
Optimal Real Number Codes
for Fault Tolerant Matrix Operations

Zizhong Chen
Department of Mathematical and Computer Sciences

Colorado School of Mines, Golden, CO 80401.
zchen@mines.edu

ABSTRACT
Today s long running high performance computing applica-
tions typically tolerate fail-stop failures by checkpointing.
However, applications such as dense linear algebra com-
putations often modify a large mount of memory between
checkpoints and checkpointing usually introduces consider-
able overhead when the number of processors used for com-
putation is large. It has been demonstrated in [13] that
single fail-stop failure in ScaLAPACK matrix multiplica-
tion can be tolerated without checkpointing at a decreasing
overhead rate of 1/

√
p, where p is the number of proces-

sors used for computation. Multiple simultaneous processor
failures can be tolerated without checkpointing by encod-
ing matrices using a real-number erasure correction code.
However, the floating-point representation of a real number
in today’s high performance computers introduces round off
errors which can be enlarged and cause the loss of preci-
sion of possibly all digits during recovery when the num-
ber of processors in the system is large. In this paper, we
present a class of Reed-Solomon style real-number erasure
correcting codes which is numerically optimal during recov-
ery. We analytically construct the numerically best erasure
correcting codes for 2 erasures and develop an approxima-
tion method to computationally construct numerically good
codes for 3 or more erasures. We prove that it is impossible
even for the numerically best minimum redundancy erasure
correcting codes to correct all erasure patterns when the to-
tal number of processors is large. We give the conditions
that guarantee to correct all two erasures. Experimental re-
sults demonstrate that the proposed codes are numerically
much more stable than existing codes.

1. INTRODUCTION
While the peak performance of the contemporary high

performance computing (HPC) systems continues to grow
exponentially, it is getting more and more difficult for sci-
entific applications to achieve high performance due to both
the complex architecture of and the increasing failures in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

these systems. Schroeder and Gibson from Carnegie Mellon
University (CMU) recently studied the system logs of 22
HPC systems in Los Alamos National Laboratory (LANL)
and found that the mean-time-to-interrupt (MTTI) for these
HPC systems varies from about half a month to less than
half a day [44, 45, 46]. In order to use these systems effi-
ciently and avoid restarting computations from beginning af-
ter failures, applications have to be able to tolerate failures.
Today’s long running scientific applications typically toler-
ate failures by checkpointing [6, 14, 37, 38, 41, 47]. Check-
pointing can usually be used in different type of systems and
to a wide range of applications. However, when applications
modify a large mount of memory between two consecutive
checkpoints, checkpointing often introduces a considerable
overhead [30, 36].

Matrix operations (such as matrix multiplication, solv-
ing system of linear equations, and finding eigenvalues and
eigenvectors, etc) are fundamental operations in science and
engineering. Some important linear algebra operations such
as Gaussian elimination have been proved to be able to
scale to more than 100,000 processors and achieve more
than one petaflops on today’s HPC systems [1]. However,
today’s widely used dense linear algebra software such as
ScaLAPACK [7] and PLAPACK [26] usually modifies a large
mount of memory between checkpoints, therefore, check-
pointing techniques often introduce a considerable overhead
into the computation. The high frequency of failures and
the large number of processors in the next generation HPC
systems will further exacerbate the problem.

In [13], a highly scalable checkpoint-free techniques was
proposed to tolerate single fail-stop failure in high perfor-
mance matrix operations on large scale HPC systems. It
was also demonstrated that the overhead rate of this scheme
decreases with a speed of 1/

√
p when the number of pro-

cessors p increases. However, in order to tolerate multiple
simultaneous process failures with minimum redundancy, a
real number version Reed-Solomon style erasure correcting
codes have to be used to encode the input matrices.

In existing Reed-Solomon style real number erasure cor-
recting codes, the generator matrices mainly include: Van-
dermonde matrix (Vander) [28], Vandermonde-like matrix
for the Chebyshev polynomials (Chebvand) [8], Cauchy ma-
trix (Cauchy), Discrete Cosine Transform matrix (DCT),
Discrete Fourier Transform matrix (DFT) [22, 23], Gaus-
sian random matrix [11, 12], and Grassmannian frame ma-
trix [43]. If there is no round-off errors in the representation
of a real number, these generator matrices can all be used as
the encoding matrices of the proposed checkpoint-free tech-

niques in [13].
However, in today’s computer arithmetic where no com-

putation is exact due to round-off errors, it is well known [27]
that, in solving a linear system of equations, a condition
number of 10k for the coefficient matrix leads to a loss of
accuracy of about k decimal digits in the solution. The coef-
ficient matrix of the system of equations to be solved during
recovery may be any square sub-matrix (including minor) of
the generator matrix. Therefore, in order to get a numer-
ically good recovery for any erasure patterns, any square
sub-matrix (including minor) of the generator matrix has to
be well-conditioned.

But the generator matrices from existing Reed-Solomon
style real number erasure correcting codes mentioned above
all contain many ill-conditioned sub-matrices when the sizes
of these generator matrices are large. Therefore, in these real
number codes, when certain erasure patterns occur, an ill-
conditioned linear system has to be solved to reconstruct an
approximation of the original information, which can cause
the loss of precision of possibly all digits in the recovered
numbers. To the best of our knowledge, it is still open
whether there exists any arbitrarily large generator matrix
that can correct all erasures or not. It is also an open prob-
lem how to find the codes with optimal numerically stability.

In this paper, we present a class of numerically optimal
Reed-Solomon style real-number erasure correcting codes.
We construct the numerically optimal erasure correcting
codes for two erasures analytically and develop an approx-
imation method to approximate the numerically optimal
codes for three or more erasures computationally. We ex-
plore the property of generator matrices that are able to
correct all erasure patterns. We prove no minimum redun-
dancy codes can correct all erasure patterns when the size of
processors is large and the number of erasures is more than
one. We give an upper bound on the number of processors
so that all two erasure patterns can be corrected. Experi-
mental results demonstrate that our codes are numerically
much more stable than existing codes.

Although we only focus on the correcting of erasures in
this paper, it is also possible to use our codes (generator
matrices) to correct errors through the l1 minimization tech-
niques proposed in [9, 19]. While this paper develops the
codes for fault tolerant matrix operations, the codes can also
be used in many other fields such as compressive sensing [20]
and fault tolerant combinatorial and dynamic systems [28].

The rest of the paper is organized as following. Section 2
introduces techniques for fault tolerant matrix operations.
In Section 3, we explore the numerical properties of existing
real number codes and present a class of real number codes
that have optimal numerical stability. In Section 4, we an-
alytically construct the numerically best erasure correcting
codes for two erasures. Section 5 develops an approxima-
tion method to approximate the numerically optimal codes
for three or more erasures computationally. In Section 6, we
compare various real number codes experimentally. Section
7 concludes the paper and discusses the future work.

2. FAULT TOLERANT MATRIX OPERA-
TIONS

Matrix operations are fundamental for science and engi-
neering. Incorporating fault tolerance into matrix opera-
tions has been extensively studied for many years by many

researchers [3, 4, 5, 8, 11, 12, 13, 14, 25, 29, 30, 32, 33, 36,
39, 40, 48].

In [29], the algorithm based fault tolerance (ABFT) is pro-
posed to detect, locate, and correct miscalculations. The
idea is to encode the original matrices using real number
codes and then re-design algorithms to operate on the en-
coded matrices. In [29], Huang and Abraham proved that
the encoding relationship in the input encoded matrices is
preserved at the end of the computation no matter
which algorithm is used to perform the computation.
Therefore, processor miscalculations can be detected, lo-
cated, and corrected at the end of the computation. ABFT
researches have mostly focused on detecting, locating, and
correcting miscalculations or data corruption where failed
processors are often assumed to be able to continue their
work but produce incorrect calculations or corrupted data.
The error detection are often performed at the end of the
computation by checking whether the final computation re-
sults satisfy the encoding relationship or not.

However, in a distributed environment, if a failed proces-
sor stops working, then we need to be able to detect, locate,
and recover the data in the middle of the computation.
In order to be able to recover in the middle of the compu-
tation, a global consistent state of the application is often
required. Checkpointing and message logging are typical ap-
proaches to maintain or construct such a global consistent
state. In [14, 15, 16, 17, 30], real number erasure correcting
codes are used to encode the checkpoint data to maintain a
global consistent state with redundancy periodically.

Recently, in [13], it has been demonstrated that fault tol-
erance (for fail-stop failures) for large scale parallel matrix
operations on today’s large HPC systems can be achieved
without any checkpointing (or message logging) by encoding
the original matrices into larger weighted checksum matri-
ces using real-number erasure correcting codes. The scheme
is highly scalable with low overhead. The overhead rate de-
creases with a speed of 1/

√
p when the number of processors

p increases.
Traditional erasure correcting codes based on finite fields

do NOT work [11] for the techniques in [29, 13]. Real num-
ber codes have to be used to encode the input matrices.
In order to be able to recover from multiple simultaneous
failures of any patterns, the encoding matrix have to be
chosen very carefully. This encoding matrix is often called
the generator matrix of a linear code in coding theory. The
goal of this paper is to find an appropriate generator matrix
to encode the input matrices so that multiple simultaneous
failures in large scale parallel matrix operations can be re-
covered without any checkpointing (or message logging).

3. REAL-NUMBER CODES FOR FAULT TOL-
ERANT MATRIX OPERATIONS

The research on real number codes can be dated back
to [34]. Recently, codes based on random matrices [10, 11,
12] and Grassmannian frames [24, 43] have been proposed to
improve the numerically stability of the recovery. However,
it is still an open problem what is the numerically best real
number codes. In this section, we discuss some popular real
number codes and propose a class of new real number codes
which have optimal numerical stability.

Let x = (x1, x2, ..., xn)T ∈ Rn denote the original infor-
mation, and Gm×n denote a m by n real number matrix.

The redundant information c = (c1, c2, ..., cm)T ∈ Rm is
calculated by

g11x1 + . . .+ g1nxn = c1
...

gm1x1 + . . .+ gmnxn = cm.

(1)

Gm×n is often called the generator matrix of the linear
code. We also call Gm×n the encoding matrix for fault tol-
erant matrix operations. In a fault tolerant matrix opera-
tions, the original information xi is the local matrix in the
local memory of a processor. Without loss of generality and
for the simplicity of the discussion, in this paper, we assume
xi is just a real number.

The relationship in (1) actually establishes m equalities
between the original data x and the redundant information
c. If k (where k ≤ m) elements of x is erased, then the
m equalities become a system of linear equations with k
unknowns. When the generator Gm×n is appropriately cho-
sen, the lost k elements in x can be able to be reconstructed
through solving this system of linear equations with k un-
knowns.

The real number coding theory problem we want to solve
is: how to choose the generator matrix Gm×n in (1), such
that, after any no more than m erasures in x, a good approx-
imation of all erased elements in x can still be reconstructed
by solving the system of linear equations derived from (1)?

3.1 Real-Number Codes Derived from Finite
Field Codes

In [35], Nair and Abraham proved that, for any finite
field code, there is a corresponding code in real number
field. In the existing codes derived from finite fields, the
generator matrices mainly include: Vandermonde matrix
(Vander) [28], Vandermonde-like matrix for the Chebyshev
polynomials (Chebvand) [8] Cauchy matrix (Cauchy), Dis-
crete Cosine Transform matrix (DCT), and Discrete Fourier
Transform matrix (DFT) [22, 23]. These generator ma-
trices all contain many ill-conditioned sub-matrices when
the size the generator matrices become large. Therefore,
in these codes, when certain erasure patterns occur, an ill-
conditioned linear system of equations has to be solved to
reconstruct an approximation of the original information,
which can cause the loss of precision of possibly all digits in
the recovered numbers.

3.2 Real-Number Codes Based on Random Ma-
trices

In [10, 11, 12], Gaussian and uniform random matrices
have been proposed as the encoding (generator) matrices. It
is well know that Gaussian random matrices are well condi-
tioned [21]. Note that any sub-matrix of a Gaussian random
matrix is still a Gaussian random matrix, therefore, Gaus-
sian random matrix can guarantee the recovery of the lost
data with high probability.

3.3 Real-Number Codes Based on Grassman-
nian Frames

While Gaussian random codes is good with high proba-
bility, it is nondeterministic. It has been shown in [31] that
Gaussian random distribution inRn is equivalent to uniform
random distribution in Sn−1. Uniformly distributed points
on hyper spheres tend to maximize the minimum sphere dis-

tance between points. If the sphere distance of two points
is zero, the corresponding two columns of the matrix are
the same. The sub-matrices containing these two columns
are singular. When two vectors are the same, the correla-
tion of the two vectors is 1. The Grassmannian frame idea
minimize the maximum correlations between columns of the
generator matrices [24, 43].

A sequence of vectors {gk}nk=1 ∈ Rm is called a Grass-
mannian frame if it is the solution to

min
{fk}nk=1∈R

m,<fk,fk>=1

{
max
i6=j
{< fi, fj >}

}
(2)

The Grassmannian frame code is defined as the code whose
generator matrix is Gm×n = (g1, g2, . . . , gn).

Minimizing the maximum correlations is equivalent to max-
imizing the minimum angle between columns of the gener-
ator matrices. The problem of maximizing the minimum
angle between vectors on a hyper sphere is called the Grass-
mannian (line) packing problem [18]. It is hard to find opti-
mal arrangements of points even on a 2-sphere (i.e. m = 3).
Steve Smale has listed the problem of ”distribution of points
on the 2-sphere” as the problem #7 of a total of 18 unsolved
mathematics problems in twenty-first century [42]. There
are no general analytical solutions for this problem except
for some special combinations of m and n [2].

3.4 Real-Number Codes with Optimal Numer-
ical Stability

The Grassmannian frame code minimizes the maximum
correlations between columns of the generator matrices, how-
ever, the accuracy during recovery is directly related only to
the condition number of the equations to be solved and con-
dition number is a property that associated with more than
two columns of a matrix. Even if the maximum correla-
tions are minimized, it is still possible that the generator
matrix contains a singular sub-matrix. Therefore, in order
to get better codes, we decide to work on minimizing the
maximum condition numbers of sub-matrices of a generator
matrix directly.

The recovery process involves solving a system of linear
equations with one of the sub-matrices from the generator
matrix G as the coefficient matrix. The coefficient matrix
can be any sub-matrix including minor of G. It is well know
that in order to get a numerically good solution, the coeffi-
cient matrix have to be well conditioned. Therefore, in order
to be able recovery from all erasure patterns, the generator
matrix G have to satisfy any square sub matrix including
minor of G have to be well conditioned.

If the worst conditioned sub-matrix of G is well condi-
tioned, then all the sub-matrix of G will be well conditioned.
Therefore, we look for generator matrices G for which the
condition number of the worst conditioned sub-matrix is
minimized.

There are finite number of sub-matrices in G, therefore,
we can rank these sub-matrices. Let Gi denote the ith sub-
matrix of G, then the matrix G∗ that minimize the condition
number of the worst conditioned sub-matrix of G is the so-
lution of the following minimax problem.

f(m,n) = min
Gm×n∈Rm×n

{
max
i
{κ(Gi)}

}
(3)

The code G∗ obtained from the solution of the above min-
imax problem (3) is numerically best in the sense that the

generator matrix obtained has the condition number of the
worst conditioned sub-matrix minimized. f(m,n) is the con-
dition number of the worst conditioned sub-matrix of the
optimal G∗ obtained. it is well known [27] that, in solving
a linear system of equations, a condition number of 10k for
the coefficient matrix leads to a loss of accuracy of about
k decimal digits in the solution. Therefore, f(m,n) an be
used to estimate the worst case recovery accuracy. For ex-
ample in IEEE standard 754 floating point numbers, there
are 16 digits of accuracy. Then the worst case recovery can
guarantee an accuracy of 16− log10 f(m,n) digits.

The minimax problem specified in (3) is also difficult even
if G is restricted on matrices with unit norm columns. Ac-
tually, when G is restricted on matrices with unit norm
columns, the problem also becomes finding optimal arrange-
ments of points on hyper-sphere. As we discussed before, it
is hard to find optimal arrangements of points even on a 2-
sphere. Steve Smale has listed this problem of ”distribution
of points on the 2-sphere” as the problem #7 of a total of 18
unsolved mathematics problems in twenty-first century [42].

4. OPTIMAL REAL-NUMBER CODES FOR
TWO ERASURES

In what follows we will solve problem (3) for the special
case when m = 2. The generator matrices we obtain is the
generator matrices for numerically best real-number codes
for two erasures. f(2, n) we obtain is the condition number
of the worst conditioned sub-matrix of the numerically best
real-number codes for two erasures.

If there are elements with value zero in the generator ma-
trix, there will be singular 1×1 sub-matrices in the generator
matrix. Therefore, when solving (3), we just need to con-
sider generator matrices with none of their elements being
0. Without loss of generality, we assume the elements of G
is non-zero. When m = 2, it is enough to just consider all
the 2× 2 sub-matrices.

For any 2× n matrix G2×n ∈ R2×n, let gj denote the jth

column of G2×n. Let Gij denote the sub-matrix of G2×n
consisting of the column i and j of G2×n.

Theorem 1. Let

f(2, n) = min
G2×n∈R2×n

{
max
i,j
{κ(Gij)}

}
(4)

Then,

f(2, n) =

√
1 + cos π

n

1− cos π
n

(5)

The following generator matrix is one of the solutions for
(4)

G =

(
cos π

2n
cos 3π

2n
. . . (2n−1)π

2n

sin π
2n

cos 3π
2n

. . . (2n−1)π
2n

)
Proof. In a polar coordinate system (Figure 1), the ith

column of G2×n can be represented as

gj =

(
ri cos θi
ri sin θi

)
G2×n can be represented as

G2×n =

(
r1 cos θ1 . . . rn cos θn
r1 sin θ1 . . . rn sin θn

)

Figure 1: Polar coordinate representation for a sub-
matrix

Gi,j can be represented as

Gij =

(
ri cos θ1 rj cos θj
ri sin θ1 rj sin θj

)
Therefore,

GTijGij =

(
r2i rirj cos(θj − θi)

rirj cos(θj − θi) r2j

)
Note thatGTijGij is symmetric and positive definite, there-

fore, all its eigenvalues are positive real numbers. Let λmax(GTijGij)

denote the maximum eigenvalue ofGTijGij and λmin(GTijGij)

denote the minimum eigenvalue of GTijGij , then

λmax(GTijGij) =
r2i + r2j

2
+√

(r2i + r2j)
2

2
+ r2i r

2
j (cos(θj − θi)− 1)

λmin(GTijGij) =
r2i + r2j

2
−√

(r2i + r2j)
2

2
+ r2i r

2
j (cos(θj − θi)− 1)

Therefore,

κ(Gij) =

√
λmax(GTijGij)

λmin(GTijGij)

=

√√√√√√√√√
1 +

√
1 +

4(cos2(θj−θi)−1)

r2
i

r2
j

+
r2

i
r2

j

1−
√

1 +
4(cos2(θj−θi)−1)

r2
i

r2
j

+
r2

i
r2

j

≥

√
1 + | cos(θj − θi)|
1− | cos(θj − θi)|

(6)

The equality in (6) is achieved when ri = rj .
Note that the relationship (6) is for any 2× 2 sub-matrix

of G2×n, therefore, the G2×n that solve problem (4) has to
satisfy r1 = r2 = . . . = rn = r. Note that for any matrix
M , κ(M) = κ(rM), therefore, during the computation of
f(2, n), it is enough to just consider G2×n whose r1 = r2 =
. . . = rn = 1.

When r1 = r2 = . . . = rn = 1, columns of G2×n can be
treated as vectors on a unit circle centered at (0,0). If there

Figure 2: If (θj − θ1) is larger than π, then there is
a vector g = −gj for which the angle (θ − θ1) is less
than π and | cos(θj − θ1)| = | cos(θ − θ1)|.

Figure 3: Adjust columns of G such that δ1 + δ2 +
. . .+ δn = π

2
.

is a vector gj for which the angle (θj−θ1) is larger than π (see
gj in Figure 2), then there is a vector g = −gj for which the
angle (θ−θ1) is less than π and | cos(θj−θ1)| = | cos(θ−θ1)|.
Therefore, it is enough to just consider G2×n for which the
angle between g1 and any other gj is less than π during the
calculation of f(2,m). Without affecting the calculation of
f(2,m), the columns of G2×n can be exchanged so that the
angle between g1 and gj increases as j increases (see Figure
3 for such an arrangement). Let δi denote the angle between
the newly re-arranged gi and gi+1 for i = 1, 2, . . . , n− 1 and
δn denote the angle between gn and −g1, then

δ1 + δ2 + . . .+ δn =
π

2
(7)

The angle between gi and gj is

θj − θi = δi + . . .+ δj−1 (8)

Therefore,

f(2, n) = min
G2×n

{max
ij
{κ(Gij)}}

= min
r1=...=rn=1

{max
ij
{κ(Gij)}}

= min
δ1,...,δn

{
max
i

{√
1 + | cos(θj − θi)|
1− | cos(θj − θi)|

}}

= min
δ1,...,δn

√√√√1 + | cos(min

i
{δi})|

1− | cos(min
i
{δi})|

≥ min

δ1,...,δn

√√√√1 + | cos(

∑n
i δi

n
)|

1− | cos(
∑n

i δi

n
)|

 (9)

=

√
1 + cos(π

n
)

1− cos(π
n

)
(10)

The equality in (9) is achieved when

δ1 = δ2 = . . . = δn =
π

n
. (11)

There is infinite number of optimal 2×n matrices (codes)
with non-zero elements that satisfy (11).

The following is a sample optimal 2 × n matrix (i.e. a
sample numerically best real number erasure correcting code
for 2 erasures)

G =

(
cos π

2n
cos 3π

2n
. . . (2n−1)π

2n

sin π
2n

cos 3π
2n

. . . (2n−1)π
2n

)

Note that when n is large,

f(2, n) =

√
1 + cos π

n

1− cos π
n

≈ 2n

π

Therefore, the condition number of the worst conditioned
sub-matrix of even the numerically best real-number codes
increase to infinite approximately linearly when the number
of original data items (processors) n increases. It is impos-
sible for even the numerically best 2-erasure code to correct
all possible 2-erasures when the number of data items (pro-
cessors) is large. The introduced numerical errors can be
arbitrarily large during recovery when n is arbitrily large.

In order to guarantee to correct ALL possible 2-erasures
in IEEE standard 754 floating point numbers (16 digits of
accuracy) with k digits of accuracy The total number of data
items (processors) n has to satisfy

n ≤ 1016−k × π

2
(12)

If n ≥ 1016 × π
2

, all 16 digits in the IEEE standard 754
floating point numbers will be lost. However, this can be
avoided by divide n processors into sub-groups of the size
s and encode the input matrices within each sub-group. In
order to guarantee to correct all possible 2-erasures with k
digits of accuracy in each sub-group, the number of proces-
sors s in each sub-group has to satisfy

s ≤ 1016−k × π

2

Therefore, with the increase of the redundancy in-
formation, we can guarantee to correct all possible 2-erasures
with k digits of accuracy.

5. CONSTRUCT NUMERICALLY GOOD CODES
BY UNCONSTRAINT OPTIMIZATION

As discussed in Section 3, it is one of Smale’s 18 unsolved
mathematic problems [42] in the twenty-first century to ob-
tain analytical solution for the minimax problem specified
in (3) even if m = 3 and G is restricted on matrices with
unit norm columns. Instead of solving (3) directly, in this
section, we propose to compute approximate solutions of (3)
by solving another unconstrained optimization problem. We
prove that, for m = 2, the solution obtained by solving the
new unconstraint optimization problem is the same as the
solution obtained by solving (3) directly.

Inspired by the m = 2 case, in what follows, we restrict
the choice of the generator matrix G within matrices whose
column gj satisfy ||gj ||2 = gTj gj = 1, where j = 1, 2, . . . , n.
We restrict the choice of sub-matrix within m×m matrices.

Let Gj denotes the jth m ×m sub-matrix of Gm×n (the
order here can be any order one likes). Let λ1 ≥ λ2 ≥ . . . ≥
λm denotes the m eigenvalues of GTj Gj , then

det (GTj Gj) =

m∏
i=1

λi

m∑
i=1

λi = tr(GTj Gj) = m

1 ≤ λ1 < m

Therefore,

det(Gj) =
√

det(GTj Gj)

=

√√√√ m∏
i=1

λi

=

√
λ1.
∏m−1
i=1 λi

κ(GTj Gj)

≤

√√√√√
(
λ1+

∑m−1
i=1 λi

m

)m
κ(GTj Gj)

≤ 2
m
2

κ(Gj)

On the other hand,

det(Gj) =
√

det(GTj Gj)

=

√√√√ m∏
i=1

λi

≥
√
λmm

≥
√√√√ 1(

λ1
λm

)m
=

1

κ(Gj)m

Therefore, for a fixed m, if det(Gj) is small, then κ(Gj)
will be large. if κ(Gj) is large, then det(Gj) will be small.

Note that,

detGj =
√

det(GTj Gj)

=

√√√√ m∏
i=1

λi

≤

√(∑m
i=1 λi

m

)m
= 1

Therefore, in order to make the sub-matrices of G well-
conditioned, we need to maximize the determinants of the
sub-matrices. If any sub-matrix of G has a large condition
number, then

∏m
i=1 det(Gi) will be small. Therefore, we pro-

pose to approximate the numerically best codes by solving
the following optimization problem.

h(m,n) = max
Gm×n∈Rm×n, ||gj ||2=1

{∏
i

det(Gi)

}
(13)

If m dimensional polar coordinate systems are used to rep-
resent the elements of Gm×n, then the constrained optimiza-
tion problem (13) becomes an unconstrained optimization
problem. Standard unconstrained optimization techniques
can then be used to solve this maximization problem.

The solution (matrix G) obtained by solving (13) usually
produce numerically very good real-number codes (see Sec-
tion 5 for experimental comparisons to currently known best
code).

To our surprise, when m = 2, the optimal matrix G ob-
tained by solving (13) is exactly the same as the numerically
best code obtained by solving (4) directly.

Theorem 2. Let

h(2, n) = max
G2×n∈Rm×n, ||gj ||2=1

{∏
i

det(Gi)

}
(14)

Then,

h(2, n) =

n−1∏
j=1

{
sinn−j

jπ

n

}
(15)

The following generator matrix is one of the solutions for (5):

G =

(
cos π

2n
cos 3π

2n
. . . (2n−1)π

2n

sin π
2n

cos 3π
2n

. . . (2n−1)π
2n

)
Proof. When m = 2, if we use the same polar coordi-

nate system as in Section 3.4 and exchange columns of G2×n
similarly to get the arrangement gj in Figure 4, then

G2×n =

(
cos θ1 . . . cos θn
sin θ1 . . . sin θn

)

θj = θ1 +

j−1∑
k=1

δk

The sub-matrix Gij (consisting of the column i and j of
G2×n) can be represented as

Gij =

(
cos θ1 cos θn
sin θ1 sin θn

)

Figure 4: Adjust columns of G such that θj = θ1 +∑j−1
k=1 δk.

Therefore,

det(Gij) = sin(θj − θi)

∏
j>i

det(Gij) =
∏
j>i

sin(θj − θi)

=
∏
j>i

sin(

j−1∑
k=i

δk)

= (sin δ1 . . . sin δn−1)

(sin(δ1 + δ2) . . .× sin(δn−2 + δn−1))

...

sin(δ1 + . . .+ δn−1)

Note that, when xi > 0

n∏
i=1

xi ≤
(∑n

i=1 xi

n

)n
.

When x1 = x2 = . . . = xn = x, the equality is achieved
and

n∏
i=1

xi = xn.

Therefore, when δ1 = δ2 = . . . = δn−1 = δ, for all
j = 0, 1, . . . , n − 2,

∏n−1−j
k=0 sin(

∑j
t=0 δk+t) achieve their

maximum sinn−1−j((j+1)δ) at the same time. Therefore,∏
j>i det(Gij) achieves its maximum∏
j>i

det(Gij) = sinn−1 δ sinn−2 2δ . . . sin1((n− 1)δ)

Rearrange the right hand side of the above formula, we
have ∏

j>i

det(Gij) = (sinn−1 δ × sin1((n− 1)δ)

(sinn−2 2δ × sin2((n− 1)δ)

(sinn−3 3δ × sin3((n− 3)δ)

...

When sin jδ = sin((n− j)δ), all sinn−j jδ× sinj((n− j)δ)

achieve, at the same time, their maximum(
(n− j) sin jδ + j sin((n− j)δ)

n

)n
= (sin jδ)n.

Note that, when δ1 = δ2 = . . . = δn−1 = δ,

π = δ1 + . . .+ δn−1 + δn = (n− 1)δ + δn

Therefore,

δ <
π

n− 1

Therefore, sin jδ = sin((n− j)δ) implies

jδ = π − (n− j)δ

Therefore, implies

δ =
π

n

When δ1 = δ2 = . . . = δn−1 = δ,

δn = π − (δ1 + . . .+ δn−1) =
π

n
.

Therefore, when δ1 = δ2 = . . . = δn = π
n

,
∏
i det(Gi)

achieve its maximum.

6. EXPERIMENTAL RESULTS
The numerical properties of real number codes from Van-

dermonde matrices, Cauchy matrices, DCT matrices, DFT
matrices, and Gaussian random matrices has been fully an-
alyzed and compared in [11]. Experimental results indicate
that real number codes from Gaussian random matrices are
much more stable than the other codes.

In this section, we will compare the numerically best codes
with real number codes from Gaussian random matrices and
Grassmannian frame matrices. When the number of era-
sures m = 2, there are exact analytical expressions for the
generator matrices of both the Grassmannian code and the
numerically best code. The numerically best code are the
same as the Grassmannian code when m = 2. They are
both numerically optimal. However, when the number of
erasures m ≥ 3, the Grassmannian code is not optimal any-
more. Therefore, we focus on the comparison the numeri-
cally stability of these codes for more than two erasures.

When the number of erasures m ≥ 3, most of time, there
are no exact analytical expressions for the generator matri-
ces of all three codes except for very few combinations of m
and n. Therefore, most of time, we have to use approxima-
tion codes in practice.

However, for m = 3 and n = 10, the mathematically
optimal (without any computational approximation) Grass-
manian (packing) codes are given in [18]. It is a hexakis
bi-antiprism. The columns of the corresponding generator
matrix (i.e. the coordinates of the 10 points in three dimen-
sional space) are given in [2]. Therefore, in this paper, we
choose to compare the numerical stability of the three codes
to tolerate three failures in ten processors. Table 2 gives the
corresponding generator matrix of the Grassmannian code.

It is mathematically difficult to obtain analytical expres-
sions for the numerically best codes for three or more era-
sures. Therefore, for numerically best codes, we use the ap-
proximation codes computed by solving the unconstrained

Table 1: A generator matrix from Gaussian random matrices with mean µ = 0 and standard deviation σ = 1.

g1 g1 g1 g1 g1 g1 g1 g1 g1 g1
0.0582 -0.2290 0.1256 -1.1022 -2.6053 -2.0564 -0.0062 -1.0216 -0.9579 -2.0886

-1.6885 1.0350 -1.2976 0.7591 -0.8609 -0.7067 -1.3709 -1.9139 -0.7915 0.5943
-1.2755 -1.5523 -0.8135 0.3585 0.0536 -0.9256 -0.4202 -0.8843 -0.8012 0.8242

Table 2: A generator matrix from Grassmannian frames matrices
g1 g1 g1 g1 g1 g1 g1 g1 g1 g1

1.0000 0.6101 0.6101 0.6101 0.6101 0.6101 0.6101 0 0 0
0 0.7923 0.3961 -0.3961 -0.7923 -0.3961 0.3961 0.8660 -0.8660 0
0 0 0.6861 0.6861 0 -0.6861 -0.6861 0.5000 0.5000 -1.0000

optimization problem in Section 4 to participate the com-
parison. Table 3 gives the corresponding generator matrix
of the numerically best code.

Gaussian random codes are simple to generate using a
pseudo Gaussian random number generator. Table 1 gives
the corresponding generator matrix of the Gaussian random
code. The matrix is generated using MATLAB. Actually,
this code is only a statistical approximation of the Gaussian
random codes. However, this is how we generate and use
Gaussian random codes in practice.

It is well known [27] that, in solving a linear system of
equations, a condition number of 10k for the coefficient ma-
trix leads to a loss of accuracy of about k decimal digits in
the solution. The coefficient matrix of the system of equa-
tions to be solved during recovery can be any square sub-
matrix (including minor) of the generator matrix. There-
fore, in what follows, we focus on comparing the condition
numbers of the sub-matrices of all three generator matrices.

The size of the generator matrices is 3×10, therefore, the
total number of 3× 3 sub-matrices in each generator matrix
is 120.

Table 4 gives the condition numbers of the 10 worst con-
ditioned 3 × 3 sub-matrices in all three generator matrices.
Table 4 demonstrates that the condition numbers of all 10
worst-conditioned 3×3 sub-matrices of the numerically best
code are much more smaller than that of the other two codes.
Therefore, in the worst case scenarios, the numerically best
code is numerically much more stable than both the Gaus-
sian random code and the Grassmannian code. Condition
number is a property that associated with more than two
columns of a matrix. The Grassmannian codes maximizes
only the minimum angle between any two columns of the
generator matrix. When the minimum angle between any
two columns of the generator matrix achieves its global max-
imum, it is still possible that three columns of a generator
matrix are in the same plan, therefore, the generator matrix
contains a singular sub-matrix. This is exactly the reason
why we get one singular sub-matrix in the Grassmannian
codes. Therefore, Grassmannian codes are generally NOT
optimal unless m = 2 where a sub-matrix only contains 2
columns. The numerically best code minimizes the maxi-
mum condition numbers of all sub-matrices, therefore, has a
much better numerically stability in the worst case scenar-
ios.

Figure 5 gives the distribution of all 120 condition num-
bers of all 120 3×3 sub-matrices for both the Grassmannian

Figure 5: Condition number distribution for Grass-
mannian frame codes and optimal codes.

Figure 6: Condition number distribution for Gaus-
sian random codes and optimal codes.

Table 3: A generator matrix from numerically best real number codes
g1 g1 g1 g1 g1 g1 g1 g1 g1 g1

-0.5566 0.1467 0.7247 0.9919 0.4631 -0.6691 0.5614 -0.2353 0.0686 -0.6749
0.8095 0.7985 0.4905 0.1217 -0.1332 0.2351 -0.6914 -0.0325 0.9466 -0.5804
0.1871 0.5839 0.4839 0.0365 0.8763 0.7050 0.4547 0.9714 -0.3149 0.4556

Table 4: The condition numbers of the 10 worst-conditioned 3×3 sub-matrices in different generator matrices

Grass 0.1 ∗ 1017 0.1 ∗ 1017 0.3 ∗ 1017 0.3 ∗ 1017 0.3 ∗ 1017 0.5 ∗ 1017 0.7 ∗ 1017 2.3 ∗ 1017 2.3 ∗ 1017 Inf
Rand 111 131.3 145.1 168.6 199 250.4 366.7 457.4 786.7 1891.1
Best 12.1652 12.4318 12.4371 13.2190 13.5483 14.7503 15.6580 16.1104 16.1609 16.5355

code (red) and the numerically best code (blue). Figure 5
demonstrates that the numerically best code are at least as
good as the Grassmannian code in average cases.

Figure 6 shows the distribution of all 120 condition num-
bers of all 120 3×3 sub-matrices for both Gaussian random
code (cyan) and the numerically best code (blue). Figure
6 indicates that the numerically best code are much more
stable than Gaussian random codes in average cases.

7. CONCLUSION
In this paper, we present a class of numerically best real-

number codes for fault tolerant matrix operations on large
HPC systems. We give an analytical expressions for the
numerically best erasure correcting codes for two erasures
and develop an approximation method to computationally
approximate the numerically best codes for more than two
erasures. Experiment results demonstrate that our codes
are numerically much more stable than existing codes.

In the near future, we would like to explore better ap-
proximation methods to computationally approximate the
numerically best codes for three or more erasures.

8. REFERENCES
[1] Top 500 supercomputer sites. http://www.top500.org.

[2] http://www.research.att.com/ njas/grass/dim3

[3] J. Anfinson and F. T. Luk A Linear Algebraic Model
of Algorithm-Based Fault Tolerance. IEEE
Transactions on Computers, v.37 n.12, p.1599-1604,
December 1988.

[4] P. Banerjee, J. T. Rahmeh, C. B. Stunkel, V. S. S.
Nair, K. Roy, V. Balasubramanian, and J. A.
Abraham Algorithm-based fault tolerance on a
hypercube multiprocessor. IEEE Transactions on
Computers, vol. C-39:1132–1145, 1990.

[5] V. Balasubramanian and P. Banerjee
Compiler-Assisted Synthesis of Algorithm-Based
Checking in Multiprocessors. IEEE Transactions on
Computers, vol. C-39:436-446, 1990.

[6] A. Bouteiller, P. Lemarinier, G. Krawezik, and F.
Cappello. Coordinated checkpoint versus message log
for fault tolerant MPI. Procceedings of International
Conference on Cluster Computing (Cluster 2003),
Honk Hong, December, 2003.

[7] L. S. Blackford, J. Choi, A. Cleary, A. Petitet, R. C.
Whaley, J. Demmel, I. Dhillon, K. Stanley,

J. Dongarra, S. Hammarling, G. Henry, and
D. Walker. ScaLAPACK: a portable linear algebra
library for distributed memory computers - design
issues and performance. In Supercomputing ’96:
Proceedings of the 1996 ACM/IEEE conference on
Supercomputing (CDROM), page 5, 1996.

[8] D. L. Boley, R. P. Brent, G. H. Golub, and F. T. Luk.
Algorithmic fault tolerance using the lanczos method.
SIAM Journal on Matrix Analysis and Applications,
13:312–332, 1992.

[9] E. Candes, M. Rudelson, L. Tao, R. Vershynin Error
Correction via Linear Programming. Proc. 46th
Annual IEEE Symposium on Foundations of
Computer Science (FOCS05), IEEE, 2005. pp. 295-308

[10] Z. Chen and J. Dongarra. Numerically Stable
Real-Number Codes Based on Random Matrices. In
ut-cs-04-526 June 9, 2004.

[11] Z. Chen and J. Dongarra. Numerically stable real
number codes based on random matrices. In
Proceeding of the 5th International Conference on
Computational Science (ICCS2005), Atlanta, Georgia,
USA, May 22-25, 2005. LNCS 3514, Springer-Verlag.

[12] Z. Chen and J. Dongarra. Condition Numbers of
Gaussian Random Matrices. SIAM Journal on Matrix
Analysis and Applications, Volume 27, Number 3,
Page 603-620, 2005.

[13] Z. Chen, and J. Dongarra. Algorithm-Based Fault
Tolerance for Fail-Stop Failures. IEEE Transactions
on Parallel and Distributed Systems, Vol. 19, No. 12,
December, 2008.

[14] Z. Chen, and J. Dongarra. Highly Scalable
Self-Healing Algorithms for High Performance
Scientific Computing. IEEE Transactions on
Computers, July, 2009.

[15] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou,
T. Angskun, G. Bosilca, and J. Dongarra. Fault
tolerant high performance computing by a coding
approach. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, PPOPP 2005, June 14-17, 2005,
Chicago, IL, USA. ACM, 2005.

[16] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou,
T. Angskun, G. Bosilca, and J. Dongarra. Building
Fault Survivable MPI Programs with FT-MPI Using
Diskless Checkpointing. In University of Tennessee

Computer Science Department Technical Report.
Technical Report UT-CS-04-540, 2004.

[17] Z. Chen. Scalable techniques for fault tolerant high
performance computing. Ph.D. thesis, University of
Tennessee, Knoxville, TN, USA, 2006.

[18] J. H. Conway, R. H. Hardin and N. J. A. Sloane
Packing Lines, Planes, etc.: Packings in Grassmannian
Spaces. Experimental Mathematics, Vol. 5, No. 2, 1996

[19] D. L. Donoho For most large undetermined systems of
linear equations the minimal ‘1-norm near-solution is
also the sparsest near-solution. Communications on
Pure and Applied Mathematics, Volume 59 Issue 6,
Pages 797 - 829

[20] D. L. Donoho Compressed sensing. IEEE Trans. on
Information Theory, 52(4), pp. 1289 - 1306, April 2006

[21] A. Edelman. Eigenvalues and condition numbers of
random matrices. SIAM J. Matrix Anal. Appl.,
9(4):543–560, 1988.

[22] Ferreira, P. Stability issues in error control coding in
complex field, interpolation, and frame bounds. IEEE
Signal Processing Letters, vol.7 No.3,(2000) pp.57-59.

[23] Ferreira, P., Vieira, J. Stable DFT codes and frames,
IEEE Signal Processing Letters, vol.10 No.2,(2003)
pp.50-53.

[24] V. K. Goyal and J. Kovacevic Quantized Frame
Expansions with Erasures Applied and Computational
Harmonic Analysis vol.10, 203 233 (2001)

[25] J. Gunnels, R. van de Geijn, D. Katz, E.
Quintana-Ort Fault-Tolerant High-Performance
Matrix Multiplication: Theory and Practice
Proceedings of the 2001 International Conference on
Dependable Systems and Networks (DSN’01) ,
Washington, DC, USA, 2001.

[26] P. Alpatov, G. Baker, C. Edwards, J. Gunnels, G.
Morrow J. Overfelt, R. van de Geijn, and J. Wu.
PLAPACK: Parallel Linear Algebra Libraries Design
Overview Proc. of the SC97 Conference, ACM, San
Diego, CA, 1997.

[27] G. H. Golub and C. F. Van Loan. Matrix
Computations. The John Hopkins University Press, ,
1989.

[28] C. N. Hadjicostis. Coding Approaches to Fault
Tolerance in Combinational and Dynamic Systems,
Kluwer Academic Publishers, 2002.

[29] K.-H. Huang and J. A. Abraham. Algorithm-based
fault tolerance for matrix operations. IEEE
Transactions on Computers, vol. C-33:518–528, 1984.

[30] Y. Kim. Fault Tolerant Matrix Operations for Parallel
and Distributed Systems. Ph.D. dissertation,
University of Tennessee, Knoxville, June

[31] D. E. Knuth. The Art of Computer Programming,
Addison-Wesley Professional, 2 edition, October 15,
1998.

[32] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra.
Recovery Patterns for Iterative Methods in a Parallel
Unstable Environment SIAM Journal on Scientific
Computing, 30(1):102-116, 2007.

[33] F. T. Luk and H. Park An analysis of algorithm-based
fault tolerance techniques. SPIE Adv. Alg. and Arch.
for Signal Proc., vol. 696, 1986, pp. 222-228.

[34] T. Marshall Coding of Real-Number Sequences for

Error Correction: A Digital Signal Processing
Problem. IEEE Journal on Selected Areas in
Communications, Volume 2, Issue 2, Mar 1984
Page(s): 381 - 392

[35] Nair, S. S. and Abraham, J. A.: Real-number codes
for fault-tolerant matrix operations on processor
arrays, IEEE Transactions on Computers, vol.
C-39,(1990) pp.300-304.

[36] J. S. Plank, Y. Kim, and J. Dongarra. Fault Tolerant
Matrix Operations for Networks of Workstations Using
Diskless Checkpointing. IEEE Journal of Parallel and
Distributed Computing, 43, 125-138 (1997).

[37] J. S. Plank, K. Li, and M. A. Puening. Diskless
checkpointing. IEEE Trans. Parallel Distrib. Syst.,
9(10):972–986, 1998.

[38] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software –
Practice & Experience, 27(9):995–1012, September
1997.

[39] J. L. Sung and G. R. Redinbo. Algorithm-Based Fault
Tolerant Synthesis for Linear Operations. IEEE
Transactions on Computers, Volume 45 , Issue 4,
April 1996.

[40] G. Robert Redinbo. Generalized Algorithm-Based
Fault Tolerance: Error Correction via Kalman
Estimation. IEEE Transactions on Computers,
Volume 47, Issue 6,June, 1998.

[41] G. Stellner. CoCheck: Checkpointing and process
migration for MPI. Proceedings of the 10th
International Parallel Processing Symposium
(IPPS’96), Honolulu, Hawaii, April, 1996.

[42] S. Smale. Mathematical Problems for the Next
Century. Mathematics: Frontiers and Perspectives,
Ed. V. Arnold, M. Atiyah, P. Lax, and B. Mazur,
Providence, RI: Amer. Math. Soc., 2000.

[43] T. Strohmer and R. W. Heath Grassmannian frames
with applications to coding and communication
Applied and Computational Harmonic Analysis,
Volume 14, Issue 3, Pages 257-275, May 2003.

[44] B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems.
Proceedings of the International Conference on
Dependable Systems and Networks (DSN2006),
Philadelphia, PA, USA, June 25-28, 2006.

[45] B. Schroeder and G. A. Gibson. Understanding
Failures in Petascale Computers. Journal of Physics:
Conference Series, 78, 2007.

[46] G. A. Gibson, B. Schroeder, and J. Digney. Failure
Tolerance in Petascale Computers.
CTWatchQuarterly, Volume 3, Number 4, November
2007.

[47] C. Wang, F. Mueller, C. Engelmann, and S. Scot. Job
Pause Service under LAM/MPI+BLCR for
Transparent Fault Tolerance. In Proceedings of the
21st IEEE International Parallel and Distributed
Processing Symposium, March, 2007, Long Beach,
CA, USA.

[48] S. J. Wang and N.K. Jha. Algorithm-Based Fault
Tolerance for FFT Networks. IEEE Transactions on
Computers, Volume 43, Issue 7,July, 1994.

	Introduction
	 Fault Tolerant Matrix Operations
	Real-Number Codes for Fault Tolerant Matrix Operations
	Real-Number Codes Derived from Finite Field Codes
	Real-Number Codes Based on Random Matrices
	Real-Number Codes Based on Grassmannian Frames
	Real-Number Codes with Optimal Numerical Stability

	 Optimal Real-Number Codes for Two Erasures
	Construct Numerically Good Codes by Unconstraint Optimization
	Experimental Results
	Conclusion
	References

