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The TOMS paper ” A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky
Algorithm” by Andersen, Gunnels, Gustavson, Reid, and Wasniewski, used a level 3 Cholesky
kernel subroutine instead of level 2 LAPACK routine _POTF2. We discuss the merits of this
approach and show that its performance over _.POTRF is considerably improved on a variety of
common platforms when _POTRF is solely restricted to calling _POTF2.
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1. INTRODUCTION

We consider the Cholesky factorization of a symmetric positive definite matrix
where the data has been stored using Block Packed Hybrid Format (BPHF) [An-
dersen et al. 2005; Gustavson et al. 2007]. We will examine the case where the
matrix A is factored into LLT, where L is a lower triangular matrix. See also
papers [Herrero and Navarro 2006; Herrero 2007]. We will show that the imple-
mentation of the LAPACK factorization routine POTRF can be structured to use
matrix-matrix operations that take advantage of Level-3 BLAS kernels and thereby
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la. Lower Packed Format 1b. Lower Blocked Hybrid Format
0 0
1 10 1 2
2 11 19 3 4 5
312 20 |27 6 7 8|27
4 13 21|28 34 9 10 11|28 29
5 14 22|29 35 40 12 13 14 |30 31 32
6 15 23| 30 36 41 |45 15 16 17 | 33 34 35 |45
7 16 24| 31 37 42 |46 49 18 19 20 | 36 37 38 |46 47
8 17 25| 32 38 43 |47 50 52 21 22 23|39 40 41 |48 49 50
9 18 26 | 33 39 44 | 48 51 53 | 54 24 25 26 | 42 43 44 | 51 52 53 | 54

Fig. 1. Lower Packed and Blocked Hybrid Formats

achieve higher performance [Gustavson 2003]. This implementation focuses on the
LAPACK _POTF?2 routine, which is based on using Level-2 BLAS operations. A
form of register blocking is used for the Level-3 kernel routines of this paper [Gus-
tavson et al. 2007].

The performance numbers presented in Section 3 bear out that the Level-3 based
factorization kernels for Cholesky improves performance over the traditional Level-2
routines used by LAPACK. Put another way the use of square block (SB) format
allows one to utilize Level-3 BLAS kernels. Hence, one can rewrite the LAPACK
implementation which uses a standard row column format with Level-3 BLAS to
using SB format with Level-3 BLAS kernels. This paper suggests a change of
direction for LAPACK software in the multi-core era of computing. This is a main
point of our paper.

Another main point of our paper is that the Level-3 kernels used here allows
one the increase the block size nb used by a traditional LAPACK routine such as
_POTRF. Our performance numbers show that performance starts degrading at
block size 64 for POTF2. However performance continues to increase past block
size 64 to 72 and 100 for our new Level-3 kernel routines. Such an increase in nb
will have a good effect on the overall performance of POTRF as the Level-3 BLAS
_TRSM, SYRK and _GEMM will perform better for two reasons. The first is that
Level-3 BLAS perform better when the k& dimension of .GEMM is larger. Here
k = nb. The second reason is that Level-3 BLAS are called less frequently by a
ratio of increased block size of the Level-3 kernel over the block size used for Level-2
kernel _POTF2. Calling Level-3 BLAS less frequently means less data copying will
be done. It is beyond the scope of this short paper to conclusively demonstrate this
assertion. However, an experimental verification of the assertion are the results
given here and in [Andersen et al. 2005]. The recent paper by [Whaley 2008] is
saying the same thing; he gives both experimental and qualitative results.

1.1 Introduction to BPHF

In designing the Level-3 BLAS, [Dongarra et al. 1990] the authors did not specify
packed storage schemes for symmetric, Hermitian or triangular matrices. The rea-
son given at the time was ‘such storage schemes do not seem to lend themselves
to partitioning into blocks ... Also packed storage is required much less with large
memory machines available today’. The BPHF algorithm demonstrates that pack-
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doj=1,1 'l = [n/nb]
dok=1,j—-1
Ajj = Ajj — Lix LT, ! Call of Level-3 BLAS _SYRK
doi=j+1,1
Aij = Ay — L,-ijTk ! Call of Level-3 BLAS _GEMM
end do
end do
Lj; L], = Ajj ! Call of LAPACK subroutine _POTRF
doi=j+1,1
L;; LJT]. = A;j ! Call of Level-3 BLAS _TRSM
end do
end do

Fig. 2. LLT Implementation for Lower Blocked Hybrid Format. The BLAS calls take the forms

_SYRK(’U’,’T?,...), GEMM(’T’,’N’,...), POTRF(’U’,...), and _TRSM(’L’,’U?,’T’,...).
doi=1,1 'l =[n/nb]
Ay = Agi — Z o 1(U,mUk, ! Call of Level-3 BLAS _SYRK
ULU; = Ay ! Call of LAPACK subroutine _POTF2
Aij = Az — (U Uk]) Vj >4 ! Single call of Level-3 BLAS _GEMM
Uru;; = Aij,vj > i ! Single call of Level-3 BLAS _TRSM
end do

Fig. 3. LAPACK Cholesky Implementation for Upper Full Format. The BLAS calls take the
forms _SYRK(’U’,’T?,...), POTF2(°U’,...), GEMM(’T*,’N’,...), and _TRSM(’L’,’U’,’T’,...).

ing is possible without loss of performance. While memories continue to get larger,
the problems that are solved get larger too and there will always be an advantage
in saving storage.

We pack the matrix by using a blocked hybrid format in which each block is
held contiguously in memory [Gustavson 2003; Andersen et al. 2005]. This usually
avoids the data copies, see [Gustavson et al. 2007], that are inevitable when Level-3
BLAS are applied to matrices held conventionally in rectangular arrays. Note, too,
that many data copies may be needed for the same submatrix in the course of a
Cholesky factorization [Gustavson 1997; Gustavson 2003; Gustavson et al. 2007].

We show an example of standard lower packed format in Fig. la, with blocks
of size 3 superimposed. Fig. 1 shows where each matrix element is stored within
the array that holds it. It is apparent that the blocks of Fig. la are not suitable
for passing to the BLAS since the stride between elements of a row is not uniform.
We therefore rearrange each trapezoidal block column so that it is stored by blocks
with each block in row-major order, as illustrated in Fig. 1b. If the matrix order is
n and the block size is nb, this rearrangement may be performed efficiently in place
with the aid of a buffer of size n x nb. Unless the order is an integer multiple of
the block size, the final trapezoidal block column will have a diagonal block whose
order is less than nb. We further assume that the block size is chosen so that a
block fits comfortably in a Level-1 or Level-2 cache.

We factorize the matrix A as defined in Fig. 1b using the algorithm defined in
Fig. 2. This is standard blocked based algorithm similar to the LAPACK algorithm
and it is also described more fully in [Andersen et al. 2005; Gustavson 2003].
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doi=1,1 1= [n/kb]
Agi = Ay — 3 (UL UL) ! Kernel like Level-3 BLAS _SYRK
UZU; = Ay ! Cholesky factorization of block
doj=i+1,n
Aij = Aij — 37 (UEU;) ! Kernel like Level-3 BLAS _GEMM
ULU; = Ay ! Kernel like Level-3 BLAS _TRSM
end do
end do

Fig. 4. Cholesky Kernel Implementation for Upper Full Format.

DOk=1, ii - 1
aki = a(k,ii)
akj = a(k,jj)
t11 = t11 - aki*akj

akil = a(k,ii+1)
t21 = t21 - akilxakj
akjl = a(k,jj+1)

£12 = £12 - aki*akji
£22 = £22 - akilxakjl
END DO

Fig. 5. Code corresponding to _GEMM.

2. THE KERNEL ROUTINES

Each of the computation lines in Fig. 2 can be implemented by a single call to a
Level-3 BLAS [Dongarra et al. 1990] or to LAPACK [Anderson et al. 1999] subrou-
tine _POTRF. However, we found it better to make a direct call to an equivalent
‘kernel’ routine that is fast because it has been specially written for matrices that
are held in contiguous memory and are of a form and size that permits efficient use
of a Level-1 or a Level-2 cache. Please compare Fig. 3 and 4; see also [Andersen
et al. 2005; Gustavson 2003].

Another possibility is to use a block algorithm with a very small block size kb,
designed to fit in registers. To avoid procedure call overheads for a very small
computations, we replace all calls to BLAS by in-line code. See [Gunnels et al.
2007] for related remarks on this point. This means that it is not advantageous to
perform a whole block row of _GEMM updates at once followed by a whole block row
of _TRSM updates at once (see last two lines of the loop in Fig. 3). This leads to the
algorithm summarized in Fig. 4.

We have found the tiny block size kb = 2 to be suitable. The key loop is the one
that corresponds to _GEMM. For this, the code of Fig. 5 is suitable. The block A; ;
is held in the four variables, t11, t12, t21, and t22. This alerts most compilers to
place and hold our small register block into registers. We reference the underlying
array directly, with A;; held from a(ii,jj). It may be seen that a total of 8
local variables are involved, which hopefully the compiler will arrange to be held in
registers. The loop involves 4 memory accesses and 8 floating-point operations.

We also accumulate a block of size 1x4 in the inner _GEMM loop of the unblocked
code. Each execution of the loop involves the same number of floating-point opera-
tions (8) as for the 2x2 case, but requires 5 reals to be loaded from cache instead
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of 4. We were not surprised to find that it ran slower on our platforms except for
the AMD Dual Core Opteron computer. However, on Intel, ATLAS [Whaley et al.
2000] uses a 1x4 kernel with extreme unrolling with good effect. Thus we were
somewhat surprised that 1x4 unrolling was not better on our Intel platforms.

On most of our processors, faster execution is possible by having an inner _GEMM
loop that updates A; ; and A; j41. The variables aki and akil need only be loaded
once, so we now have 6 memory accesses and 16 floating-point operations and need
14 local variables, hopefully in registers.

We found that this algorithm gave very good performance (see next section).
Our implementation of this kernel is available in the TOMS Algorithm paper [Gus-
tavson et al. 2007], but alternatives should be considered. Further, every computer
hardware vendor is interested in having good and well-tuned software libraries.

We recommend that all the alternatives of the BPHF paper [Andersen et al. 2005]
be compared. Our kernel routine is available if the user is not able to perform such a
comparison procedure or has no time for it. Finally, note that LAPACK [Anderson
et al. 1999], AtlasBLAS [Whaley et al. 2000], GotoBLAS [Goto and van de Geijn
2008a; Goto and van de Geijn 2008b], and the development of computer vendor
software are ongoing activities. The implementation that is the slowest today might
be the fastest tomorrow.

3. PERFORMANCE

We consider matrix orders of 40, 64, 72, and 100 since these orders will typically
allow the computation to fit comfortably in Level-1 or Level-2 caches.

We do our calculations in DOUBLE PRECISION. The DOUBLE PRECISION
names of the subroutines used in this section are DPOTRF, DPOTF2, DTRSM,
DSYRK, and DGEMM.

Table 1 contain comparison numbers in Mflop/s. There are results for six com-
puters inside the table: SUN UltraSPARC IV+, SGI - Intel Itanium2, IBM Power6,
Intel Xeon, AMD Dual Core Opteron, and Intel Xeon Quad Core.

The table has thirteen columns. The first column shows the matrix order. The
second column contains results for the vendor Cholesky routine DPOTRF and the
third column has results for the Recursive Algorithm [Andersen et al. 2001]. The
columns from four to thirteen contain results when the kernel replaces DPOTF2 and
is called directly from inside of the routine DPOTRF and results of the Cholesky
routine using one of the kernel routines directly to replace DPOTRF. There are
five kernel routines:

(1) The LAPACK routine DPOTF2: The fourth and fifth columns have results of
using routine DPOTRF and routine DPOTF2 directly.

(2) The 2x2 blocking kernel routine specialized for the operation FMA (axb + ¢)
using seven floating point (fp) registers (this 2x2 blocking kernel routine re-
places routine DPOTF2): The performance results are stored in the sixth and
seventh columns respectively.

(3) The 1x4 blocking kernel routine is optimized for the case mod(n,4) = 0 where
n is the matrix order. It uses eight fp registers. This 1x4 blocking kernel
routine replaces routine DPOTF2: these results are stored in the eighth and
ninth columns respectively.
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Mat Ven Recur dpotf2 2x2 w. fma 1x4 2x4 2x2
ord dor sive 7 flops 8 flops 16 flops 6 flops
lap lap lap ker | lap ker | lap ker lap ker lap ker
1 2 3 4 5 6 7 8 9 10 11 12 13
Newton: SUN UltraSPARC IV+, 1800 MHz, dual-core, Sunperf BLAS
40 759 547 490 437 1239 1257 1004 1012 1515 1518 1299 1317
64 1101 1086 738 739 1563 1562 1291 1295 1940 1952 1646 1650
72 1183 978 959 826 1509 1626 1330 1364 1764 2047 1582 1733
100 1264 1317 1228 1094 1610 1838 1505 1541 1729 2291 1641 1954
Freke: SGI-Intel Itanium2, 1.5 GHz/6, SGI BLAS
40 396 652 399 408 1493 1612 1613 1769 2045 2298 1511 1629
64 623 1206 624 631 2044 2097 1974 2027 2723 2824 2065 2116
72 800 1367 797 684 2258 2303 2595 2877 2945 3424 2266 2323
100 1341 1906 1317 840 2790 2648 2985 3491 3238 4051 2796 2668
Huge: IBM Power6, 4.7 GHz, DualCore, ESSL BLAS
40 5716 1796 1240 1189 3620 3577 2914 4002 4377 5903 3508 4743
64 8021 3482 1265 1293 5905 6019 5426 5493 7515 7700 6011 5907
72 8289 3866 1622 1578 5545 5178 5205 4601 6416 6503 5577 4841
100 9371 5423 3006 2207 7018 5938 6699 6639 7632 8760 7050 6487
Battle: 2xIntel Xeon, CPU @ 1.6 GHz, Atlas BLAS
40 333 355 455 461 818 840 781 799 806 815 824 846
64 489 483 614 620 1015 1022 996 1005 1003 1002 1071 1077
72 616 627 648 700 914 1100 898 1105 903 1090 936 1163
100 883 904 883 801 1093 1191 1080 1248 1081 1210 1110 1284
Nala: 2x AMD Dual Core Opteron 265 @Q 1.8 GHz, Atlas BLAS
40 350 370 409 397 731 696 812 784 773 741 783 736
64 552 539 552 544 925 909 1075 1064 968 959 944 987
72 568 570 601 568 871 909 966 1065 901 964 926 992
100 710 686 759 651 942 1037 972 1231 949 1093 950 1114
Zook: 4xIntel Xeon Quad Core E7340 @ 2.4 GHz, Atlas BLAS
40 497 515 842 844 1380 1451 1279 1294 1487 1502 1416 1412
64 713 710 1143 1146 1675 1674 1565 1565 1837 1841 1674 1674
72 863 874 1203 1402 1522 1996 1492 1877 1633 2195 1527 1996
100 1232 1234 1327 1696 1533 2294 1503 2160 1563 2625 1530 2285
1 2 3 [ 4 5 | 6 7 18 9 [10 11 [J12 13
Table 1. Performance in Mflop/s of the Kernel Cholesky Algorithm. Comparison between dif-

ferent computers and different versions of subroutines.

(4) The 2x4 blocking kernel routine uses fourteen fp registers. This 2x4 blocking
kernel routine replaces routine DPOTF2: these results are stored in the tenth
and eleventh columns respectively.

(5) The 2x2, see Fig. 5, blocking kernel routine. It is not specialized for the FMA
operation and uses six fp registers. This 2x2 blocking kernel routine replaces
DPOTF2: these performance results are stored in the twelfth and thirteenth
columns respectively.

It can be seen that the kernel code with submatrix blocks of size 2x4, see column
eleven, is remarkably successful for the Sun (Newton), SGI (Freke), IBM (Huge)
and Quad Core Xeon (Zook) computers. For all these four platforms, it significantly
outperforms the compiled LAPACK code and the recursive algorithm. It outper-
forms the vendor’s optimized codes except on the IBM (Huge) platform. The IBM
vendor’s optimized codes except n = 40 are superior to it on this IBM platform.
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The 2x2 kernel in column thirteen, not prepared for the FMA operation, is superior
on the Intel Xeon (Battle) computer. The 1x4 kernel in column nine is superior on
the Dual Core AMD (Nala) platform. All the superior results are colored in red.

These performance numbers reveal a significant innovation about the use of
Level-3 kernels over use of Level-2 kernels. We demonstrate why in the the next
two paragraphs.

Note that the results of columns ten and eleven are about the same for n equal
40 and 64 where the kernel routines performs slightly better. These two results
show the cost of calling the kernel routine inside of DPOTRF versus just call-
ing the kernel routine directly. Since LAPACK routine ILAENV sets nb = 64,
DPOTRF, which calls ILAENV, sets nb = 64 and then just calls the kernel routine
as n < nb. However, for n = 72 and n = 100 DPOTRF via calling ILAENV still
sets nb = 64 and then DPOTRF does a Level-3 blocked computation. For example,
take nb = 100. With nb = 64 DPOTRF does a sub blocking of nb sizes equal to 64
and 36. Thus, DPOTREF calls Factor 64, DTRSM 64, 36, DSYRK 36, 64, Factor
36. Here Factor is the kernel routine call. On the other hand just calling the kernel
routine directly results in the single computation of Factor 100. In columns ten and
eleven performance is always increasing over doing the Level-3 blocked computa-
tion of DPOTRF. Loosely speaking this means the kernel routine is out performing
DTRSM and DSYRK.

Now, take columns four and five. For n = 40 and n = 64 the results are again
about equal for the reasons cited above. For n = 72 and n = 100 the results favor
DPOTREF with Level-3 blocking except for the Zook platform. The opposite result
is true for most of the columns six to thirteen where Level-3 kernels are being used.

An essential conclusion is that faster kernels really help to increase performance.
See our Introduction where we argue that larger nb values increases the performance
for DTRSM, DSYRK and DGEMM in two ways. Also, these results emphasize that
LAPACK users should use ILAENYV to set nb based on the speeds of Factorization,
DTRSM, DSYRK and DGEMM. This information is part of the LAPACK User’s
guide but many users do not do this finer tuning.

For further details please see the sections 6 and 7.1 of [Andersen et al. 2005]. The
code for the 1x4 kernel subroutine is available from the companion paper [Gus-
tavson et al. 2007], but alternatives should be considered. The code for DPOTF2
is available from the LAPACK package [Anderson et al. 1999].

4. SUMMARY AND CONCLUSIONS

The purpose of our paper is to promote the new Block Packed Data Format
storage or variants thereof. These variants of BPHF algorithm use slightly more
than nx(n+1)/2 matrix elements of computer memory and always work not slower
than the full format data storage algorithms. The full format algorithms require
storage of (n — 1)xn/2 additional matrix elements in the computer memory but
never reference them.
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