
Accelerating GPU kernels for dense linear
algebra

Rajib Nath, Stanimire Tomov, and Jack Dongarra ?

Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville

{rnath1, tomov, dongarra}@eecs.utk.edu

Abstract. Implementations of the Basic Linear Algebra Subprograms
(BLAS) interface are a major building block of dense linear algebra
(DLA) libraries, and therefore must be highly optimized. We present
some techniques and implementations that significantly accelerate the
corresponding routines from currently available libraries for GPUs. In
particular, Pointer Redirecting – a set of GPU specific optimization tech-
niques – allows us to easily remove performance oscillations associated
with problem dimensions not divisible by fixed blocking sizes. For exam-
ple, applied to the matrix-matrix multiplication routines, depending on
the hardware configuration and routine parameters, this can lead to two
times faster algorithms. Similarly, the matrix-vector multiplication can
be accelerated more than two times in both single and double precision
arithmetic. Additionally, GPU specific acceleration techniques are ap-
plied to develop new kernels (e.g. syrk, symv) that are up to 20× faster
than those currently available. We present these kernels and also show
their acceleration effect to higher level dense linear algebra routines. The
accelerated kernels are now freely available through the MAGMA BLAS
library.
Keywords: BLAS, GEMM, GPUs.

1 Introduction

Implementations of the BLAS interface are a major building block of dense
linear algebra libraries, and therefore must be highly optimized. This is true
for GPU computing as well, especially after the introduction of shared memory
in modern GPUs. This is important because it has enabled fast Level 3 BLAS
implementations for GPUs [3, 2, 5], which in turn made possible the development
of DLA for GPUs to be based on BLAS for GPUs [2, 4]. Earlier attempts (before
the introductions of shared memory) could not rely on memory reuse, only on
the GPU’s high bandwidth, and as a result were slower than the corresponding
CPU implementations.

Despite the current success in developing highly optimized BLAS for GPUs
[3, 2, 5], the area is still new and presents numerous cases/opportunities for im-
provements. This paper addresses several very important kernels, namely the
? Research reported here was partially supported by the National Science Foundation,

NVIDIA, and Microsoft Research.

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144
G
F
l
o
p
/
s

Matrix size

CUDA 2.3, GTX 280

SGEMM

(a) Single Precision

0

10

20

30

40

50

60

70

80

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

CUDA 2.3, GTX 280

DGEMM

(b) Double Precision

Fig. 1. GEMM Performance on Square Matrices.

matrix-matrix multiplication that are crucial for the performance throughout
DLA, and matrix-vector multiplication that are crucial for the performance of
linear solvers and two-sided matrix factorizations (and hence eigen-solvers). The
new implementations are included in the recently released and freely available
Matrix Algebra for GPU and Multicore Architectures (MAGMA) Library [4].

The rest of the paper is organized as follows. Section 2 gives some perfor-
mance results of current kernels and points out our optimization targets. Sec-
tion 3 presents the Pointer Redirecting techniques and their use to accelerate
the xAXPY, xGEMV, and xGEMM routines. Section 4 summarizes the results
of accelerating selected MAGMA BLAS kernels. Next, in Section 5 we give the
performance results for the new kernels. Finally, Section 6 summarizes this work
and describes on-going efforts.

2 Performance of Current BLAS for GPUs

One current BLAS library for GPUs is NVIDIA’s CUBLAS [3]. Figure 1(a)
shows the performance of the single precision matrix-matrix multiplication rou-
tine (SGEMM) for a discrete set of matrix dimensions. Figure 1(b) shows similar
data but for double precision arithmetic. Note that at some dimensions the per-
formance is much better than at other dimensions, e.g., taken at odd numbers
like 65 and 129. These performance dips, which actually occur in the majority
of matrix dimensions, are one of our acceleration targets. The reason for these
dips is very likely related to an implementation that has an even inner-blocking
size to match various hardware parameters and considerations to get high per-
formance. The performance graphs illustrate quite a high performance loss for
the cases when the matrix dimension is obviously not a multiple of the inner
blocking size. In particular, the performance gap is more than 24 GFlops/s in
double precision (around 30% of the peak performance) and is worse for single
precision.

There are ways around working with these BLAS routines and still get high
performance in high level algorithms. One possible solution is to force the user
to allocate and work with matrices multiple of the blocking size. This though
leads to memory waste. Sometimes it is a burden to the user if the application

(a) GEMM for GPUs (b) Acceleration target

Fig. 2. The algorithmic view of GEMM for GPUs.

is already written and in general is obviously not a good solution. Another
solution is padding with 0s to fit the blocking factor, do the computation and
keep this transparent to the user. This approach has the overhead of copying
data back and forth, and possibly some extra computation. A third approach
is to rewrite the kernels in such a way that there are no extra computations,
no data movement, or any other overheads. This rewriting though is difficult
and time consuming, especially taking into account different GPU specifics as
related to data coalescing, data parallel computation, computation symmetry,
and memory bank layout.

3 Pointer Redirecting

The matrix-matrix multiplication (xGEMM; e.g. C = AB) algorithm for GPUs
is schematically represented in Figure 2(a). Matrix C is divided into blocks of
size blkM ×blkN , and each block is assigned to a block of nthdx×nthdy threads.
Each thread inside a thread block computes a row of sub matrix blkM × blkN .
Each thread accesses a corresponding row of matrix A, as shown by an arrow, and
uses the sub-matrix K× blkN of matrix B for computing the final result. As the
portion of matrix B needed by each thread inside a thread block is the same, they
load a sub-matrix of matrix B of size blkN ×blkK from global memory to shared
memory in a coalesced way, synchronize themselves, do the computation and
repeat until the computation is over. All these happen in a series of synchronized
steps. With an optimal selection of blkM , blkN , blkK , nthdX , nthdY , we can get
the best kernel for the matrix sizes that are divisible by blocking factors, i.e.
M%blkM = 0, N%blkN = 0, K%blkK = 0.

The question is how to deal with matrix dimensions that are not divisible by
the blocking factor. Whatever solution we choose, we must keep it transparent
to the user while maintaining the most flexibility. The goal is to allow reasonable
overhead (if needed) and to achieve high performance in general cases. We show
in Figure 2(b) matrix C of a xGEMM operation (C = αC + βOp(A)Op(B))
where dimensions M and N are not divisible by the blocking factor. The matrix
has only one full block. We can do the computation for the full block and do the

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144
G
F
l
o
p
/
s

Matrix size

SGEMM, GTX 280

SGEMM-IF

(a) Single Precision

0

10

20

30

40

50

60

70

80

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

DGEMM, GTX 280

DGEMM-IF

(b) Double Precision

Fig. 3. GEMM Implementation with Conditional Statement in Inner Loop.

Fig. 4. Possible Illegal Memory Reference in Matrix Multiply.

other partial blocks by loading data and doing computation selectively. This will
introduce several if-else statements in the kernel, which will prevent the threads
inside a thread-block from running in parallel. Figure 3 shows the performance
of one such implementation. Note that GPUs run all the threads inside a thread
block in parallel as long as they execute the same instruction on different data.
If the threads ever execute different instructions, their processing would become
temporary sequential until they start executing the same instructions again.

Another approach is to let the unnecessary threads do similar work so that
the whole thread block can run in data parallel mode. In Figure 2(b) the dashed
blue lines correspond to unnecessary flops that are done by respective threads.
It is not clear yet which data they will operate on, but it also does not matter
because the computation will be discarded.

Lets take a look at the scenario where all the threads assume that the matrix
fits into the block and do the work in a natural way until updating matrix C. In
Figure 4, the shaded region corresponds to the original matrix and the outermost
rectangle corresponds to the largest matrix that best fits in terms of the blocking
factor. We are going to make d M

dimM
e × d N

dimN
e number of grids and allow the

threads at the partial block to compute the same way as it is done in a full
block. It is evident that memory accesses inside the shaded region in Figure 4,
denoted by white diamonds, are always valid. Memory accesses denoted by red
diamonds are always invalid. Memory accesses represented by green diamonds
could be valid or illegal. As we can see in Figure 4, the leftmost green diamond
could be an element from the next column, e.g., when lda 5 blkM × d M

blkM
e. It

Fig. 5. (Left) Last Valid Access (Middle) Pointer Redirecting (Right) Mirroring

(a) Accessing Matrix A (b) Accessing Matrix B

Fig. 6. Algorithmic view of GEMM for GPUs with Pointer Redirecting.

could be an element in the same column when lda > blkM × d M
blkM
e, or it could

be invalid memory reference.
In Figure 5 (Left), the blue lines in the last row and last column are the last

valid memory reference irrespective of any values of lda, M , N , K, blkM , blkN ,
nthdX , nthdY . If some thread needs to access some memory location beyond this
last row/column, we are going to force him to reference to this last row/column
by adjusting the pointer. These threads will be doing unnecessary computations,
we don’t care from where this data is coming from. All we care about is that
together they make the best use of memory bandwidth and layout and access
data in a coalesced manner. Figure 5 (Middle) depicts the complete scenario for
how the memory is referenced. As a result the matrix will have some virtual
row where rows beyond the last row are replications of the last row and columns
beyond the last column are replications of the last column. It is shown in Figure 5.

Let’s see how it fits into xGEMM’s(Op(A) = Op(B) =Non-Transposed) con-
text in terms of accessing matrix A. As in Figure 6(a), threads t1, t2, t3, t4 will
be accessing valid memory locations. And all the threads beyond thread t4, e.g.,
thread t5, t6, will be accessing the same memory that thread t4 is accessing. As
a result no separate memory read operation will be issued and no latency will
be experienced for this extra load.

If we look at Figure 6(b), blkK×blkN data of matrix B are brought into shared
memory by nthdX ×nthdY threads in a coalesced manner. The left blkK × blkN

block is necessary as we can see. But the right blkK × blkN is partially needed.
The black portions are unnecessary memory accesses. As discussed before, it will
access the last row or column that is needed instead of accessing invalid memory.
This will still be done in a coalesced way and it is now accessing less memory.
Some memory are accessed more than once, which doesn’t hamper performance.
This is a simple solution to the problem with little overhead that doesn’t break

0

20

40

60

80

100

0 64 128 192 256 320 384 448 512
G
F
l
o
p
/
s

Matrix size

ExtraFlop Overheads for GEMM

Overhead (% of total FLops

(a) Small Dimension

0

2

4

6

8

10

4096 4160 4224 4288 4352 4416 4480 4544 4608

G
F
l
o
p
/
s

Matrix size

ExtraFlop Overheads for GEMM

Overhead (% of total FLops

(b) Large Dimension

Fig. 7. Flops overhead in xGEMM

the pattern of coalesced memory access. Note that we will not be doing any extra
computation in K dimension, so we don’t need to zeroing out values to keep the
computation valid.

4 MAGMA BLAS kernels

MAGMA BLAS includes a subset of CUDA [1] BLAS that are crucial for the
performance of MAGMA routines. Pointer redirecting techniques were applied
to most of the kernels. Here we mention a few of the new kernels and their use.
xGEMM: Various kernels were developed as an extension to [5]. The exten-
sions include more parameters to explore xGEMM’s design space to find best
performing versions in an auto-tuning approach. The new algorithms are of ex-
treme importance for both one-sided and two-sided matrix factorizations as they
are in general based on xGEMMs involving rectangular matrices, and these are
the cases that we managed to accelerate most significantly.
xGEMV: Similarly to xGEMM, various implementations were developed and
parametrized to prepare them for auto-tuning based acceleration. Different im-
plementations are performing best in different settings. xGEMVs are currently
used in MAGMA’s mixed-precision iterative refinement solvers and the Hessen-
berg reduction algorithm.
xSYMV: Similarly to xGEMM and xGEMV, various implementations were
developed. xSYMV is used similarly to when xGEMV is used with the difference
when symmetric matrices are involved. This is again the mixed-precision iterative
refinement solvers and the reduction to three diagonal form.
xTRSM: Algorithms that trade off parallelism and numerical stability, espe-
cially in algorithms related to triangular solvers, have been known and studied
before, but now are getting extremely relevant with the emerging highly parallel
architectures, like the GPUs. We use an approach where diagonal blocks of the
matrix are explicitly inverted and used in a block algorithm. Multiple kernels,
including kernels where the inverses are computed on the CPU or GPU, with
various block sizes (e.g., recursively increasing it from 32), are developed.
xSYRK: A block index reordering technique is used to initiate and limit the
computation only to blocks that are on the diagonal or in the lower (corre-

0

10

20

30

40

50

60

70

80

0 64 128 192 256 320 384 448 512
G
F
l
o
p
/
s

Matrix size

DGEMM, GTX 280

MAGMA
Cudablas-2.3

(a) Small Dimension

0

10

20

30

40

50

60

70

80

4096 4160 4224 4288 4352 4416 4480 4544 4608

G
F
l
o
p
/
s

Matrix size

DGEMM, GTX 280

MAGMA
Cudablas-2.3

(b) Large Dimension

Fig. 8. Performance of DGEMM

0

50

100

150

200

250

300

350

400

0 64 128 192 256 320 384 448 512

G
F
l
o
p
/
s

Matrix size

SGEMM, GTX 280

MAGMA
Cudablas-2.3

(a) Small Dimension

0

50

100

150

200

250

300

350

400

4096 4160 4224 4288 4352 4416 4480 4544 4608

G
F
l
o
p
/
s

Matrix size

SGEMM, GTX 280

MAGMA
Cudablas-2.3

(b) Large Dimension

Fig. 9. Performance of SGEMM.

spondingly upper) triangular part of the matrix. In addition, all the threads in a
diagonal block are responsible to compute redundantly half of the block in a data
parallel fashion in order to avoid expensive conditional statements that would
have been necessary otherwise. Some threads also load unnecessary data so that
data is fetched from global memory in a coalesced manner. These routines are
used in both some one-sided and two-sided matrix factorization algorithms.

5 Performance

For the unnecessary computation there will be some overhead. Figure 7 shows
the percentage of extra flops needed for different dimensions of matrix with pa-
rameters blkM = 64, blkN = 16, blkK = 16, nthdX = 16, nthdY = 4 for different
matrix sizes. The overhead is scaled to 100 for visibility.

Figure 9 and Figure 8 show the performance results for GEMM in single and
double precision respectively. We are seeing an improvement of 24 GFlops/s in
double and 170 GFlops/s in single precision arithmetic. As discussed before, in
other than small dimensions, the improvement is significant. The zigzag patterns
in performance graph resemble the blocking factor of the kernel.

As mentioned before, if the matrices are in CPU memory we can use padding.
We must allocate a matrix of higher dimension in the GPU memory, put zeroes
in the extra elements, then transfer the data from CPU to GPU, and then call
the kernel. Figure 10 shows the performance comparison when data is in CPU

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144
G
F
l
o
p
/
s

Matrix size

SGEMM (Input and Output in CPU Memory)

MAGMA
Pad/Cudablas-2.3

(a) SGEMM

0

10

20

30

40

50

60

70

80

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

DGEMM (Input and Output in CPU Memory)

MAGMA
Pad/Cudablas-2.3

(b) DGEMM

Fig. 10. Performance xGEMM with Padding (Data In/Out in CPU Memory).

0

50

100

150

200

0 1536 3072 4608 6144 7680 9216

G
F
l
o
p
/
s

Matrix size

GTX 280,Intel(R) Xeon(R)@2.33GHzx8 core

magmablas0.2
cudablas2.3

MKL10.1

Fig. 11. Effect of optimized SGEMV on the Hessenberg reduction.

memory. It is evident that for small matrix size our implementation is better
and, for a higher dimension similar.

Finally, Figure 11 gives an illustration on the effect of optimized BLAS on
high level routines. We see similar results throughout MAGMA algorithms.

6 Conclusions and On-going Work

We presented techniques to accelerate GPU BLAS kernels that are crucial for the
performance of DLA algorithms. Performance results, demonstrating significant
kernel acceleration and the effect of this acceleration on high level DLA, were
also presented. On-going work includes the extension of these techniques to more
routines, and their inclusion in the MAGMA BLAS library.

References

1. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide.
http://developer.download.nvidia.com, 2007.

2. V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear algebra. In
Proc. of SC ’08, pages 1–11, Piscataway, NJ, USA, 2008.

3. CUDA CUBLAS Library. http://developer.download.nvidia.com.
4. S. Tomov, R. Nath, P. Du, and J. Dongarra. MAGMA version 0.2 User Guide.

http://icl.cs.utk.edu/magma, 11/2009.
5. Y. Li, J. Dongarra, and S. Tomov. A Note on Auto-tuning GEMM for GPUs. In

Proc. of ICCS ’09, pages 884–892, Baton Rouge, LA, 2009.

