The 48 Sets of Minimal Density MDS RAID-6 Matrices for a Word Size of Eight

James S. Plank

March 24, 2008
Technical Report UT-CS-08-611
Department of Computer Science
University of Tennessee
Knoxville, TN 37996
http://www.cs.utk.edu/~plank/plank/papers/CS-08-611.html
PDF: http://www.cs.utk.edu/~plank/plank/papers/CS-08-611.pdf

Citation Information

- Plain Text:

```
.techreport p:08:e48
author J. S. Plank
title The 48 Sets of Minimal Density {MDS} {RAID-6} Matrices for a Word Size of Eight
institution University of Tennessee
month March
year 2008
number UT-CS-08-611
where http://www.cs.utk.edu/~plank/plank/papers/CS-08-611.html
```

- Bibtex:
@TECHREPORT\{p:08:e48,
author = "J. S. Plank",
title $=$ "The 48 Sets of Minimal Density \{MDS\} \{RAID-6\} Matrices for a Word Size of Eight",
institution = "University of Tennessee",
month = "March",
year = "2008",
number $=$ "UT-CS-08-611",
where $=$ "http://www.cs.utk.edu/~plank/plank/papers/CS-08-611.html"
$\}$

Please see the paper [Plank08] for all terminology related to RAID-6 coding using bit matrices.
There are 48 distinct sets of minimal density MDS RAID-6 codes with a word size $w=8$. Each may be defined by eight matrices, X_{0}, \ldots, X_{7}, where X_{0} is always equal to an identity matrix. For example, Figure 1 shows the X_{i} matrices for the best matrix.

Figure 1: The eight X_{i} matrices for the best minimal density MDS matrix for $w=8$.
We represent each $X_{i}(i>0)$ with a permutation matrix and an extra one. The permutation matrix may be represented by a vector Π_{i} which has w integer elements $\pi_{i, 0}, \ldots, \pi_{i, w-1} . \pi_{i, j}$ is the column which contains the location of the one in row j. In order to be a valid permutation matrix, Π_{i} must be such that $0 \leq \pi_{i j}<w$ and if $j \neq j^{\prime}$ then $\pi_{i, j} \neq \pi_{i, j^{\prime}}$.

We can represent a matrix X_{i} with its permutation matrix Π_{i} plus a row and column identifying the extra one. We will use the following notation to represent X_{i} :

$$
X_{i}=\left\{\Pi_{i}, r_{i}, c_{i}\right\}
$$

For example, X_{1} in Figure 1 may be represented as $\{(7,3,0,2,6,1,5,4), 4,7\}$.
The following table enumerates the 48 sets of minimal density MDS matrices. In each matrix, X_{I} is an identity matrix, and thus is not specified. The value f at the end of each row denotes the overhead factor of decoding with that matrix. This is the average overhead over optimal when decoding from two disk failures.

Note, the first row of the table is the matrix in Figure 1.

\#	X_{1}	X_{2}	x_{3}	X_{4}	X_{5}	X_{6}	X_{7}	f

$1\{(7,3,0,2,6,1,5,4), 4,7\}\{(6,2,4,0,7,3,1,5), 1,3\}\{(2,5,7,6,0,3,4,1), 5,4\}\{(5,6,1,7,2,4,3,0), 2,0\}\{(1,2,3,4,5,6,7,0), 7,2\}\{(3,0,6,5,1,7,4,2), 6,5\}\{(4,7,1,5,3,2,0,6), 3,1\} 1.18452$ $2\{(5,7,0,2,6,4,1,3), 1,1\}\{(6,3,1,4,7,2,5,0), 3,2\}\{(2,5,7,6,3,0,1,4), 6,3\}\{(4,7,6,0,1,2,3,5), 5,7\}\{(1,2,3,4,5,7,0,6), 7,4\}\{(3,4,5,7,0,1,2,6), 2,6\}\{(7,0,5,1,3,6,4,2), 4,5\} 1.18532$ $3\{(7,4,6,1,5,2,0,3), 4,4\}\{(1,2,3,4,7,0,5,6), 7,3\}\{(6,7,1,2,5,3,4,0), 3,5\}\{(3,4,0,5,2,7,1,6), 1,6\}\{(5,6,3,7,0,1,2,4), 2,1\}\{(2,3,4,0,6,1,7,5), 5,7\}\{(4,0,5,2,3,6,7,1), 6,2\} 1.18552$ $4\{(1,2,3,4,5,6,7,0), 7,4\}\{(3,6,0,1,7,2,4,5), 5,6\}\{(7,0,1,2,3,4,5,6), 4,7\}\{(6,7,5,0,2,3,1,4), 2,1\}\{(2,6,4,5,1,7,3,0), 1,0\}\{(5,3,7,4,6,2,0,1), 3,2\}\{(4,5,6,7,3,0,1,2), 6,3\} 1.18571$ $5\{(1,2,3,4,5,6,7,0), 7,6\}\{(2,5,4,1,7,0,3,6), 3,4\}\{(6,0,4,7,3,2,5,1), 2,5\}\{(4,6,7,2,1,3,5,0), 6,0\}\{(5,4,6,1,2,7,0,3), 4,1\}\{(3,7,0,5,2,6,1,4), 5,2\}\{(7,3,1,0,6,4,2,5), 1,7\} 1.18571$ $6\{(1,2,3,4,5,6,7,0), 7,4\}\{(2,5,6,0,3,7,1,4), 6,3\}\{(6,7,5,2,1,4,3,0), 2,0\}\{(3,6,0,4,7,1,2,5), 3,6\}\{(4,6,5,7,2,3,0,1), 1,5\}\{(7,4,1,6,0,2,5,3), 5,7\}\{(5,0,7,1,3,2,4,6), 4,2\} 1.18591$ $7\{(4,3,6,0,7,2,1,5), 6,2\}\{(7,0,5,2,1,4,3,6), 2,6\}\{(3,7,5,6,0,1,2,4), 1,5\}\{(6,5,7,1,3,2,4,0), 5,3\}\{(5,4,0,7,3,6,1,2), 4,1\}\{(1,2,3,4,5,7,0,6), 7,4\}\{(2,7,1,4,6,0,5,3), 3,7\} 1.18591$ $8\{(6,4,1,5,7,2,3,0), 5,4\}\{(7,6,5,1,2,3,0,4), 2,1\}\{(1,2,7,0,3,4,5,6), 7,3\}\{(4,0,5,7,3,6,1,2), 4,5\}\{(2,7,3,1,5,0,4,6), 3,6\}\{(5,4,0,2,6,1,7,3), 1,7\}\{(3,5,4,6,0,2,7,1), 6,2\} 1.18591$ $9\{(1,2,3,4,5,7,0,6), 7,3\}\{(7,0,6,1,2,4,3,5), 3,4\}\{(2,3,7,5,0,4,1,6), 5,6\}\{(5,7,0,1,6,3,2,4), 6,1\}\{(6,5,1,2,7,0,4,3), 1,7\}\{(3,4,5,6,7,1,2,0), 4,2\}\{(4,5,3,0,1,6,7,2), 2,5\} 1.18611$ $10\{(1,2,3,4,7,0,5,6), 7,2\}\{(2,6,5,0,3,7,4,1), 6,5\}\{(7,3,5,2,0,4,1,6), 2,6\}\{(6,0,7,1,2,3,4,5), 5,4\}\{(4,5,0,7,1,6,3,2), 3,1\}\{(5,7,4,6,1,3,2,0), 4,3\}\{(3,2,6,7,5,1,0,4), 1,7\} 1.18611$ $11\{(3,4,5,7,0,6,1,2), 6,5\}\{(4,7,1,0,6,2,5,3), 1,2\}\{(1,2,3,4,5,7,0,6), 7,4\}\{(7,0,5,2,1,4,3,6), 2,6\}\{(2,3,6,4,7,0,1,5), 3,1\}\{(6,5,7,1,3,2,4,0), 5,3\}\{(5,7,0,6,3,1,2,4), 4,7\} 1.18611$ $12\{(5,7,0,2,6,4,1,3), 1,1\}\{(7,0,6,4,1,2,3,5), 3,2\}\{(2,5,7,6,3,0,1,4), 6,3\}\{(3,7,5,1,0,6,4,2), 2,7\}\{(4,3,1,0,7,2,5,6), 5,6\}\{(1,2,3,4,5,7,0,6), 7,4\}\{(6,4,5,7,3,1,2,0), 4,5\} 1.18611$ $13\{(6,7,3,1,5,2,4,0), 5,1\}\{(7,4,5,2,6,1,0,3), 2,4\}\{(4,0,5,7,3,6,1,2), 4,5\}\{(3,5,4,6,0,2,7,1), 6,2\}\{(5,6,0,1,2,3,7,4), 3,7\}\{(1,2,7,0,3,4,5,6), 7,3\}\{(2,4,1,5,7,0,3,6), 1,6\} 1.18611$ $14\{(3,6,0,7,1,2,5,4), 5,6\}\{(1,2,3,4,5,6,7,0), 7,4\}\{(2,3,6,4,7,0,1,5), 3,1\}\{(6,7,4,5,0,2,1,3), 6,2\}\{(4,5,1,6,3,7,2,0), 4,0\}\{(5,6,7,2,3,4,0,1), 1,3\}\{(7,4,5,0,6,1,3,2), 2,7\} 1.18631$ $15\{(4,6,1,0,7,2,3,5), 5,6\}\{(1,2,3,4,5,6,7,0), 7,4\}\{(2,4,6,7,3,1,5,0), 4,0\}\{(6,7,4,5,0,2,1,3), 6,2\}\{(3,5,0,4,6,7,1,2), 3,1\}\{(5,6,7,2,3,4,0,1), 1,3\}\{(7,3,5,6,1,0,2,4), 2,7\} 1.18631$ $16\{(6,7,5,4,2,1,3,0), 4,5\}\{(4,3,6,2,1,0,7,5), 1,7\}\{(7,4,5,1,6,3,0,2), 2,1\}\{(3,0,1,5,2,6,7,4), 6,2\}\{(5,3,0,6,7,4,2,1), 5,3\}\{(1,2,7,0,3,4,5,6), 7,4\}\{(2,5,3,1,0,7,4,6), 3,6\} 1.18651$ $17\{(5,4,0,1,7,6,3,2), 3,4\}\{(2,5,4,1,6,0,7,3), 6,1\}\{(6,4,3,7,5,2,1,0), 1,2\}\{(3,7,1,5,0,2,4,6), 5,6\}\{(1,2,7,0,3,4,5,5), 7,3\}\{(7,6,5,2,3,1,0,4), 4,5\}\{(4,0,5,6,2,3,7,1), 2,7\} 1.18671$ $18\{(6,4,1,7,5,3,2,0), 4,4\}\{(4,0,5,2,3,6,7,1), 6,2\}\{(7,6,3,1,5,2,0,4), 2,5\}\{(3,4,0,5,2,7,1,6), 1,6\}\{(2,3,4,0,6,1,7,5), 5,7\}\{\{5,7,6,2,0,1,4,3), 3,1\}\{(1,2,3,4,7,0,5,6), 7,3\} 1.18671$ $19\{(7,4,5,6,2,3,0,1), 4,5\}\{(3,0,1,5,2,6,7,4), 6,2\}\{(6,3,5,4,7,1,2,0), 2,3\}\{(4,3,6,2,1,0,7,5), 1,7\}\{(5,7,0,1,6,4,3,2), 5,1\}\{(2,5,3,1,0,7,4,6), 3,6\}\{(1,2,7,0,3,4,5,6), 7,4\} 1.18730$ $20\{(1,2,3,4,5,6,7,0), 7,1\}\{(5,3,0,6,7,4,2,1), 5,6\}\{(6,7,5,1,2,0,3,4), 6,2\}\{(4,6,7,5,2,1,0,3), 4,7\}\{(2,5,4,0,1,7,3,6), 1,3\}\{(7,5,1,6,0,3,4,2), 3,5\}\{(3,0,7,2,6,4,1,5), 2,4\} 1.18750$ $21\{(1,2,3,4,5,6,7,0), 7,1\}\{(6,4,5,0,3,7,2,1), 2,3\}\{(3,7,0,6,1,2,4,5), 6,2\}\{(2,6,7,5,0,1,4,3), 1,4\}\{(7,6,4,1,3,0,5,2), 4,6\}\{(5,3,1,7,6,2,0,4), 5,7\}\{(4,0,5,7,2,3,1,6), 3,5\} 1.18750$ $22\{(1,2,3,4,5,7,0,6), 7,3\}\{(7,6,1,5,0,2,4,3), 6,5\}\{(2,4,7,5,3,0,1,6), 3,6\}\{(3,0,5,6,7,1,4,2), 5,4\}\{(5,7,6,1,2,4,3,0), 1,2\}\{(6,3,0,7,2,1,5,4), 4,1\}\{(4,7,3,0,1,6,2,5), 2,7\} 1.18750$ $23\{(1,2,3,4,7,0,5,6), 7,2\}\{(5,6,0,2,3,7,4,1), 4,7\}\{(4,2,6,7,3,1,0,5), 1,3\}\{(6,4,5,0,2,7,1,3), 5,1\}\{(3,0,4,5,1,6,7,2), 2,5\}\{(2,7,4,6,5,3,1,0), 6,4\}\{(7,3,1,5,0,4,2,6), 3,6\} 1.18750$ $24\{(5,4,0,1,7,6,3,2), 3,4\}\{(2,5,4,1,6,0,7,3), 6,1\}\{(4,0,3,7,5,2,1,6), 5,6\}\{(7,4,5,6,2,3,0,1), 1,5\}\{(6,7,1,5,3,2,4,0), 4,2\}\{(1,2,7,0,3,4,5,6), 7,3\}\{(3,6,5,2,0,1,7,4), 2,7\} 1.18790$ $25\{(1,2,3,4,5,6,7,0), 7,4\}\{(2,3,5,0,6,7,1,4), 6,5\}\{(3,6,0,1,7,2,4,5), 5,6\}\{(5,0,7,4,2,3,1,6), 3,1\}\{(6,7,5,2,1,4,3,0), 2,0\}\{(7,6,4,5,0,1,2,3), 1,7\}\{(4,5,6,7,3,2,0,1), 4,2\} 1.18869$ $26\{(1,2,3,4,5,6,7,0), 7,4\}\{(2,3,5,0,6,7,1,4), 6,5\}\{(7,0,1,2,3,4,5,6), 4,7\}\{(3,6,4,5,7,2,0,1), 1,2\}\{(6,7,5,1,3,0,4,2), 2,3\}\{(4,5,6,7,1,2,3,0), 5,0\}\{(5,6,7,4,0,1,2,3), 3,6\} 1.18869$ $27\{(1,2,3,4,5,6,7,0), 7,4\}\{(2,5,6,0,3,7,1,4), 6,3\}\{(4,6,0,7,1,2,3,5), 1,2\}\{(6,7,1,2,3,4,5,0), 4,0\}\{(5,6,7,4,0,1,2,3), 3,6\}\{(3,4,5,6,7,0,1,2), 2,1\}\{(7,3,4,5,6,2,0,1), 5,7\} 1.18869$ $28\{(1,2,3,4,5,6,7,0), 7,4\}\{(5,3,7,0,6,2,1,4), 5,1\}\{(4,0,5,7,3,1,2,6), 2,3\}\{(3,4,5,6,7,0,1,2), 6,5\}\{(6,7,1,4,0,2,5,3), 3,2\}\{(7,5,6,2,3,4,0,1), 4,7\}\{(2,6,4,5,1,7,3,0), 1,0\} 1.18869$ $29\{(1,2,3,4,5,6,7,0), 7,4\}\{(3,0,5,2,7,4,1,6), 2,1\}\{(2,3,5,4,6,7,0,1), 3,5\}\{(5,4,7,6,2,3,1,0), 6,0\}\{(4,6,1,7,3,0,5,2), 4,6\}\{(7,6,4,5,0,1,2,3), 1,7\}\{(6,7,0,1,3,2,4,5), 5,3\} 1.18909$ $48\{(1,2,3,4,5,6,7,0), 7,4\}\{(3,0,5,2,7,4,1,6), 2,1\}\{(2,3,4,5,6,7,1,0), 6,0\}\{(6,7,5,4,1,0,3,2), 3,5\}\{(5,6,7,0,3,1,2,4), 1,3\}\{(4,5,6,7,3,2,0,1), 4,2\}\{(7,4,1,6,0,2,5,3), 5,7\} 1.18930$ $31\{(1,2,3,4,5,6,7,0), 7,7\}\{(7,4,1,2,6,0,5,3), 3,4\}\{(3,4,6,1,7,2,0,5), 1,6\}\{(2,7,6,5,3,1,4,0), 2,0\}\{(4,5,0,2,1,7,3,6), 4,2\}\{(6,3,5,0,1,4,7,2), 6,1\}\{(5,6,4,7,0,3,2,1), 5,5\} 1.19028$ $32\{(3,4,0,6,2,7,5,1), 3,3\}\{(6,7,5,2,0,4,1,3), 1,4\}\{(4,6,1,7,5,3,0,2), 4,1\}\{(7,3,1,5,6,0,2,4), 2,2\}\{(1,2,3,4,5,6,7,0), 7,5\}\{(2,5,6,1,7,4,3,0), 5,0\}\{(5,7,4,0,3,1,2,6), 6,7\} 1.19028$ $33\{(1,2,3,4,5,6,7,0), 7,4\}\{(6,7,5,0,2,3,1,4), 6,5\}\{(3,6,4,5,7,2,0,1), 5,6\}\{(2,5,6,4,0,7,1,3), 3,1\}\{(5,0,7,1,3,2,4,6), 4,2\}\{(7,6,0,2,1,4,3,5), 1,7\}\{(4,3,5,7,6,1,2,0), 2,0\} 1.19087$ $34\{(1,2,3,4,5,6,7,0), 7,4\}\{(6,7,5,0,2,3,1,4), 6,5\}\{(3,6,4,5,7,2,0,1), 1,2\}\{(5,4,7,6,0,2,1,3), 5,1\}\{(4,6,5,7,1,0,3,2), 2,6\}\{(2,5,6,1,3,7,4,0), 4,0\}\{(7,3,0,4,6,1,2,5), 3,7\} 1.19127$ $35\{(1,2,3,4,5,6,7,0), 7,4\}\{(3,6,4,5,7,2,0,1), 5,6\}\{(6,7,5,0,2,3,1,4), 2,1\}\{(2,6,5,1,0,7,4,3), 1,5\}\{(4,3,0,7,6,2,1,5), 6,2\}\{(5,4,7,6,3,1,2,0), 4,0\}\{(7,5,6,4,1,0,3,2), 3,7\} 1.19186$ $36\{(1,2,3,4,5,6,7,0), 7,4\}\{(6,7,5,1,3,0,4,2), 2,3\}\{(2,3,5,4,6,7,0,1), 3,5\}\{(3,5,6,2,7,4,1,0), 6,0\}\{(7,0,4,5,3,1,2,6), 4,7\}\{(5,4,7,6,0,2,1,3), 5,1\}\{(4,6,0,7,1,2,3,5), 1,2\} 1.19306$ $37\{(1,2,3,4,5,6,7,0), 7,4\}\{(2,6,5,0,1,7,3,4), 2,6\}\{(3,5,6,1,7,2,4,0), 5,0\}\{(6,7,4,5,3,0,1,2), 4,1\}\{(5,6,7,2,3,4,0,1), 1,3\}\{(4,3,0,7,6,2,1,5), 6,2\}\{(7,0,1,4,2,3,5,6), 3,7\} 1.19325$ $38\{(1,2,3,4,5,6,7,0), 7,4\}\{(5,3,7,0,6,2,1,4), 5,1\}\{(3,6,0,4,7,1,2,5), 3,6\}\{(7,4,5,6,2,3,0,1), 2,7\}\{(2,6,5,1,0,7,4,3), 1,5\}\{(4,5,6,7,3,0,1,2), 6,3\}\{(6,7,1,2,3,4,5,0), 4,0\} 1.19325$ $39\{(1,2,3,4,5,6,7,0), 7,4\}\{(5,6,7,1,0,2,4,3), 1,2\}\{(6,7,1,0,3,2,5,4), 5,3\}\{(2,3,4,5,6,7,1,0), 6,0\}\{(7,5,6,2,3,4,0,1), 4,7\}\{(3,0,5,4,7,1,2,6), 3,5\}\{(4,6,5,7,1,0,3,2), 2,6\} 1.19425$ $40\{(1,2,3,4,5,6,7,0), 7,4\}\{(2,6,5,0,1,7,3,4), 2,6\}\{(4,6,1,7,2,3,5,0), 1,0\}\{(3,4,5,6,7,0,1,2), 6,5\}\{(7,0,4,5,3,1,2,6), 4,7\}\{(6,7,0,1,3,2,4,5), 5,3\}\{(5,3,7,4,6,2,0,1), 3,2\} 1.19464$ $41\{(1,2,3,4,5,6,7,0), 7,7\}\{(4,5,7,2,6,0,3,1), 6,4\}\{(5,0,1,7,2,3,4,6), 3,2\}\{(2,3,4,6,7,1,0,5), 2,1\}\{(7,4,6,0,3,1,5,2), 5,0\}\{(6,7,0,5,2,4,1,3), 4,3\}\{(3,6,5,1,0,7,2,4), 1,5\} 1.19504$ $42\{(4,5,6,0,1,7,3,2), 2,3\}\{(1,2,3,4,5,6,7,0), 7,5\}\{(3,6,5,7,0,4,2,1), 5,6\}\{(6,7,0,2,3,4,1,5), 6,4\}\{(5,3,7,6,2,1,4,0), 1,0\}\{(2,0,4,1,7,3,5,6), 4,2\}\{(7,4,1,5,6,2,0,3), 3,1\} 1.19504$ $43\{(1,2,3,4,5,6,7,0), 7,4\}\{(5,6,7,1,0,2,4,3), 1,2\}\{(4,5,6,7,1,2,3,0), 5,0\}\{(7,0,1,4,2,3,5,6), 3,7\}\{(3,4,5,6,7,0,1,2), 2,1\}\{(6,7,0,2,3,4,1,5), 6,3\}\{(2,6,4,5,3,7,0,1), 4,6\} 1.19544$ $44\{(6,5,0,7,1,3,4,2), 6,0\}\{(5,4,7,6,3,2,0,1), 5,3\}\{(4,7,6,1,2,0,3,5), 3,5\}\{(7,6,4,5,0,1,2,3), 1,7\}\{(2,6,1,0,3,7,5,4), 4,6\}\{(3,0,5,2,7,4,1,6), 2,1\}\{(1,2,3,4,5,6,7,0), 7,4\} 1.19544$ $45\{(1,2,3,4,5,6,7,0), 7,4\}\{(3,5,6,1,7,2,4,0), 5,0\}\{(5,0,7,4,2,3,1,6), 3,1\}\{(6,7,4,5,0,2,1,3), 6,2\}\{(4,6,1,7,3,0,5,2), 4,6\}\{(2,4,5,6,3,7,0,1), 2,3\}\{(7,6,0,2,1,4,3,5), 1,7\} 1.19583$ $46\{(1,2,3,4,5,6,7,0), 7,6\}\{(3,0,5,7,1,4,2,6), 2,3\}\{(5,4,6,1,2,7,0,3), 3,2\}\{(6,7,1,2,3,0,4,5), 1,4\}\{(7,3,5,6,0,1,4,2), 6,5\}\{(2,5,7,0,6,3,1,4), 4,0\}\{(4,6,0,5,7,2,3,1), 5,1\} 1.19603$ $47\{(1,2,3,4,5,6,7,0), 7,7\}\{(3,7,4,5,6,1,0,2), 5,4\}\{(7,6,0,1,2,4,5,3), 4,3\}\{(6,3,1,7,2,0,4,5), 3,2\}\{(2,5,6,0,3,7,1,4), 2,0\}\{(4,0,5,2,7,1,3,6), 6,1\}\{(5,4,7,6,0,3,2,1), 1,5\} 1.19603$ $48\{(6,0,7,1,3,2,5,4), 4,1\}\{(3,5,4,6,1,7,2,0), 6,0\}\{(4,3,6,5,7,0,1,2), 3,6\}\{(5,4,6,7,2,3,0,1), 2,3\}\{(1,2,3,4,5,6,7,0), 7,5\}\{(7,6,5,2,0,1,4,3), 5,4\}\{(2,7,1,0,6,4,3,5), 1,2\} 1.19623$

Reference

[Plank 08] James S. Plank, ``The RAID-6 Liberation Codes," FAST-2008: 6th Usenix Conference on File and Storage Technologies, San Jose, CA, February, 2008.

