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Abstract—As tile linear algebra algorithms continue achieving
high performance on shared-memory multicore architectures, it is
a challenging task to make them scalable on distributed-meory
multicore cluster machines. The main contribution of this paper
is the extension to the distributed-memory environment of he
previous work done by Hadri et al. on Communication-Avoiding
QR (CA-QR) factorizations using tile algorithms for tall and
skinny matrices (initially done on shared-memory multicore
systems). The fine granularity of tile algorithms associatg with
communication-avoiding techniques for the QR factorizaton
presents a high degree of parallelism where multiple tasksan
be concurrently executed and computation steps fully pipéhed.
A decentralized dynamic scheduler has then been integrateds a
runtime system to efficiently schedule tasks across the digbuted
resources. Our experimental results performed on two Beowll
clusters (with dual-core and 8-core nodes, respectively)na a
Cray XT5 system with 12-core nodes show that the tile CA-
QR factorization is able to outperform the de facto ScaLAPAK
library by up to 4 times for tall and skinny matrices, and has
good scalability on up to 3,072 cores.

|I. INTRODUCTION

In addition, a number of vendors provide libraries optindize
for their own hardware such as Intel MKL, AMD ACML, IBM
ESSL (PESSL), and Cray XT LibSci. All the vendor libraries
include the subroutines of LAPACK and ScalL APACK.
However, with the increment of the number of cores on
each chip, these existing libraries start to see degrading
performance on multicore (or manycore) architectures. One
important reason is that the libraries use the fork-joinrapph
for parallelism to implement their routines. The join ofana
works as a barrier and increases the task graph’s critical
path length substantially. Assuming a fixed number of tasks,
increasing the length of the critical path can seriouslgctff
the program performance. For instance, the subroutine For Q
factorization in LAPACK uses a block algorithm. Given an
m x n matrix A that is partitioned as follows:

A— ( Atbptin ) ’

Ab+l:m,b+1:n
where b is the block size, the block algorithm 1) first fac-

Al:b,l:b
Ab+1:m,1:b

The method of least squares has been used in many scientffiézes the left column panel., 1.; 2) applies the panel

fields such as mathematics, physics, statistics, and edosonfiactorization result to the top row panél.; s+1,,; 3) then
where applications of data fitting, regression analysigj afP the trailing submatrix oy 1. ,5+1:n. All the three steps
production function modeling happen frequently. The peabl are executed in a fork-join manner for which the length of
is to find the solution of an overdetermined system of line#fie critical path is increased. The same set of steps will be
equationsAz = b with more equations than unknowns. Th@pplied recursively to the submatrix ofyi1.,p+1:n uNtil
shape of the matrix! is tall and skinny. The modern classicafhe submatrix merely consists of a single column panel. The
method to solve such a system is based upon QR factorizat®R#RLAPACK QR factorization subroutine uses the same block
by first computingA = QR followed by solving the upper- algorithm as LAPACK. In this paper, we use the term “block
triangular systenRz = Q*b for . QR factorization” to refer to this algorithm.

Various numerical libraries have supplied the QR facteriza During the last several years we have been working on
tion subroutine. LAPACK[[1] provides a collection of lineardesigning new parallel linear algebra software for muteéco
a|gebra software for Shared_memory Systems_ ScaLAPA@(ChitectureS. We believe that the new software for mLﬂﬁCO
[2, [B] includes a subset of LAPACK subroutines that igrchitectures should have the following characteristiree-

redesigned for distributed-memory message-passingregstedrain tasks for a higher degree of parallelism, asynchrsnou
execution to eliminate synchronization points, and goadllo

This material is based upon work supported by the NSF granE-CCity to improve data reuse. The tile algorithms designed in ou
0811642, and by Microsoft Research. This work also useduress of pgrallel Linear Algebra Software for Multicore Architents
the National Center for Computational Sciences at Oak Riblig¢ional (PLASMA) project [L] exhibit the three desirable charaiger

Laboratory, which is supported by the Office of Science of Drepartment \ ’ EE 4
of Energy under Contract DE-ASC05-000R22725. tics. The subroutine for QR factorization in PLASMA adopts
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work was inspired by the tile QR factorization (available in
2 1'3‘ o PLASMA) and a communication-avoiding technique (known
v v v v as CAQR) that was introduced by Demmeél [7]. However,
2elf |22 2.3 |24 |25 this algorithm has never been explored on distributed-mgmo
V¥ v v v systems. We investigate and extend the algorithm to modern
3,1| [3,2| |3,3] [3,4] |35 large-scale distribute-memory machines and demonstisite i
R . VA v v high efficiency and scalability. We call the distributedsien
4,1 |42 |a,3| 4,4 |45 algorithm “distributed tile communication-avoiding QRcfa
I T 7 5 torization”. In short, we refer to it as “distributed tile GBR
s, [sz2| s3] sia] Lsys factorization.”

In this paper, we also analyze the tile CA-QR factor-
) | . o Wi 5 il - ization in terms of operation count, number of messages,
Lo 35 fatorzaton on 2 square man w5 e Sach e g communication volume. We then compare the algorithm
dependencies between the tasks. to previous work such as LAPACK, ScalLAPACK, tile QR
(PLASMA), TSQR [7], as well as CAQR[7]. Tile CA-QR
has an operation count that is between tile QR and TSQR
an updating-based algorithm that operates on matricesdstoand could be comparable to that of LAPACK/ScaLAPACK
in a tile data layout[[5]. A tile is & x b square submatrix by choosing appropriate parameters. Same as TSQR, tile CA-
and is stored in memory contiguously. In this paper, we u§gR’s communication volume is also optimal. Furthermo, it
the term “tile QR factorization” to refer to the updatingsed number of messages is much less than that of tile QR.
QR factorization. The distributed tile CA-QR factorization partitions a ma-
Unlike the block QR factorization that operates on panelgix's rows into D blocks of rows (i.e.,D domains). Then
the tile QR factorization operates on much smaller tiles¢ee On a distributed-memory system witR compute nodes, it
more fine-grained). Given a matrit consisting ofm; x n, continues to partition theD domains into P subsets (one

tiles, matrix A can be expressed as follows: subset per node) using a 1D block distribution, wherg> P.
Each node runs a single MPI process and is responsible for
Aip A o Ay, computing a numbeg of domains. For each column panel (of
Azn Agp ... Ay, a tile width), the factorization algorithm performs indepent
A= : : : ’ QR factorizations in each domain by different processes in
An;b.l An;m - Am.b,nb parallel. Then, each domains updates its trailing submatri

concurrently. Third and last step, the local R factors frauohe

where 4; ; is a square tile of sizé x b. In the first iteration, domain are reduced by different processes to the final Rifacto
the tile QR factorization computes the QR factorizationtiler and the corresponding block-rows are again updated.
A 1. The factorization output ofi; ; is then used to update The reduction operation among the domains adopts a
the set of tiles o, ;s right hand side in an embarrassinghbinary-tree to attain the finak factor. Due to the complex
parallel fashion, that is{A;2,...,A1,,}. As soon as the binary-tree reduction residing on the critical path of the
update on any tiled; ; is finished, the update on tild, ; can computation’s task graph, we extended our dynamic schedul-
read the modifiedd; ; and proceed. In other words, wheneveihg runtime system to support distributed tile CA-QR more
a tile-update on the-th row completes, its below tile on efficiently. We added new features such as look-ahead depth
the (¢ + 1)-th row can start if4;;1,: also completes. After and three levels of task priority to the runtime system. A
updating the tiles on the last,-th row, tile QR applies the collection of trace analysis show that the new scheduling
same steps to the trailing submattie.,,, 2.n, recursively. runtime system has been improved significantly.
Figurell illustrates the data dependency relationshipsd®t This paper evaluates the efficiency of distributed tile CR-Q
tasks during the first iteration given & x 5 tiled matrix. by comparing it to vendor optimized ScalLAPACK libraries.
Each tile located at [i, j] corresponds to a task that readsVde conducted both strong-scalability and weak-scalgbilit
couple of inputs and modifies A[i, j]. For instance, tile A[2experiments on two Beowulf clusters and a Cray XT5 system
4] corresponds to a task that reads the output of two tasdensisting of hundreds of thousands of 12-core nodes. The ex
located at [1, 4] and [2, 1] and then modifies A[2, 4]. Irperimental results show that our program is able to outperfo
the tile QR factorization, the tasks within each row can b®calLAPACK by up to 4 times, and exhibits good scalability
executed in embarrassingly parallel. However, the sedplenfrom 1 to 3,072 cores (3,072 cores is the largest experiment
dependency between tasks along a column clearly makes weehave attempted).
algorithm inefficient, especially for tall and skinny mags. This paper includes the following new and original work:

Hadri et al. recently presented a strategy to compute the @B A major extension and improvement from shared-memory
factorization on shared-memory multicore machines for tadystems to distributed-memory systems. (2) First to amalyz
and skinny matrices$ [6]. Their approach considerably iases the algorithm with respect to operation count, number of-mes
the number of parallel tasks located in the same columnrTheages, and communication volume. (3) An extended runtime



system to enable an efficient implementation of the disteitbu ~ Suppose amn x n matrix A consists ofn,, x n,, tiles (m >
algorithm. (4) First to demonstrate good scalability of the), andb is the tile size for whichm;, = 7 andn;, = 3.
algorithm on modern large-scale distributed-memory syste Tile CA-QR partitions the matrix'sn rows into D blocks:
using up to 3,072 cores. A =[Aq; Ag; ... Ap], whereA; is of dimension x n and
The rest of the paper is organized as follows. Sedfibn i called “Domain:.” Note that the matrix A is stored ih x
introduces the related work. Sectiohs] Ill ahd] IV describetiles. The tiled matrix A that is divided int@ horizontal
the tile CA-QR factorization algorithm and the analysis oflomains can be expressed as follows:
the algorithm, respectively. Sectiod V provides an ovewie

of the dynamic scheduling runtime system and explains our Avs Az i,
extensions. Section_VI presents the performance evatuatio o
on three distributed-memory systems. Sedfion VIl sumneariz Ampy  Amp, o Amy
our work.
AmeJrl,l Ame+1,2 Ame+1,7Lb
Il. RELATED WORK A= . . . ’

In the mid 70s, Morven Gentleman introduced for sparse Azmy | Azmy o Az
matrices[[8] the approach of splitting a matrix into subricais
allowing the reduction to be done independently and recur-

sively for the submatrices. Then, Pothen and Raghavan [9] An;b,l A”'w
developed the idea of parallelizing the factorization olaag
by implementing distributed orthogonal factorizationsngs Where 4; ; is a tile of sizeb x b. In the first step, all the
Householder and Givens algorithms. Their approach divigdemains start to execute the tile QR factorization of the firs
the columns intoP subcolumns (wheré® is the number of panel and the associated updates concurrently as showg.in Fi
processors) and performs factorizations locally from whiee [ There is no data dependency or communication between
final triangular factors are merged. different domains. That is, each domain is independent of
Based on Pothen and Raghavan’s work, Demmel ef al. [tﬂe othgr _domains. Afte_r t_he_QR factorization of the first
proposed a class of QR factorizations with the parallel parf@nel within each domain is finished, each domaigets a
factorization, called Communication-Avoiding QR (CAQR)? * b upper triangular factof; IocatAed a1y gy - FOT
The approach consists of performing the panel factoripativ instance,R; is located atd, ; and R; is located atA%HJ.

several columns thanks to a new algorithm called TSQR (Talbte that all theRz;'s belong to the first block-column for
Skinny QR). The panels are divided into block-rows, and thepe first iteration. Next, the tile CA-QR factorization pemfns
are factorized independently and then merged using a bingr¥eduction among all th&;’s, wherei € {1,...,D}. The
reduction tree, which is optimal in the parallel case [7]. AButput of the reduction is the final factor @t ; assuming
estimate of the performance for CAQR has been provided by — QR and R is stored in tiles. Then the final; ; will
the authors. be applied to the top block-rofA; o, ..., A1, } to compute
Assuming that the QR factorization of a tall and skinn;{Rl’z, ..., R1.,}. The next step of the factorization can be
matrix can be represented as a reduction, Langou [10] impitiated 0N Ag.m, 2:n, While the previous step is still in pro-
plemented a methodology to perform the reduction by usirgss as long as the dependencies are satisfied. The fatitoriza
user-defined MPI operation and MMeduce. Moreover, in steps are therefore pipelined which can potentially hide th
the context of grid computing, by identifying bottlenecks ilight points of synchronizations required during the megi
ScalAPACK, Agullo et al. [[11] developed an approach t@rocedure.
computing the QR factorization by articulating the CAQR Before describing the distributed tile CA-QR factorizatjo
factorization with a topology-aware middleware in order tque briefly overview the six kernel subroutines used by the
confine intensive communications. Contrary to all the wesi factorization. For more details of these kernels, pleafs te
work on QR, they have used more original trees instead of tBection 3 of the Hadri et al. papér [6].
binary tree. The first four kernel subroutines are called locally within
each domain.

o dgeqgrt: R[kK], V[kK], T[k,k] «+ dgeqrt(A[k,K])
Essentially the tile CA-QR factorization is an integration  dgeqrt computes the QR factorization of a tile A[kk]
(or mixed version) of the CAQR factorization and the tile  and generates three outputs: an upper triangular tile

QR factorization. The basic idea is to store a matrix in  R[k,k], a unit lower triangular tile V[k,k] containing the
a tile data layout and divide the matrix into a number of Householder reflectors, and an upper triangular tile T[k,kK]

domains (i.e., blocks of rows). Each domain performs a local for storing the accumulated transformations.

QR factorization independently. After finishing the locaRQ « dt sqrt: R[kK], V[i,K], T[i,k] «+ dtsgrt(R[k,k], A[i,k])
factorization, each domain participates in a global reiduct After dgeqrt is called, dtsqrt stacks tile R[k,k] on top
to compute the finaR factor. of tile A[i,k] and computes an updated QR factorization.

A'mb,nb

Ill. TiLE CA-QR FACTORIZATION



The subroutine updates the tile R[k,k] and generates a tiéstributed Tile CA-QR Factorization: Given P processes
V[i,k] and an upper triangular tile T[i,k]. V[i,k] and T[ik on a distributed-memory system, we distribute the matrX’s
also store the Householder reflectors and accumulaaimains across different processes by 1-D block distdbuti

transformations, respectively.
o dor mgr : R[k,j] « dormgr(V[k,K], T[k,K], A[K,j])

Each proces$; owns a numben% of domains fromD o, to
Dy (;41)—1- Although D is a parameter used at the afgorithm

dormqr applies dgeqrt’s output (i.e. V[k,K], T[k,K]) tolevel, we assumeé > P so that a process owns at least one
tile Alk,j] located on the right hand side of A[k,k] anddomain. A process may consist of one or more threads running

computes the R factor R[K,j].
o dtsssnyr: R[k,j], Afi,j] < dtsssmqr(V[i,k], T[i,k],
RIkjl, Alij])

on multiple cores. The algorithm of the distributed tile QR
factorization is shown as follows:

dtsssmqr applies dtsqrt’s output (i.e, VIi,k], T[i,k]) to aAlgorithm 3 Distributed Tile_CAQR Algorithm

stacked R[k,j] and A[i,j], and then updates the R factor Distributed Tile_CAQR(A, m;, ny, D, P)

R[k,j] and A[i,j], respectively.
The algorithmDomai n_Ti | e_QR applies the four kernel

subroutines to factorize a domain of size nrowshcols tiles
starting from the position A[l, J]. For instance, Fig. 1 cam b

viewed as a single domain that applies this algorithm. Note

that here |, J are indexed frofh

Algorithm 1 Domain Tile_QR Algorithm

Domain Tile_QR(A, I, J, nrows, ncols)

R[1,J3], V[I,J], T[1,J] < dgeqrt(A[l,J])

for j < J+1to J+ncols-1 /*I-th row*/do
All,j] < dormgr(V[l,J], T[1,3], A[Lj])

end for

for i« I+1 to I+nrows-1 /*J-th column*/do
RI[1,3], VI[i,J], T[i,J] « dtsart(A[l,J], Afi,J])

end for

for i «— I+1 to I+nrows-1 /*trailing submatrix update*do
for j < J+1to J+ncols-1do

R[Lj],Ali,j] «dtsssmqr(V[i,J],T[i,J],R[1,j].Ali,j]

end for

end for

The remaining two kernel subroutines are used in the

reduction step that involves merging a collection of doreain
o dttqgrt: R[i1,K],V[iz,K],T[ie,K]«dttqrt(R[i1,k],R[i2,K])

This is the “merge” operation. dttqrt stacks one domain’s

factor R{[i;,k] on top of another domain’s factor R[K]
and computes an updated factorR{j. It also generates
an upper triangular tile V§ik] and an upper triangular
tile T[io,K].

nr < 2k number of rows per process*/
nd < = [*number of domains per process*/
ds < — [*domain size*/
for each tile column k— 0to n; — 1 do
root < |k/ds] *index of the root domain*/
[*process P,y could factorizes its:d domains in parallel*/
for each domain k— 0to nd — 1 do
if (d=my xnd+1)<root then
if d=root then
I+ k
else
I+ myXxXnr+ixds
end if
end if
/*[1,K] is the top left corner of domaind*/
Domain_Tile_QR(A, I, k, (my+1)xnr-1, ny-k)
end for
[*binary-tree merge*/
LB <+ my x nd, UB «+ LB+nd-1
for m < 1to [logy(D — root)] do
dl < root, d2+4 d1 + 21
while d2 < D do
if both di, d2¢ [LB, UB] then
P1+ di/nd, P2+ d2/nd
if d1 = rootthen
i1+ k
else
i1+ dlxds
end if
end if
2+ d2x ds
processes P1 and P2 exchange RJ[i1,k], R[i2,k]
Merge_DomaingR, A, i1, i2, k, ny-K)
dl +=2™, d2 +=2m
end while
end for
end for

o dttssmgr: Aliy], Alio,]] « dttssmar(V[e,k], Tliz,K],
Ali 1l All 2,j])

Figure [2 illustrates the operations @ stri buted_

After dttqrt is called, dttssmqr applies the output of dttqr | o CACR. It shows a matrix of12 x 3 tiles that is
to update Afi,j] and Afiz,j] ( € [k + 1,n]) that are gisyriputed across four domains. Each domain is stored and

located on the right hand side of Rk] and R[i.K],
respectively.

computed by one process and has a submatriX of3 tiles.
The figure shows the corresponding operations in the first

The algorithmMer ge_Domai ns merges two R factors iteration. That is, each domain invok@®nmai n_Til e QR

from a pair of domains. in parallel followed by a binary-tree merge between the first
panels of each domain. The second iteration would be the same
as the first iteration except for working on a trailing submxat

of sizell x 2 tiles.

Algorithm 2 Merge Domains Algorithm
Merge Domains(R, A, i1, i2, k, ncols)
/*merge two R factors from two domains*/
R[i1,k], V[i2,k], T[i2,k] «+ dttgrt(R[i1,k], R[i2,k])
[*update the il-th and i2-th rows*/
for j < k+1 to k+ncols-1do _
Alil,jl, Ali2,j] « dttssmq(V[i2,k], T[i2,k], Ali1,j], Afi2,]])
end for

IV. ALGORITHM ANALYSIS

In this section, we present the total number of operations
for the sequential tile CA-QR factorization and the numbder o
messages and the communication volume for the distributed




1] L] ] B [ | W m (k mod ™) + 1 tile rows andn;, — k + 1 tile columns. The
Do| LT(ﬁQR | remaining domains consist 8§ x (n;, — k -+ 1) tiles.

| =] 28 1] 1 o
51 Pomdnmbon ! 'J 1 | TIT Tutsssmar = (4b° + sb%) Z[(% — kmod %)(nb — k) +
[ 1. [ L g = —— el
. i ll ] (D—- 2= 1), — k)]
o,| o T [ n D, my/D D ’
H HH &4 O = W ) m - )
| | i | LT | b 3
D, ‘ Domdin_Tile_QR [ D,
J ] T HEEN ]
(a) (b) (c) (d) (e)

dttgrt is the merge operation and dogkf’ floating opera-
Fig. 2. The operations of distributed tile CA-QR. (a) Matixis divided tions. At iterationk, the binary tree ha® —k +1 leaf nodes

into four domains horizontally. (b) We now apddpnai n_Ti | e_QRto each and D — k internal nodes.

domain in parallel. (c) Each domain computed a R factor Extan the first np

column. We mergeRy and Ry, Ro an_d R_;;. (d) We mergeR(_) anc_i Ry and _ Tatigre = Z(D _ k’)§bg _ §bgnb(2D — )
get the final factorRy. (e) At the beginning of the second iteration, domain 3 6

Dy has2 x 2 tiles and the other three domains haex 2 tiles. Similarly,
we continue to apply (b), (c), (d) to the four new domains ie thailing

k=1

dttssmqgr doesi (4b3+sb2) floating point operations. Every

submatrix.
merge opera‘uon dttgrt is followed by a numbey — & of
dttssmqr operations.
tile CA-QR factorization. We also compare the metrics with a b 1 4 ,
number of related QR factorization algorithms. Tattssmar = Z(D = k)(np — k)5 (467 + sb7)
k=1
A. Operation Count = 2°n(1+ 4b)(2 _ %)

We use aggregate analysis to calculate the number of

operations for each kernel. Note that each kernel takegas in  The total number of operations of tile CA-QR is the sum
tiles of sizeb x b. of the above six equations:

dgeqrt does2b? floating point operations. For each iteration

k dgeqrt is Invoke@ Ttilefcaq'r = ngeq'rt + Tdormq'r + Tdtsq'rt
thUS +Tdtsssmqr + Tdttq'rt + Tdttssmqr
Db
ny b1 D ~ 2n? (1—|—4b)( —§+7)
_ _ — 3 _ 3 _ 13 = _
Tageqre = Y (D —mb/D) X 2 = 2D — b g — 1) | | o
k=1 Compared to the operazuon count of the tile QR factorization
. . . . : 12], that is, Tijie—gr = 2n%(1 4+ =)(m — Z), then
dormaqr does3b3 floatlng point operations. At iteratioh, [L2] file—gr (14 35)( 5)
there existD — m— domains each of which has a number 73, ..., 2n°(14+ 5)(m— %+ 5t) |4 3Db—n
— k + 1 of tile columns. Every domain applies dormarto  7,;,. .~ 2n2(1+ 5)(m—2) tom—2n
aII the tiles on its top row except for the first tile. '
ny b1 3 Based upon the above equation, we can make the following
Tormar = Z(D — 2 Yy — k) x 3b% ~ b2 Dn? observations:
mb/D 2 T
k=1 o if m > n, % . Note that“: is the
ile—qr
dtsqrt doeslob?’ floatlng pomt operations. At |terat|0h domain S|zeTt|rl1 terms of t|Ie§manS is often not small.
there existD — o i D=my, re==tte =14 g0 = 1.5,

domain. The rootbdomam has: — (k mod )+ 1 tile rows g Number of Messages

and the other domains h&&- tile rows )
We compute for the process that has the maximum number

L I— E—1 100® Of messages. We know that communication only occurs during

Tatsqre = Z(F — k mod f +( m ) D L) —— 3~ the binary tree merge where the dttqrt and dttssmgqr opesatio
k=1 5 are called. GivenP processes, for each iteratién a process
~  (2mpnp — np(ny + %))gb3 is involved in at moslog, P merge stages, thus,

Messageiile—cagr = Z logy(P)(ny — k+ 1)

2 n’
~ logy(P)n; = 10%2(P)b_2-

dtsssmqr does4b® + sb? floating point operations, where
s is a parameter used to implement dtsssmgjis the inner
blocking size which divides the tile size. At iteratién there
existD —




C. Communication Volume V. THE DISTRIBUTED FRAMEWORK

Similar to computing the number of messages, we computeWe build upon our previous work of Task-based Basic
for the process that has the maximum number of words cokinear Algebra Subroutines (TBLAS) dynamic runtime system
municated with other processes. Since each message contfdif] to realize tile CA-QR on distributed-memory systems.

an upper triangular tile 04’92E words, This section first overviews the TBLAS runtime system, then
1 describes how we extend TBLAS to support tile CA-QR
Wordgite—cagr = 5 log, (P)n?. efficiently.
Given a matrixA of m; x ny tiles and a multicore cluster
D. Comparison with Other Algorithms consisting of N nodes each with” cores, we launch on each

We compare tile CA-QR with LAPACK, ScaLAPACK, tile node N; a processP;, respectively. The rows of matrixi
QR, TSQR, and CAQR factorizations for tall and skinnf'e preallocated tavV nodes by 1D _block dlstrlbutlpn. That
matrices. The numbers for TSQR and CAQR are providd® Fi (On nodelV;) stores a submatrix of A froni’zzi)-th to
by Demmel’s paper l?] As for ScaLAPACK and CAQR, We(%(l‘f’l) — 1)'th tile-rows. Note that by default TBLAS uses
let P’r > Pc assuming a very tall and Skinny matrix input. a general 2D block CyCIiC data distribution. But the 1D data

We have implemented the tile QR factorization oflistribution which is a special case of 2D data distributi®n
distributed-memory systems in our previous work][13]. wenore suitable for tall and skinny matrices.
briefly introduce it here. The distributed tile QR factotina A. TBLAS Runtime System

maps tiles to aP. x P. process grid using the 2-D block ) )
cyclic data distribution.,P? = P, x P. is the total number Every process runs an instance of the TBLAS runtime

of processes. A tile indexed by [i, j] will be allocated to théySt?m in parallel, which are started bV_'i run. As shown
processPli mod P,,j mod P.] so that each process stored? Fig-[3, the TBLAS runtime system includes three types
a set of tiles and computes the tasks that modify the tiles. W& thréads: task-generation thread, computing thread, and
skip the calculation of the number of messages and words fmmunication thread. Given a node withcores, we launch
tile QR and just give the result in Tadle I. T computmg threads orf” different cores, as well as a
As shown in Tabléll, from the least to the most operatiori@Sk-generation thread and a communication thread on two
are LAPACK, ScalLAPACK, CAQR, tile QR, tile CA-QR, and arbitrary cores. The task-generation thre_ao_l executes Al
TSQR. LAPACK is a library used for share-memory systeng program and generates tasks to fill in its node’s local task

and thus does not have any communication. Although TS(ﬂ?eues' Also, whenever becoming idle, a computing thread
has the minimum number of messages, it uses a much lar s up a ready task from the ready task queue and computes

tile size such thab — n given anm x n matrix. CAQR it. After finishing a task, the computing thread scans the

also has a smaller number of messages than tile CA-QR, E)%ﬁk queues to resolve data dependency and finds the finished

the algorithm typically uses the fork-join approach and s ntask’s children and starts them. T_hg communication thread i
suited for dynamic scheduling (e.g., the whole step of par@sponsmle for sending and receiving data between a parent

factorization must be completed before the step of traili sk and its children t9 meet the data _dependency demands.
matrix update can start). Differently, tile CA-QR provided\! advantage of the tile CA-QR factorization is that we do

more fine grain tasks operating on tiles and can be execute(f‘IO need 6} dﬁd";“’?‘tid core” tl(') perg;orm MPI gor;mun_u:_aﬂ_onz
a fully asynchronous manner. Furthermore, the commubigati ecause of the f'% p?ra _ehlsm egree and the minimize
volume %~ log P for the QR factorization on tall and skinnycommunlcanon of the algorithm.

matrices has been proven to be optimal [7]. B. Extensions
TABLE | Our first implementation of tile CA-QR with the original
ALGORITHM COMPARISON TBLAS runtime system did not yield good performance au-

tomatically. By profiling the execution using the Intel teac
analyzer and collector [14], we found that each core’s campu
Seq. operation count | #Messages #Words ing time is only half of the wall-clock execution time, which
LAPACK 2n%(m — 2) - - implies there is a nearly 50% idle time on each core.
Figure[4 a) shows an example trace of the first version of tile
CA-QR running on 16 dual-core nodes. The colored regions
TSQR 2n?(m+ (25+ = 3)n) log P % log P represent the computation time, and the gaps represertiéhe i

ScaLAPACK 2n?(m — 2) 3nlog P (n? +bn)log P

CAQR 2% (m — 2) snlog P | (n®>+b2)log P | time during the execution. By analyzing the trace, we found
Tie OR mim- )1+ 5) | (@) km n?Eem a few reasons for the poor performance. 1.) In the program’s
' , . , , corresponding task graph, between domains, tasks from two
Tile CAQR || 2n7(m — 5 + F2)x | (§)"log P g log P iterations (i.e., from i-th and i+1-th panels) are conndcte
1+ 2) by tasks computing the global binary-tree reduction across

domains. The merge tasks must be executed earlier in order
to pull tasks from the next iteration to execute. 2) Within a



(a) The original version

Fig. 4. Traces for tuning the TBLAS runtime system. The aadbregions denote computation time and the empty gaps detietéme. After applying a
number of modifications, the final version of the TBLAS rungirsystem has much less idle time and is faster than the drigimsion by 35%.

domain, the panel factorization tasks should also be egdcut
as early as possible because many trailing-matrix updaks ta
are awaiting a single panel-factorization task. 3) Loolkahe
to the nextd iterations can not only pull tasks from the next
iteration but also from the next iterations.

Essentially we want to make sure the TBLAS runtime
system executes the tasks on the critical path as early as
possible. We modified the runtime system in the following
ways:

« We added the lookahead feature to the runtime system.

the other messages. Similarly, the receiver will process
the high priority message earlier too.

The task window size has been tuned to optimize the
program performance. With a small window size, the
runtime system is not able to see tasks in the other
domains and the following iterations so that there is a
lesser degree of parallelism. But a large window size
will increase the runtime system overhead due to longer
queues and length access time to search for and resolve
data dependencies in the queues.

The lookahead deptiiis a parameter to the runtime sys- Figure[4 displays examples of traces for three different
tem and has been tuned to provide the best performanggrsions of the runtime system. Figlide 4 a) shows the trace of
« We assign priorities to different tasks. The binary-treghe original version that has significant idle time. Aftettisey
merge tasks have the highest priority. At iteration appropriate task priorities, the performance is improvgd b
the tasks located between the i-th column and (i+d)-7% as shown in b). Figufé 4 c) shows the trace of our final
column have the 2nd highest priority given a lookaheasptimized version after applying all the above modificasion
depth ofd. The remaining tasks have a regular priority.and tunings. The final version is better than the original one
« We also added message priorities to the communicatipy 35%. It is easy to see the significantly reduced empty gaps

subsystem of the runtime system. The output of a highe.

priority task will be assigned a high priority accordingly
and sent out by the communication thread earlier than

, idle time) in the figure.

VI. PERFORMANCEEVALUATION

In this section, we provide strong scalability and weak

y
‘ Task-generation

scalability performance results on three different disttéd-

Jthread memory machines. We also present the crossover point of the
! tile CA-QR implementation for matrices that are not tall and
ﬂ; skinny.
sk window: | o L Ll Lol Ly We conducted experiments on two Beowulf clustéssi(g
W andNewt on at University of Tennessee) and a Cray XT5 sys-
ready task queue: IS} tem @aguar at Oak Ridge National Laboratory) to compare

Communication

tile CA-QR with the ScaLAPACK library. Whenever possible,
we use a vendor-optimized ScalLAPACK library. Talglé I

lists the hardware and software resources we used to do our
$C°mp““"g“‘md 3““"““"3‘“3“ (Computing thread experiments. The Grig cluster has two cores per node, the
Newton cluster has eight cores, and the Cray XT5 system has
o ‘ ‘ ‘ 12 cores per node. On Newton and the Cray XT5 system,
— we use Intel MKL and Cray XT LibSci libraries to conduct
SHW Scal APACK experiments, respectively.
Network

A. Strong Scalability

For strong scalability experiments, we fix the matrix input
Fig. 3. TBLAS runtime system. size and increase the number of cores to solve the matrix.



TABLE Il

EXPERIMENT RESOURCES

Gri g cluster Newt on cluster Cray XT5
Processor Intel Xeon 3.2GHz Intel Xeon E5530 2.4GHz AMD Opteron 2.6GHz
Cores per processo& 1 4 6
Processors per nod 2 2 2
Nodes 60 170 18,688
Memory per nod 4 GB 16 GB 16 GB
Peak perf. per core 6.4 GFLOPS/s 9.6 GFLOPS/s 10.4 GFLOPS/s
Network Myrinet Infiniband Cray SeaStar2+
oS Linux 2.6 Scientific Linux 5.3 Compute Node Linux 2.2
Compilers gcc 64bit 3.4.4 Intel compilers 11.0 PGI19.0.4
MPI lib mpich-mx 1.1 OpenMPI 1.2.8 Cray XT MPT 3.5.1
ScalLAPACK lib Netlib scalapack 1.8 Intel MKL 10.1 Cray XT LibSci 10.3.6
250 900 1800
800 1600
200 ==Tile CA-QR 700 —=Tile CA-QR 1400 ==Tile CA-OR
W-5CaLAPACK =@-ScaLAPACK w1200 -@-ScaLAPACK
w150 2 600 g
3 S 500 21000
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(c) Cray XT5

1 2 4 8 16 32 64 1 2 a 8 16 32 12 24 48 96 192 384

Number of Cores Number of Cores

(a) Grig cluster (b) Newton cluster
Fig. 5. Strong scalability.

64 128 256

Then we compare the total number of GFLOPS between tilel GFLOPS to 172 GFLOPS (1 to 64 cores), after which it
CA-QR and Scal APACK. nearly stops increasing.

The matrix input to the Newton cluster and Cray XT5 On the Cray XT5 system, with an increasing number of
system is 0f512 x 32 tiles with a tuned tile size of = 200. cores from 1 to 384, tile CA-QR improves from 7.5 GFLOPS
The matrix input to the Grig cluster is a bit smaller (due tto 1700 GFLOPS while ScaLAPACK improves from 5.8 to
its smaller memory), that iss12 x 16 tiles with a tile size 1180 GFLOPS.

200. Since the configuration of a process ghdx P. can -

affect the performance of ScaLAPACK significantly, we tried®- Weak Scalability

all possible grid configurations and chose the best processor weak scalability experiments, we fix the amount of
grid for ScaLAPACK. Based on our experiments, we alseomputation on each core. When we double the number
found that running an MPI process on each core haso# cores, we also double the total amount of computation
better performance than running an MPI process on eaatcordingly. Weak scalability demonstrates a programnilityab
node with multithreaded computational kernels. Therefore to solve larger problems with more resources.

our ScaLAPACK experiments, each MPI process is single-In our experiment, each matrix input has a fixed number
threaded. of eight tile-columns but different number of tile-rows. &

Figure[® displays the overall performance of tile CA-QRve double the number of cores, we double the number of tile-
and ScaLAPACK on three systems. On the Grig cluster, as w@vs in the input. For instance, the input to the single-core
increase the number of cores from 1 to 64, the performaneeperiment hag4 x 8 tiles. And the two-core experiment has
of tile CA-QR increases from 4.3 GFLOPS to 206 GFLOPS matrix input of128 x 8 tiles.

By contrast ScaLAPACK increases from 2.4 GFLOPS to 112 Figure[6 shows the performance of the weak scalability
GFLOPS. experiments on three different systems. Besides tile CA-

On Newton, between 1 and 128 cores, the performance@R and ScalLAPACK, we also display the theoretical peak
tile CA-QR increases from 7.3 GFLOPS to 620 GFLOPSerformance and the serial DGEMM performance times the
Then from 128 cores to 256 cores, the increasing rate of tilmber of cores for each system. The DGEMM performance
CA-QR drops and its performance rises from 620 GFLOPrves as an upper bound for all of our experiments. Again for
to 810 GFLOPS. The performance of ScaLAPACK is mucBcalLAPACK, we always choose the best process grid and use
worse than that of tile CA-QR. In the beginning it rises fronthe vendor optimized ScaLAPACK library whenever possible.
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Fig. 6. Weak scalability.

There are two subfigures for each system. The top subfigé8& GFLOPS (with 12 cores). The reason for the performance
shows the total number of GFLOPS, and the bottom one shoerep is related to the NUMA architecture and requires an
the number of GFLOPS per core (i.e., the total number optimized memory-affinity setup. Afterward tile CA-QR sesl
GFLOPS divided by the total number of cores). Ideally thevell from 12 cores to 3,072 cores (i.e., from 1 node to 256
number of GFLOPS per core is a constant and does not changdes). By contrast the performance of ScaLAPACK drops
from 1 to n cores so that the per-core performance curvefism 4.3 GFLOPS to 1.4 GFLOPS as we increase the number
flat. of cores, which is 1/4 of that of tile CA-QR.

Figure[6 a) and b) display the overall performance and .
per-core performance of tile CA-QR and ScaLAPACK on th: Crossover Point
Grig cluster, respectively. We set the tile sizebte- 200. As This section discusses how distributed tile CA-QR behaves
shown in a), as the number of cores increase from 1 to @#the matrix is not tall and skinny. In our experiment, a matr
tile CA-QR increases from 4.1 GFLOPS to 244.9 GFLOPBas a fixed number of 512 tile-rows but an increasing number
while ScaLAPACK increases from 1.96 to 92.1 GFLOPS. Iaf tile-columns. The tile size is set tb = 200. Since we
b), the per-core performance of tile CA-QR keeps at a rapant to view the number of columns as a unique variable,
of 4 GFLOPS that outperforms ScaLAPACK by nearly fouwe choose to use a fixed number of 192 cores. We conducted
times. the experiment on the Cray XT5 system. Note that 192 cores

On the Newton cluster, the ScaLAPACK experiment callsorrespond to 16 nodes.
the QR factorization subroutine provided by Intel MKL 10.1. Figure[J shows the crossover point when a matrix becomes
Figure[® c) shows that the performance of tile CA-QR risesider and wider until it is eventually square. We can see that
from 6.9 GFLOPS to 1,540 GFLOPS while ScalLAPACK risethe performance of tile CA-QR becomes worse than that of
only from 3.3 GFLOPS to 270 GFLOPS. In d), the perScaLAPACK after the number of columns is greater than 1/4
core performance of tile CA-QR decreases slightly from 6@&f the number of rows. This is because the matrix’'s 512 tile-
to 6.4 GFLOPS between 1 and 128 cores, and then draps/s have been distributed to 16 processes by the 1D block
0.4 GFLOPS from 128 to 256 cores. ScaLAPACK does ndistribution. Every process is allocated with 32 tile-raavel is
perform as well as tile CA-QR. For instance, the performanoaly responsible for the computation on its own 32 tile-rows
of ScaLAPACK on 256 cores is only 1/6 of that of tile CA-QRAs the algorithm visits and computes the matrix from top left

On the Cray XT5 system, we use the ScaLAPACK routin® bottom right, more and more processes on the top become
provided by Cray XT LibSci 10.3.6 and let tile size= 300. In idle, which results in a load imbalance and poor performance
Fig.[8 e), with an increasing number of cores from 1 to 3,072, Figure[8 shows an example of the tile CA-QR factorization
the performance of tile CA-QR increases from 7.4 GFLOPS tbat explains the cause of idle processes. The matrix inpsit h
17.5 TFLOPS while ScaLAPACK increases from 4.3 GFLOPSx 4 tiles and is partitioned across eight processes. We can see
to 4.3 TFLOPS. In Fid.]6 f), the per-core performance of tildom the figure that when the algorithm is working on the third
CA-QR decreases gradually from 7.4 GFLOPS (with 1 core) tibe-column, processeB, and P, become idle until the end of
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the factorization. A two-dimensional block cyclic distuifon,
similar to ScaLAPACK, would then be necessary to efficiently;
handle general matrix sizes and overcome this bottlenduk. T
would also require a revision of the algorithm correspoghtjin
This is out of the scope of this paper which focuses on hoJﬂ
to factorize tall and skinny matrices in a more efficient way.
3
VIl. CONCLUSION AND FUTURE WORK .
The QR factorization of tall and skinny matrices has been
used in many scientific fields that require solving least sgua
problems. This paper extends an existing algorithm foresthar
memory architectures and enables it to work efficiently ory;
modern large-scale distributed-memory systems. We have im
plemented the algorithm with an augmented TBLAS runtimﬁs]
system. The distributed tile CA-QR factorization has a hig
degree of parallelism and allows for a fully dynamic exeauti
that can overlap computation and communication greatly. Wél
have presented the algorithm, the analysis of the algorithm
the extension of the runtime system, and the performance
evaluation. Our experiments on two multicore clusters anéf’!
a Cray XT5 system demonstrate that the tile CA-QR factor-
ization is scalable on up to 3,072 cores and can outperforél
the ScalLAPACK library by up to 4 times for tall and skinny
matrices. 9]
In summary, we make the following contributions: (1) An
extension from shared-memory systems to distributed—mm?lo]
systems; (2) A detailed analysis of the algorithm with respe
to operation count, number of messages, and communication
volume; (3) An extended TBLAS runtime system to suppoRt!]
an efficient distributed implementation; (4) First demoaitsbn
of the scalability of the algorithm on large scale distrémlt
memory systems. Our future work includes looking for ne
methods to partition matrices to different processes taavg
load balance for general matrix size, and applying this af3]
proach to solving other linear algebra problems on disteithu
memory multicore systems.

2

[14]

Fig. 8. Existent idle processes given a matrix &fx 4 tiles
distributed across eight processes.
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