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Abstract

The theory of embodied computation, like the theory of embodied cognition,
provides opportunities as well as challenges. On one hand, such computa-
tion is intimately connected with its physical realization, both because post-
Moore’s Law densities demand more direct exploitation of physical processes,
but also because the purposes of embodied computing are often physical (e.g.,
self-assembly, microrobotics). These characteristics make embodied computing
more difficult than conventional computing, because it is not so idealized (inde-
pendent of its material realization). On the other hand, embodied computation
can make productive use of its physical realization, for example, by using the
physical states and processes of itself and its environment in place of computa-
tional representations. Thus it has implicit computational resources unavailable
to conventional computing. In order to fulfill this promise, we will need both
formal and informal models of embodied computing that directly address the
interaction of formal and physical processes in embodied computational sys-
tems. These will be essential cognitive tools for conceptualizing, designing, and
reasoning about embodied computation. In this talk I will present a prelimi-
nary design for one such model, which is of general applicability, but especially
oriented toward artificial morphogenesis (self-assembly of complex hierarchical
structures by processes analogous to embryological morphogenesis).

*This report may be used for any non-profit purpose provided that the source is credited.



1 Background

1.1 Embodied Computation

Pfeifer, Lungarella, and Iida [41, p. 1088] provide a concise definition of embodiment:
“the interplay of information and physical processes.” Hence, embodied computa-
tion may be defined as computation whose physical realization is directly involved
in the computational process or its goals. It includes computational processes that
directly exploit physical processes for computational ends and those in which infor-
mation representations and processes are implicit in the physics of the system and its
environment, which effectively represent themselves. It also includes computational
processes in which the intended effects of the computation include the growth, as-
sembly, development, transformation, reconfiguration, or disassembly of the physical
system embodying the computation. Embodied computation is based on some of the
insights from embodied cognition and embodied artificial intelligence [6, 8, 21, 40], but
extends them to all computation [30].

We believe that computational processes occurring in nature are well enough un-
derstood at this time to begin to abstract some of its central characteristics and to
construct a formalism to facilitate the understanding and design of embodied com-
putation systems. The development of such a formalism is the central goal of the
proposed research.

1.1.1 Advantages

There are a number of reasons for investigating embodied computing (details can be
found elsewhere [30]). The most common model of computation (binary digital logic)
is far removed from the physical processes by which it is implemented, and this has
facilitated a beneficial independence of computer design from device technology. Thus
our technological investment in computer design has been preserved through several
generations of device technology (from relays to ICs). We have had the luxury of using
a large number of devices, operating sequentially, to implement each computational
primitive (e.g., addition). This is because computation and the physical processes re-
alizing it have existed at different scales of space and time. However, as in the coming
decades we enter the era of post-Moore’s Law computing, increasing the density and
speed of computation will require a greater assimilation between computational and
physical processes [30, 31, 32]. In part this will be accomplished by developing new
physical systems and processes, but the other half of the equation is to develop new
models of computation that are closer to the laws of physics.

Another significant advantage of embodied computing is that many computations
may be performed “for free” by the physical substrate. For example, as is well known,
many artificial neural networks are based on matrix-vector multiplications combined
with simple nonlinear functions, such as the logistic sigmoid, 1/(1 + e¢~%), and many
universal approximation theorems are based on linear combinations of sigmoids and



similar functions [20, pp. 208-94]. Whereas computing a sigmoid on a conventional
computer requires computing a series approximation to a transcendental function
(e.g., exp, tanh) or approximating the sigmoid by table look-up and interpolation,
sigmoidal behavior is typical of many physical systems, for it results from an expo-
nential growth process that eventually saturates. For example, available chemical
receptors may become occupied or the supply of signaling molecules may become
exhausted. In general, sigmoidal response comes for free because physical resources
become saturated or depleted. In embodied computing we do not need to program
sigmoid functions explicitly; we can exploit common physical processes with the re-
quired behavior.

Further, many self-organizing systems depend on positive feedback for growth and
extension and on negative feedback for stabilization, delimitation, separation, and the
creation of structure (in space or time). In embodied computation negative feedback
may be implemented by naturally occurring physical processes such as leakage, evap-
oration, dispersion, dissipation, and degradation of matter or energy. These processes
will occur anyway; embodied computation makes productive use of them.

Some algorithms (e.g., simulated annealing [23|, stochastic resonance [3]) use
randomness for productive purposes, including escape from local optima, symme-
try breaking, deadlock avoidance, exploration, etc. Such randomness comes for free
in physical systems in the form of noise, uncertainty, imprecision, and other stochastic
phenomena.

Traditionally we have designed computers to operate with sequential logic, and
then we have attempted to increase computation speed by using these sequential ma-
chines in parallel. In embodied computation, in contrast, the concurrency typical
of physical, chemical, and biological processes is directly exploited to achieve paral-
lelism. Sequentiality, where necessary, is imposed on an inherently parallel process.
An example application of “parallelism for free” is diffusion, which occurs naturally
in many fluids, such as liquids and gasses, and in other media; for example, cell-to-
cell diffusion is critical in embryological morphogenesis [24]. Diffusion can be used
for many computational processes, including broadcasting information and massively
parallel search, such as in path planning through mazes, optimization, and constraint
satisfaction [22, 37, 42, 47, 51]. Diffusion is expensive to implement by conventional
computation, but it comes for free in many physical systems.

A common tradeoff faced by many search algorithms is exploration versus exploita-
tion, that is, the acquisition of new information versus the use of the information al-
ready obtained. Embodied computation systems often naturally and implicitly imple-
ment a dynamic balance between exploration and exploitation. A well known example
is ant foraging behavior, in which ants imperfectly follow pheromone-marked trails to
food sources [7]. Initially, random wandering implements unbiased exploration, but as
knowledge is acquired, positive feedback biases activity toward exploitation. Built-in
negative feedback (arising “for free” from degradation and dissipation of pheromones)
ensures that in the absence of positive feedback, the balance shifts from exploitation



back toward exploration. Thus simple physical processes implement a parallel control
system that sensitively and robustly manages the acquisition and use of information.

Cell-sorting by differential adhesion is an example, from embryological develop-
ment, of a natural embodied computation process that makes productive use of phys-
ical phenomena [13, ch. 4]. In this process there is a mixed population of cells with
different degrees of cohesion. Under conditions of random motion (e.g., undirected
wandering), the cells sort themselves out into spatially separated groups. In the
absence of constraints, the cells form two concentric spheres, with the more tightly
cohering particles in the center. In the presences of constraints, the particles sort
themselves into separated tissues or bodies. This is an important process in embry-
ological morphogenesis, and may be useful in artificial morphogenesis in nanotechno-
logy and related applications. A similar process is lumen formation resulting from
polarized cells with nonuniform distributions of adhesion molecules [13, pp. 78-80].
Under random motion the cells sort themselves into a low-energy configuration in
which there are hollows (lumens) bounded by the less adhesive faces of the cells.

Nature also provides informative examples of how the physical system may be its
own representation, which are relevant to the application of computational ideas in
nanotechnology. For example, stigmergy refers to the process wherein the “project”
undertaken by one or more organisms embodies the information required to con-
tinue and complete the project [7]. The best-known example is wasp nest building
[5]. The partially completed nest itself provides the stimuli that guide the individ-
ual wasps in the construction process. Therefore there is no need for the wasps to
have representations of the completed nest or of the current state of its construc-
tion, or to have an internal “program” for nest construction. In this way, relatively
simple agents (with modest information processing capacity) can construct complex,
functional structures.

The greatest degree of integration between a computation and its realization oc-
curs when the computation is not controlling some separate physical system, but
is rather modifying or constructing the physical realization of itself. That is, the
computer and the computation co-create each other. This is the basis of embryolog-
ical morphogenesis, in which embodied computation creates the physical substrate
for later embodied computation. Cells signal each other in order to coordinate the
creation and differentiation of new cells, which extend the morphogenetic process.
Further, in later developmental stages, neural processes create the nervous system,
including the brain. (Thus living systems are described as autopoietic, or self-making
(34, 38].) Similarly, in some DNA-based algorithmic self-assembly processes, molec-
ular computation creates the physical structure that supports further computation
and assembly [2, 43, 44].

Since embodied computation systems are potentially capable of modifying their
own structure, they can be naturally adaptive. Beyond this, they may be “radically
reconfigurable,” that is, able to reorganize their physical structure to adapt to chang-
ing circumstances and objectives [26, 27, 28, 29]. A related, but very important,



property is self-repair, since acceptable configurations can be defined as stationary
states to which the system reconfigures after damage. Finally, embodied computation
systems can be designed for self-destruction, which is especially important for nano-
scale systems. If they can reconfigure themselves, they can also deconfigure them-
selves, rearranging their components into inert and potentially recyclable material.
As we know, apoptosis (programmed cell death) is essential both in embryological
development and in the maintenance of a well-functioning body.

In summary, with conventional computing technology we “torture” the physical
substrate so that it implements desired computations (e.g., using continuous electronic
processes to implement binary logic), whereas embodied computation “respects the
medium,” conforming to physical characteristics rather than working against them.
The goal in embodied computation is to exploit the physics, not to circumvent it
(which is costly).

1.1.2 Disadvantages

One of the challenges of embodied computation is our lack of experience with it.
Much of our programming has been done in the idealized worlds of perfect logic and
implementation-independent programming languages; unavoidable interactions with
physical reality have been relegated to the periphery. Fortunately nature provides nu-
merous examples of effective embodied computation, from intracellular genetic regula-
tory circuitry to the swarm intelligence of social insects and other animals. Therefore
we can look to nature to learn how computation can cooperate with physics, rather
than opposing it, and how information processing systems can fruitfully interact with
the physical embodiment of themselves and other systems.

Traditionally, a sort of Cartesian dualism has reigned in computer science; pro-
grams and algorithms have been conceived as idealized mathematical objects; software
has been developed, explained, and analyzed independently of hardware; the focus
has been on the formal rather than the material. Embodied computing, in contrast,
because of its greater assimilation to physics, is less idealized, less independent of its
physical realization. This will increase the difficulty of programming since it will be
dependent on (or, some might say, contaminated by) physical concerns. One critical
issue is energy. Most embodied computation systems, and especially those incorpo-
rating active agents, are dissipative systems, which must be fueled by energy in some
form (including chemical reactants) and must dissipate energy and waste material.
Contrary to conventional models of computation, a model of embodied computation
must address both the acquisition of energy and raw materials, and the dissipation of
energy and material wastes. In particular, embodied computation systems must be
able to convey energy and raw materials from their sources to the places where they
are used, and to convey wastes out of the system without disrupting its activity.

This increased dependence on physical properties might seem to turn computation
into a kind of applied physics, but there is still an important role for computational



abstractions.  We can see this from the history of contemporary computing tech-
nology, for the same mathematical abstraction — Boolean logic — has been used as
a model of computation since Boole’s Investigation of the Laws of Thought (1854),
through successive generations of implementation technology, from the mechanical
logic of Jevon’s logical piano (1869), through relays, vacuum tubes, discrete tran-
sistors, integrated circuits, and several generations of VLSI. This stable theoretical
background has permitted a cumulative investment in Boolean logic and circuit de-
sign, providing continuity from one technological generation to the next, and saving
us from having to reinvent computer design with each new technology. This is possi-
ble because Boolean logic is physically realizable, yet sufficiently abstract that it can
be realized by a variety of physical systems.

Therefore, in laying the foundation for embodied computing we should seek new
models of computation that combine physical realism with sufficient abstractness to
be implementable in a variety of physical media. Our models of computation need
to be close to the underlying physical realization, but not so close that only one
realization is possible. Therefore we should adopt as fundamental computational
operations those processes that occur in a wide variety of physical systems or that
can be fairly directly implemented in them. For example, diffusion is a common
physical process, which occurs in a variety of media, from charge carriers diffusing in
a semiconductor, to molecules diffusing in a fluid, to cells wandering randomly in a
developing embryo, and it has proved useful for information processing and control
in natural and artificial systems; therefore it is a good candidate as an operation in
embodied computing.

Fortunately nature provides many examples of the use of physical processes for
information processing, and these can often be abstracted from their specific phys-
ical embodiment and realized in other physical systems. Examples include insect
nest building, slime mold aggregation, excitable media and reaction-diffusion systems
used to control spatial organization, molecular regulatory circuits in cells, intracellu-
lar DNA/RNA computing, and embryological pattern formation and morphogenesis.
Understanding these systems in information processing terms will show how common
physical processes may be exploited to more directly realize information-processing
functions in intimate interaction with their physical realizations, and thus show the
way to embodied computing technologies. Indeed, even a model that is ultimately
rejected as an account of a biological process might be applied usefully in an artificial
embodied computation system.

1.2 Focal Application: Artificial Morphogenesis

Enormous progress has been made in recent years in the nanostructuring of materials,
and a variety of techniques are available for fabricating bulk materials with a desired
nanostructure. However, the higher levels of organization have been neglected, and
nanostructured materials are assembled into macroscopic structures using techniques



that are not essentially different from those used for conventional materials. For
example, nanostructured materials may be shaped by machining or molding and as-
sembled by conventional manufacturing techniques. Thus we may have self-assembly
at the nanoscale and conventional manufacturing at the macroscale, but no systematic
fabrication technology applicable to all scales. Is there an alternative?

Fortunately nature provides a suggestive example, for embryological morphogene-
sis creates highly complex hierarchical systems, with structures ranging from the na-
noscale within cells up through multicellular tissues to the level of gross anatomy. As
a significant example, we may take the mammalian nervous system. The brain com-
prises a number of anatomical regions (the lobes), each comprising hundreds of smaller
functional regions (e.g., Brodmann’s areas, computational maps), which are struc-
tured into macrocolumns, which in turn contain minicolumns, each with a half-dozen
or so layers. The minicolumns comprise about one hundred neurons with dendritic
trees of characteristic shape (and tens of thousands of synapses), all interconnected in
specific ways. At the other end of the scale, the brain itself is part of a nervous system,
which includes a highly ramified but organized network of nerves. Thus, embryological
morphogenesis provides an inspiring example of how self-organized growth, differen-
tiation, and interaction can produce these complex macroscopic structures from mi-
croscopic components. Similarly, the mathematical principles of morphogenesis may
be applicable to the fabrication of complex hierarchically-structured artificial sys-
tems. The physical realization of these mathematical principles is closely connected
to computation.

Morphogenesis has a number of distinct characteristics that distinguish it from
most other self-organizing processes, and we believe that these characteristics will
be important in embodied computation. For example, we commonly think of com-
putation as taking place in a fixed substrate, and many self-assembly processes also
assume a fixed substrate or matrix in which agents move. In morphogenesis, in con-
trast, the computational medium is assembled by the computational process, as a
zygote develops into a hollow blastula and into a more complex structure of tissues,
which govern the information and control processes in the medium. Although cellular
automaton (CA) models, for example, have been applied productively to the study of
localized pattern formation processes, they are inadequate for describing morphogene-
sis as a whole. CA models assume a predefined regular spatial grid, whereas biological
morphogenesis creates the space (the embryo) in which (and relative to which) de-
velopment occurs. Generally speaking, in nature self-organization proceeds without
the benefit of fixed, predefined reference frames and coordinate systems, which is one
source of the robustness of these processes.

In morphogenesis, tissues (groups of cells with a common function) form and re-
form under control of their inherent self-organizing processes. We think of the embryo
as solid, but most of the tissues are elastic, at least during development, and elastic
properties influence the forms that develop [49, ch. 6]. In other cases, tissues be-
have more like viscous fluids, perhaps percolating through a more solid matrix, and



this fluid motion is essential in cell migration [4][13, pp. 92-4][48]. Non-cellular sub-
stances, such as morphogens and other signaling chemicals diffuse like gases through
non-isotropic media, but cells also exhibit facilitated diffusion [13, pp. 13-15, 156,
252]. In many cases, tissues occupy a middle ground, with viscoelastic properties [13,
pp. 21-2, 133]. In general terms, morphogenesis takes place in the relatively unex-
plored realm of soft matter [10][13, p. 2|, and our theories of embodied computation,
at least as applied to morphogenesis, need to take account of its characteristics.

Morphogenesis proceeds through a carefully orchestrated series of overlapping par-
allel phases, which have the characteristics of a coordinated algorithm [50]. In this
robust process, the completion of one phase signals the initiation of the next through
a combination of chemical signals and changing cell states. Temporal patterns of-
ten create spatial patterns (as in the clock-and-wavefront model of segmentation
9, 12, 18]), and morphogenesis may be best understood as the creation of patterns
in four dimensions [17, p. 504n].

Developmental biologists have identified a number of fundamental processes in-
volved in morphogenesis [13, pp. 158-9][45] (for an enumeration, see Sec. 4, p. 25).
If indeed, these processes are sufficient to produce complex, hierarchically-structured
systems, such as vertebrate organisms, then they define an agenda for embodied com-
putation applied to artificial morphogenesis.

2 Requirements

The goal of our project is to develop and evaluate formal methods for embodied com-
putation oriented toward artificial morphogenesis. This implies several requirements.

The objective of post-Moore’s Law computing is greater densities, greater speed,
and greater parallelism, all of which make computation, at a macroscopic scale, look
like a continuous process occurring in a continuous medium. The goals of embodied
computation are best served by a continuous perspective, since the laws of physics
are primarily continuous (ordinary and partial differential equations). This is es-
pecially true in our intended application area, morphogenesis, for tissues and their
environments are naturally treated as continua (e.g., epithelia, mesenchyme, blood).
On the other hand, while some of these phenomena are physical continua (e.g., elec-
trical fields), others are phenomenological continua composed of microscopic discrete
elements (atoms, molecules, cells, microrobots, etc.).

The two perspectives — the discrete and the continuous — are complementary.
In many applications of embodied computation, especially when the computational
process is implemented by very large numbers of computational elements, we will
want to be able to move fluently between the two perspectives. This is especially the
case in morphogenesis, where in the early stages of development we are faced with
discrete phenomena — 1, 2, 4, 8, etc. cells with specific shapes and arrangements —
whereas in later stages (when there are more than ~ 10000 cells) it is more convenient
to treat the cell masses as viscoelastic tissues and apply continuum mechanics [13].
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Figure 1: Artistic depiction of microrobot.

Therefore we propose that a formalism for embodied computation (especially as ap-
plied to morphogenesis) should support a systematic ambiguity between discrete and
continuous models. That is, so far as possible, the formalism should be interpretable
as describing a mathematical continuum or a large set of discrete elements, and as
describing either a continuous- or discrete-time process.

Thus, the formalism should support complementarity by treating bodies, tissues,
and other macroscopic masses as comprising an indefinitely large number of elements,
which we interpret ambiguously as infinitesimal points in a continuum or as finite,
discrete units in a finite, discrete set. Adapting the terminology of continuum me-
chanics, we call these elements particles when it is more convenient to think of them
as discrete units, and material points when it is more convenient to think of them as
infinitesimal points in a continuum.

To maintain these complementary interpretations, the formalism should treat the
elements as having a small, indeterminate size. To maintain this indeterminacy, the
formalism should describe the properties of elements in terms of intensive quantities,
such as number density and mass density, which do not depend on size, in preference to
extensive quantities, such as volume and mass, which do. For example, shape should
be treated in an intensive way. Thus we should not think of the elements as differential
volume elements with a parallelepiped shape (dz dy dz), which may not be appropriate
for discrete particles (e.g., cells). Nevertheless, the cells constituting a tissue may
have definite shapes, orientations, etc. that are relevant to the morphogenetic process
(e.g., controlling cell adhesion, cell migration, etc.), and so these properties cannot be
ignored. The solution is to treat these properties as intensive quantities (e.g., aspect
ratios, probability density functions of orientations).

The formalism should be suitable for describing embodied computing processes



Figure 2: Artistic depiction of microrobots self-assembling to form artificial tissues.

in all kinds of media, including solids, liquids, gases, and physical fields. Further, we
know that viscoelastic media (so-called “soft matter” [10]) are important in morpho-
genesis (for example, mesenchyme is best characterized as viscoelastic [13, p. 98][14]),
so we expect to be dealing with materials of differing viscosity and elasticity. Indeed,
soft matter might be a new metaphor in morphogenesis, succeeding the crystal, field,
and fabric metaphors discussed by Haraway [19]. Finally, some of these materials
may be anisotropic (e.g., epithelium), and our formalism must accommodate that
possibility.

The formalism must be capable of describing active elements, such as living cells
and microrobots, as well as passive elements, such as diffusing chemicals, fluid media,
and solid substrates. In particular, the formalism should be applicable to living agents
as well as to nonliving ones, for embryological morphogenesis, which is the inspiration
for this technology, is based on living cells, and we also want to address artificial mor-
phogenetic processes based on genetically engineered organisms and other products
of synthetic biology.

Energetic issues are critical to embodied computational systems, which must be
maintained in a nonequilibrium state either for a definite duration or indefinitely.
Therefore the formalism needs to be able to describe and define the flow of matter
and energy through the system. Active elements have to be powered in some way,
either continuously during operation or by being arranged initially in a nonequilibrium
state. We anticipate that embodied computational systems will be fueled in a variety
of ways and powered by a variety of energy sources (electrical, chemical, optical,
thermal, mechanical, etc.). Therefore the formalism needs to be able to define the
dynamical and spatial relations among energy sources and other elements. Dissipation
of energy is especially critical for microscopic nonequilibrium systems, and should
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be addressed by the formalism. Similarly embodied computation must address the
disposal of other waste products, such as unrecyclable chemical reaction products.
The elimination of waste products may be implemented by diffusion, convection, or
more structured transport processes, as defined in the embodied computation system.

Descriptions of morphogenetic and developmental processes in terms of partial dif-
ferential equations are naturally expressed relative to a fixed, external three-dimensional
reference frame. There are two problems with this. First, the natural reference frame
is the developing body itself, which might not have any significant relationship to a
fixed frame(e.g., the developing embryo, with its intrinsic frame, in variable relation
to a terrestrial frame). Second, since active elements (such as migrating cells) are
responding to their local environments (e.g., chemical gradients in their immediate
vicinity), it it natural to describe their behavior in terms of their intrinsic coordi-
nates (e.g., ahead/behind, above/below) or their immediately local frame (e.g., the
substrate on which or medium through which they are migrating). Therefore tensors
and curvilinear coordinates seem to be the most suitable terms in which to describe
the properties and behaviors of elements.

It is essential that a formalism for embodied computation integrate smoothly with
the usual mathematical formulations of physical, chemical, and biological processes.
It should be easy to translate between computational and mathematical expressions
so that the full range of physical theory and mathematical method can be applied
to embodied computation. On the one hand, this will permit mathematical analysis
to be applied, when the appropriate methods and results exist. On the other hand,
since many of these systems are complex and nonlinear, the power of contemporary
mathematical analysis may be insufficient to understand these systems. Therefore, the
formalism should facilitate simulation of a system by straightforward translation into
behavioral rules (“programs”) for the elements. The formalism should be operational
as well as analytical.

Due to the mathematical intractability of many interesting systems, we expect em-
bodied computation to have a significant experimental component. Thus, as already
mentioned, we expect simulation to play an important role in the design, evaluation,
and testing of embodied computation systems before they are physically realized. In
most respects the required simulation tools will be similar to those commonly used
in computational science, but there are at least two differences.

Biologists often find it convenient to express regulatory networks qualitatively.
For example, they may use influence models to indicate that one gene product en-
hances or represses the expression of another gene [52]. These qualitative regulatory
relationships are an important tool for conceptualizing control processes in which the
quantitative relationships are unknown or are not considered critical (e.g., the same
final state results from a wide range of parameter values). Therefore, the formalism
should permit the expression of qualitative control relationships, and the simulator
should permit their execution (e.g., by supplying default functions and parameters
and facilitating their variation).
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Of course a central goal of the formalism is that it support complementary dis-
crete and continuous descriptions of substances, tissues, processes, etc., because this
complementarity is valid in the realm of many important applications of embodied
computation, where large numbers of microscopic elements constitute macroscopic
bodies. Nevertheless, discrete and continuous models sometimes lead to different
results (e.g., for small cell numbers). Therefore the simulator should permit simula-
tions to be run with various meshes and discretizations to ensure that results are not
artifacts of the simulation parameters.

A related issue is that multiple space and time scales will be relevant to complex
embodied computation systems, such as those implementing morphogenesis of com-
plex hierarchical structures. Thus a phenomenon that appears discrete at one scale
might be better treated as continuous at a larger scale. Conversely, objects and events
that seem discrete at a large scale, may appear continuous at a finer scale. Since a
complete embodied computation system may involve subsystems at many scales, the
formalism must permit their integration into a single description.

In embodied computation, especially as it pushes towards the nanoscale, noise,
error, uncertainty, defects, faults, and other sources of indeterminacy and unpre-
dictability are unavoidable [25]. They should not be treated as secondary effects,
taken into account only as an afterthought, but rather as essential properties of the
medium of embodied computation. Thus we seek first to exploit them as computa-
tional resources, and only if that fails, to minimize them as interference. Therefore
a formalism for embodied computation should be oriented toward the description of
stochastic processes. Further, since many self-organizing processes depend on stochas-
ticity and sampling effects for symmetry breaking, the formalism should admit them
(in effect as processes in which discrete phenomena can influence structures in con-
tinuous media).

3 Approach

Having outlined the requirements for a formalism for embodied computation, we
present a preliminary definition of such a formalism. The goal of the proposed research
is the further development and evaluation of this formalism.

3.1 Description
3.1.1 Substances

One of the central concepts in the proposed formalism is a substance, which refers
to a class of phenomenological continua with similar properties, especially from a
computational perspective (e.g., cohesion, viscosity, behavioral repertoire). They are
defined by (perhaps fuzzy) ranges of parameter values, ratios of parameters, etc.
Some of the most familiar substances are solids, liquids, and gases. Other useful

12



classes are incompressible, viscous, elastic, and viscoelastic substances. Our notion
of substance includes other spatially distributed quantities, such as electromagnetic,
optical, thermal, and gravitational fields (more abstractly, scalar, vector, and tensor
fields).

Substances are naturally organized in a hierarchy, from the most general classes
(e.g., solid, liquid, gas) to specific physical substances (e.g., liquid water, oxygen gas,
mesenchyme, a specific extracellular matrix). (Of course there are borderline cases.)
The more generic classes are more useful from a computational perspective, since
they have the potential of being realized by a greater variety of specific substances.
For example, for the purposes of embodied computation it may be sufficient that
a substance diffuse and degrade at certain relative rates, and be producible and
detectable by other particles, but the choice of specific substance might be otherwise
unconstrained.

Multiple inheritance, allowing a class to be subclass of two or more disjoint classes
and to inherit the attributes of both of them, is an idea that has proved useful in
object-oriented programming and is supported by some object-oriented programming
languages. Nevertheless it has some complications, including consistency problems.
Multiple inheritance is potentially useful in embodied computing, and we intend to
explore it as well as some alternatives.

It is apparent that substance hierarchies have similarities to class hierarchies in
object-oriented programming, but there are also some differences. First, as will be
explained in Sec. 3.1.2, the instances of substance classes are continuous bodies (or
tissues) rather than discrete atomic objects, which are the instances of classes in
object-oriented programming. Second, while substances are similar to classes in that
they are defined by subclass relationships, by (tensor) variables associated with their
particles, and by common behaviors, in addition substances are defined by constraints
on the values of these variables. Thus, substance definitions are more like definitions in
mathematics or physics than like class definitions in an object-oriented programming
language. Nevertheless, it is our intent that substance definitions be sufficiently formal
that they can be used in simulations. (Examples of substance definitions are given
below, Sec. 3.2.)

3.1.2 Bodies

In object-oriented programming the instances (members) of classes are discrete atomic
objects, which frequently act as software agents. In our formalism for embodied com-
puting, in contrast, instances of substances are called bodies or tissues, which are
phenomenological continua of elements (discrete particles or infinitesimal material
points).! Typically bodies are homogeneous, that is, composed of elements of a par-

'Tn continuum mechanics, “particle” and “material point” are synonymous, but we use “particle”
when it is most natural to think of the body as composed of discrete units, and “material point”
when it is natural to think of it as a physical continuum. The distinction is entirely heuristic.

13



ticular type that is characteristic of the substance’s definition (e.g., water molecules,
cells in a particular state of differentiation).

Several bodies may occupy the same region of space and interact with each other.
For example, the same region may be occupied by a volume of diffusing chemical and
by a mass of cells following the chemical gradient. The kind and degree of interpen-
etrability possible, as well as other interactions, is determined by the definitions of
the substances. Some bodies may be quite diffuse (e.g., disconnected cells migrating
through mesenchyme).

Mathematically, a body is defined to be an indefinitely large set B of elements
(particles or material points). We say “indefinitely large” to maintain the systematic
ambiguity between the infinite number of material points in a continuum and the
finite but large number of particles in a discrete ensemble. It is often convenient to
think of the elements of B as labels or identitifiers for the elements. At any given
time t each element P € B has a location in a region R; C & of three-dimensional
Euclidean space? defined by a vector p = Cy(P), where C; : B — £ is a continuous
function that maps B into £ with range R; = C;[B]. As in continuum mechanics, C;
defines the configuration of B at time t, and therefore C; reflects the deformation of
the body as a consequence of its own internal dynamics and its interaction with other
bodies.

B has a topology homeomorphic to R;, and in fact it is often convenient to label the
particles by their position at some distinguished time t(, such as the initial preparation
of the system. In this case, Cy, is an identity function. When the particles are labeled
by their position in some such reference configuration, we write P € B = R, to
emphasize that the particle labels are vectors in £.

The configuration mapping C; is generally taken to be a diffeomorphism; in par-
ticular, it is continuous, invertible, and sufficiently differentiable for the purpose at
hand. This common assumption would seem to present a problem, since a body
must remain homeomorphic to its previous states, which presents bodies from divid-
ing, joining, or changing topological genus, and would seem to limit morphogenesis.
There are at least two solutions to this problem. One is to relax the requirement
that C} be a diffeomorphism, which is not always required. The second, and better,
answer is to realize that bodies are abstract unities, effectively manifolds in which (as
will be explained in Sec. 3.1.3) various properties, such as number density, can vary.
As a consequence, the number density of elements in them can arbitrarily small. If
the density becomes zero between two regions of a body, the body will be effectively
divided, and similarly, if a zero density becomes positive, then separate regions may
be joined. This is in fact exactly what we need in morphogenesis, in which changes
in number density of cell types define tissues. For examples, consider the reaction-
diffusion systems and the model of vasculogenesis discussed below (Secs. 3.2.2, 3.2.4),

2We limit our formulation to three-dimensional space because our focal application is morpho-
genesis, the creation of three-dimensional form. Occasionally we consider the simpler cases of one-
and two-dimensional pattern formation.
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both of which are capable of generating high-genus structures.

An embodied computation system comprises a finite and fixed number of bodies
(or tissues), each having properties that allow it to be classified as one substance
or another. The behavioral dynamics of these bodies, in mutual interaction, defines
the dynamics of the embodied computation system, but it must be prepared in some
appropriate initial state. This is accomplished by specifying that a particular body of
a defined substance occupies a specified region of Euclidean space and by specifying
particular values for the variable properties of the substance throughout that region
(i.e., for each element constituting the body). (In many cases the values will be
uniform throughout the region or vary randomly according to some distribution.)
Examples include a concentration of a substance in a small volume (e.g., an injected
chemical or an undivided cell), the definition of a uniform gravitational or electrical
field, a bath at a specified temperature and occupying a defined region. While the
full generality of mathematics may be used to define the initial bodies, we are most
interested in physically feasible preparations, but this depends on the specifics of the
embodied computation system.

3.1.3 Elements

A substance is defined in terms of the properties and behaviors of its elements, and
so we need to consider how they may be defined consistently with the requirements
of Sec. 2. For most purposes the formalism makes use of material ( Lagrangian, refer-
ence) descriptions of these properties and behaviors, rather than a spatial (Eulerian)
reference frame. This means that we consider a physical quantity () as a time-varying
function of a fixed particle P € B as it moves through space, Q(P,t), rather than
as a time-varying property ¢(p,t) at a particular fixed location in space, p € £. For
example, if temperature is the property, then we think of the temperature as a (per-
haps variable) property of the particle, as opposed to thinking of a (time varying)
temperature field with respect to a fixed spatial reference frame. In effect, the use
of material variables in preference to spatial variables is a particle-centered descrip-
tion, and is a more object-oriented or agent-based way of thinking, in that we can
think of the particles as carrying their own properties with them and behaving like
well-defined entities. (Obviously the two reference frames are related by the configu-
ration function, Cy.) The distinction is illustrated by velocity. At any given time each
particle P has a velocity V, which is the material time derivative of its (coordinate-
independent) position vector, p: V(P) = D;p = D;C;(P). On the other hand, the
spatial derivative v(p) = V[C; ! (p)] defines a velocity vector field with respect to the
spatial frame (the rate of change of spatial position at each spatial position). Even
when properties are commonly described in spatial terms (e.g., a background tem-
perature or electrical field), we prefer, when possible, to use a material description by
attaching the properties to a (perhaps rigid and immovable) substrate. Nevertheless,
the best ways of describing embodied computations will emerge from experience using
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the formalism.

As explained in Sec. 2, in order to maintain independence of the size of the ele-
ments, so far as possible all quantities are intensive. This is one of the characteristics
that distinguishes this model of embodied computing from ordinary mathematical
descriptions of physical phenomena. For example, instead of elements having a mass
(which is an extensive quantity), they have a (mass) density, the mass per unit vol-
ume, which is an intensive quantity and doesn’t depend on the size of the elements.
Similarly, instead of dealing with N, the number of particles (e.g., cells or molecules)
corresponding to an element, we deal with its number density n, the number of par-
ticles per unit volume. Note that if the number density becomes very small, then
the dynamics will be subject to small sample effects, which are often important in
self-organization; they are discussed further below. There are various indicators of
when continuous mathematics is a good approximation. For example, the Knudsen
number Kn = A/L is the ratio of a particle’s mean free path length \ to a charac-
teristic length scale L, such as its diameter. In the case of morphogenesis, this could
measure how many diameters a cell is likely to move before its genetic regulatory cir-
cuits can change its direction. For low Knudsen numbers (< 1) it is safe to apply the
approximations of continuum mechanics, but high numbers may require the methods
of statistical mechanics.

The requirement for complementary perspectives implies that the properties of
elements be treated as bulk quantities, that is, as the collective properties of an
indeterminate ensemble of “units” (e.g., cells or molecules). This creates special
requirements when the units constituting an element might have differing values for
an attribute. For example, cells, molecules, and microrobots have an orientation,
which is often critical to their collective behavior. In some cases all the units will
have the same orientation, in which case the orientation can be treated as an ordinary
intensive property of the element. In most cases, however, we must allow for the fact
that the units may have differing orientations (even if a consequence only of defects
or thermal agitation). Therefore, we have to consider the distribution of orientations;
each orientation (represented by a unit vector u) has a corresponding probability
density Pr{u}. If n is the number density of an element, then n Pr{u} is the number
density of units with orientation u. Equivalently, the orientation may be interpreted
as a vector-valued random variable, U.

More generally, many embodied computation processes make use of vectors fields
(e.g., the gradients of scalar fields) to guide the motion of particles. Examples include
chemical concentration gradients and electrical gradients. Mathematically, each point
of the field has a well-defined vector value, but to maintain complementarity we must
associate with each element a vector-valued random variable (or a probability density
function over vectors).

Embodied computation systems often depend on the movement of masses of par-
ticles, and this is especially the case in morphogenesis, and so we are often concerned
with the fluz of some intensive quantity. For example, the mass-density flux pv repre-
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sents the direction and rate at which mass density is moving. Similarly, the number-
density flux nv represents the movement of particle density. The local decrease in
density is then given by the divergence of the flux, V - (nv).

Morphogenesis in development sometimes depends on cell shape; for example, a
change from a cylindrical shape to a truncated cone may cause a flat tissue to fold [13,
pp. 113-16)[39]. Generally a shape can be expressed as a vector or matrix of essential
parameters that define relevant aspects of the shape. Two complexities arise in the
expression of shape in this formalism for embodied computing. First, the shape must
be expressed in a coordinate-independent way, which means that we are dealing with
a shape tensor. Second, since an element represents an indefinite ensemble of units,
shape must be treated as a probability distribution defined over shape tensors, or as
a tensor-valued random variable.

One of the advantages of object-oriented programming and agent-based simula-
tions is the ability to describe and reason about each agent as an individual, obeying
its own behavioral rules. It may seem that the proposed formalism loses this attrac-
tive feature because, while the individual units may behave like independent agents
(and have, for example, a definite orientation), the units are below the level at which
the formalism operates. Rather, it operates at the level of elements, which comprise
an indefinite number of units (each of which may have its own orientation). However,
we can recover some of the intuitive understandability of agent-based descriptions by
thinking of the elements as quasi-agents with indefinite properties. For example, we
can think of an element as having an indeterminate orientation, with the probability
of a specific orientation given by the distribution of orientations in that element.

Therefore, we treat the properties of elements as random variables with associated
probability distributions. The distributions are determined by the values of the con-
stituent units, but that is below the level of abstraction of the formalism, for which the
distributions are taken as primitive. This does not solve all the problems, however,
and in particular we must take care of small sample effects, which may be crucial
to self-organization. Another issue is how to reliably manipulate non-independent
random variables. Therefore one goal of our project is to formulate rules of inference
that allow reliable description and control of elements as quasi-agents.

To summarize the preceding discussion, all the variables representing the state of
an element should, so far as possible, be intensive quantities, coordinate-independent
(i.e., tensors), and generally interpreted as random variables with an associated prob-
ability distribution.

Although the requirements for this formalism dictate that embodied computation
be expressed in terms of intensive quantities, there may be circumstances in which
extensive quantities are unavoidable. One solution that we are exploring is the use
of several fundamental free extensive variables. For example, 0V may represent the
(possibly infinitesimal) volume of an element of some body, so that the (extensive
quantity) m, the mass of the element, is given by m = pdV', where p is the (intensive)
mass density. The variable §V is called a free extensive variable because it has no
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specific value, but it obeys certain formal rules of manipulation (analogous to differ-
ential notation in ordinary calculus). Other free extensive variables might include the
area and diameter of elements (0A, 0L respectively), perhaps with free scale factors
to account for indefinite element shapes. Naturally, these need to be manipulated
carefully to maintain mathematical consistency, but it is our intention that they will
be needed only rarely. In any case, this is an experimental feature, which we will
explore.

3.1.4 Behavior

The behavior of the elements (particles, material points) of a body is defined by
rules that describe the temporal change of various quantities, primarily intensive
tensor quantities (coordinate-independent scalars, vectors, and higher-dimensional
objects). Such changes might be expressed in continuous time, by ordinary differential
equations, e.g., D;X = F(X,Y), or in discrete time by finite difference equations,
e.g, AL X = F(X,Y), where A, X = AX/At, AX = X(t + At) — X(¢), and the time
increment At is implicit in the A; notation. Generally, these would be substantial
or material (as opposed to spatial) time derivatives, that is, derivatives evaluated
with respect to a fixed particle: DX = 0X/0t|pp.4- Similarly, we use material
differences.

In order to maintain complementarity between discrete and continuous time, the
proposed formalism expresses such relationships in a neutral notation:

DX = F(X,Y).

This change equation may be read, “the change in X is given by F(X,Y).” (The
edh operator D is provisional notation.) The rules of manipulation for the D operator
respect its complementary interpretations.

A particle-oriented description of behavior implies that in most cases active parti-
cles (e.g., cells, microrobots) will not have direct control over their position or velocity.
Rather, particles will act by controlling local forces (e.g., adhesion, stress) between
themselves and other particles in the same body or in other bodies. Therefore, “pro-
gramming” active substances will involve implementing change equations that govern
stress tensors and other motive forces associated with the particles.

As discussed under Sec. 2, noise, uncertainty, error, faults, defects, and other
sources of randomness are a given in embodied computation, especially when applied
in nanotechnology. Indeed, such randomness can often be exploited as a compu-
tational resource in embodied computing. Therefore, the behavior of elements will
often be described by stochastic differential /difference equations. To facilitate the
complementary continuous/discrete interpretations, it is most convenient to express
these equations in the Langevin form:

DX = F(X,Y,.. )+ Gi(X,Y,. Ji(t) + -+ Gu(X,Y, .. ua(t),
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3 but we must be careful about the interpretation of

where the v; are noise terms,
equations of this kind.

To see why, consider a stochastic integral, X; = f(f H,dW,, where W is a Wiener
process (Brownian motion). In differential form this is dX; = H,dW;. To maintain
complementarity, this should be consistent in the limit with the difference equation:
AX, = HAW,. This implies that the stochastic integral is interpreted in accord with
the Ito calculus. The corresponding stochastic change equation in Langevin form is
bX, = HDW,;, but we must be careful about its interpretation. Interpreted as a
finite difference equation it is AyX; = H;A;W;, which makes sense. However the
corresponding differential equation, D, X; = H;D;W,, is problematic, since a Wiener
process is nowhere differentiable. Fortunately we can treat D;W purely formally, as
follows. First observe that AW; = W;,a; — W, is normally distributed with zero
mean and variance At, AW, ~ N(0,At). Therefore AW, = AW;/At is normally
distributed with unit variance, A;W; ~ N(0, 1), and A;W; can be treated as a random
variable with this distribution. To extend this to the continuous case, we treat DW,
formally as a random variable, PW; ~ N(0,1). Therefore the stochastic change
equation DX = HDW has consistent complementary interpretations. Similarly, for
an n-dimensional Wiener process W", we interpret DW"™ to be an n-dimensional
random vector distributed A (0, 1) in each dimension.

As explained above (Sec. 2), one requirement for the formalism is that it be able
to express qualitative behavioral rules corresponding to the influence diagrams widely
used in biology. Therefore, we define the notation®

DX ~-X,Y,Z

(for example) to mean that the change of X is “repressed” (negatively regulated) by
X and “enhanced” (positively regulated) by Y and Z. We have been calling such
a relationship a regulation (as opposed to an equation) and read it, “the change in
X is negatively regulated by X and positively regulated by Y and Z.” Formally,
bX ~ —X Y, Z is interpreted as a change equation DX = F(—X,Y,Z) in which
F' is a function that is unspecified except that it is monotonically non-decreasing in
each of its arguments. (Thus the signs of the arguments express positive or negative
regulation.) Therefore, the general form of a regulation is

DXk ~ :l:Xl, :i:)(z7 ey :l:Xn

Scaling might be applied to the arguments to express relative strengths of regulation
(e.g., PX ~ —nXY, Z, where 0 < n < 1), but that is already beginning to deviate
from the spirit of a qualitative relationship. Another notation that we are exploring
is to separate parameters by the approximate order of magnitude of their influence

3Frequently the G; are constant functions, in which case the noise is additive.
4This use of the “~” symbol is unrelated to its use to indicate the distribution of a random
variable.
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strength, for example, “DX ~ Y, Z; —X” means that the influence strength of —X
is qualitatively less than that of Y and Z. In an influence diagram, the parameters
separated by semicolons might be represented by arrows of different widths. Our
research will explore the use of these notations in various applications to determine
which are most useful.

3.2 Examples

We consider, very briefly, several simple examples of the formalism.

3.2.1 Diffusion

Diffusion is an Ito process in an m-dimensional diffusion medium:
bp=p+ocbW",

where p is a vector field in R™ characterizing drift, o is an m x n tensor field
characterizing diffusibility in various directions, and W" is an n-dimensional Wiener
process driving the stochastic behavior. The drift velocity, which represents directed
movement, may result from external forces (e.g., gravity, electrical field) or from
particle activity (e.g., chemotaxis). The diffusion tensor, which represents constrained
undirected movement, may result from Brownian motion or from active wandering
[13, pp. 14-15].

A higher level description is given by the Fokker-Planck equation, which describes
the time-varying probability density function of particles (a scalar field defined over
the diffusion medium):

Po=V-[—ps+ V- (00" 6)/2].

Hence, p represents the average particle velocity, and the rank-2 tensor o' /2 €
R™*™ represents the diffusion rates in various directions.

To give an idea of how simple diffusion could be expressed in operational terms,
we use a programming-language-like notation:

substance morphogen:

scalar field ¢ || concentration
vector fields:

j || flux

m || drift vector
order-2 field o || diffusion tensor
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behavior:

i = mo—V-(coTe)/2 | flux
bp = —-V-j || change in concentration
To describe the body constituting the system and its initial preparation we use a

notation such as the following, which describes a small spherical concentration of the
morphogen in the center of a cylindrical volume of the medium:

body Concentration of morphogen:
for X?+Y?<land —1<Z<1:

i=0 || initial O flux
p =0 || drift vector
o = 0.1I | isotropic diffusion

for X2 +Y?+272<0.1:
¢ = 100 || initial density inside sphere
for X2+ Y2+ 72> 0.1:

o =0 || zero density outside sphere

3.2.2 Activator-Inhibitor System

Activator-inhibitor systems are two-component reaction-diffusion systems that have
proved useful as models of pattern formation in development [16, 33, 35, 53]. (See
Fig. 3.) Both components diffuse, the activator A promoting the production of both,
the inhibitor I repressing production:

DA ~ A —I A(os0}A),

DI ~ A —I,Aloo7 1),
where A = V - V is the Laplacian operator on tensor fields. A more complete de-
scription, in the notation of the formalism, is:

substance activator-inhibitor:

scalar fields:

A || activator concentration

I || inhibitor concentration
order-2 fields:

o4 || activator diffusion tensor

o || inhibitor diffusion tensor
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Figure 3: Typical pattern formed by activator-inhibitor system.

behavior:

DA ~ A —I A(os04A)
DI ~ A —I Aot )

To use specific reaction functions f4 and f; (defined elsewhere) we write:

behavior:

DA = fa(A )+ A(oaoh A)
PI = (A1) + Ao} 1)

3.2.3 Deneubourg Model

Deneubourg’s model of pillar construction in wasp nests provides a good example of
a continuous model of a discrete process [11]. Termites 7" deposit pheromone-bearing
cement C at rate ki, from which the pheromone evaporates at rate ks:

substance cement:

scalar field C || pheromone-bearing cement concentration
scalars:
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k1 || deposition rate
ko || pheromone evaporation rate

behavior:
bC = kT —kC | deposition - evaporation

In this case we use change equations rather than regulations in order to express
the conserved relations implied by the shared constants k; and ks. The air-born
pheromone ¢ degrades at rate ks and diffuses subject to Dy:

substance pheromone is cement with:

scalar field ¢ || concentration in air
scalar k; || degradation rate
order-2 field D, || diffusion tensor field
behavior:

bo = k(C —ksp+ A(Dyp) || evaporation from cement - degradation + diffusion

The concentration T of cement-laden termites is given by:

substance termite-mass is pheromone with:

scalar field T || density

vector field v || velocity field

scalar 7rp || flux of cement-laden termites into system (a constant)
order-2 field Dy || diffusion (wandering) tensor field

scalar ky || strength of gradient following
behavior:

v = kV¢—T'V DT | gradient following - diffusion
bp = v || change in position
bT = rpy—kT -V -(T'v)+v-VT | change in concentration in material frame

Recall that p (spatial position) is a property of all substances, and so the equation
for Dp defines the motion (displacement and deformation) of the termite mass. In
general, when a particle P in one body refers to a variable () characteristic of another
body, the variable is evaluated at the same spatial location as P. For example, these
equations for termite-mass refer to ¢, which is a property of the substance phereomone.
Furthermore, gradients such as V¢ are evaluated in the spatial (Eulerian) frame, since
this reflects the configuration of the body at a given time.
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Figure 4: Examples of simulated vasculogenesis for various cell densities [46].

3.2.4 Vasculogenesis

For our next example we extend the model developed by Frederico Bussolino and his
colleagues of vasculogenesis, the early stages of formation of capillary networks from
dispersed endothelial cells [1, 15, 46] (cf. [36]). (See Fig. 4.) Aggregation is governed
by a morphogen that is released by the cells and that diffuses and degrades.

substance morphogen is medium with:

scalar fields:

C || concentration

S || source
order-2 field D || diffusion tensor
scalar 7 || degradation time constant
behavior:

bC = ADC)+S—C/r | diffusion + release - degradation

The cells produce morphogen at a rate o and follow the gradient at a rate given
by 3. Cell motion is impeded by dissipative interactions with the substrate, which
is measured by an order-2 tensor field 7. Since cells are filled with water, they are
nearly incompressible, and so they have a maximum density ng, which influences cell
motion; to accommodate this property (which will also apply to microrobots), the
model uses a function, ¢, that increases very rapidly as the density exceeds nyg.

substance cell-mass is morphogen with:

scalar fields:
n || number density of cell mass
) || cell compression force

24



vector field v || cell velocity

scalars:
no || maximum cell density
a || rate of morphogenesis release
1G] || strength of morphogen attraction
order-2 field v || dissipative interaction
behavior:
S = an || production of morphogen

|| follow morphogen gradient, subject to drag and compression:
bv = pVC —vy-v—n"'Vo
|| change of density in material frame:
bn = -V-(n-v)+v-Vn
¢ = [(n—mne)T]® || arbitrary penalty function

4 Pattern Forming Processes

A principal goal of the project is to demonstrate that the formalism is sufficiently
expressive to describe the fundamental processes of embryological development [13,
pp. 158-9][45] and to demonstrate them with the simulator. We will be using models
and descriptions from the embryological development literature. These developmental
processes fall into three classes:

(I) In the strict sense, morphogenesis refers to the creation of three dimensional
forms with modification of cell state. These processes include directed mitosis (divi-
sion of cells with a consistent orientation), differential growth (leading to deformation
of tissues), apoptosis (programmed cell death altering forms), differential adhesion
(leading to cell sorting and compartment formation), condensation (e.g., of cells em-
bedded in mesenchyme), contraction (with consequent stress-induced deformation),
matriz modification (through swelling, degradation, and other physical processes),
and migration of various kinds, including diffusion (undirected movement), chemoki-
nesis (migration speed subject to an ambient chemical cue), chemotazis (migration
governed by a gradient in chemical morphogen or substrate), and haptotazis (motion
through differential adhesion to a substrate).

(IT) Another important mechanism of pattern formation is modification of cell
states, which leads to differentiation of cell behaviors and properties. On one hand,
cell autonomous mechanisms do not depend on interactions with other cells; they
depend on both spatial nonuniformities (i.e., asymmetric mitosis, in which the two
daughter cells have different properties) and temporal nonuniformities (i.e., mitosis
with temporal dynamics, in which oscillation asynchronized with the cell cycle leads to
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development of spatial patterns). On the other hand, inductive mechanisms depend
on cell-cell signalling, which may be hierarchic (involving unidrectional signalling) or
emergent (involving feedback through mutual induction).

(IIT) Finally, there are morphodynamic mechanisms, which combine induction and
morphogenesis, but are poorly understood [45].

5 Conclusions

We have outlined the requirements for a formalism for embodied computation ori-
ented toward morphogenesis, and have discussed our approach to meeting these re-
quirements. Much additional work remains to be done in order to formally define the
formalism, including its rules of inference, which is our current activity.
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