machine and finding the output value
for any input sequence. Therefore, once we obtain a comphetéinite enumeration from the requirements, the black
box function of the system is fully decoded.

It may be noticed that sequence-based specification hasistirectladvantage over other state-based modeling
methods like the Trace Assertion Method (TAM) [10], Z [11t, ®oftware Cost Reduction (SCR) [12]. While most
other methods deal with the description of the state madfaitier than how to discover or invent the state machine,
sequence-based specification provides a systematic waigdover and derive the automaton. In cases where un-
derstanding of the system under specification is incomplietéted, or immature such that inventing the right state
machine becomes difficult or infeasible, enumeration igeigly productive. Likewise, the theory of managing re-
qguirements changes in sequence-based specificationssdiffen the conventional state change theory in that it is
designed for active state machine development and revision

For example, Korel [13] presented an approach of understgmaodel-based modifications that uses the original
model and the modified model to compute the effect of the naaditins through affecting and affected transitions. It
assumes the availability of the modified model and basesrtalysis on data and control dependence among inputs
and outputs. The change might be the result of maintenan®, @rrection, or change in functionality driven by
change in requirements. However, these algorithms woulduygport an original enumeration process, or complete
the revision of changes in an enumeration.

Seawright and Brewer [14] present “production-based $igation” and use a similar base of language-automata
theory to convert grammar productions into hardware dedigey, too, focus on external behavior relative to a well-
defined system boundary and its interfaces, and generatlyMkemre state machine descriptions as an intermediate
step toward circuit design. Although our algorithms cougla to production-based specification at their intermedia
state machine, it is not clear how such changes would refigbeir original productions. Their production language
is quite powerful, subject to debugging, and describes getaclass of Mealy machines than those represented by
enumerations.

The fundamental difference is again that sequence-basedisption systematically explores an evolving behav-
ioral description as implied by requirements, and recongssequence equivalences entailed by the interpretation
of requirements. Our change algorithms do not contain allitfiormation necessary to complete the change pro-
cess. They depend upon a human requirements analyst (spettifivork systematically through the sequences in
length-lexicographical order to make and document theipaiton decisions that will complete the changes.

Finally, we must acknowledge that many students of statehinadheory over the years have been taught or re-
quired to invent algorithms to change state machines imuarnivays. This however, does not detract from our need for
algorithms to support the enumeration process by which weerdordinary requirements into precise specifications.
This work requires that we manage changes that stem fromedeplerstanding as the work progresses from new
news from the outside. The algorithms presented here masfegmes with maximum tool support in a systematic,
constructive process. We hope that the widespread faityliaith state machine diagrams and regular expressions
will make this material somewhat intuitive even though iiged in an unfamiliar way.



Enumeration has proven to be practical in application andemsely powerful in eliciting errors and omissions in
statements of requirements (even of mature systems).fi8mmti gains in quality and productivity have been reported
from projects carried out by the authors, and other groufisdastry that have been trained to apply sequence-based
specification [3, 4]. Broadfoot [5, 6] has been especialfgative in the application of sequence enumeration, and has
incorporated the method with elements of Communicatingi8etial Processes (CSP) [15] and Failures Divergence
Refinement (FDR) [16]. Enumeration has been applied in thenaotive domain, for example in door control units [7]
to support automated testing.

Application clarifies the extent to which inputs (and higtsrof inputs) can be partitioned into subsets that do not
interact and, therefore, need not be enumerated togethisrrdduces what might be called the “breadth” of the input
space from tens of inputs to usually fewer than ten per enatioer The “length” corresponds to the accumulation
of input information that is necessary to identify an indispable state of the system. We find that if the length
of input sequences appears to grow beyond about ten, thisiggmaf poorly understood requirements or gratuitous
complexity, both of which are occasions for reconsidermgrequirements. In real systems, after the requiremeats ar
well understood, complete, consistent, and correct, guiedjly ends up with several enumerations each with a bheadt
of fewer than ten interacting inputs and a sequence lendé#ssthan ten. Of course, we have seen enumerations larger
in both dimensions.

Enumerations result in specifications that are completgsistent, and traceably correct. However, the beginning
is always messy and we start over several times as the retgrits are clarified and corrected. When one speaks of
changes in requirements, there is an implication that itdeange from one set of complete, consistent, and correct
requirements to another. The algorithms here assume acttase and then address changes one at a time, at an
elemental level in order to preserve completeness, censigtand correctness. As these algorithms are considered
one is struck by the far reaching consequences of seemimgbcuous and minor changes in requirements.

The SAFE Example

To acquaint the reader with both the sequence-based spé#icifienethod and the enumeration process, we borrow
a safe controller example from [1]. Enumeration is done withrototype tool developed by UTK SQFEL The
completed specification is exported to html output. Theessbot in Fig[dl shows the tagged requirements and
derived requirements (D1-D2) for the simple safe controbed the list of interfaces between the system and the
environment. We diagram the system boundary in[Hig. 2.

To make work efficient we introduce the abstraction of lgftii denote entering the correct three digits in order
and B denote entering the combination incorrectly but up to th& finistake. Stimuli and responses (outputs) are
identified as in Figl3. An enumeration at this abstractieellés shown in Fig[H.

In the enumeration tables if a sequence has (-, -) as a paisfasponse and equivalence entries, the sequence is
defined to be illegal. If it has a blank entry for responseyésponse is defined to bell. If it has “------------ "
for equivalence, it is defined to be an unreduced sequence.

The sequence-based specification tool also guides thetusegh state variable definition and canonical sequence
analysis (Fig[b), and generates a state box specificatign@= Notice that the state box tables have (, ) as a
possible (Door, Error) pair. This represents a trap statb@fiutomaton reached by all illegal sequences. We draw
this automaton diagram in Figl 7, naming states after legdilemreduced sequences or the first illegal sequénce

An Axiomatic Treatment

Motivated by the need to characterize an existing enunweratigardless of whether it was obtained by the enumeration
process or in some other way (from TAM, SCR, or Z, for example)developed an axiom system for sequence-based

1 Software Quality Research Lab, Department of Computem8eieUniversity of Tennessee at Knoxuville, http://wwwutk.edu/sqrl/.



1: The combination consists of three digits (0-9) which must be entered in the correct order to unlock the safe. The combination
is fixed in the safe firmware.

2: Following an incorrect combination entry, a''clear” key must be pressed before the safe will accept further entry. The clear key
also resets any combination entry.

: Once the three digits of the combination are entered in the correct order, the safe unlocks and the door may be opened.

: When the door is clesed, the safe automatically locks.

: The safe has a sensor which reports the status of the lock.

: The safe ignores keypad entry when the door is open.

: There is no external confirmation for combination entry other than unlocking the door.

: It is assumed (with risk) that the safe cannot be opened by means other than combination entry while the software is running.
D1: Sequences with stimuli prior to system initialization are illegal by system definition.

D2: Re-initialization (power-on) makes previous history irrelevant.

door sensor

oNOU AW

Description: The control software receives doot and lock status from the sensor.
Requirement Trace; [5]

keypad

Description: The control software must receive digit presses and clear key presses from the keypad.
Requirement Trace: [1,2,6]

lock actuator

Description: The control software will contral the lock.
Requirement Trace: [1,3,4,7]

power

Description: Power-on is detected by the control software.
Requirement Trace; [8]

Figure 1: Safe controller requirements and interfaces.

en\-‘ironment\
keypad

‘ power H safe controller H lock actuator

system
door sensor

Figure 2: Safe controller system boundary.



B

Long Name: Bad combination entry

Description: Entering the combination incorrectly, but up to the first mistake. This is an abstract stimulus.
Sources: [ keypad ]

Requirement Trace: [ 2]

c

Long Name: Clear key press
Description: The clear key is pressed.
Sources: [ keypad ]

Reguirement Trace: [ 2]

D

Long Name: Door closed
Description: Detect door closed.
Sources: [ door sensor ]
Requirement Trace: [4,5]

G

Long Name: Good combination entry
Description: Entering the correct three digits in order. This is an abstract stimulus.

Sourecs: [ keypad ]
Requirement Trace: [1, 3]

L

Long Name: Power on with door locked

Description: Power on is detected, and the sensor reports that the door is closed and locked.
Sources: [ door sensor , power ]

Requirement Trace: [5,7, 8]

u

Long Name: Power on with door unlocked

Description: Power on is detected, and the sensor reports that the door is unlocked.
Sources: [ door sensor , power ]

Regquirement Trace: [4,5,6]

lock

Long Name: Locking the door
Description: Lock the safe.
Destinations: [ lock actuator ]
Requirement Trace: [ 4]

unlock
Long Name: Unlocking the door
Description: Unlock the safe.

Destinations: [ lock actuator |
Requirement Trace: [1,3,7]

Figure 3: Safe controller stimuli and responses.



Sequence Enumeration
Length 1

Prefix: lambda

Stimulus Response| Equivalence Requirement Trace
B - - [D1]

c - - [D1]

D - - [D1]

G - - [D1]

(A I Se—— [5]

U [ e (5]

Length 2

Prefix: L

Stimulus Response| Equivalence Requirement Trace
" B ====e——— [1,2,7]

c L [2,7]

D - - (8l

G unlock U [1.3,1]

L L [5,D2]

y u [5,Dz]

Prefix: U

Stimulus Response Equivalence Requirement Trace
B u (5]

c u [8]

D lock L [4]

G u [8]

L L [5,D2]

u u [5,D2]
Length 3
Prefix: L.B

Stimulus Response Equivalence Requirement Trace
B LB [2,7]

< L [2,7]

D - - [2]

G LB [z.7]

L L [5,D2]

u u [5,D2]

Figure 4: Safe controller enumeration.



State Variables

Door

Description: The status of the door - locked, unlecked, unknewn, or don't care.
Possible Values: [ --—-—- , unlock , lock , unknown ]

Error

Description: Whether there has been an error in entering the combination entry - true, false, or don't care.
Possible Values: [ --—-- , true | false ]

Canonical Sequence Analysis

Canonical Sequence| Door |Error

lambda unknown||-----
L lock false
u unlock ||-----
LB lock true

The canonical sequence analysis has been completed.

The canonical sequence analysis is disjoint.

Figure 5: Safe controller canonical sequence analysis.



State Box Specification

Stimulus: B, Bad combination entry

Initial State e Final State
Door |Error Door | Error
unknown ----- lillegal

lock false | null lock true
unlock  |----- null unlock -----
lock true  null lock true

Stimulus: G, Clear key press

Initial State Response Final State
Door | Erret Door |Etret
unknown --—-- fillegal

lock false |null lock | false
unlock |----- null unlock -----
lock true  |null lock false

Stimulus: D, Door <losed

Initial State s Final State
Door | Error Door Error
unknown =---- Wegal
lock false Wegal
unlock  [----- lock lock false
lock true [illegal

Stimulus: G, Good combination entry

Initial State Response Final State
Door |Error Door | Error
UNKNoOWnN |===== illegal
lock false |unlock unlock -----
unlock |----- null unlock -----
lock true  |null lock true

Stimulus: L, Power on with door locked

Initial State Retralee Final State
Door |Error Door Error
unknown |-—-—-- null lock [false
lock false null lock [false
unlock |-——-- null lock [false
lock true  null lock |[false

Stimulus: U, Power on with door unlocked

Initial State Response Final State
Door [Error Door | Error
unknown |----- null unlock -----
lock false null unlock |=====
unlock |===-= null unlock ==---
lock true  |null unlock -----

Figure 6: Safe controller state box.



Figure 7: A state machine diagram for the safe controller.

specifications [17]. The axioms help to prove a number of irtgyd properties about sequence-based specifications;
it also provides insight into the relationship of sequebased specifications with other formal representations of a
software program, including finite-state machines, regexaressions, and prefix-recursive functions. In additian
axiom system was essential to the development of algoritorespport requirements change management, the focus
of this paper.

We chose to present the theory rather informally throughutdee of diagrams, with an attempt to motivate the
enumeration axioms and give the reader a flavor of the axi@tesy. For a thorough and formal treatment see [17].

Supposes is a stimulus set that is finite, non-empty, and equipped witbtal order< (the alphabetical order).
Let the order be extended to a total order$nby length, and then alphabetically. Suppdsés a response set that
containd), w, and at least one other member. An enumeration is essgriphrtial functiorf : S* — R x S* that
maps certain stimulus sequences to (response, stimulusseg) pairs. | in S* has a mapped value, v) by £
(i.e.,E(u) = (r,v)), then we saw is mapped to response(i.e., u — r, or alternatively— (u) = r) and reduced
to sequence (i.e.,u > v, or alternatively>(u) = v). We useu v~ r to denoteu is mapped to a response other than
r. When¢ further satisfies a list of axioms to be an enumeratiobeing defined fo€ is equivalent to saying is a
sequence in that enumeration.

If u is mapped tav, thenu is illegal, otherwise it is legal. If; is reduced tas, thenu is unreduced, otherwise it is
reduced (to a prior sequence in the total ordering, accgrdiAxiom 2 below). Ifu is legal and unreduced, thers
extensible.

If the following Axioms 1-6 hold for the partial functiafiitis called an enumeration. The enumeration is complete
if Axiom 7 further holds; it is finite if Axiom 8 further holdsThe enumeration is complete and minimal if Axiom 9
holds in addition to 1-7. The axioms are paraphrased infthyraa follows:

Axiom 1: The empty sequence must be mappeultil; (Empty sequence)

Axiom 2: Sequences can only be reduced to prior sequencestwermselves; (Partial order)
Axiom 3: Do not reduce to reduced sequences; (No reductioedoced)

Axiom 4: Do not extend reduced sequences; (No extensioredoiced)

Axiom 5: Do not extend illegal sequences; (No extensioniegals)

Axiom 6: Do not reduce illegal sequences to legal sequenclessi all extensions of the legal sequence are
also illegal; (Reducing illegals to legals)
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Axiom 7: Every extensible sequence must be extended by etienylus in a complete enumeration; (Com-
pleteness)

Axiom 8: There must be a finite number of sequences in a finibenemation; (Finiteness)

Axiom 9: Unreduced sequences must be pairwise distingbishia a complete and minimal enumeration.
(Minimality)

Distinguishability as required by Axiom 9 is a relation othe set of all unreduced sequences in a complete
enumeration. It is defined recursively as follows:

Rule 1: Anillegal, unreduced sequence is distinguishabi@fan extensible sequence;

Rule 2: Two extensible sequences are distinguishableyfitiep to different responses when extended by
(the same) one single stimulus;

Rule 3: Two extensible sequences are distinguishableyfriduce to two distinguishable sequences when
extended by (the same) one single stimulus;

Rule 4: Two unreduced sequences are not distinguishabépeky a finite number of applications of the
above rules.

Two unreduced sequences are indistinguishable if and btthey are not distinguishable from each other. Indistin-
guishability is proven to be an equivalence relation.

For a complete enumeratidh we further extend— andw to total functions~ ands on S* and prove that the
extended functions agree with the unextended ones for stienylus sequence that is in the enumeration.

Given any complete and finite enumerati®rsatisfying the axiomatic definition, we prove that performs the
same computation as the black box function denotefl bigtained by treating as a result of the enumeration process
and applying the algorithml to it.

For a complete enumeration, the definitions of illegal / legauences can be extended to apply to any stimulus
sequence by substituting for —. A sequence is illegal if it is mapped ioby the black box function™, otherwise
it is a legal sequence.

Following [9] a Mealy machine is defined as a 6-tuplg, >, T', 6, v, qo), whereQ is a finite set of states; is a
finite input alphabet]" is a finite output alphabety in @ is the initial statep : @Q x ¥ — @ is a total transition
function, andv : Q x ¥ — I'is a total output function.

It is evident that every complete and finite enumerationegponds to a Mealy machine, however, the converse
is not true. Not every Mealy machine is obtainable througleanmeration. Those that can be obtained from com-
plete and finite enumerations form a proper subset of all Wieechines. Based on the additional properties shared
among this subset and to ensure a 1-1 correspondence freomgllete and finite enumerations onto it, we define an
enumeration Mealy machine as a Mealy machi@QeX, T', 4, v, qo) satisfying the following constraints. FirSthas
to properly contaif 0, w}, andX has to be associated with a total ordefalphabetical order), which can be further
extended ta-* first by length, and then alphabetically. We extenal usual to sequences, assumirig mapped t®
by the extended output function, and require five more camdithold:

Condition 1. States are nameg ¢4, ..., ¢,_1 if Q hasn states;
Condition 2. Every state is reachable from the initial s{ate, the automaton is connected);

Condition 3. For every state we compute a word for it thatésfitst word in canonical order taking the
automaton from the initial state to the state in questioenth state with a higher index
has a “greater” string associated according to the totarang on>*;

Condition 4. A state becomes a trap state if the computed Veorid (i.e., its associated string) has
as its output by the extended output function;

Condition 5. All outgoing arcs of a state haveas output if at least one incoming arc haas output.

11
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Figure 8: Diagrams of six Mealy machines that share an injpliedoet™ = {a, b} with a < b and an output alphabet
T ={0,r,w}. (@) M;. (b) Ms. (c) Ms. (d) My. (€) M5. (f) M.

Among these conditions 1 and 3 together set the rules foliteogtates; they ensure the 1-1 correspondence from the
set of complete and finite enumerations onto the set of eratrnaMealy machines.

Suppose we have six Mealy machine§ — Mg with diagrams shown in Figl 8. They share an input alphabet
Y = {a,b} with a < b defining a total order ox, and an output alphab&t = {0, ,w}. Among them onlyMg
qualifies as an enumeration Mealy maching; — Mj fail to satisfy Conditions 1-5 respectively.

In [17] we first give two algorithms, one for converting anyngolete and finite enumeration to an enumeration
Mealy machine, the other for converting any enumerationliieeachine to a complete and finite enumeration, then
prove a representation theorem that asserts the two tramstions as inverse transformations and establishes the 1-
correspondence between the two sets of mathematical sbjeut direct transformations between complete and finite
enumerations and enumeration Mealy machines offer ingigththe requirements change algorithms that follow.

Managing Requirements Changes

Requirements change both during and after a phase of deweltp Algorithms for managing requirements changes
meet a very great need in field applications of sequencedisifications. Changes of requirements may affect an
existing enumeration in different ways. We categorize tlanollows and consider one change of one type at a time
when it comes to algorithm design.

The stimulus set could be changed as we identify a new steraduoss the system boundary or an old one no
longer of interest. Possible changes of stimuli includdragld stimulus into the stimulus set, deleting a stimulusifro
the stimulus set, and combinations of stimulus additiondeldtion in any order. We are curious about the impact of
these operations on specifications as well as the relevaricelevance of order to the results.

The response mapping could be changed as we identify a npenss for a sequence in the enumeration. The
new response could be different from any element of the odparse set and emerge from the new or changed
requirements. A response change refers to changing thensspalue of a specific sequence in a complete and
finite enumeration and handling all its consequences. Dipgron the legality of this sequence before and after the
change, the response change is classified as from legalab llegal to illegal, or illegal to legal; the latter two case

12



Table 1: Summary of possible requirements changes.

adding a stimulus Algorithm[1
stimulus changes deleting a stimulus Algorithm[d

combinations of addition and deletion

from legal to legal Algorithm[Z

for an unreduced sequeng¢eAlgorithm[d
for areduced sequence | Algorithm[d
for a reduced sequence | Algorithm[d
for an unreduced sequeng¢eAlgorithm[1d

from illegal to legal
response changes

from legal to illegal

for an unreduced illegal sequence Algorithm[@

for an unreduced legal sequence Algorithm[3
equivalence changes for a reduced illegal sequence Algorithm[11
| keeping it reduced Algorithm[12

for a reduced legal sequen

"“making it unreduced Algorithm[4

are also considered as legality changes. We must identifyptaiely portions of the existing enumeration that need a
corresponding change.

Similarly the reduction could be changed as we identify a remuced value for a sequence in the enumeration. An
equivalence change refers to changing the reduction dieelared equivalence) of a specific sequence in a complete
and finite enumeration and handling all its consequencese We try to capture all changes incurred by any single
equivalence change.

We summarize all possible requirements changes to be disduis Tabldll. As mentioned before, our work is
characterized by the systematic enumeration to constnactrendify Mealy machines.

Part of the difficulty involved with managing requirement&nges lies in the clarification and a precise specifica-
tion of the problem itself. In any case when a change is to b#en@an existing enumeration, if the specifier started
all over again they would need only the following two typesrdbrmation to complete the new specification:

e response of a certain sequence according to the new rearitem

e whether equivalence to a prior sequence should be claimeddertain sequence according to the new require-
ments.

In automating this process such information should be nbthirom the specifier through their understanding and
interpretation of the new requirements if it cannot be otgtdifrom the old enumeration or if the old enumeration
suggests more than one possibility. Any assumption madkéwglgorithm to avoid or minimize interaction with the
specifier needs to be explicitly stated.

To be precise the requirements changes we are to managsandialyy concrete changes to be made to an existing
specification that reflect changes in the old requiremertisy Thay suggest small or big changes that ripple through
the specification under different assumptions about theraquirements. The key to solving the problemiis in figuring
out what else in the existing specification need or need nohbaged, and under what assumptions.

Changes made to the old enumeration can be put in the folipimia categories:

e changes that the specification tool can make without any humervention;

e changes that the specifier must make (e.g., extensionspaoltstonsider (if questions need to be asked to make
the changes).

13



In the analysis we make certain assumptions when needeslaitassumptions made in deriving the new specification,
and highlight entries in the new enumeration that might bestjianable under different assumptions. In this way we
are always maintaining and evolving old specifications Jevtiealing with atomic changes one at a time, and keeping
the specifier informed of portions of the current enumersdiiat may need further changes until the final specification
is derived.

A Running Example: SAFE and Z-SAFE

Our algorithms for managing requirements changes are tiusérated through a running example. To make it more
interesting let us suppose we have a new feature added t@feucantroller. The new one has an additional ingut
which is an employee ID given by a finger print scan. Now it tatfes combination entry plus a valid finger print ID
(in whatever order) to unlock the safe. Setting up these wstess, we will show step by step how to derive one from
the other by applying our twelve algorithms.

As noticed from the safe enumeration we might encounteresty - - - - - - - - - - - " in the equivalence column.
This representation is used to make the display less visahlttered and means to the person doing the work that
the sequence is not reduced to a prior sequence. In our tleabiteeatment, this means that the sequence is actually
reduced to itself. Furthermore, in keeping with the thearg, make the first illegal sequence reduce to itself, and
all other illegals reduce to the first illegal sequence. Naw safe enumeration takes the form in Talle 2, and the
algorithms that follow can be applied.

Likewise, the enumeration for the Z-SAFE (Talble 3) and igestnachine (Fid]9) can be obtained independently.
A few requirements are updated (or derived through enumo@)dor the new system:

3: Once the three digits of the combination are entered irctineect order and a finger print scan is validated
(before or after the combination entry), the safe unlocldsthe door may be opened.

6: The safe ignores keypad entry and finger print scan wheddbeis open.

8: Itis assumed (with risk) that the safe cannot be openeddgnsother than combination entry and valid finger
print scan while the software is running.

D3: Re-scanning of finger prints makes previous scans vaate

We introduce a predicatefor finger print accepted. As shown in [1], predicate refinetig a handy technique
frequently used in enumerations to handle one form of ndard@nism.

Table 3: Z-SAFE enumeration.

Sequence Responsg Equivalence| Trace
A 0 A Method
B w B D1
C w B D1
D w B D1
G w B D1
L 0 L 5

U 0 U 5

Z w B D1
LB 0 LB 1,2,7
LC 0 L 2,7
LD w B 8
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0 LG 1,3,7
0 L 5,D2
0 U 5,D2
0 L[Z, p] 8
0 L 8
0 U 6
0 U 6
lock L 4
0 U 6
0 L 5,D2
0 U 5,D2
0 U 6
0 LB 2,7
0 L 2,7
w B 8
0 LB 2,7
0 L 5,D2
0 U 5,D2
0 LB[Z,p] 8
0 LB 8
0 LG 8
0 L 2
w B 8
0 LG 8
0 L 5,D2
0 U 5,D2
unlock U 1,3,7
0 LG 8
0 LB|Z,p) 8
0 L[Z, p] 2,8
w B 8
unlock U 1,3,7
0 L 5,D2
0 U 5,D2
0 L[Z,p] 8,D3
0 L 8,D3
0 LB|Z,p) 2,8
0 L[Z, p] 2,8
w B 8
0 LB[Z,p] 2,8
0 L 5,D2
0 U 5,D2
0 LB|Z,p) 2,8
0 LB 8,D3
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Table 2: SAFE enumeration.

Sequencd Response Equivalence| Trace |

A 0 A Method
B w B D1
C w B D1
D w B D1
G w B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD w B 8
LG unlock U 1,3,7
LL 0 L 5,D2
LU 0 U 5D2
UB 0 U 6
ucC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
U 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD w B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
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Figure 9: A state machine diagram for Z-SAFE.

Each of our twelve algorithms handles one type of requirdengmanges (under one circumstance if more than one
exists). One thing to note about them is that they only applyamplete and finite enumerations. In reality we can
always make an incomplete enumeration complete beforgiagny algorithm by mapping all undefined extensions
toillegal. Outputs of these algorithms are proven to be complete aite &numerations [17].

For the first part of the example let us start with Z-SAFE ardlice it to the original. Stimulu& will have to be
removed.

Deleting A Stimulus: Algorithm [

As mentioned before, the representation theorem enableslask at enumerations by way of automata. Most of
our change algorithms were guided by changes to the comdappstate machines. Since every unreduced sequence
in a complete and finite enumeration relates to a state ofridenlying Mealy machine in such a way that it is the
first string in canonical order taking the automaton from ithigal state to that state, we name each state after its
corresponding unreduced sequence in the automaton diagram

When we delete stimulus (see AlgorithnTlL), in view of the automaton all arcs labeldthw will disappear,
which may render some states unreachable from the inititsd sind being removed. For states that remain they might
only be reachable from the initial state by strings “grédtean their original names, as the previous “smallest” path
may no longer exist in the new automaton. The key to this mlthen lies in determining which states in the old
automaton remain in the new automaton, and furthermore hewshould be named in the new automaton.

Lines 3-29 of AlgorithnTdL derive this partial mappiagirom old state names to new state names. First observe
that a state whose name does not contain symbolst remain in the new automaton and be named after the same
string. This provides a base case for the definitiom.ofOnce we know a state that remains in the new automaton,
we have two possibilities: either the new name outpuis the old automaton, or it outputs a legal response. In the
former case this state must be a trap state in the new automiatthe latter case we conclude that its successor state
in the old automaton by any single arc other than the oneéabsith x must remain in the new automaton as well,
and be named after a string no greater than the new name ofithenkstate concatenated with the label on the arc.

Constructing the resulting enumeration is then mechané&sathese new state names indicate the unreduced se-
quencesin it. In Fid_T0{k) we depict transitions in the altbenaton that imply a row in the new enumeration table.
This row can be obtained either by rewriting an existing rovthie old enumeration, or by adding a new row to the old
enumeration. It represents a transition in the new autom@ig.[I0(B)). Although the new transition looks exactly
the same as the old one except for state renaming, the sed@géstnges in the enumeration could be much bigger and
more non-intuitive to recognize. This figure restates therwes we are to follow when building the new enumeration

17



Algorithm 1. (Stimulus deletion algorithm)
Inputs: A complete and finite enumerati¢hwith stimulus setS, a stimulusz in S.
Outputs: A complete and finite enumerati@f with stimulus setS — {z}.

1. Initialize Ko = 0, K1 = 0, n = 0.
2. Collect all unreduced sequence<iinto the set.
3. For eachu in U

4. If w does not contain symbal

5. Then

6. r(u) = uis an unreduced sequencedfy

7. Ky =K1 U {u},

8. The response af in £ is the mapped response ©fu) under the black box function & denoted by~ (x(u)).
9. Endif

10. Endfor

11. While K,, # Kp 41

12.Do

13. Letn=n+1.

14. For each non-empty sequenpein £, wheres is a symbol not equal to

15. If psisreduced to sequeneein £ for v not in K,

16.  Then

17. If pisin K, with *>(k(p)) # w

18. Then

19. Letx(p)s be a candidate fot(v).

20. Endif

21.  Endif

22. Endfor

23. Initialize K1 = Kn.

24. For eachv that are designated candidate values fordtmeapping in Steps 14-22

25.  Choose the first candidate in canonical ordet(@s;

26. Knt1=Kp41 U {’U};

27.  Compute the mapped response:0f) under the black box function &, denoted by=(x(v)).
28. Endfor

29. Enddo

30. Initialize £’ to contain the empty sequenaeonly, with A mapped td) and reduced to.
31. For each non-empty sequenaa in £ mapped ta- and reduced t@, wheres is a symbol not equal to
32. If k(u) is defined with->(k(u)) # w

33. Then

34.  Add arow for sequence(u)s into £’, mappings (u)s to r and reducings(u)s to x(v).
35. Endif

36. Endfor

37. For each unreduced illegal sequencen £

38. If k(u) is defined with=(k(u)) # w

39. Then

40.  For eachsin S not equal tar

41. Add a row for sequence(u)s into £’, mappings (u)s to w and reducinge(u)s to x(u).
42.  Endfor

43. Endif

44. Endfor

45. Returrg’.
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from the old one. We should be careful to extend in the new @mation only extensible sequences (i.e., new state
names that output a legal response in the old automatonaskn & state represents an unreduced and illegal sequence
in the old enumeration but an extensible sequence in the newits extensions cannot be obtained by a search-and-
substitution on the old enumeration entries, and have torfitew out explicitly. It is worth noting that no entry ever
need be highlighted for specifiers’ attention.

Now we apply AlgorithnTdL to delete. Unreduced sequences in Table 3 are identified,a8, L, U, LB, LG,
L[Z, p], LB[Z, p]. Among them strings not containinig, p] or [Z, —p] as a symbol are defined farand included in
Ky

K(N) = A =0
k(B) = B +© w
k(L) = L + 0
K(U) = U & 0
K(LB) = LB + 0
K(LG) = LG & 0.

They happen to be all the unreduced sequences definegttoe loop terminates dt’s = K.

The derivation of€’ from £ and« is shown in Tablgl4. See the resulting enumeration in Tabledbthe state
machine in FiglZI1.

After deleting stimulusZ we notice that.G should be mapped tonlock instead of0. This requires a response
change ofLG from a legal value to another legal value.

Changing A Response from Legal to Legal: Algorithn2

In any case of a response change, we encounter the neederedifate a general sequence in the original enumeration
from the one whose response is to be changed. We use the tiptighu in bold face to denote the latter. Likewise,
we use upright boldfacefor its new response after the change, and to differentidtern a general response in the
original enumeration. One thing we are sure ahoig that it cannot be the empty sequencavhose response can
only be0 and not be changed. Hence we are able to spiitto a prefixp and a symbos that are both in upright
boldface letters as determined by

Consider the setup in Algorithf@ 2. In the old automaton (EEfa)) we have an outgoing arc from stpt® state
>(u) (i.e., the reduced value afin &) labeled with stimulus and associated with a legal resporséu). This output
on the arc is to be changed to another legal outpiRerforming this change on the arc gives us a new enumeration

Mealy machine (Fid_I2(b)).

Applying Algorithm[d to Tabl€b we arrive at the enumeratinTable®. This is a single change to a single sequence.
The state machine looks the same as[E1j). 11 except that t@arg;, to ¢ ¢ labeled withG is now associated with
outputunlock.

Our next task is to change the equivalencé 6ffrom LG to the prior sequendg. This is an equivalence change
for an unreduced legal sequence.

Changing An Equivalence for An Unreduced Legal Sequence: Aorithm Bl

Following the notation for response changes, in any casa @gaivalence change, we use upright boldface letters
u andv to denote respectively the sequence whose equivalencédes ebhanged and its new reduced value after the
change. We claim also thatcannot be the empty sequencehence it can be split into prefix sequemcand current
stimuluss, both in upright boldface letters as determineduby
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Vu e E.Vs € 5. (us — 1, us > v, k(u) o w, s # x)

VueUVs € S. (u— w,k(u)bw, s +#z)
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Vu e E.Vs € 5. (us — 1, us > v, k(u) o w, s # x)

@)

s/r

r(u) K(v)

VueUVs € S. (u— w,k(u) b w, s # 1)

s/w

Figure 10: Automaton diagrams for deleting stimutuga) Before deleting:. (b) After deletingz.

(b)

B.C.G,U/0

Figure 11: A state machine diagram for Z-SAFE after delefing
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Table 4: Derivation of’ from £ andx for deleting stimulusZ from Z-SAFE.
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Table 5: Z-SAFE enumeration after deleting stimufis

Sequencd Response Equivalence| Trace |

A 0 A Method
B w B D1
C w B D1
D w B D1
G w B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD w B 8
LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
UB 0 U 6
ucC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
U 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD w B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
LGB 0 LG 8
LGC 0 L 2
LGD w B 8
LGG 0 LG 8
LGL 0 L 5,D2
LGU 0 U 5,D2
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Algorithm 2. (Response change algorithm — from legal to legal)

Inputs: A complete and finite enumeratidh a legal response a non-empty sequenee(which can be split into a prefix sequenecand
a stimuluss) in £ mapped to a legal response other than

Outputs: A complete and finite enumerati@f in which u is mapped ta.

1. Initialize £’ to contain no sequence.
2. For each sequence in £ mapped ta- and reduced to
If u=u
Then
Add a row for sequence into £/, mappingu to r and reducing: to v.
Else
Add a row for sequence into £/, mappingu to r and reducing to v.
Endif
9. Endfor
10. Returré’.

©ONO O AW

u=ps, — (u) #w u=ps,r#wr#— (u)

@ s/ — (u) @ @ sl (0
(b)

(@

Figure 12: Automaton diagrams for changing the responsefaim legal to legal. (a) Before the response change.
(b) After the response change.
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Table 6: Z-SAFE enumeration after deleting stimufizand changing the responselod; from 0 to unlock.

Sequencd Response Equivalence| Trace |

A 0 A Method
B w B D1
C w B D1
D w B D1
G w B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD w B 8
LG unlock LG 1,3,7
LL 0 L 5,D2
LU 0 U 5D2
UB 0 U 6
ucC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
U 0 U 5D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD w B 8
LBG 0 LB 2,7
LBL 0 L 5D2
LBU 0 U 5,D2
LGB 0 LG 8
LGC 0 L 2
LGD w B 8
LGG 0 LG 8
LGL 0 L 5,D2
LGU 0 U 5,D2
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Algorithm 3. (Equivalence change algorithm — for an unreduced legalesem)

Inputs: A complete and finite enumeratiah with stimulus setS, a non-empty unreduced sequencévhich can be split into a prefi
sequence and a stimulus) in £ mapped to a legal response, an unreduced prior sequencg

Outputs: A complete and finite enumerati@ in which u is reduced to.

1. Initialize Ko = 0, K1 = 0, n = 0.
2. Collect all unreduced sequence<iinto the set.
3. For eachu in U

4. If w does not contain as a prefix

5. Then

6. r(u) = uis an unreduced sequencedfy

7. Ky =K1 U {u},

8. The response af in £ is the mapped response ©fu) under the black box function & denoted by~ (x(u)).
9. Endif

10. Endfor

11. While K,, # Kp 41

12.Do

13. Letn =n+1.
14. For each non-empty sequenpe other tharu in £, wheres is a stimulus
15. If psisreduced to sequeneein £ for v not in K,

16. Then

17. If pisin K, with *>(k(p)) # w
18. Then

19. Letx(p)s be a candidate fot(v).
20. Endif

21.  Endif

22. Endfor

23. Initialize K1 = Kn.

24. For eachv that are designated candidate values fordtmeapping in Steps 14-22

25.  Choose the first candidate in canonical ordet(@s;

26. Knt1=Kp41 U {’U};

27.  Compute the mapped response:0f) under the black box function &, denoted by=(x(v)).
28. Endfor

29. Enddo

30. Initialize £’ to contain the empty sequenaeonly, with A mapped td) and reduced to.

31. Add a row for sequenaginto £/, mappingu to its response i& and reducingi to v.

32. For each non-empty sequenae other tharu in £ mapped to- and reduced to, wherez is a stimulus
33. If k(u) is defined with-=(k(u)) # w

34. Then
35.  Add arow for sequenoe(u)x into £’, mappingx (u)z to r and reducings (u)z to x(v).
36. Endif
37. Endfor

38. For each unreduced illegal sequencen £
39. |If k(u) is defined with-(k(u)) # w

40. Then

41.  For each stimulug:

42. Add a row for sequence(u)z into £, mappings (u)z to w and reducings (u)z to x(u).
43.  Endfor

44. Endif

45. Endfor

46. Returng’.
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Consider the setup in Algorithfl 3. Sinods unreduced and legal, it must have been extended by evenyiss.
Any prior sequence iff that is unreduced could be a candidate for the new reducaedwalf u. When we mamu tov
the outgoing arc from stagelabeled withs is redirected to state (Fig.[I3), hence states in the old automaton whose
names contain as a prefix may or may not be reachable from the initial staten@fe that these states correspond to
unreduced sequencesérthat are eitheu or extensions of.

Applying a similar strategy as for stimulus deletion, we @ute a partial mapping from old state names to new
state names. Basically if a state is still reachable fromirtiteal state in the new diagram, it is defined ferwith
the mapped value being the first sequence in canonical cakiergtthe new automaton from the initial state to this
state, otherwise, it is not defined ferrepresenting a state that gets removed. In essence for edeiwhose name
containsu as a prefix, we check if there exists a path that does not econtas a prefix from the initial state to it
in the old automaton such that no illegal output is generateng this path (otherwise some intermediate states may
become trap states and the path may be interrupted in the utewaton). We also search for the smallest possible
paths among all qualified ones and name the states after them.

Once we figure ouk, we have all unreduced sequenceginfrom which constructing”’ is straightforward by
applying the rules in Lines 30-45 of Algorithiih 3 in a similashion as for stimulus deletion, further illustrated in

Fig.[13.

Now we apply AlgorithnB to TablEl6. Unreduced sequencesdaetified as\, B, L, U, LB, LG. Strings that do
not contain.G as a prefix are defined farand included ink;:

K(A) = A = 0
k(B) = B ¥ w
k(L) = L & 0
kKU) = U ¥ 0
k(LB) = LB + 0.

They happen to be all the unreduced sequences definegttoe loop terminates dt’s = K;.

The derivation of’ from £ and is mechanical and omitted. As a result we get the safe entioeia Table[2
and its state machine in Fig. 7.

For the second half of the example we start with the origindllauild it up to the Z-SAFE. The first change made
is the response dfG from unlock to 0.

Applying Algorithm[2 we get a slightly different enumeratithan Tabl€R LG is mapped td instead ofunlock)
and a slightly different state machine than . 7 (the avenfy;, to g labeled withG is associated with output
instead ofunlock). Next LG is considered for an equivalence changd, &9 would map tdllegal in the new system
but U D would map tdock.

After some thought we decide to reduté to itself, as it represents a state that confirms a correcbamation
entry and awaits a valid finger print scan. This is an equivadechange for a reduced legal sequence to make it
unreduced.

Changing An Equivalence for A Reduced Legal Sequence and Marhg it Unreduced: Algorithm f]

Consider the setup in Algorithfd 4. Sinceis reduced and legal, when we make it an unreduced sequerde in
it needs to be extended by every stimulus. We simply assuhextansions are mapped tilegal and reduced to
themselves to keep the solution simple and neutral [Elg.Mléanwhile we highlight all the new extensions to inform
the user of the need to address these sequences in a shert whil

After applying Algorithm3 we have the enumeration in Tdlkend the state machine in FIg115.
Now it is time to work on the highlighted entries. First we vablike to change the response b& B fromw to 0.
This is a response change from illegal to legal for an unredsequence.
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u=ps,— (u)#w,velv<u
Ve e S

@ s/»—>(u)7u x»—>ux

Vu e E.Vs € S. (us — 1, us > v,us # u, k(u) o w)

~

Vue UVs €S (ur w,k(u) b w)

o

u=ps,— (u)#w,velv<u

@ s/ — (u) H(u)

(@

Vu e E.Vs € S. (us — 1, us > v,us £, k(u) o w)

Yue UVs €S (ur w,k(u) b w)

Figure 13: Automaton diagrams for changing the equivaleficeto v for unreduced legal. (a) Before the equiva-
lence change. (b) After the equivalence change. S$tai¢ in dashed line indicates that the state does not existsf
not defined for.

(b)
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Algorithm 4. (Equivalence change algorithm — for a reduced legal se@uehach becomes unreduced)

Inputs: A complete and finite enumeratighwith stimulus setS, a reduced sequence(which can be split into a prefix sequengand a|
stimuluss) in £ mapped to a legal responsebeingu itself.

Outputs: A complete and finite enumerati@ in which u is reduced to.

1. Initialize £’ to contain no sequence.

2. For each sequence in £ mapped ta- and reduced to

3. Ifu=u

4. Then

5.  Add arow for sequence into £, mappingu to r and reducing: to v.
6.  For each stimulus

7. Add a row for sequencez into £/, mappingux to w and reducing:z to uz;
8. Highlight the row for sequencez in £’.

9.  Endfor

10. Else

11. Add arow for sequencginto £, mappingu to r and reducing to v.
12. Endif

13. Endfor

14. Returré’.

u=ps,— (u)#w,v=u
Ve e S

Figure 14: Automaton diagrams for changing the equival@ficeto v for reduced legall and making it unreduced.
(a) Before the equivalence change. (b) After the equivaehange.
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Table 7: SAFE enumeration after changing the responge-ofrom unlock to 0 and the equivalence diG from U
to LG.

Sequencd Responsd Equivalence] Trace |

A 0 A Method
B w B D1
C w B D1
D w B D1
G w B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD w B 8
LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
UB 0 U 6
ucC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
U 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD w B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
LGB w LGB

LGC w LGC

LGD w LGD

LGG w LGG

LGL w LGL

LGU w LGU
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B.C,D.G.L,U/®

B,C,D.G, LU/

Figure 15: A state machine diagram for the safe controll@rathanging the response bt from unlock to 0 and
the equivalence of.G from U to LG.

Algorithm 5. (Response change algorithm — from illegal to legal for arednced sequence)
Inputs: A complete and finite enumeratighwith stimulus setS, a legal response, an unreduced sequenagwhich can be split into a
prefix sequence and a stimulus) in £ mapped tav.

Outputs: A complete and finite enumerati@i in which u is mapped ta.

1. Initialize £’ to contain no sequence.

2. For each sequence in £ mapped ta- and reduced to

3. Ifu=u

4. Then

5 Add a row for sequence into £/, mappingu to r and reducing: to w.

6 For each stimuluse

7 Add a row for sequencez into £/, mappingux to w and reducing:z to uz;
8 Highlight the row for sequencer in £’.

9 Endfor

10. Else

11. fr=wandv=p

12. Then

13 Add a row for sequenceinto £’, mappingu to w and reducing. to u.

14. Else

15 Add a row for sequenceinto £’, mappingu to r and reducing. to v.

16. Endif

17. Endif

18. Endfor

19. Returré’.
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u=ps,r#w

u=ps Ya,b,x € S.Vu,v € F.

Va.b.z € S.Vu.v € E. (ub > p,ub+— w,va > p,varr,r#w)
(ub > p,ub— w,va > p,va — r,r#w) a:/w
5 o

b/w/' s/w x/w / s/r x/w
@ ar @ ar x/w

@ (b)
Figure 16: Automaton diagrams for changing the responsefadm illegal to legal for unreduced. (a) Before the
response change. (b) After the response change.

Changing A Response from lllegal to Legal for An Unreduced Sguence: AlgorithmB

Consider the setup in Algorithfid 5. Sinceis unreduced, after we change its response feomo a legal value

it becomes an extensible sequence that needs to be exteAddukfore we make all extensions mappedllegal,
reduced to themselves, and highlighted. We also checkléwail sequences that are reducegto £. If any such
sequence exists, it cannot be reduced to £’, asps would no longer map tdlegal. We reduce all such sequences
to themselves and keep the rest of the enumeration the sagnE@.

Applying Algorithm[3 to Tablé€l7 produces the enumerational€[3.

Then we apply Algorithnid3 for an equivalence changd.6fB from LGB to LG and obtain TablE]9. The state
machine is shown in Fif17.

Similarly as forLG B we complete the response and the equivalence changeé&for LGG, LGL, andLGU by
applying Algorithm$b anfll4 together. The resulting enurtienaand state machine are shown in Tdblk 10 andFlg. 18
respectively.

For the remaining highlighted sequent€& D, we want to change its equivalence to the first illegal seqeéh
This is an equivalence change for an unreduced illegal sexgue

Changing An Equivalence for An Unreduced lllegal SequenceAlgorithm &l

Consider the setup in Algorithild 6. Sinceis unreduced and illegal, the new reduced valugf u has to satisfy
several conditions so that the change will be meaningfulrenta@ontradict Axioms 2, 3, and 6 for an enumeration. In
particularv has to be a prior unreduced sequence that either majhsgal or has all extensions map tieegal. We
simply check every sequencedhif it is reduced tou we reduce it tos in £’. Henceu becomes a reduced sequence
in &’. Stateu becomes an isolated state and is removed in the new autoi(fadoi9).

Applying Algorithm[d to Tabl¢ZT0 gives us the enumeration @bEd and the state machine in Higl 11.
Next we work on the newly added stimulgs
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Table 8: SAFE enumeration after changing the responde-bfrom unlock to 0, the equivalence oEG from U to
LG, and the response @fG' B from w to 0.

Sequencd Responsd Equivalence] Trace |

A 0 A Method
B w B D1
C w B D1
D w B D1
G w B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD w B 8
LG 0 LG 1,3,7
LL 0 L 5D2
LU 0 U 5,D2
UB 0 U 6
ucC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5D2
U 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD w B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5D2
LGB 0 LGB 8
LGC w LGC

LGD w LGD

LGG w LGG

LGL w LGL

LGU w LGU

LGBB w LGBB

LGBC w LGBC

LGBD w LGBD

LGBG w LGBG

LGBL w LGBL

LGBU w LGBU
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Table 9: SAFE enumeration after changing the respondetbfrom unlock to 0, the equivalence of.GG from U to
LG, the response ot G'B from w to 0, and the equivalence @&fG B from LGB to LG.

Sequencd Response Equivalence| Trace |

A 0 A Method
B w B D1
C w B D1
D w B D1
G w B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD w B 8
LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5D2
UB 0 U 6
ucC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
U 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD w B 8
LBG 0 LB 2,7
LBL 0 L 5D2
LBU 0 U 5,D2
LGB 0 LG 8
LGC w LGC

LGD w LGD

LGG w LGG

LGL w LGL

LGU w LGU
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B.C.,D.G, LU/

Figure 17: A state machine diagram for the safe controllerathanging the response bts from unlock to 0, the
equivalence oG from U to LG, the response adf G B fromw to 0, and the equivalence &fGB from LGB to LG.

B.C.G.U/0

Figure 18: A state machine diagram for the safe controllerathanging the response bs from unlock to 0, the
equivalence of.G from U to LG, and a few more response and equivalence changdsdét, LGC, LGG, LGL,
LGU.

34



Table 10: SAFE enumeration after changing the responée&ofrom unlock to 0, the equivalence ofG from U to
LG, and a few more response and equivalence changdsidt, LGC, LGG, LGL, LGU.

Sequencd Response Equivalence| Trace |

A 0 A Method
B w B D1
C w B D1
D w B D1
G w B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD w B 8
LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5D2
UB 0 U 6
ucC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
U 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD w B 8
LBG 0 LB 2,7
LBL 0 L 5D2
LBU 0 U 5,D2
LGB 0 LG 8
LGC 0 L 2
LGD w LGD

LGG 0 LG 8
LGL 0 L 5,D2
LGU 0 U 5,D2
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Algorithm 6. (Equivalence change algorithm — for an unreduced illegglisece)

Inputs: A complete and finite enumerati¢hwith stimulus setS, an unreduced sequenadwhich can be split into a prefix sequergand
a stimuluss) in £ mapped tav, an unreduced prior sequeneéhat is either mapped to or have all one-stimulus extensions mapped to
in&.

Outputs: A complete and finite enumerati@ in which u is reduced to.

1. Initialize £’ to contain no sequence.
2. For each sequence in £ mapped ta- and reduced to
Ifv=u
Then
Add a row for sequence into £/, mappingu to r and reducingu to v.
Else
Add a row for sequence into £/, mappingu to r and reducing to v.
Endif
9. Endfor
10. Returré’.

©ONOoOOA®

u=ps,velv<u, u=ps,velv<u,
v worVa € S va— w v worVae S va— w
Vu € E.Nz € S. (ux — r,ux>u) Vu € E.Vz € S. (ux — r,ux>u)

(@) (b)

Figure 19: Automaton diagrams for changing the equivalefce to v for unreduced illegali. (a) Before the
equivalence change. (b) After the equivalence change.

Algorithm 7. (Stimulus addition algorithm)
Inputs: A complete and finite enumeratighwith stimulus setS, a stimulusz notin S.
Outputs: A complete and finite enumerati@ with stimulus setS U {z}.

1. Collect all extensible sequencesdrinto the sett.

2. Initialize £’ to contain no sequence.

3. For each sequence in £ mapped to- and reduced to

4.  Add a row for sequence into £, mappingu to r and reducing to v.

5. Endfor

6. For eachu in E

7. Add a row for sequencez into £, mappinguz to w and reducinguz to uz;
8.  Highlight the row for sequencer.

9. Endfor

10. Returng’.
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Vuc E Yue E.Vs € SU{z}

O (oD
) )

Figure 20: Automaton diagrams for adding stimuluga) Before adding:. (b) After addinge.

Adding A Stimulus: Algorithm T

When we add a new stimulus(see Algorithnil), every extensible sequence is to be ertthglz. We simply make

all extensions mapped ttbegal and reduced to themselves (Higl 20). These entries in the aab highlighted. One
must consider each sequence and redefine them by perforespgnse or equivalence changes as required by the
new requirements.

The enumeration after adding ifis in Table[T1.

More changes (see Talfle] 12) are performed in the listed bsdapplying the available algorithms and predicate
refinement. The details are similar to examples already shdwnce omitted. As a consequence we obtain the
Z-SAFE enumeration (Tab[g 3) and state machine (Big. 9)egample is completed.

For completeness we give formal statements of the algositmwhcovered by our running example as well as their
proofs by picture as follows.

Changing A Response from lllegal to Legal for A Reduced Sequree: Algorithm Bl

This algorithm is the same as Algoritiiih 5 except that theeenarextensions af after the response change asitis a
reduced sequence éhand we assume it remains sodh as Fig[2ll illustrates.

Changing A Response from Legal to lllegal for A Reduced Sequree: Algorithm Bl

When we mapu to illegal we also reduce it to itself representing a newly added trafe §Eig[2PR). The rest of the
enumeration remains the same.

Changing A Response from Legal to lllegal for An Unreduced Sguence: Algorithm [IJ

Sinceu is legal and unreduced ifi, it must have been extended by every stimulus. When we map.itwe can
reduce it to itself representing a newly added trap sta ). The outgoing arc from stapelabeled withs is then
redirected to this new trap state. States in the old autamre&tmed after a string that containas a prefix may or may
not be reachable from the initial state as a result. Thesesstlaat will possibly be removed correspond to unreduced
sequences if that are eitheu or extensions ofi.

We have encountered a very similar situation when we handleqaivalence change for an unreduced legal
sequence, except that there we redirect the arc to an exstite in the automaton instead of a newly added trap state.
We employ the same strategy to construct the resulting eratioe (Fig [2ZB).
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Table 11: SAFE enumeration after all response and equivalelmanges incurred biyG, and adding stimulu&’.

Sequencd Response Equivalence| Trace |

A 0 A Method
B w B D1
C w B D1
D w B D1
G w B D1
L 0 L 5
U 0 U 5
Z w Z

LB 0 LB 1,2,7
LC 0 L 2,7
LD w B 8
LG 0 LG 1,3,7
LL 0 L 5D2
LU 0 U 5,D2
Lz w Lz

UB 0 U 6
ucC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
U 0 U 5D2
Uz w Uz

LBB 0 LB 2,7
LBC 0 L 2,7
LBD w B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5D2
LBZ w LBZ

LGB 0 LG 8
LGC 0 L 2
LGD w B 8
LGG 0 LG 8
LGL 0 L 5D2
LGU 0 U 5,D2
LGZ w LGZ
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Table 12: Remaining Changes Made to Obtain Z-SAFE.

changing the equivalence gffrom Z to B

changing the response 6fZ, p] from w to 0

changing the response 6{Z, —p| fromw to 0

changing the equivalence &fZ, —p| from L[Z, —p| to L

changing the response b7 fromw to 0

changing the equivalence btZ from U Z to U

changing the response 613[ 7, p] fromw to 0

changing the response 6B[Z, —p|] fromw to 0

Ol 0N O W N

changing the equivalence &fB|Z, —p| from LB[Z, —p| to LB

changing the response 6f7[Z, p] from w to unlock

changing the equivalence &i7[Z, p] from LG[Z, p| to U

changing the response 677, —p| fromw to 0

changing the equivalence 8iG[Z, —p|] from LG[Z, —p] to LG

changing the response 6{Z, p| B fromw to 0

changing the equivalence &fZ, p| B from L[ Z, p| B to LB[Z, p)

changing the response 6fZ, p|C fromw to 0

changing the equivalence &{Z, p|C from L[Z, p]C to L[ Z, p]

changing the equivalence &{Z, p| D from L[Z, p| D to B

changing the response 6fZ, p]G from w to unlock

changing the equivalence &{Z, p|G from L|Z, p|G toU

changing the response 6fZ, p] L fromw to 0

changing the equivalence &{Z, p|L from L[ Z,p|Lto L

changing the response 6fZ, p]U fromw to 0

changing the equivalence &{Z, p|U from L|Z, p|U to U

changing the response 6fZ, p][Z, p] fromw to 0

changing the equivalence &fZ, p||Z, p| from L|Z, p||Z, p] to L|Z, p]

changing the response 6{Z, p][Z, —p] fromw to 0

changing the equivalence &{Z, p|[Z, —p| from L[ Z, p|[Z, —p| to L

changing the response 6B[Z, p| B fromw to 0

changing the equivalence &fB[Z, p| B from LB[Z, p| B to LB|Z, p]

changing the response 637, p]C fromw to 0

changing the equivalence &fB[Z, p|C from LB[Z, p|C to L|Z, p]

changing the equivalence &fB[Z, p| D from LB[Z, p| D to B

changing the response 6B[Z, p|G fromw to 0

changing the equivalence &fB|Z, p|G from LB|Z, p|G to LB|Z, p]

changing the response 6B[Z, p] L fromw to 0

changing the equivalence &fB|Z, p|L from LB[Z, p|L to L

changing the response 6B[Z, p]U fromw to 0

changing the equivalence &fB|Z, p|U from LB[Z, p|U to U

changing the response 6B[Z, p][Z, p] fromw t0 0

changing the equivalence &fB[Z, p||Z, p| from LB[Z, p||Z, p| to LB|Z, p]

changing the response 8B[Z, p][Z, —p] from w to 0

changing the equivalence &fB|Z, p||Z, —p] from LB[Z, p][Z, —p| to LB
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Algorithm 8. (Response change algorithm — from illegal to legal for a ceduisequence)
Inputs: A complete and finite enumeratighwith stimulus setS, a legal response a reduced sequencewhich can be split into a prefix
sequence and a stimulus) in £ mapped tav.
Outputs: A complete and finite enumerati@i in which u is mapped ta.
1. Initialize £’ to contain no sequence.
2. For each sequence in £ mapped ta- and reduced to
3. Ifu=u
4. Then
5.  Add arow for sequence into £, mappingu to r and reducingu to v.
6. Else
7. Ifr=wandv=p
8. Then
9. Add a row for sequence into £, mappingu to w and reducing: to w.
10. Else
11. Add a row for sequenceinto £’, mappingu to » and reducing. to v.
12. Endif
13. Endif
14. Endfor
15. Returné’.
u=Dpsr#w
u=ps VYa,b,x € S.Vu,v € F.
ub > p,ub— w,va > p,va—r,r#+w
Ya,b € S.Vu,v € E. ( p; ’ p, T F W)
(ub > p,ub — w,va > p,va — r,r#w) :E/w

// ) /“ )
@a/r @a/r

(a) (b)
Figure 21: Automaton diagrams for changing the responsefodm illegal to legal for reduced. (a) Before the
response change. (b) After the response change.
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Algorithm 9. (Response change algorithm — from legal to illegal for a ceduisequence)
Inputs: A complete and finite enumeratighwith stimulus setS, a reduced sequence(which can be split into a prefix sequeneand a
stimuluss) in £ mapped to a legal response.

Outputs: A complete and finite enumerati@f in which u is mapped tav.

1. Initialize £’ to contain no sequence.
2. For each sequence in £ mapped ta- and reduced to
If u=u
Then
Add a row for sequence into £’, mappingu to w and reducing: to u.
Else
Add a row for sequence into £/, mappingu to r and reducingu to v.
Endif
9. Endfor
10. Returré’.

©ONO O AW

u=ps, — (u) #w @ s/r
@ s/ = (W) (L) /o

(@) (b)

Figure 22: Automaton diagrams for changing the responsefodm legal to illegal for reduced. (a) Before the
response change. (b) After the response change.
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Algorithm 10. (Response change algorithm — from legal to illegal for arednced sequence)

Inputs: A complete and finite enumeratiah with stimulus setS, a non-empty unreduced sequencévhich can be split into a prefi
sequence and a stimulus) in £ mapped to a legal response.

Outputs: A complete and finite enumerati@f in which u is mapped tav.

1. Initialize Ko = 0, K1 = 0, n = 0.
2. Collect all unreduced sequence<iinto the set.
3. For eachu in U

4. If w does not contain as a prefix

5. Then

6. r(u) = uis an unreduced sequencedfy

7. Ky =K1 U {u},

8. The response af in £ is the mapped response ©fu) under the black box function & denoted by~ (x(u)).
9. Endif

10. Endfor

11. While K,, # Kp 41

12.Do

13. Letn =n+1.
14. For each non-empty sequenpe other tharu in £, wheres is a stimulus
15. If psisreduced to sequeneein £ for v not in K,

16. Then

17. If pisin K, with *>(k(p)) # w
18. Then

19. Letx(p)s be a candidate fot(v).
20. Endif

21.  Endif

22. Endfor

23. Initialize K1 = Kn.

24. For eachv that are designated candidate values fordtmeapping in Steps 14-22

25.  Choose the first candidate in canonical ordet(@s;

26. Knt1=Kp41 U {’U};

27.  Compute the mapped response:0f) under the black box function &, denoted by=(x(v)).
28. Endfor

29. Enddo

30. Initialize £’ to contain the empty sequenaeonly, with A mapped td) and reduced to.

31. Add a row for sequenaginto £’, mappingu to w and reducingu to u.

32. For each non-empty sequenae other tharu in £ mapped to- and reduced teo, wherez is a stimulus
33. If k(u) is defined with=(k(u)) # w

34. Then
35.  Add arow for sequence(u)x into £’, mappingx (u)z to r and reducings (u)z to x(v).
36. Endif
37. Endfor

38. For each unreduced illegal sequencen £
39. |If k(u) is defined with->(k(u)) # w

40. Then

41.  For each stimulug:

42. Add a row for sequence(u)z into £, mappings (u)z to w and reducings (u)z to x(u).
43.  Endfor

44. Endif

45. Endfor

46. Returng’.
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u=ps,— (u)#w
Ve e S

@ s/ — (u) u x»—>ux

Vu € E.Vs € S. (us — r,us > v,us #u, k(u) b w)

Vu e U Vs € S. (u— w, k(u) b w)

(@
u=psr=uw
Ve e S
.5(11).
@ s/r -

Vu e E.Vs € S. (us — rus > v,us #u, k(u) b w)

s/r

rlu) \(v)

Vu e U Vs € S. (u— w, k(u) b w)

Figure 23: Automaton diagrams for changing the responsefadm legal to illegal for unreduced. (a) Before the
response change. (b) After the response change. Stajén dashed line indicates that the state does not exisisf
not defined fors.

(b)
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Algorithm 11. (Equivalence change algorithm — for a reduced illegal secgle
Inputs: A complete and finite enumeratighwith stimulus setS, a reduced sequence(which can be split into a prefix sequeneand a
stimuluss) in € mapped tav, an unreduced prior sequencelifferent from the reduced value afin £ that is either mapped to or have
all one-stimulus extensions mapped:tpor v beingu itself.

Outputs: A complete and finite enumerati@ in which u is reduced to.

1. Initialize £’ to contain no sequence.
2. For each sequence in £ mapped ta- and reduced to
If u=u
Then
Add a row for sequence into £/, mappingu to r and reducingu to v.
Else
Add a row for sequence into £/, mappingu to r and reducing to v.
Endif
9. Endfor
10. Returré’.

ONO O AW

Changing An Equivalence for A Reduced lllegal Sequence: Algrithm [T]

Sinceu is reduced and illegal, the new reduced valu u could beu itself, or any prior unreduced sequence as long
as it is different from the old reduced valuewgfand either maps titlegal or has all extensions mapiltegal. Except
for reducingu to v no change needs to be made to ob&ifFig.[24).

Changing An Equivalence for A Reduced Legal Sequence and Kping it Reduced: Algorithm 21

Sinceu is a reduced legal sequenceayifemains as a reduced sequence after the change, any urdg@discsequence
different from the old reduced value afcould be chosen as its new reduced valu&xcept for reducing to v no
change needs to be made to obt&irfFig.23).

Combinations of Stimulus Addition and Deletion

Itis provenin[17] that in case we have more than one stimalbe added or deleted, or both addition and deletion are
to be performed, the order in which these operations areéegpgbes not affect the final result (both the enumeration
and the highlighted entries, if there are any).

Summary

Sequence-based specification has in many field applicasiomsn its effectiveness in converting informal require-
ments to precise specifications through a constructivegsoc Theory for managing changes of requirements in
sequence-based specifications has a huge practical impataiotaining specifications over time in the presence of
change. In this paper we explore the change theory develojiedhe aid of an axiom system for sequence-based
specification, and present algorithms for adding and dejetiputs, changing outputs of sequences of use, changing
their legality status, and changing the equivalences thiatately define the state space of the specification. Each
change algorithm is illustrated with an example and an mfdmproof. The axiomatic approach turns out to be essen-
tial in developing these algorithms to help push variousiitegnents changes through to changes in sequence-based
specifications, and prove important properties of the dlgms. This has established the basis for the maximum
degree of tool support for managing requirements changesfpuence-based specifications.

Sequence-based specification is a notation-free and sjmg@system, beyond giving stimuli and responses short
names to facilitate enumeration. The specification toolhta@ns internal files (XML format) with every action and
can generate the full documentation at any time. After tleeifigation is complete, and following canonical sequence
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u=nps,veUU{u},v<uv#r(u), u=ps,veUU{u},v<uv#pr(u),
v worVa €S va— w v worVa € S va— w
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Figure 24: Automaton diagrams for changing the equivalefiago v for reduced illegall. (a) Before the equivalence
change. (b) After the equivalence change.

Algorithm 12. (Equivalence change algorithm — for a reduced legal seguehich keeps reduced)

Inputs: A complete and finite enumeratiafy, a reduced sequence(which can be split into a prefix sequenpeand a stimulus) in £
mapped to a legal response, an unreduced prior sequatifferent from the reduced value afin £.

Outputs: A complete and finite enumerati@f in which u is reduced to.

1. Initialize £’ to contain no sequence.
2. For each sequence in £ mapped ta- and reduced to
If u=u
Then
Add a row for sequence into £/, mappingu to r and reducingu to v.
Else
Add a row for sequence into £/, mappingu to r and reducingu to v.
Endif
9. Endfor
10. Returré’.

ONO O AW

u=ps, — (u) #w u=ps, —~ (u) #w
veUv<uv#r>(u) veUv<uv#r>(u)

D=ngy” G, @
A Y

(@) (b)

Figure 25: Automaton diagrams for changing the equivalericeto v for reduced legall and keeping it reduced.
(a) Before the equivalence change. (b) After the equivaehange.
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analysis, it is rendered in the form of state transitiongabl Of course, the specification could be represented in
various other state-based systems. Since we also havétlabge(17] to convert enumerations to and from prefix-
recursive functions, and regular expression sets, thelplitsss for connecting with other systems are quite estea.

For example, we generate a directed graph from the spewfickdr use as the structure of Markov chain testing
models [18]. One could also generate other tables and scfremahe XML representation, as well as code and
testing models [3,5]. Sequence-based specification isballitathe discovery, invention, and maintenance of the
specification and agnostic about how the result is repredearid used. Since most other specification notations and
representations stand in a one-to-one correspondencenmvitherations, and those corresponding enumerations can be
produced algorithmically and tested against the sequbased specification axioms, it follows that the consequence
of changes in requirements are similar for most representatThe algorithms presented here apply.
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