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Abstract 
This investigation centers on elucidating complex relationships among 
quantifiable variables of significance to the North Sea ecosystem. These 
variables encompass a huge variety of biotic and abiotic factors, and tend 
to possess divergent periodicities and other diverse properties.  Novel 
mathematical tools and powerful graph algorithms are described that can 
be harnessed to uncover temporal, spatial and other meaningful 
relationships on an immense scale. High performance parallel 
implementations can be synthesized to extract and highlight variable sets 
common to multiple relationships (cliques), and to determine inflection 
points, putative regime changes and other patterns of possible interest. 
These approaches are discussed in the context of more traditional 
clustering methods. Data quality and the significance of missing or 
corrupted values are also addressed, as is the importance of mining data 
at multiple levels of granularity. A long-term goal is to establish data 
dependencies upon which we can draw conclusions about the impact of 
man and other agents upon the Sea. 
 

1.  Background 
Effective multivariate data clustering lies at the heart of attempts to understand 
relationships embedded in ecosystems as complex as those found in the North Sea.  A 
central goal is to find algorithms that can extract subsets of variables with approximately 
similar observational profiles. 

A huge variety of clustering approaches has been proposed.  Unfortunately, most are 
limited by the fact that the clusters they produce are disjoint, requiring that a variable be 
assigned to a single cluster.  Of course this greatly simplifies the analysis.  
Unfortunately, it also presupposes a model with at best only modest fidelity to the 
system under study.  In the case of North Sea data, for example, many variables appear 
to play important roles in multiple but distinct relationships.  Meaningful clusters should 
therefore overlap at these variables. 
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Popular clustering approaches are also limited in that they do not recognize negative 
correlations.  Yet negative correlations are widely witnessed, and can be particularly 
meaningful when viewed from an ecosystems perspective.   Relevance networks have 
been proposed in an effort to represent complex relationships with correlation structures 
and thus to overcome the limitations of traditional clustering methods.  Unless there is 
an algorithmic means to extract tightly-connected correlate subsets, however, many of 
the most interesting relationships will remain embedded within a vast space of 
correlations.  

2.  Graph Theoretical Methods 
There are many benefits to the mathematical power and abstraction of a graph 
theoretical approach.  We embrace the spirit of relevance networks, and begin with a 
symmetric correlation matrix, M, in which the rows and columns represent variables, 
and in which the entry at location Mi,j denotes the correlation coefficient between 
variables i and j.  From M we build a weighted correlation graph, C, whose vertices 
represent variables and whose edges are annotated with correlation coefficients.  With 
the use of a high-pass filter and a chosen threshold, t, we produce from C a simple, 
unweighted graph, G, whose structural properties we seek to comprehend.  

Once this graph is created, the focus moves to extracting its densest subgraphs.  These 
are tightly-coupled sections of the graph whose vertices 
represent strongly correlated variable subsets.  Ideally, 
every pair of vertices in such a subgraph is connected by 
an edge.  In this case the subgraph is called a clique.  A 
clique on five vertices is illustrated in Figure 1. It is 
particularly noteworthy that cliques need not be disjoint.  A 
vertex can reside in more than one clique, just as a 
variable may be in more than one relationship.  Moreover, 
negative correlations are easily handled in a variety of 
ways, for example, by two-coloring the graph’s edges 
prior to thresholding.  In terms of correlation density, 
clique represents the most trusted potential for identifying 
sets of interacting variables. Figure 1.  A clique of size five.

False positives therefore, the bane of so many analysis techniques, are seldom 
problematic for clique-centric methods.  In fact, we must guard against false negatives, 
so much so that the use of Bonferroni corrections, false discovery rates and the like are 
generally avoided.  After all, a clique of size k requires k(k-1)/2 significant correlations.  
The loss of a single correlation means the loss of the clique.  In this way clique is 
complementary to more traditional clustering tools.   The tradeoff is that clique is 
extremely difficult to solve. 

3.  Pioneering Advances in the Search for Cliques 
The inputs to the clique problem are an undirected graph G of order n and a parameter 
k ≤ n.  The question asked is whether G contains a subgraph isomorphic to Kk.  Clique 
is NP-complete, and hence without any known algorithm that runs in time polynomial in 
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n and k.  Clique cannot even be approximated in polynomial time to within nε, for any 
ε>0, unless P=NP [1].  Novel approaches are clearly required if clique is to be solved on 
data sets as huge and complex as those we consider here. 

We therefore utilize fixed-parameter tractability, whose roots can be traced at least  as 
far back as early work by Fellows and Langston [2, 3] on nonconstructive applications of 
well-quasi-order theory and the celebrated Graph Minor Theorem of Robertson and 
Seymour [4]. 

A problem is fixed-parameter tractable if it has an algorithm that 
runs in O(f(k)nc) time, where n is the problem size, k is the input 
parameter, and c is a constant independent of both n and k . 

The first truly thorough treatment of this subject was published by Downey and Fellows 
[5].  Excellent recent monographs are due to Neidermeier [6] and Flum [7]. 

Although clique itself is not fixed-parameter tractable, we shall solve instead the vertex 
cover problem, which is clique’s complementary dual.  The result is an algorithm whose 
run time is linear in n and whose exponential growth in k is limited to a mere additive 
term, making it realistic now to consider the search for cliques of huge sizes in immense 
collections of ecosystem data.  For brevity, we have suppressed a great number of 
technical details.  Our recent work on this subject is featured in [8, 9], where we deal at 
length with application details and put our tools to work in the context of transcriptomic 
data analysis. 

4.  Scalable Implementations and High Performance Computing 
The problem described in the last section is known as the classic decision version of the 
maximum clique problem.  It sheds light on the overall complexity of clique, and 
provides a basis for novel algorithms.  In practice, however, we must also solve the 
optimization version of the problem, which means computing the size of a largest clique, 
as well as the search version, which means isolating a clique of that size.  Thanks to 
problem transformations, it turns out that optimization and search are relatively easy if 
we have efficient methods for decision. 

On the other hand, we are frequently required also to solve the maximal clique problem.  
Such a clique need not be the largest in the graph (a global measure of optimality).  
Instead it must only be a complete subgraph with the property that no other vertex in the 
graph can be added to it to complete a larger complete subgraph.  Thus a maximal 
clique is a local measure of optimality.  Because we cannot know in advance which 
maximal cliques are the most revealing, the problem becomes one of enumerating all 
maximal cliques in the graph. 

Space, not just time, now becomes a critical resource.  A graph with n vertices may in 
theory have as many as 3n/3 maximal cliques [10].  In practice, we have found in 
handling many biological data sets that a maximum clique size in the teens can mean 
thousands of maximal cliques, while a maximum clique size nearing 100 can mean tens 
of millions of maximal cliques.  Space requirements are compounded by the fact that 
algorithms for enumerating maximal cliques of a given size, k, often require maintaining 
all maximal cliques of size k-1.  
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Thus, as graphs grow in size, we turn 
more and more to high performance 
platforms to solve the maximal clique 
problem.  We have addressed the 
memory bottleneck just described with 
an algorithmic strategy that provides 
exact, parallel and scalable solutions.  
It exploits not only fixed-parameter 
tractability, but also ultra-large globally 
addressable memory architectures 
such as that of the SGI Altix 3700 at 
Oak Ridge National Laboratory 
(shown in Figure 2), as well as an 
innovative bitmap data representation scheme.  We refer the interested reader to [11] 
for details.  

Figure 2.  Supercomputers are often required. 

5.  A Data Analysis Toolchain 
The enormous volumes of ecosystems data now available provide a unique opportunity 
to investigate mathematical models of complex biotic and abiotic interactions at an 
unprecedented level of scale.  Such models, when coupled with high performance 
computational means, hold the promise of predictive dynamic simulations with which we 
can evaluate multi-factor causality and estimate the impact of policy.  In order to realize 
the potential of this approach, however, high dimensional historical data must first be 
analyzed to devise hypothetical models and determine which may be plausible and 
meaningful.  An early step in 
model formulation is to determine 
putative relationships embedded 
in multivariate data.  To 
accomplish this, we employ the 
algorithmic toolchain illustrated in 
Figure 3.  Raw data is initially 
normalized to bring values into 
comparable ranges.  Correlation 
coefficients are then computed for 
each pair of variables, for 
example, by using Pearson’s or 
Spearman’s rank calculations.  
This produces the aforementioned 
symmetric correlation matrix, M, 
from which we are able to 
construct graphs and extract 
cliques as previously discussed.  Figure 3.  A toolchain for ecosystems data analysis. 
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6.  The Challenge of High-Dimensional Multivariate Ecosystems Data 
The wealth of data used in this study presents several special challenges to those who 
would attempt to unlock its secrets.  For example, a wide variety of differing sources 
were used to generate measurements.  Moreover, these measurements were taken at 
varying levels of granularity.  On top of that, temporal metrics were recorded some 
times on a monthly basis, at other times on a quarterly basis, and at yet still other times 
on an annual basis.  Of critical significance is the fact that huge numbers of data values 
are missing, incomplete or of questionable reliability.  Plus there are inherent biases, for 
example, in the amount of effort spent on each of the squares under consideration by 
the ICES Regional Ecosystem Group for the North Sea (REGNS).  Together these 
many factors tend to compound the difficult problem of combining, preprocessing, 
integrating and normalizing data spread over so many different types and sources.  For 
detailed specifics on REGNS data types and completeness, see [12, 13]. 

7.  Representative Results 
 
7.1  Correlation Computations 
 
By composition, multivariate/megavariate data should present us with a variety of ways 
to compute correlations.  Historical ecosystems data are no exception.   We can, for 
example, choose any single variable to play the role of “condition” upon which we 
measure and compute pairwise correlation coefficients over all other variables.  The 
goal is to select a condition for which the resulting coefficient histogram approximates a 
normal distribution.  In this way, we can apply conventional statistical procedures. 
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Figure 4.  Histogram of correlation coefficients based upon spatial averages. 
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Two popular choices for the condition are space and time.  In the case of North Sea 
data, we have found the latter generally to be superior.  Debating this point is beyond 
the scope of this paper, however, and we merely illustrate typical histograms in Figure 
4 and Figure 5.  Horizontal axes list correlation coefficient values ranging form -1 to +1.  
Vertical axes show, for each value, the number of correlations found over pairs of biotic 
and abiotic variables.  In preparing these figures, Pearson’s correlation coefficients were 
calculated, with those based upon fewer than twelve pairwise observations discarded.  
Observe the superior “tails” present when time is used to drive the correlations.  These 
make it reasonable to try to choose a meaningful threshold with which we can obtain the 
unweighted graph as previously described. 
 
There are several ways to select such a threshold.  For example, practitioners have 
sometimes suggested 0.85 as a universal cutoff value.  Other methods employ 
functional knowledge or match the threshold to a desired maximum clique size [14].  

0

50

100

150

200

250

-1

-0
.9

-0
.7

-0
.6

-0
.4

-0
.3

-0
.1

0.
05 0.
2

0.
35 0.
5

0.
65 0.
8

0.
95

Correlation Value

Fr
eq

ue
nc

y

Yearly
Quarterly

Figure 5.  Histogram of correlation coefficients based upon temporal averages. 

 
Because so many variable readings are missing in this particular dataset, however, the 
technique we adopt here is to compute the significance of correlations non-uniformly 
using the Student’s t-test with N-2 degrees of freedom, where N is taken to be the 
number of common observations between the two correlates.  Any edge whose weight 
corresponds to a correlation not significant at a preselected α level is removed.  Weights 
on remaining edges are then ignored.  After this we can begin the computationally 
intensive task of clique extraction. 
 
 

6  



                                                              
 

7.2  Clique and Cluster 
Overlap 
 
The discriminatory 
power of clique-centric 
methods can be 
illustrated with annual 
North Sea historical 
data.  At α=0.05 (which 
on average corresponds 
to a threshold of about 
0.42), we find examples 
such as the one shown 
in Figure 6 and detailed 
in Table 1.  Only positive 
correlations are 
considered, with bird species depicted in red, fish in blue, plankton in green and abiotic 
variables in black. 

 

Table 1.  Details on variables shown in Figure 6. 
 

Abiotic 
Btemp Bottom temperature  
Stemp Surface temperature  
   

Phytoplankton 
Colour ‘Greenness’ from CPR screen  
   

Zooplankton 
Calhel Calanus helgolandicus  
Decap Decapoda total  
   

Fish 
Ammodytidae Ammodytidae Sand lance 
Kitt Microstomus kitt Lemon sole 
Limanda Limanda limanda Common dab 
Merlangus Merlangius merlangus Whiting 
Scombrus Scomber scombrus Mackerel 
Sprattus Sprattus sprattus Sprat 
Trachurus Trachurus trachurus Horse mackerel 
   

Birds 
B-H Gull Larus ridibundus Black-headed Gull 
Little Gull Larus minutus Little Gull 

Figure 6.  Cliques elucidate complex relationships. 

Note the significance of overlapping cliques, and the role three species of fish play at 
the nexus.   Variables not in a common clique are poorly correlated.   The correlations 
between Ammodytidae and the four variables Btemp, Stemp, calhel and decap, for 
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example, have respective p-values 0.37, 0.60, 0.97 and 0.61.  Traditional clustering 
methods, however, would either have forced Ammodytidae and these four variables to 
reside in the same cluster, or have removed one or more of the three fish in the 
intersection from the cluster highly populated with fish or from the cluster with abiotic 
factors (or both).  In each of these cases, the accuracy with which the resultant clusters 
represent the underling ecosystem data would have been severely compromised. 
 
By using quarterly data 
rather than annual, we 
are sometimes able to 
see more detailed 
relationships.  At α=0.01 
(which on average 
corresponds to a 
threshold of about 0.30), 
we discover a huge 
number of overlapping 
cliques, three of which 
are shown in Figure 7 
and detailed in Table 2.  
As before we consider 
positive correlations 
only, with bird species 
again depicted in red, 
fish in blue, plankton in 
green and abiotic 
variables in black.  At 
this level of scrutiny, it 
becomes clear that 
plankton plays a major role, and that something as simple as an abiotic factor like 
temperature can be at the confluence linking many seemingly dissimilar variables.   

Figure 7.   Lower thresholds can reveal more detailed structures. 

 
 7.3  Cluster Refinement and the Paraclique Algorithm  

Noise is a constant concern when handling historical data.  We have previously 
developed noise-reduction techniques, most notably the “paraclique” algorithm, for 
dealing with high-throughput biological data [15].  We apply paraclique here in order 
both to mitigate the effects of noise as well as to view correlation structures at a more 
interpretable level of granularity.  After all, it can be difficult indeed to try to view several 
thousand overlapping cliques at one time. 

Informally, a paraclique is an extremely densely-connected subgraph, but one that may 
be missing a small number of edges.  In the present application, this corresponds to a 
very highly correlated group of variables whose representational levels show highly 
significant but not necessarily perfect pair-wise correlations.  Although the complete 
algorithm is fairly complex, a simplified version of it may be described as follows.   
Beginning with a clique, C, of size k, we consider each non-clique vertex, v, in turn.   We  
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Table 2.  Details on variables shown in Figure 7. 
 

Abiotic 
Btemp Bottom temperature  
Stemp Surface temperature  
 

Phytoplankton 
cmacro Ceratium macroceros  
Colour ‘Greenness’ from CPR screen  
Dino Dinophysis spp.  
Proro Prorocentrum spp.   
 

Zooplankton 
Calhel Calanus helgolandicus  
Caltot Calanus total traverse  
Decap Decapoda total  
echinol Echinoderm larva  
Pp Para-Pseudocalanus spp.  
 

Fish 
Kitt Microstomus kitt  Lemon sole 
Scombrus Scomber scombrus Mackerel 
Sprattus Sprattus sprattus Sprat 
Trachurus Trachurus trachurus Horse mackerel 
 

Birds 
Shearwater Puffinus puffinus Manx Shearwater 
Skua Stercorarius parasiticus Arctic Skua 
Puffin Fratercula arctica Atlantic Puffin 

mark v if and only if it is adjacent to at least k-1 vertices in C.   After each vertex has 
been considered, we define a paraclique, P, to be the union of C and the set of all 
marked vertices.  We then remove P from the graph and iterate. 
 
Sample results of the paraclique method are illustrated in Figure 8, where the 
correlates are the 208 squares defined for the North Sea, each roughly 30 kilometers by 
30 kilometers in size, with correlations driven by the average annual readings of all 
other variables.  By harnessing the computational power of fixed-parameter tractability 
and then isolating paracliques, we are able to identify considerably denser subgraphs 
than are typically produced with traditional clustering algorithms.  While we have 
observed edge densities ranging in the 10-20% range with simple k-cores and 
neighborhoods, and in the 50-60% range with hierarchical clustering schemes, on real 
data paraclique consistently seems to return subgraphs with densities upwards of 
around 95%.  Of course within a paraclique all variables are highly positively correlated.  
Thus it can be revealing to examine negative correlations.  It is noteworthy that among 
the paracliques shown in this figure, each of those located in the north has the property 
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that all of its squares are 
significantly negatively 
correlated with every 
square in at least one 
paraclique located in the 
south.  It is also 
interesting to compare 
this distribution of 
paracliques with the 
spatial distribution of 
clusters of abiotic, 
plankton, fisheries and 
birds data computed 
with more traditional 
methods [12]. There is a 
high degree of 
agreement between 
these results, particularly 
between paracliques 
and the clusters derived 
for abiotic and plankton 
data. The derivation of 
similar contiguous 
patterns of 
corresponding variables, 
using very different 
algorithmic approaches, 
is encouraging. 

8.  Moving Forward 

This paper is mainly 
focused on novel 
methods, and with new methods come many as-yet unanswered questions.  For brevity 
we mention just one, namely, the exploration of putative regime changes in the sense of 
[16] in an effort to assess the impact of human and other pressures on the North Sea.  
In this we are not really limited by the immense computations required, but rather by our 
inability to isolate the most meaningful factors.  Any evidence for such a regime change 
is apt to be highly dependent on the variables used to drive its correlations.  The result 
is that, depending on the variables chosen, there may be multiple, conflicting claims of 
regime changes, including the claim there has been no change at all.  If we choose to 
let all variables drive the correlations, the best we can say at this time is that two sets of 
years seem to indicate some sort of change in overall North Sea readings.  The four 
years from 1984 to 1987 form one clique; the three years from 2002 to 2004 form 
another.  Although all correlations are of course positive within each clique, it turns out 
that each and every year in the first clique is significantly negatively correlated with each 

Figure 8.  Paracliques of North Sea historical data. 
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and every year in the second clique.  This is a surprisingly strong computational finding.  
What is to be made of it?  And what is to be made of the missing years?  The fact that 
so many years are not associated with any cliques at all suggests to us that using the 
entire set of variables to drive correlations has a dilutive effect, and that one should 
indeed be selective in the biotic and abiotic variables chosen. 
 
9.  Remarks 
 
The North Sea provides a rich and representative ecosystem for detailed study.  There 
are many inviting opportunities for system evaluation, modeling and management.  On 
the other hand, high dimensional multivariate ecosystem data by its very nature present 
a number of strikingly difficult challenges to any serious attempt to analyze the complex 
relationships among its biotic and abiotic factors.  This situation creates the universal 
ecologist’s problem: many variables are correlated with one another, but with 
statistically weak pairwise correlations. Combinatorial analysis based on the clique 
problem effectively compiles these weak correlations into statistically robust inter-
related clusters.  
 
We have therefore synthesized and implemented our innovative algorithms for use on 
high performance computational platforms.  With these, we are able to mine and extract 
relevant system constituents in an effort to uncover important relationships and other 
possible patterns of interest.  In particular, clique-centric analysis offers us the 
opportunity to identify gaps in our collective datasets where important relationships are 
likely to exist.  Although this paper has focused primarily on novel methods, a sampling 
of preliminary results has been chosen to help illustrate the potential of this approach in 
establishing key data dependencies.  In this role, clique can be viewed as a powerful 
generator of hypotheses amenable to further testing. 
 
Neither fisheries biologists nor computational scientists can work in a vacuum if we are 
to make real progress.  These and other experts must pool their collective knowledge in 
order to reach a new level of understanding about ecosystems that are as complex as 
the North Sea.  We are optimistic that continuing research along this line will help us to 
draw far-reaching conclusions about the impact of man and other agents upon the 
world’s oceans. 
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