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ABSTRACT

Today s long running high performance computing applica-
tions typically tolerate fail-stop failures by checkpointing.
However, applications such as dense linear algebra com-
putations often modify a large mount of memory between
checkpoints and checkpointing usually introduces consider-
able overhead when the number of processors used for com-
putation is large. It has been demonstrated in [13] that
single fail-stop failure in ScaLAPACK matrix multiplica-
tion can be tolerated without checkpointing at a decreasing
overhead rate of 1/,/p, where p is the number of proces-
sors used for computation. Multiple simultaneous processor
failures can be tolerated without checkpointing by encod-
ing matrices using a real-number erasure correction code.
However, the floating-point representation of a real number
in today’s high performance computers introduces round off
errors which can be enlarged and cause the loss of preci-
sion of possibly all digits during recovery when the num-
ber of processors in the system is large. In this paper, we
present a class of Reed-Solomon style real-number erasure
correcting codes which is numerically optimal during recov-
ery. We analytically construct the numerically best erasure
correcting codes for 2 erasures and develop an approxima-
tion method to computationally construct numerically good
codes for 3 or more erasures. We prove that it is impossible
even for the numerically best minimum redundancy erasure
correcting codes to correct all erasure patterns when the to-
tal number of processors is large. We give the conditions
that guarantee to correct all two erasures. Experimental re-
sults demonstrate that the proposed codes are numerically
much more stable than existing codes.

1. INTRODUCTION

While the peak performance of the contemporary high
performance computing (HPC) systems continues to grow
exponentially, it is getting more and more difficult for sci-
entific applications to achieve high performance due to both
the complex architecture of and the increasing failures in
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these systems. Schroeder and Gibson from Carnegie Mellon
University (CMU) recently studied the system logs of 22
HPC systems in Los Alamos National Laboratory (LANL)
and found that the mean-time-to-interrupt (MTTI) for these
HPC systems varies from about half a month to less than
half a day |44} 45| |46]. In order to use these systems effi-
ciently and avoid restarting computations from beginning af-
ter failures, applications have to be able to tolerate failures.
Today’s long running scientific applications typically toler-
ate failures by checkpointing |6} |14} |37} [38} 41} |47]. Check-
pointing can usually be used in different type of systems and
to a wide range of applications. However, when applications
modify a large mount of memory between two consecutive
checkpoints, checkpointing often introduces a considerable
overhead [30, |36].

Matrix operations (such as matrix multiplication, solv-
ing system of linear equations, and finding eigenvalues and
eigenvectors, etc) are fundamental operations in science and
engineering. Some important linear algebra operations such
as Gaussian elimination have been proved to be able to
scale to more than 100,000 processors and achieve more
than one petaflops on today’s HPC systems [1]. However,
today’s widely used dense linear algebra software such as
ScaLAPACK [7] and PLAPACK [26] usually modifies a large
mount of memory between checkpoints, therefore, check-
pointing techniques often introduce a considerable overhead
into the computation. The high frequency of failures and
the large number of processors in the next generation HPC
systems will further exacerbate the problem.

In [13], a highly scalable checkpoint-free techniques was
proposed to tolerate single fail-stop failure in high perfor-
mance matrix operations on large scale HPC systems. It
was also demonstrated that the overhead rate of this scheme
decreases with a speed of 1/,/p when the number of pro-
cessors p increases. However, in order to tolerate multiple
simultaneous process failures with minimum redundancy, a
real number version Reed-Solomon style erasure correcting
codes have to be used to encode the input matrices.

In existing Reed-Solomon style real number erasure cor-
recting codes, the generator matrices mainly include: Van-
dermonde matrix (Vander) [28], Vandermonde-like matrix
for the Chebyshev polynomials (Chebvand) [8], Cauchy ma-
trix (Cauchy), Discrete Cosine Transform matrix (DCT),
Discrete Fourier Transform matrix (DFT) (22| 23], Gaus-
sian random matrix |11, |12], and Grassmannian frame ma-
trix [43]. If there is no round-off errors in the representation
of a real number, these generator matrices can all be used as
the encoding matrices of the proposed checkpoint-free tech-



niques in [13].

However, in today’s computer arithmetic where no com-
putation is exact due to round-off errors, it is well known [27]
that, in solving a linear system of equations, a condition
number of 10* for the coefficient matrix leads to a loss of
accuracy of about k decimal digits in the solution. The coef-
ficient matrix of the system of equations to be solved during
recovery may be any square sub-matrix (including minor) of
the generator matrix. Therefore, in order to get a numer-
ically good recovery for any erasure patterns, any square
sub-matriz (including minor) of the generator matriz has to
be well-conditioned.

But the generator matrices from existing Reed-Solomon
style real number erasure correcting codes mentioned above
all contain many ill-conditioned sub-matrices when the sizes
of these generator matrices are large. Therefore, in these real
number codes, when certain erasure patterns occur, an ill-
conditioned linear system has to be solved to reconstruct an
approximation of the original information, which can cause
the loss of precision of possibly all digits in the recovered
numbers. To the best of our knowledge, it is still open
whether there exists any arbitrarily large generator matrix
that can correct all erasures or not. It is also an open prob-
lem how to find the codes with optimal numerically stability.

In this paper, we present a class of numerically optimal
Reed-Solomon style real-number erasure correcting codes.
We construct the numerically optimal erasure correcting
codes for two erasures analytically and develop an approx-
imation method to approximate the numerically optimal
codes for three or more erasures computationally. We ex-
plore the property of generator matrices that are able to
correct all erasure patterns. We prove no minimum redun-
dancy codes can correct all erasure patterns when the size of
processors is large and the number of erasures is more than
one. We give an upper bound on the number of processors
so that all two erasure patterns can be corrected. Experi-
mental results demonstrate that our codes are numerically
much more stable than existing codes.

Although we only focus on the correcting of erasures in
this paper, it is also possible to use our codes (generator
matrices) to correct errors through the /; minimization tech-
niques proposed in [9, [19]. While this paper develops the
codes for fault tolerant matrix operations, the codes can also
be used in many other fields such as compressive sensing |20]
and fault tolerant combinatorial and dynamic systems [2§].

The rest of the paper is organized as following. Section 2
introduces techniques for fault tolerant matrix operations.
In Section 3, we explore the numerical properties of existing
real number codes and present a class of real number codes
that have optimal numerical stability. In Section 4, we an-
alytically construct the numerically best erasure correcting
codes for two erasures. Section 5 develops an approxima-
tion method to approximate the numerically optimal codes
for three or more erasures computationally. In Section 6, we
compare various real number codes experimentally. Section
7 concludes the paper and discusses the future work.

2. FAULT TOLERANT MATRIX OPERA-
TIONS

Matrix operations are fundamental for science and engi-
neering. Incorporating fault tolerance into matrix opera-
tions has been extensively studied for many years by many

researchers (3}, |4} |5, 8 111} |12} |13}, {14} 25| |29} {30} [32} |33, |36,
39, 1401 |48].

In [29)], the algorithm based fault tolerance (ABFT) is pro-
posed to detect, locate, and correct miscalculations. The
idea is to encode the original matrices using real number
codes and then re-design algorithms to operate on the en-
coded matrices. In [29], Huang and Abraham proved that
the encoding relationship in the input encoded matrices is
preserved at the end of the computation no matter
which algorithm is used to perform the computation.
Therefore, processor miscalculations can be detected, lo-
cated, and corrected at the end of the computation. ABFT
researches have mostly focused on detecting, locating, and
correcting miscalculations or data corruption where failed
processors are often assumed to be able to continue their
work but produce incorrect calculations or corrupted data.
The error detection are often performed at the end of the
computation by checking whether the final computation re-
sults satisfy the encoding relationship or not.

However, in a distributed environment, if a failed proces-
sor stops working, then we need to be able to detect, locate,
and recover the data in the middle of the computation.
In order to be able to recover in the middle of the compu-
tation, a global consistent state of the application is often
required. Checkpointing and message logging are typical ap-
proaches to maintain or construct such a global consistent
state. In |14, [15| |16} 17, 30|, real number erasure correcting
codes are used to encode the checkpoint data to maintain a
global consistent state with redundancy periodically.

Recently, in [13], it has been demonstrated that fault tol-
erance (for fail-stop failures) for large scale parallel matrix
operations on today’s large HPC systems can be achieved
without any checkpointing (or message logging) by encoding
the original matrices into larger weighted checksum matri-
ces using real-number erasure correcting codes. The scheme
is highly scalable with low overhead. The overhead rate de-
creases with a speed of 1/,/p when the number of processors
p increases.

Traditional erasure correcting codes based on finite fields
do NOT work [11] for the techniques in |29} [13]. Real num-
ber codes have to be used to encode the input matrices.
In order to be able to recover from multiple simultaneous
failures of any patterns, the encoding matrix have to be
chosen very carefully. This encoding matrix is often called
the generator matrix of a linear code in coding theory. The
goal of this paper is to find an appropriate generator matrix
to encode the input matrices so that multiple simultaneous
failures in large scale parallel matrix operations can be re-
covered without any checkpointing (or message logging).

3. REAL-NUMBER CODES FOR FAULT TOL-

ERANT MATRIX OPERATIONS

The research on real number codes can be dated back
to |34]. Recently, codes based on random matrices [10} |11}
12| and Grassmannian frames [24} 43] have been proposed to
improve the numerically stability of the recovery. However,
it is still an open problem what is the numerically best real
number codes. In this section, we discuss some popular real
number codes and propose a class of new real number codes
which have optimal numerical stability.

Let & = (x1,%2,...,2,)7 € R"™ denote the original infor-
mation, and G, x» denote a m by n real number matrix.



The redundant information ¢ = (c1,ca,...,cm)T € R™ is tance between points. If the sphere distance of two points
calculated by is zero, the corresponding two columns of the matrix are
the same. The sub-matrices containing these two columns
guzit...+g1nIn =01 are singular. When two vectors are the same, the correla-
(1) tion of the two vectors is 1. The Grassmannian frame idea
minimize the maximum correlations between columns of the
gm1T1+ ...+ GmnTn = Cm- generator matrices [24} [43].
A sequence of vectors {gr}i—; € R™ is called a Grass-

Gmxn is often called the generator matrix of the linear ) T e -
mannian frame if it is the solution to

code. We also call G,,x» the encoding matrix for fault tol-

erant matrix operations. In a fault tolerant matrix opera- . 9
tions, the original information x; is the local matrix in the {fk}Ezleé%&fk,fp:l I?%X{< fis fi >} ()
local memory of a processor. Without loss of generality and

for the simplicity of the discussion, in this paper, we assume The Grassmannian frame code is defined as the code whose
x; is just a real number. generator matrix is Gmxn = (917 925+, 9n)-

The relationship in (1) actually establishes m equalities ) Minimizing 1.;h.e maximum correlations is equivalent to max-
between the original data z and the redundant information imizing the minimum angle between columns of the gener-
c. If k (where k < m) clements of x is erased, then the ator matrices. The problem of maximizing the minimum
m equalities become a system of linear equations with k angle between vectors on a hyper sphere is called the Grass-
unknowns. When the generator G, x~ is appropriately cho- mannian (line) packing problem [18]. It is hard to find opti-
sen, the lost k elements in x can be able to be reconstructed mal arrangements of points even on a 2-sphere (i.e. m = 3).
through solving this system of linear equations with k un- Steve Smale has listed the problem of ”distribution of points
knowns. on the 2-sphere” as the problem #7 of a total of 18 unsolved

The real number coding theory problem we want to solve mathematics problems in twenty-first century [42]. There
is: how to choose the generator matriz Gmxn in (1), such are no general analytical solutions for this problem except
that, after any no more than m erasures in x, a good approz- for some special combinations of m and n [2].

imation of all erased elements in x can still be reconstructed
by solving the system of linear equations derived from (1)?

3.4 Real-Number Codes with Optimal Numer-

ical Stability

3.1 R_eal-Number Codes Derived from Finite The Grassmannian frame code minimizes the maximum
Field Codes correlations between columns of the generator matrices, how-
In [35], Nair and Abraham proved that, for any finite ever, the accuracy during recovery is directly related only to
field code, there is a corresponding code in real number the condition number of the equations to be solved and con-
field. In the existing codes derived from finite fields, the dition number is a property that associated with more than
generator matrices mainly include: Vandermonde matrix two columns of a matrix. Even if the maximum correla-
(Vander) [28], Vandermonde-like matrix for the Chebyshev tions are minimized, it is still possible that the generator
polynomials (Chebvand) [8] Cauchy matrix (Cauchy), Dis- matrix contains a singular sub-matrix. Therefore, in order
crete Cosine Transform matrix (DCT), and Discrete Fourier to get better codes, we decide to work on minimizing the
Transform matrix (DFT) [22, |23]. These generator ma- maximum condition numbers of sub-matrices of a generator

trices all contain many ill-conditioned sub-matrices when matrix directly.
the size the generator matrices become large. Therefore, The recovery process involves solving a system of linear
in these codes, when certain erasure patterns occur, an ill- equations with one of the sub-matrices from the generator
conditioned linear system of equations has to be solved to matrix G as the coefficient matrix. The coefficient matrix
reconstruct an approximation of the original information, can be any sub-matrix including minor of G. It is well know
which can cause the loss of precision of possibly all digits in that in order to get a numerically good solution, the coeffi-
the recovered numbers. cient matrix have to be well conditioned. Therefore, in order

to be able recovery from all erasure patterns, the generator
3.2 Real-Number Codes Based on Random Ma- matrix G have to satisfy any square sub matrix including

trices minor of G have to be well conditioned.

In |10, 11} [12], Gaussian and uniform random matrices If the worst conditioned sub-matrix of G is well condi-
have been proposed as the encoding (generator) matrices. It tioned, then all the sub-matrix of G will be well conditioned.
is well know that Gaussian random matrices are well condi- Therefore, we look for generator matrices G for which the
tioned [21]. Note that any sub-matrix of a Gaussian random condition number of the worst conditioned sub-matrix is
matrix is still a Gaussian random matrix, therefore, Gaus- minimized.
sian random matrix can guarantee the recovery of the lost There are finite number of sub-matrices in G, therefore,
data with high probability. we can rank these sub-matrices. Let G; denote the i*" sub-

matrix of G, then the matrix G* that minimize the condition
3.3 Real-Number Codes Based on Grassman- number of the worst conditioned sub-matrix of G is the so-
nian Frames lution of the following minimax problem.

While Gaussian random codes is good with high proba- )
bility, it is nondeterministic. It has been shown in [31] that f(m,n) = oM {max {“(GZ)}} (3)

mxn€RMXn LU i
Gaussian random distribution in R" is equivalent to uniform
random distribution in S"~!. Uniformly distributed points The code G obtained from the solution of the above min-

on hyper spheres tend to maximize the minimum sphere dis- imax problem (3) is numerically best in the sense that the



generator matrix obtained has the condition number of the
worst conditioned sub-matrix minimized. f(m,n) is the con-
dition number of the worst conditioned sub-matrix of the
optimal G* obtained. it is well known [27] that, in solving
a linear system of equations, a condition number of 10* for
the coefficient matrix leads to a loss of accuracy of about
k decimal digits in the solution. Therefore, f(m,n) an be
used to estimate the worst case recovery accuracy. For ex-
ample in IEEE standard 754 floating point numbers, there
are 16 digits of accuracy. Then the worst case recovery can
guarantee an accuracy of 16 — log,, f(m,n) digits.

The minimax problem specified in (3) is also difficult even
if G is restricted on matrices with unit norm columns. Ac-
tually, when G is restricted on matrices with unit norm
columns, the problem also becomes finding optimal arrange-
ments of points on hyper-sphere. As we discussed before, it
is hard to find optimal arrangements of points even on a 2-
sphere. Steve Smale has listed this problem of ”distribution
of points on the 2-sphere” as the problem #7 of a total of 18
unsolved mathematics problems in twenty-first century [42].

4. OPTIMAL REAL-NUMBER CODES FOR
TWO ERASURES

In what follows we will solve problem (3) for the special
case when m = 2. The generator matrices we obtain is the
generator matrices for numerically best real-number codes
for two erasures. f(2,n) we obtain is the condition number
of the worst conditioned sub-matrix of the numerically best
real-number codes for two erasures.

If there are elements with value zero in the generator ma-
trix, there will be singular 1x 1 sub-matrices in the generator
matrix. Therefore, when solving (3), we just need to con-
sider generator matrices with none of their elements being
0. Without loss of generality, we assume the elements of G
is non-zero. When m = 2, it is enough to just consider all
the 2 x 2 sub-matrices.

For any 2 x n matrix Gax, € R?**", let g; denote the j*
column of Gaxn. Let G;; denote the sub-matrix of Gaxn
consisting of the column ¢ and j of Gaxn.

THEOREM 1. Let

fem = min,{maxn(G) | (4)

GoxnERZXN 2]
Then,
1+cos™
2 = —_— 5
£(2,m) oot (5)

The following generator matriz is one of the solutions for

(4)

s .37 (2n—1)m
G = COS by COs S T om
sin = cos 3% (@n=1)m

2n 2n e 2n

PRroOF. In a polar coordinate system (Figure 1), the i
column of Gax, can be represented as

[ ricosb;
95 =\ r;sin6;
G2xn can be represented as

71 cos 01
G2><n = <

r1 sin 61 Tn Sin 0,

Ty COS O, )

(r, cos( ar+ @), 1y sin@+ )

0, (rycosqx, rysin @)
o

X

Figure 1: Polar coordinate representation for a sub-
matrix

Gi,; can be represented as

Gy = ( ricos@1 r;cosb; )

risinf;  rjsind;
Therefore,
2
T~ 3 rir; cos(0; — 6;)
GijGiy = ( rirj cos(0; — 6;) r?

Note that Gz; G is symmetric and positive definite, there-

fore, all its eigenvalues are positive real numbers. Let Apax (Gz; Gij)

denote the maximum eigenvalue of ij Gij and /\mm(GiTj Gij)
denote the minimum eigenvalue of GZ}G”, then

r? +r?
Amaz(G5Gig) = 5
7 12
\/ 3 T 4 rir(cos(f; — ;) — 1)
r? +4 7‘2-
Amin(G5Giy) =~ =
0242y
\/ 5 L+ r2r3(cos(0; — 0:) — 1)
Therefore,
M@y) = || GG
)\mz‘n(GiTjGij)
cos2(0;—0;)—
R s o R
o
J J

1- \/1 N 4<cosi<‘29jzgi)f1)

7 7
PR

J TJ

1 0, — 0,

+lcos(t, ) ©

1 —|cos(8; — 6;)]

The equality in (6) is achieved when r; = r;.

Note that the relationship (6) is for any 2 x 2 sub-matrix
of Gaxn, therefore, the Gax, that solve problem (4) has to
satisfy 1 = 72 = ... = r, = r. Note that for any matrix
M, k(M) = k(rM), therefore, during the computation of
f(2,n), it is enough to just consider Gax, whose 11 = r2 =
oo=1rn = 1.

When r1 = r2 = ... = r, = 1, columns of Ga2x, can be
treated as vectors on a unit circle centered at (0,0). If there
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Figure 2: If (0; — 01) is larger than 7, then there is
a vector g = —g; for which the angle (6 — 6,) is less
than 7 and |cos(0; — 61)| = | cos(f — 01)].

Figure 3: Adjust columns of G such that 6; + 2 +
v O =3

is a vector g; for which the angle (6;—601) is larger than 7 (see
g; in Figure 2), then there is a vector g = —g; for which the
angle (#—6,) is less than 7 and | cos(6; —01)| = | cos(0—61)].
Therefore, it is enough to just consider G2y, for which the
angle between g; and any other g; is less than 7 during the
calculation of f(2,m). Without affecting the calculation of
f(2,m), the columns of G2x» can be exchanged so that the
angle between g1 and g; increases as j increases (see Figure
3 for such an arrangement). Let §; denote the angle between
the newly re-arranged g; and g;4+1 for i =1,2,...,n—1 and
0n denote the angle between g, and —g1, then

51+52+...+6n:g (7)

The angle between g; and g; is

0j79¢:5i+...+5j71 (8)

Therefore,
f(2,n) =

min {max{x(Gs;)}}

Goxn 1
{max{r(Gi;)}}
r1=...=rp=1 ij

I . WH(G_M
o ' 1 —Jcos(8; — 6;)]
1+ [cos(min{a.])
1= Jcos(min{5,})]

1+ | cos( =12
> = ©)

1 — | cos( = 2|

1+ cos(X)
10
1—cos(Z) (10)
The equality in (9) is achieved when
™

b1=02=...=68,=—. 11
- " (ay

There is infinite number of optimal 2 X n matrices (codes)
with non-zero elements that satisfy (11).

The following is a sample optimal 2 X n matrix (i.e. a
sample numerically best real number erasure correcting code
for 2 erasures)

T 3 2n—1)7
G _ COS by COS on P o
sin = cos 3T (@n-—1m

2n 2n e 2n

O

Note that when n is large,

1+cos™
2.n) = |——n
F2n) l1—cosZ
~ 20
D

Therefore, the condition number of the worst conditioned
sub-matrix of even the numerically best real-number codes
increase to infinite approximately linearly when the number
of original data items (processors) n increases. It is impos-
sible for even the numerically best 2-erasure code to correct
all possible 2-erasures when the number of data items (pro-
cessors) is large. The introduced numerical errors can be
arbitrarily large during recovery when n is arbitrily large.

In order to guarantee to correct ALL possible 2-erasures
in IEEE standard 754 floating point numbers (16 digits of
accuracy) with k digits of accuracy The total number of data
items (processors) n has to satisfy

n < 10%°F x g (12)

If n > 10'° x Z, all 16 digits in the IEEE standard 754
floating point numbers will be lost. However, this can be
avoided by divide n processors into sub-groups of the size
s and encode the input matrices within each sub-group. In
order to guarantee to correct all possible 2-erasures with k
digits of accuracy in each sub-group, the number of proces-
sors s in each sub-group has to satisfy

T

< 1016—k
s < X 3



Therefore, with the increase of the redundancy in-

formation, we can guarantee to correct all possible 2-erasures

with k digits of accuracy.

S. CONSTRUCTNUMERICALLY GOOD CODES

BY UNCONSTRAINT OPTIMIZATION

As discussed in Section 3, it is one of Smale’s 18 unsolved
mathematic problems [42] in the twenty-first century to ob-
tain analytical solution for the minimax problem specified
in (3) even if m = 3 and G is restricted on matrices with
unit norm columns. Instead of solving (3) directly, in this
section, we propose to compute approximate solutions of (3)
by solving another unconstrained optimization problem. We
prove that, for m = 2, the solution obtained by solving the
new unconstraint optimization problem is the same as the
solution obtained by solving (3) directly.

Inspired by the m = 2 case, in what follows, we restrict
the choice of the generator matrix G within matrices whose
column g; satisfy ||g;|l2 = nggj =1, where j = 1,2,...,n.
We restrict the choice of sub-matrix within m x m matrices.

Let G denotes the jth m X m sub-matrix of Gmxn (the
order here can be any order one likes). Let Ay > Ao > ... >
Am denotes the m eigenvalues of GJTGj, then

det (G7G;) =] ™
i=1

Therefore,

det(Gj) =

IN

IN

On the other hand,

det(Gj) =

\%
>
33

A%

Therefore, for a fixed m, if det(G;) is small, then x(G;)
will be large. if k(G;) is large, then det(G;) will be small.
Note that,

det Gj =

det(G?Gj)

Therefore, in order to make the sub-matrices of G well-
conditioned, we need to maximize the determinants of the
sub-matrices. If any sub-matrix of G has a large condition
number, then [T", det(G;) will be small. Therefore, we pro-
pose to approximate the numerically best codes by solving
the following optimization problem.

h(m,n) = max {Hdet(Gi)} (13)

Gmxn€R™X™, |lgjlla=1

k3

If m dimensional polar coordinate systems are used to rep-
resent the elements of G, xn, then the constrained optimiza-
tion problem (13) becomes an unconstrained optimization
problem. Standard unconstrained optimization techniques
can then be used to solve this maximization problem.

The solution (matrix G) obtained by solving (13) usually
produce numerically very good real-number codes (see Sec-
tion 5 for experimental comparisons to currently known best
code).

To our surprise, when m = 2, the optimal matrix G ob-
tained by solving (13) is exactly the same as the numerically
best code obtained by solving (4) directly.

THEOREM 2. Let

h(2,n) = max {H det(Gi)} (14)

GaxnER™X™, ng‘|2:1

K3

Then,

n—1 .
h = in" 7 L0
(2,n) H {sm " (15)
Jj=1
The following generator matriz is one of the solutions for (5):

T 3m (2n-—1)w
G:(cos2n cos 5% ... )

2 2 2n1)
P I n—1)mw
Sin on CcOos on on

Proor. When m = 2, if we use the same polar coordi-
nate system as in Section 3.4 and exchange columns of Gaxn,
similarly to get the arrangement g; in Figure 4, then

Gown = ( cos@, ... cosO, )

sinf; ... sinf,

Jj—1
0]' =0, + Zék
k=1

The sub-matrix Gj; (consisting of the column ¢ and j of
Gaxn) can be represented as

Gy = ( cosf@; cosb, )

sinf; sin6,



g; g;

/]

Q,

94

Figure 4: Adjust columns of G such that 0; = 0; +
Shci O

Therefore,

det(Gij) = Sin(ej — 91)

Hdet(Gij) = Hsin(ﬂj—ei)

J>i J>i
j—1

= H sin(z Ok)
i>i k=i

= (sindi...sindp—1)
(sin(d1 + d2) ... X sin(dn—2 + dn—-1))

sin(61 4+ ...+ 6n_1)

Note that, when z; > 0

n n A"
H:v' < | &=t i .
L1 = n

When z1 = 22 = ... = x, = z, the equality is achieved
and

n

n
Hxi:x .

i=1

Therefore, when 61 = d2 = ... = 6,1 = 9, for all
= 0,1,...,n—2, [[}Zy 7 sin(3/_, dk+¢) achieve their
maximum sin” "' 77 ((j+1)J) at the same time. Therefore,
[1,-; det(Gi;) achieves its maximum

H det(Gy;) = sin" 'dsin 228, .sin'((n — 1)d)
§>i
Rearrange the right hand side of the above formula, we
have
[[det(Gij) = (sin" !5 xsin'((n — 1)5)
i>i
(sin™ "2 28 x sin®((n — 1)4)
(sin™® 38 x sin®((n — 3)4)

When sin 5§ = sin((n — 5)§), all sin™ ™7 j§ x sin? ((n — §)9)

achieve, at the same time, their maximum

((n — j)sinjé + jsin((n fm))"

" (sinjo)".

Note that, when 61 = d2 = ... = dp—1 = 6,

Therefore,

s< T

n—1
Therefore, sin j§ = sin((n — j)d) implies
j6 =7 —(n— )

Therefore, implies

Therefore, when 61 = d2 = ... = 6, = 7, [1; det(Gs)
achieve its maximum.

O

6. EXPERIMENTAL RESULTS

The numerical properties of real number codes from Van-
dermonde matrices, Cauchy matrices, DCT matrices, DFT
matrices, and Gaussian random matrices has been fully an-
alyzed and compared in |11]. Experimental results indicate
that real number codes from Gaussian random matrices are
much more stable than the other codes.

In this section, we will compare the numerically best codes
with real number codes from Gaussian random matrices and
Grassmannian frame matrices. When the number of era-
sures m = 2, there are exact analytical expressions for the
generator matrices of both the Grassmannian code and the
numerically best code. The numerically best code are the
same as the Grassmannian code when m = 2. They are
both numerically optimal. However, when the number of
erasures m > 3, the Grassmannian code is not optimal any-
more. Therefore, we focus on the comparison the numeri-
cally stability of these codes for more than two erasures.

When the number of erasures m > 3, most of time, there
are no exact analytical expressions for the generator matri-
ces of all three codes except for very few combinations of m
and n. Therefore, most of time, we have to use approxima-
tion codes in practice.

However, for m = 3 and n = 10, the mathematically
optimal (without any computational approximation) Grass-
manian (packing) codes are given in [1§]. It is a hexakis
bi-antiprism. The columns of the corresponding generator
matrix (i.e. the coordinates of the 10 points in three dimen-
sional space) are given in [2|. Therefore, in this paper, we
choose to compare the numerical stability of the three codes
to tolerate three failures in ten processors. Table 2 gives the
corresponding generator matrix of the Grassmannian code.

It is mathematically difficult to obtain analytical expres-
sions for the numerically best codes for three or more era-
sures. Therefore, for numerically best codes, we use the ap-
proximation codes computed by solving the unconstrained



Table 1: A generator matrix from Gaussian random matrices with mean p = 0 and standard deviation o = 1.

g1 g1 g1 g1 g1 g1 g1 g1 g1 g1
0.0582 | -0.2290 | 0.1256 | -1.1022 | -2.6053 | -2.0564 | -0.0062 | -1.0216 | -0.9579 | -2.0886
-1.6885 1.0350 | -1.2976 | 0.7591 | -0.8609 | -0.7067 | -1.3709 | -1.9139 | -0.7915 | 0.5943
-1.2755 | -1.5523 | -0.8135 | 0.3585 | 0.0536 | -0.9256 | -0.4202 | -0.8843 | -0.8012 | 0.8242

Table 2: A generator matrix from Grassmannian frames matrices

91 g1 91 g1 g1 g1 g1 g1 g1 g1
1.0000 | 0.6101 | 0.6101 | 0.6101 | 0.6101 | 0.6101 | 0.6101 0 0 0
0| 0.7923 | 0.3961 | -0.3961 | -0.7923 | -0.3961 | 0.3961 | 0.8660 | -0.8660 0

0 0 ] 0.6861 | 0.6861 0 | -0.6861 | -0.6861 | 0.5000 | 0.5000 | -1.0000

optimization problem in Section 4 to participate the com-
parison. Table 3 gives the corresponding generator matrix

of the numerically best code. v ' ' ' '
Gaussian random codes are simple to generate using a 45 1

pseudo Gaussian random number generator. Table 1 gives 40 |

the corresponding generator matrix of the Gaussian random

code. The matrix is generated using MATLAB. Actually, 5 .

this code is only a statistical approximation of the Gaussian aal |

random codes. However, this is how we generate and use =

Gaussian random codes in practice. £ 1
It is well known [27] that, in solving a linear system of ° a0l i

equations, a condition number of 10* for the coefficient ma-

trix leads to a loss of accuracy of about k decimal digits in
the solution. The coefficient matrix of the system of equa- 10l J
tions to be solved during recovery can be any square sub-
matrix (including minor) of the generator matrix. There-
fore, in what follows, we focus on comparing the condition a \ . it
numbers of the sub-matrices of all three generator matrices. ® o 5 log, 10 E

The size of the generator matrices is 3 x 10, therefore, the "
total number of 3 x 3 sub-matrices in each generator matrix
is 120. Figure 5: Condition number distribution for Grass-

Table 4 gives the condition numbers of the 10 worst con- mannian frame codes and optimal codes.
ditioned 3 x 3 sub-matrices in all three generator matrices.
Table 4 demonstrates that the condition numbers of all 10
worst-conditioned 3 X 3 sub-matrices of the numerically best
code are much more smaller than that of the other two codes.
Therefore, in the worst case scenarios, the numerically best
code is numerically much more stable than both the Gaus-
sian random code and the Grassmannian code. Condition
number is a property that associated with more than two
columns of a matrix. The Grassmannian codes maximizes
only the minimum angle between any two columns of the
generator matrix. When the minimum angle between any
two columns of the generator matrix achieves its global max-
imum, it is still possible that three columns of a generator
matrix are in the same plan, therefore, the generator matrix
contains a singular sub-matrix. This is exactly the reason
why we get one singular sub-matrix in the Grassmannian
codes. Therefore, Grassmannian codes are generally NOT _
optimal unless m = 2 where a sub-matrix only contains 2 H‘H‘H ML [ .
columns. The numerically best code minimizes the maxi- 2 3
mum condition numbers of all sub-matrices, therefore, has a log, %
much better numerically stability in the worst case scenar-
ios.

Figure 5 gives the distribution of all 120 condition num-
bers of all 120 3 x 3 sub-matrices for both the Grassmannian

20

Density

Figure 6: Condition number distribution for Gaus-
sian random codes and optimal codes.



Table 3: A generator matrix from numerically best real number codes

g1 g1 g1 g1 g1 g1 g1 g1 g1 g1
-0.5566 | 0.1467 | 0.7247 | 0.9919 | 0.4631 | -0.6691 | 0.5614 | -0.2353 | 0.0686 | -0.6749
0.8095 | 0.7985 | 0.4905 | 0.1217 | -0.1332 | 0.2351 | -0.6914 | -0.0325 | 0.9466 | -0.5804
0.1871 | 0.5839 | 0.4839 | 0.0365 | 0.8763 | 0.7050 | 0.4547 | 0.9714 | -0.3149 | 0.4556

Table 4: The condition numbers of the 10 worst-conditioned 3 x 3 sub-matrices in different generator matrices

Grass | 0.1%107 [ 0.1%107 [ 0.3 107 [ 0.3 10" [ 0.3 107 [ 0.5% 10" [ 0.7 10" [ 2.3% 10" [ 2.3% 10"" [ Inf
Rand | 111 131.3 145.1 168.6 199 250.4 366.7 4574 786.7 1891.1
Best | 12.1652 12.4318 12.4371 13.2190 13.5483 14.7503 15.6580 16.1104 16.1609 16.5355

code (red) and the numerically best code (blue). Figure 5
demonstrates that the numerically best code are at least as
good as the Grassmannian code in average cases.

Figure 6 shows the distribution of all 120 condition num-
bers of all 120 3 x 3 sub-matrices for both Gaussian random
code (cyan) and the numerically best code (blue). Figure
6 indicates that the numerically best code are much more
stable than Gaussian random codes in average cases.

7. CONCLUSION

In this paper, we present a class of numerically best real-
number codes for fault tolerant matrix operations on large
HPC systems. We give an analytical expressions for the
numerically best erasure correcting codes for two erasures
and develop an approximation method to computationally
approximate the numerically best codes for more than two
erasures. Experiment results demonstrate that our codes
are numerically much more stable than existing codes.

In the near future, we would like to explore better ap-
proximation methods to computationally approximate the
numerically best codes for three or more erasures.
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