
From CUDA to OpenCL: Towards a Performance-portable Solution for Multi-platform
GPU ProgrammingI,II

Peng Dua, Rick Webera, Piotr Luszczeka, Stanimire Tomova, Gregory Petersona, Jack Dongarraa,b

aUniversity of Tennessee Knoxville
bUniversity of Manchester

Abstract

In this work, we evaluate OpenCL as a programming tool for developing performance-portable applications for GPGPU. While the
Khronos group developed OpenCL with programming portability in mind, performance is not necessarily portable. OpenCL has
required performance-impacting initializations that do not exist in other languages such as CUDA. Understanding these implications
allows us to provide a single library with decent performance on a variety of platforms. We choose triangular solver (TRSM) and
matrix multiplication (GEMM) as representative level 3 BLAS routines to implement in OpenCL. We profile TRSM to get the time
distribution of the OpenCL runtime system. We then provide tuned GEMM kernels for both the NVIDIA Tesla C2050 and ATI
Radeon 5870, the latest GPUs offered by both companies. We explore the benefits of using the texture cache, the performance
ramifications of copying data into images, discrepancies in the OpenCL and CUDA compilers’ optimizations, and other issues that
affect the performance. Experimental results show that nearly 50% of peak performance can be obtained in GEMM on both GPUs
in OpenCL. We also show that the performance of these kernels is not highly portable. Finally, we propose using auto-tuning to
better explore these kernels’ parameter space using search heuristics.

Keywords: hardware accelerators, portability, auto-tuning

1. Introduction

People associated Graphics Processing Units (GPUs) with
fast image rendering until the turn of the century. This is when
the science community turned their attention to the hardware
predominantly discussed in the computer gaming circles. One
of the first attempts of non-graphical computations on a GPU
was a matrix-matrix multiply [1]. In 2001, low-end graphics
cards had no floating-point support; floating-point color buffers
did not arrive until 2003 [2]. For the gaming industry, sup-
port for floating-point meant more realistic game-play; rich ad-
vanced lighting effects no longer suffered from banding effects
common in older generations of hardware that only allowed a
single byte per color channel. For the scientific community,
the addition of floating point meant that overflow associated
with fixed-point arithmetic was no longer a problem. Many re-
search publications thoroughly analyzed the new breed of GPU
hardware using languages borrowed from the graphics com-
munity [3, 4, 5]. It goes without saying that these computa-
tional advances would not be possible if it weren’t for the pro-
grammable shaders that broke the rigidity of the fixed graphics
pipeline. LU factorization with partial pivoting on a GPU was
one of the first common computational kernels that ran faster
than an optimized CPU implementation [6]. The introduction

IThis work was supported by the SCALE-IT fellowship through grant num-
ber OR11907-001.

IIThis work was supported by NVIDIA, Microsoft, the U.S. National Sci-
ence Foundation, and the U.S. Department of Energy.

of NVIDIA’s CUDA [7, 8] (Compute Unified Device Archi-
tecture), ushered a new era of improved performance for many
applications as programming GPUs became simpler: archaic
terms such as texels, fragments, and pixels were superseded
with threads, vector processing, data caches and shared mem-
ory.

Further changes occuring in ATI’s and NVIDIA’s offerings
made GPU acceleration even more pertinent to the scientific
community. ATI’s FireStream and NVIDIA’s Fermi architec-
ture added support for Fused Multiply-Add (FMA): a more ac-
curate version of the former MAD (Multiply-Add) instruction.
With only a single rounding step, this new instructions bring
GPUs even closer to compliance with the IEEE 754 standard for
floating-point arithmetic. Additionally, reworking of the cache
hierarchy helped with some of the performance issues of the
past. Finally, Error Correction Codes (ECC) are now used to
protect the GPU device’s memory as its capacity grows to the
point of being vulnerable to errors induced by nature, such as
cosmic radiation.

In our project called Matrix Algebra on GPU and Multicore
Architectures [9] (MAGMA), we mainly focus on dense matrix
routines for numerical linear algebra, similar to those available
in LAPACK [10]. While CUDA is only available for NVIDIA
GPUs, there are other existing frameworks that allow platform-
independent programming for GPUs:

1. DirectCompute from Microsoft,
2. OpenGL Shading Language (GLSL), and
3. OpenCL.

Preprint submitted to Parallel Computing August 31, 2010

DirectCompute allows access to graphics cards from mul-
tiple vendors. However, it is specific to Microsoft Windows
and therefore it is not portable between host Operating Sys-
tems (OS).

The OpenGL Shading language [11] is portable across both
GPU hardware and the host OS. However, it is specifically geared
towards programming new graphics effects – GLSL does not
have a scientific focus.

OpenCL [12] has been designed for general purpose com-
puting on GPUs (GPGPU). It is an open standard maintained
by the Khronos group with the backing of major graphics hard-
ware vendors as well as large computer industry vendors inter-
ested in off-loading computations to GPUs. As such, there ex-
ist working OpenCL implementations for graphics cards and,
multi-core processors; OpenCL offers portability across GPU
hardware, OS software, and multicore processors. In this work,
BLAS routines are used to evaluate OpenCL’s usefulness in cre-
ating a portable high performance GPU numerical linear alge-
bra library.

The rest of the paper is organized as follows: Section 2 talks
about related work. Section 3 details OpenCL’s programming
considerations. This involves a comparison between CUDA
and OpenCL as programming language for GPU, and the profil-
ing analysis of the run-time of each component in OpenCL pro-
gram. Sections 4 and 5 give an evaluation to both NVIDIA and
ATI GPU platforms by implementing fast GEMM and analyz-
ing performance. Section 6 discusses cross-platform issues and
section 7 lays out the basic structure of an auto-tuning system
for cross-platform GPU math library design. Section 8 shows
the performance result and section 9 concludes the paper. In
the text we use the terms ”ATI card” and Radeon 5870; ”Fermi
card” and Tesla C2050 interchangeably.

2. Related Work

Synthetic benchmarking of GPUs was used extensively to
gain understanding of the graphics accelerators when the tech-
nical details of the hardware remains an industrial secret [13].
In the context of scientific applications, such benchmarking ef-
forts lead to algorithms that provide significant performance
improvements [14].

A performance-oriented study of NVIDIA’s PTX (Parallel
Thread eXecution) architecture [15] was done in the context of
the Ocelot project [16]. Code transformations of CUDA ker-
nels were done by the MCUDA [17] project. The transforma-
tions enabled CUDA code to run efficiently on multicore CPUs.
The inverse operation – porting multicore code to GPUs – was
difficult [16].

Work on optimizing CUDA implementations of basic lin-
ear algebra kernels has demonstrated the importance on “how
sensitive the performance of a GPU is to the formulation of
your kernel” [18] and that an enormous amount of well thought
experimentation and benchmarking [14, 18] is needed in or-
der to optimize performance. Optimizing OpenCL applications
for a particular architecture faces the same challenges. Fur-
ther, optimizing a fixed OpenCL code for several architectures

is harder, even impossible, and naturally, many authors claim
that OpenCL does not provide performance portability. This,
along with the fact that GPUs are quickly evolving in complex-
ity, has made tuning numerical libraries for them challenging.
One approach (that we explore) to systematically resolve these
issues is the use of auto-tuning, a technique that in the context of
OpenCL would involve collecting and generating multiple ker-
nel versions, implementing the same algorithm optimized for
different architectures, and heuristically selecting the best per-
forming one. Auto-tuning has been used intensively on CPUs
in the past to address these challenges to automatically gener-
ate near optimal numerical libraries, e.g., ATLAS [19, 20] and
PHiPAC [21] used it to generate highly optimized BLAS. Work
on auto-tuning CUDA kernels for NVIDIA GPUs [22, 23] has
shown that the technique is a very practical solution to easily
port existing algorithmic solutions on quickly evolving GPU
architectures and to substantially speed up even highly tuned
hand-written kernels.

In [24], the authors1 examined performance portability in
OpenCL. In their study, they compared CUDA and OpenCL
implementations of a Monte Carlo Chemistry application run-
ning on an NVIDIA GTX285. They also compared the same
application written in ATI’s now defunct Brook+ to an OpenCL
version on a Firestream 9170 and Radeon 4870 respectively. Fi-
nally they compared OpenCL to a C++ implementation running
on multi-core Intel processors. The paper showed that while
OpenCL does provide code portability, it doesn’t necessarily
provide performance portability. Furthermore, they showed that
platform-specific languages often, but not always, outperformed
OpenCL.

3. OpenCL as A Programming Tool

To evaluate OpenCL as a programming tool for implement-
ing high performance linear algebra routines, we pick the tri-
angular solver (TRSM) routine from BLAS and profile each
component of the program: environment setup, program com-
pilation, kernel extraction, and execution.

TRSM solves the linear equation Ax= b where A is an upper
or lower triangular matrix and b is a known matrix of solutions.
Its implementation involves a blocking algorithm in which the
diagonal triangular blocks are inverted (TRTRI) in parallel fol-
lowed by a series of matrix multiplications (GEMM). Porting
these routines from CUDA to OpenCL requires some transla-
tion.

CUDA and OpenCL have many conceptual similarities but
they diverge on terminology. Table 1 shows the correspond-
ing terms in both frameworks while 1 highlights differences in
the CUDA and OpenCL software stacks. Similarly, ATI and
NVIDIA GPUs have analogous platform definitions as shown
in Table 2. Table 3 shows the platform details of two different
NVIDIA GPUs and one GPU from ATI/AMD. We show what
these differences mean to application developers.

1Rick Weber and Gregory Peterson are also authors of this paper

2

CUDA Code OpenCL Code

Figure 2: Comparison of Device Kernel Code Between OpenCL and CUDA.

CUDA term OpenCL term

host CPU host

streaming multiprocessor (SM) compute unit (CU)

scalar core processing element (PE)

host thread host program

thread work-item

thread block work-group

grid NDRange

shared memory local memory

constant memory space constant memory

texture memory space constant memory

Table 1: Comparison of terms used by CUDA and OpenCL to describe very
similar concepts.

3.1. Relation to CUDA

Figure 2 shows side-by-side differences of the kernel codes
for triangular inversion routine (TRTRI) for OpenCL and CUDA.
The changes are in the lines annotated in red. They belong to
the following categories:

• Obtaining the ID for the thread/work-item and block/work-
group.

• The definition of shared memory in CUDA is replaced
in OpenCL by local memory: shared is replaced with
local

• OpenCL makes explicit differentiation between global mem-
ory addresses (device memory address space) and local

my_k3rn0l.cu

CUDA

PTX

binary

my_k3rn0l.cl

OpenCL

STREAM SDK Apple LLVM

NVIDIA Fermi ATI Multicore

IR

binary

CUDA Toolkit

IL

binary

Figure 1: Comparison of software stacks used with CUDA and OpenCL on
various hardware platforms.

memory addresses (register variable or pointer to shared
memory) whereas CUDA makes no such distinction.

• Syntax for synchronization primitives.

Differences in the CUDA and OpenCL front-ends yield differ-
ent timing profiles.

3.2. Profiling
Unlike CUDA, OpenCL requires environmental setup on

the host (CPU) before launching kernels to run on GPU. This
process also includes compiling kernels. The process for set-
ting up kernels to execute is similar for all GPU kernels and
an analysis of TRSM gives a typical breakdown of initializa-
tion. Figure 3 shows the breakdown of initialization time. We
run oclDtrsm (OpenCL double precision triangular solver) with

3

ATI term NVIDIA term

Streaming Multiprocessor Stream Core

streaming multiprocessor (SM) compute unit (CU)

scalar core processing element (PE)

shared memory shared memory

texture cache texture cache

PTX IL

binary binary

Table 2: Comparison of terms used by ATI and NVIDIA to describe very simi-
lar concepts.

M=10240 and NRHS=128 on an Intel Q9300 running at 2.5
GHz and a Tesla C2050. Setting up the kernel takes longer than
the kernel execution itself.

Compiling OpenCL source code into an intermediate rep-
resentation takes the most time in initialization. We observed
similar results on older NVIDIA cards (e.g. GTX 280) and ATI
cards (e.g. Radeon 5870) using ATI STREAM SDK[25]. On
the Tesla C2050, the compilation of 300+ lines of OpenCL C
code into 7000+ lines of PTX takes just over 2 seconds, while
the computation on fairly large problem takes less than 0.2 sec-
ond. This overhead can lead to a severe performance impact
if not accounted for when dealing with many OpenCL routines
calling each other in a software library. One solution to reduce
this overhead is to separate compilation and execution.

Since OpenCL includes separate compilation and build func-
tions in its API, source code compilation can be performed once
during the deployment/installation stage of the math library. As
of writing, there is no off-line kernel compiler in NVIDIA’s
OpenCL platform. Documentation suggests [26] for this to
be implemented by the developers. We can do this by fetching
the Intermediate Representation (IR) resulting from compila-
tion using clGetProgramInfo and saving it to disk. During the
initialization phase, the IR can be read from disk and processed
with a call to clBuildProgram. This method reduced the time
of getting the binary code ready to run from 2+ seconds to 0.2
seconds. While the time to create a kernel from a pre-built pro-
gram still takes more time than a single TRSM, initialization is
10x faster when the raw source code isn’t compiled every time
the user runs the application. Having sped up initialization, the
time profile for the TRSM kernel itself is the next item to opti-

GPU NVIDIA NVIDIA ATI

Device GTX 280 C2050 (Fermi) Radeon 5870

Compute

Units 30 32 20

Processing

elements 8 16 16

Table 3: Comparison of computational resources available on NVIDIA’s GTX
280

2,021

335

185
189

Build Program

Copy Data

Create Kernel

oclDtrsm

Value: Time
Unit: ms

Figure 3: Runtime break down

mize.
The performance of TRSM is dominated by GEMM[27].

Since GEMM is one of the most important kernels in linear
algebra, we will focus on implementing and analyzing a fast
OpenCL GEMM in the coming sections.

4. NVIDIA Platform

4.1. Fermi Architecture

Fermi is NVIDIA’s latest GPU product line that includes
the GTX4xx series and the Tesla C2050. It introduces several
changes over the previous GPU offerings including more plen-
tiful and capable compute units and a revamped memory hier-
archy. Under Fermi, more compute units are available, warp
sizes have increased from 16 to 32 threads, and each compute
unit issues instructions from 2 warps concurrently [28]. Mul-
tiple kernels can run simultaneously on Fermi hardware as op-
posed to previous generations which only support a single ker-
nel executing at any given time [7]. This feature increases de-
vice utilization for matrix operations with small problem sizes
by increasing the number of thread blocks beyond that which
a single kernel allows. On the Tesla C2050 GPU, the num-
ber of double precision ALUs as compared to single precision
ALUs has increased to 1:2; for every double precision ALU,
there are 2 single precision ALUs [29]. In previous genera-
tions, this ratio was 1:8. This implies the double precision peak
performance (515 GFlops/s [30]) is half that of single precision
(1.015 TFlops/s [30]). In addition to extra compute units, Fermi
revamps the memory architecture of previous generation GPUs.

Fermi’s retooled memory system mainly features changes
in caching. Global memory loads and stores are now fetched
through the L1 cache, which shares hardware with shared mem-
ory. Shared memory and L1 can be configured as 48kB/16kB or
16kB/48kB respectively. The former configuration can increase
occupancy in applications that use a large amount of shared
memory while the latter configuration can decrease global mem-
ory access latencies within a compute unit. Fermi also increases

4

Figure 4: NVIDIA C2050 (Fermi) architecture.

0

100

200

300

400

500

600

G
flo

p/
s

N

OpenCL, non-texture (without copying)

OpenCL, texture (with copying)

Figure 5: MAGMA SGEMM with/without texture (copying) in OpenCL

the number of registers (the other limiting factor in occupancy)
available to applications to 128kB per compute unit[29]. The
Tesla C2050 has 144GB/s of memory bandwidth.

4.2. Fast GEMM

We have previously published a fast GEMM algorithm for
the Fermi architecture [31]. This work expanded on the work
of Volkov and Demmel [14], who provided a high performance
matrix multiply for NVIDIA’s previous generation GPUs. The
new algorithm is available in the MAGMA library and will
be included in CUBLAS 3.2. Both MAGMA and Volkov’s
GEMM algorithms are written in CUDA. In this work, we rewrite
the MAGMA algorithm in OpenCL, tune the implementation
for the Fermi architecture, and compare the OpenCL imple-
mentation performance to that of CUDA. Additionally, we run
the MAGMA algorithm on both NVIDIA and ATI GPUs, il-
lustrating OpenCL’s cross platform design and examining the
portability of algorithm performance.

4.3. From CUDA to OpenCL

Given the performance of MAGMA GEMM on Fermi, the
intuitive fast OpenCL implementation is translated from the
CUDA. While CUDA offers the ability to bind a texture to
global memory for direct access, which is used in MAGMA
GEMM, OpenCL does not. To access matrices through the tex-
ture cache, data in global memory must be explicitly copied
into an image before it can be read by GPU kernels. Figure 5
shows the performance of 2 SGEMM kernels - one using im-
ages (requiring a copies) and one that directly accesses global
memory.

Our kernels for copying global buffers into images don’t
run efficiently on Fermi. We show the memory bandwidth uti-
lization when copying an NxN matrix into an image in Figure
7. These kernels use less than 7% of the Tesla C2050’s peak
bandwidth. We found that using clEnqueueCopyBufferToIm-
age improves performance fourfold. For our SGEMM using

0

100

200

300

400

500

600

700

19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

23
04

24
96

26
88

28
80

30
72

32
64

34
56

36
48

38
40

40
32

42
24

44
16

46
08

48
00

49
92

51
84

53
76

55
68

57
60

59
52

G
flo

p/
s

N

CUDA, MAGMA GEMM with texture
CUDA, MAGMA GEMM without texture
OpenCL, direct translation
OpenCL, fully unrolled
OpenCL, 16-1 unolled

Figure 6: MAGMA SGEMM with CUDA and OpenCL

Figure 7: Bandwidth when copying from a global buffer to an image for float
and double types with and without transposition

the texture cache, we need to copy without transposition both
A and B into images with a single floating point alpha chan-
nel. For DGEMM we copy A and B into images with red and
green single precision channels, the concatnation of which rep-
resents one double precision number in the matrix. High per-
formance data copies are important for small matrix multiplica-
tions where there is less work to amortize them.

Figure 6 shows the CUDA performance with and without
using texture in MAMGA’s Fermi GEMM. We show that not
using the texture cache leads to a 5% performance drop, which
means that streaming data through textures on Fermi contributes
little performance. This leads to the idea of removing image
copies to save time, which counteracts the performance drop by
not using textures. Figure 5 demonstrates this by also showing
the performance of the texture-free version of the same code.
The cross over point shows that copying overhead is expensive
and only pays off for larger problem size.

The way OpenCL code is converted from CUDA is straight-
forward. Firstly, texture binding and fetching are removed from
the MAGMA’s Fermi GEMM in CUDA. Then the code is trans-

5

Figure 8: MAGMA GEMM structure

lated into OpenCL using keyword changes previously described.
Most of the data I/O and computation instructions remain the
same. The green line in figure 6 shows that the performance
of this code ramps up very slowly and drops slightly more than
100 Gflop/s at large matrix size. We examing the PTX output
from OpenCL and CUDA To explain the different performance.

The kernel structure of MAGMA’s Fermi GEMM is shown
in figure 8. On the NVIDIA platform, both CUDA and OpenCL
produce PTX, NVIDIA’s intermediate representation between
high-level code and device-specific assembly code. In the three
yellow parts, ld.global.f32 is issued to load data from global
memory, and in the blue parts, ld.shared.f32 is issued to load
data from shared memory. When both operands A and B are in
registers, FMA is issued to calculate C+= A∗B.

By comparing the PTX generated by CUDA and OpenCL
compiler, the first major difference is that the CUDA compiler
generates code that reads data from shared memory right before
the computation that requires it. For example, the first blue and
green boxes have the following code:

#pragma unroll

for(int y=0;y<6;y++)

Bxp[y]= Bb[j1][res+y*16];

#pragma unroll

for(int y=0;y<6;y++)

Axs[y] = Abs[qot+y*16][j1] ;

#pragma unroll

for(int x=0;x<6;x++) {

#pragma unroll

for(int y=0; y<6; y++)

Cb[x*6+y] += Axs[x]*Bxp[y];

}

The CUDA compiler’s resultant output is:

ld.shared.f32 %f508, [%rd53+3276];

mov.f32 %f509, %f391;

fma.rn.f32 %f510, %f508, %f446, %f509;

mov.f32 %f511, %f510;

mov.f32 %f512, %f394;

fma.rn.f32 %f513, %f508, %f450, %f512;

mov.f32 %f514, %f513;

mov.f32 %f515, %f397;

......

......

fma.rn.f32 %f525, %f508, %f466, %f524;

mov.f32 %f526, %f525;

Here shared memory data at address %rd53+3276 is fetched
to register %f508 and 6 FMAs are issued to consume this value.
This pattern allows better overlap of I/O and computation and
therefore the overhead of slow I/O can be better hidden through
pipelining.

OpenCL compiler emits different PTX. There following is
the equivalent PTX of the above C code:

ld.shared.f32 %f315, [%r120+1088];

ld.shared.f32 %f316, [%r120+2176];

......

......

ld.shared.f32 %f326, [%r184];

add.s32 %r184, %r184, 388;

fma.rn.f32 %f375, %f319, %f325, %f375;

fma.rn.f32 %f376, %f319, %f324, %f376;

......

......

fma.rn.f32 %f386, %f318, %f326, %f386;

This PTX appears to follow the C code directly: all the load-
ing from shared memory followed by all FMAs. While execut-
ing in a loop, this pattern could stall GPU cores waiting for all
the data to load from shared memory.

Another PTX discrepancy is that the OpenCL compiler does
not unroll the outermost loop despite the unroll pragma. In or-
der to make a fair comparison, we manually unrolled all the
inner loops so that unrolling pragma works on the outermost
loop. The performance of this code is shown in figure 6 as
’fully unrolled’. After seeing drastic drops in performance, we
found that OpenCL compiler unrolled the outermost loop and
grouped different iterations’ ld.shared.f32 followed by many
FMA operations. Similar results have been observed on the
ATI’s OpenCL compiler. This grouping action further exac-
erbates stalls and explains the low performance. To demon-
strate this claim, different combinations of manual unrolling
and pragma locations were tested to fight with the OpenCL
compiler’s tendency of grouping similar operations. The best
solution we found is putting the two blue and green parts to-
gether forming a 16-loop rather than two 8-loop, which is un-
rolled using pragma with a factor of 15 (hence the name ’16-
1 unrolling’). This incomplete unrolling tricks the compiler
into laying out the codes in small groups of ld.shared.f32 and
ld.shared.f32. This lifts the performance to within 50 Gflop/s of
the original CUDA code as shown in figure 6. If the compiler
better collected the ld.shared.f32 and ld.shared.f32 instructions
into small groups interleaved with execution, the performance

6

Figure 9: Radeon 5870 architecture

of the OpenCL code for this and similar operations should closely
match the CUDA performance. Our ultimate objective is to el-
evate the performance of the sans-texture kernel to the CUDA
non-texture kernel, and using the texture-based kernel for large
problems where the copy costs can be amortized.

5. ATI Platform

5.1. Radeon 5870 Architecture

ATI’s Evergreen architecture has many analogues with NVIDIA
GPUs. Like Fermi-based cards, the Radeon 5xxx GPUs have
copious memory bandwidth and many parallel computation units
to exploit data parallelism. Our work focuses on the Radeon
5870.

The Radeon 5870 GPU has 1600 ALUs organized in groups
(fig. 9). This graphics processor has 20 compute units, each
of which contains 16 stream cores. Each stream core within
a compute unit executes an instance of a kernel in lockstep.
This SIMD hierarchy is analogous to NVIDIA’s SIMT engines.
However, unlike NVIDIA’s Fermi architecture, each stream core
is a 5 ALU Very Long Instruction Word (VLIW) processor.
Threads are grouped and interleaved on compute units.

Threads are interleaved to hide memory access latency. They
are grouped into sets of 64 called a wavefront. A wavefront is
analogous to a warp on NVIDIA hardware. Of these 64 threads,
16 execute on a given clock cycle on the 16 stream cores within
a compute unit. Over the course of 4 clock cycles, all threads
are interleaved, executing an instruction. This hides memory
latency; while one thread is loading data another thread can be
performing computation[32].

Each ALU in a stream core can independently perform ba-
sic floating point operations. In single precision, each ALU can
issue one basic floating point instruction such as subtract, multi-
ply, Multiply-Add (MAD), etc. instruction per clock cycle with
a pipeline latency of 8 cycles. In addition to basic floating point
instructions (such as multiply, add, subtract, divide, and MAD),
the fifth ALU can perform transcendental functions including
log, square root, etc. To perform double precision floating point
operations, some number of the ALUs are fused together. In the
case of Fused Multiply Add (FMA), four of the five ALUs are
used per operation[32]. The fifth unit is free to do integer or
single precision calculations during this time. Since four ALUs
are fused per operation and the fifth does not perform double

precision operations, the peak double precision throughput is
1/5 that of single precision. The Radeon 5870’s 1600 ALUs
run at 850MHz, yielding a peak throughput of 2.72TFlops/s in
single precision and 544GFlops/s in double. Like NVIDIA’s of-
ferings, the Radeon 5870 has high off-chip memory bandwidth
and even higher on-chip bandwidth.

To balance the performance of floating point units, the Radeon
5870 features high bandwidth to global memory augmented
with a texture cache. Global memory has a peak data through-
put of 154GB/s divided over 8 memory controllers. Unlike the
Fermi architecture, reads and writes to global memory are gen-
erally not cached. However, reads and writes to textures are
cached. Each compute unit has its own 8KB L1 cache yielding
an aggregate bandwidth of 1TB/s and can produce 4 bytes of
data (1 float or half a double) per cycle per stream core. Mul-
tiple compute units share a 512kB L2 cache with 435GB/s of
bandwidth between L1 and L2. In addition to automatically
controlled texture caches, data reuse can also be facilitated us-
ing shared memory[32].

The Radeon 5870 features 32KB of shared memory per
compute unit. This shared memory has provides 2TB/s of ag-
gregate bandwidth. As with the Fermi architecture, local mem-
ory usage dictates how many concurrent wavefronts can run on
a compute unit. Each compute unit can produce 2 4-byte (2
floats or 1 double) shared memory requests per cycle. As with
NVIDIA cards, bank conflicts can hurt shared memory perfor-
mance and need to be minimized. Since each stream core can
perform 5 MADs per cycle in single precision, more bandwidth
is needed for operands than shared memory can provide. This
is also true for double precision. As such, register blocking be-
comes crucial in obtaining a high performance GEMM kernel.
[32]

Registers provide the highest memory bandwidth on-chip.
The Radeon 5870 has 256KB of register space per compute unit
(5.1MB for the whole GPU) and can produce 48 bytes/cycle of
data per stream core. Results generated on the previous cycle
used as operands don’t count towards this limit, as they can be
forwarded using the Previous Vector or Previous Scalar regis-
ter [32]. Each of the 5 MADs per cycle takes 4 operands yield-
ing 20 total operands of 4 bytes a piece. 4 of these operands
can be mitigated using the previous vector register and one of
these operands can be shared among the 5 ALUs. This equates
to exactly 48 bytes/cycle needed to fully utilize all 5 ALUs in
a perfectly scheduled SGEMM. If the scheduling is not per-
fect, registers can actually serve as a bottleneck in the com-
putation. For DGEMM, registers provide sufficient bandwidth
for the single FMA instruction per stream core regardless of
operand reuse. Like shared memory, register usage dictates the
number of concurrent wavefronts executing on a compute unit.
Unlike NVIDIA GPUs, registers are 128-bit and support swiz-
zling at no performance cost.

5.2. Fast GEMM
We present a fast GEMM algorithms for single and dou-

ble precision optimized for ATI hardware. These kernels are
based on Nakasato’s matrix multiply written in ATI’s Interme-
diate Language (IL)[33]. This work focused on computing row

7

Figure 10: ATI Memory bandwidth utilization during image copies

major matrix multiplication C = AT B. We expanded this work
to perform a column major C = αABT + βC. Our algorithm
makes extensive use of the texture cache, which requires copies
in OpenCL. We use custom copy kernels to move data into im-
ages configured with RGBA color mode and float values. We
pad the leading dimension of the image with zeros if needed.
For single and double precision, we pad the leading dimension
of the image to a multiple of 4 float and 2 doubles respec-
tively. In double precision, the concatenation of the red and
green channels represents the first double, while the blue and
alpha channel represent the second double. A is copied with-
out transposition into its corresponding padded image while B
is transposed and copied into its image. The time to perform
these copies is O(N2), which is amortized by the O(N3) opera-
tions in GEMM for large problems. Copying A into an image
efficiently uses the Radeon 5870’s memory bandwidth (fig. 10),
while copying B doesn’t.

The kernels copying data from global memory into images
achieve a high fraction of the Radeon 5870’s available band-
width. For non transposed copies, our kernels used over 100GB/s
of the 154GB/s of available bandwidth with little variance. Our
transpose-and-copy kernels achieved half that amount and were
far more sensitive to problem size. Poor memory coalescing in
the transpose kernels is to blame for the low memory through-
put. These kernels and the ones needed for texture use for the
NVIDIA texture-based kernel ran an order of magnitude more
quickly on the Radeon 5870 than on the Tesla C2050. Oddly
enough, our float and double copy kernels were significantly
faster than clEnqueueCopyBufferToImage on the Radeon 5870.

Once A and B have been copied, the matrix multiplication
kernel executes. Our DGEMM algorithm is shown in fig. 11.
Each thread computes a single 4x4 block of C as double2s.
Since B is transposed, the columns of B reside in its leading
dimension. The rows of A reside in its leading dimension. We
scale the double2 row vectors of A by the corresponding dou-
ble of B using swizzling to extract and duplicate the required
element. This scaled vector is then accumulated into the corre-
sponding double2 of C. All of this is done with a single MAD

C A B
T

B0.x

B0.y

B2.x

B2.y

A0.xy

A2.xy

C0,0 C0,1 C0,2 C0,3

C2,0 C2,1 C2,2 C2,3

k k

Figure 11: ATI DGEMM algorithm

Figure 12: ATI SGEMM performance

and swizzling.
To maximize outstanding loads from the texture cache, we

use 8 samplers. 2 samplers load 2 double2s from A into reg-
isters and 2 samplers fetch 2 double2s of B. We unroll the k
loop twice to use the other 4 samplers. A useful feature of im-
ages is that when its sampler is declared using CL CLAMP,
fetching outside the bounds of the 2D image yields 0.0, which
has no effect on the result when accumulated. This allows k
to be indivisible by 2 yet still function correctly; in this case,
our DGEMM kernel samples beyond the bounds of A and B
and accumulates 0.0 into the result. Handling cases when m
is not a multiple of 2 is non-trivial and our algorithm currently
doesn’t handle this case. In fact, our algorithm requires both m
and n be multiples of 4. Padding C can overcome this limita-
tion. SGEMM is analogous to our DGEMM kernel, where each
thread computes an 8x8 block of C in float4 registers and has
analogous limitations.

We compare our OpenCL results to Nakasato’s IL perfor-
mance in 12 and 13. Nakasato’s timings do not include copy
times, which exaggerates performance for small problems. Our
timings do include this copy. Furthermore, Nakasato’s algo-
rithm performs only the matrix multiplication while we per-
form the alpha and beta scaling (a negligible amount of time
for large N). Neither timings include PCIe data transfer times,
which would be amortized in large multiplications or when data
can be heavily reused on the GPU.

Our SGEMM kernel exceeds 1.3TFlops/s for N=3840, 4352,

8

Figure 13: ATI DGEMM performance

and 4864. Nakasato’s IL implementation just exceeds 2TFlops/s
for these same N, implying our OpenCL MAGMA implemen-
tation achieves 65% of a fast matrix multiply algorithm written
in high-level assembly code. Nakasato achieves 74% of the
Radeon 5870’s peak performance while we achieve 49%.

Our OpenCL ATI DGEMM algorithm achieves 308GFlops/s
on the Radeon 5870. In comparison, Nakasato’s matrix multi-
ply algorithm achieves 472GFlops/s. This means that our OpenCL
implementation is has 69% of the performance of Nakasato’s
IL matrix multiply. The ATI OpenCL kernel computes at 57%
of the hardware’s peak performance while Nakasato’s kernel
operates at 87% of maximum throughput. From this perfor-
mance comparison, we illustrate that OpenCL provides fair per-
formance with a high degree of programmability on ATI hard-
ware. Furthermore, we found that the relevant data copy and
pack kernels effectively used the Radeon 5870’s memory band-
width (fig. 10).

6. Performance Portability

In this section, we run our device specific kernels on hard-
ware for which they aren’t tuned to evaluate performance porta-
bility. OpenCL is designed with program portability in mind.
Despite different vendors having added extra functionality in
their OpenCL implementations, our work only uses features in
the OpenCL standard[12]. This theoretically allows the front-
end and GPU kernels to run on any platform without changes.

Figure 14 shows our ATI SGEMM kernel running on a Tesla
C2050. While achieving 1+ Teraflop/s (50+% peak) on a Radeon
5870, it only manages to execute at 40 Gflop/s(4% peak) on
the Tesla C2050. We reverse this experiment in figure 15 and
run the OpenCL version of MAGMA’s Fermi GEMM on the
Radeon 5870. While achieving 400+ Gflop/s (40+% peak) on
the Tesla C2050, it has a very low performance when run on a
Radeon 5870. Through reading the IL generated, we suspect
that despite hinting the arrays that hold operands should be ex-
ist in registers, they actually reside in global memory, leading
orders of magnitude more data fetch latency. We suspect this is

0

100

200

300

400

500

600

19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

23
04

24
96

26
88

28
80

30
72

32
64

34
56

36
48

38
40

40
32

42
24

44
16

46
08

48
00

49
92

51
84

53
76

55
68

57
60

59
52

G
flo

p/
s

N

Fermi fast sgemm (16-1 unrolled)

ATI fast sgemm

Figure 14: Fast ATI SGEMM running on Fermi card in OpenCL

0

200

400

600

800

1000

1200

1400

1600

19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

23
04

24
96

26
88

28
80

30
72

32
64

34
56

36
48

38
40

40
32

42
24

44
16

46
08

48
00

49
92

51
84

53
76

55
68

57
60

59
52

G
flo

p/
s

N

ATI fast sgemm

Fermi sgemm, removed array

Fermi sgemm (direct translation)

Figure 15: Fast Fermi SGEMM running on ATI Radeon 5870 card in OpenCL

because the compiler fails to fully unroll loops accessing these
arrays and as such generates code that performs runtime index-
ing (which can’t occur on registers). To resolve this, the arrays
are replaced with standalone variables and performance shoots
to 600 Gflop/s (22% peak).

From these two experiments we show that performance is
not portable through simple using OpenCL. Without paying at-
tention to the underlying architecture and designing algorithms
accordingly, an algorithm’s performance suffers.

7. Performance Portability with Auto-tuning

The goal behind the OpenCL standard is to provide func-
tional portability, or in oder words, to enable a single OpenCL
application to run across a variety of hardware platforms. Al-
though extremely important, functional portability by itself, e.g.,
without performance portability, would be insufficient to estab-
lish OpenCL in the area of high-performance scientific com-
puting. In this section we address this issue by discussing auto-
tuning – the vehicle that we recognize as the potential driver of
OpenCL applications towards performance portability.

9

Automatic performance tuning (optimization), or auto-tuning
in short, is a technique that has been used intensively on CPUs
to automatically generate near-optimal numerical libraries. For
example, ATLAS [19, 20] and PHiPAC [21] are used to gener-
ate highly optimized BLAS. The main approach for doing auto-
tuning is based on empirical optimization techniques. Namely,
these are techniques to generate a large number of parametrized
code variants for a given algorithm and run these variants on a
given platform to discover the one that gives the best perfor-
mance. The effectiveness of empirical optimization depends
on the chosen parameters to optimize, and the search heuristic
used. A disadvantage of empirical optimization is the time cost
of searching for the best code variant, which is usually propor-
tional to the number of variants generated and evaluated. There-
fore, a natural idea is to combine it with some “model-driven”
approach in a first stage that would limit the search space for
the second stage of an empirical search.

Work on auto-tuning CUDA kernels for NVIDIA GPUs [22,
23] has already shown that the technique is a very practical so-
lution to easily port existing algorithmic solutions on quickly
evolving GPU architectures and to substantially speed up even
hand-tuned kernels. We expand this early work, as described
below, in the context of todays high-end GPGPU from NVIDIA
and ATI, using both CUDA and OpenCL.

7.1. Auto-tuning Infrastructure

The performance of CUDA GEMM implementations rely
on a number of very well selected parameters and optimiza-
tions [18]. Previous work in the area has managed to auto-tune
the selection of these parameters and optimizations used, to
quickly find the best performing implementations for particu-
lar cases of GEMM [22, 23]. However, with the introduction of
the Fermi architecture, these auto-tuning frameworks were not
able to find the new “optimal” implementations for Fermi, sim-
ply because their search space did not consider the newly intro-
duced features in the architecture [31]. Performance portabil-
ity problems are even further aggravated when porting kernels
across hardware vendors – kernels optimized for one vendor’s
architecture perform poorly on another vendor’s architecture,
e.g., as illustrated throughout the paper with the GEMM kernels
optimized correspondingly for NVIDIA and ATI GPUs. There-
fore, our work on providing performance portability has con-
centrated on building up an auto-tuning infrastructure with the
following two-components (characteristic for a complete auto-
tuning system):

Code generator The code generator produces code variants ac-
cording to a set of pre-defined, parametrized templates
and/or algorithms. Currently we have identified and col-
lected best GEMM candidates for both NVIDIA and ATI
GPUs. We have identified several key parameters that af-
fect performance. The code generator will automatically
create kernels using parameters and applying certain state
of the art optimization techniques.

Heuristic search engine The heuristic search engine runs the
variants produced by the code generator and discovers the

432 576 864 1152 1440 1728 2240 2592 2880 3360 3600 3920 4320 4608
0

100

200

300

400

500

600

700

 48 x 48
 64 x 64
 80 x 80
CUBLAS 3.1
 96 x 96
112 x 80

Matrix size

G
F

lo
p

/s

Figure 16: Performance of various automatedly generated SGEMM kernels for
Fermi C2050 GPU.

best one using a feedback loop, e.g., the performance re-
sults of previously evaluated variants are used as a guid-
ance for the search on currently unevaluated variants.

7.2. Tuning GEMM

To illustrate the effect of auto-tuning we present numeri-
cal results in tuning SGEMM. In particular, we parametrize the
new Fermi GEMM kernels [31]. Figure 16 gives the single pre-
cision performance of several versions derived from the original
and run on a Fermi C2050 GPU. The parametrization is based
on the size of the submatrix computed by a thread block.

8. Performance Results on Multicore

So far we have presented performance results for GPU plat-
forms from ATI and NVIDIA that we were able to obtain using
CUDA and OpenCL software stacks. To put these numbers in a
proper perspective, it is informative to compare them to the re-
sults obtained from optimized BLAS routines coming from AT-
LAS and Intel’s MKL (Math Kernel Library) running on a mul-
ticore hardware – a well researched experimental setting. We
use ATLAS as a representative of performance levels achiev-
able from C with extensive use of auto-tuning (the tuning of
ATLAS library may take many hours). Intel’s MKL represents
one of the best performing libraries for Intel processors. When
such libraries are distributed by the hardware vendor, most per-
formance sensitive kernels written in optimized assembly code.
The results from Intel Tigerton multicore system are shown in
Figure 17. The tested system had 4 processors, each one being
a quad-core clocked at 2.4 GHz for the total peak performance
of 307.2 Gflop/s in single precision and half of that in double
precision.

The summary of the results is presented in Table 4 in rel-
ative terms (as the percentage of the peak performance) to al-
low easy comparison of the tested platforms regardless of their
absolute and achieved performance. A common theme may

10

128

896

512

1280

1664

2048

2432

2816

3200

3584

3968

4352

4736

0

50

100

150

200

250

300

350

Performance of xGEMM on Intel Tigerton (4x quad-core)

Peak single
Peak double
MKL single
MKL double
ATLAS single
ATLAS double

N

G
flo

p/
s

Figure 17: Performance of xGEMM routines on a multicore processor with 16
cores.

Single precision Double precision
ATI OpenCL 52% 57%
ATI IL 74% 87%
NVIDIA CUDA 63% 58%
NVIDIA OpenCL 57% 49%
Multicore (vendor) 79% 79%
Multicore (auto-tuned) 46% 40%

Table 4: Comparison of efficiency achieved on the tested hardware.

be observed from this summary: computational kernels writ-
ten in low-level langauge (such as ATI’s IL and x86 assembly)
achieve around 80% of peak performance while high-level lan-
guages achieve about 50% of peak.

9. Conclusions

In this paper, we evaluated various aspects of using OpenCL
as a performance-portable method for GPGPU application de-
velopment. Profiling results show that environment setup over-
head is large and should be minimized. Performance results for
both the Tesla C2050 and Radeon 5870 show that OpenCL has
good potential to be used to implement high performance ker-
nels so long as architectural specifics are taken into account in
the algorithm design. Even though good performance should
not be expected from blindly running algorithms on a new plat-
form, auto-tuning heuristics can help improving performance
on a single platform. Putting these factors together, we conclud
that OpenCL is a good choice for delivering a performance-
portable application for multiple GPGPU platforms.

References

[1] E. S. Larsen, D. McAllister, Fast matrix multiplies using graphics hard-
ware, in: Proceedings of Supercomputing 2001, Denver, CO, 2001.

[2] Ádám Moravánszky, Dense matrix algebra on the GPU, available at:
http://www.shaderx2.com/shaderx.PDF (2003).

[3] J. Krüger, R. Westermann, Linear algebra operators for GPU implemen-
tation of numerical algorithms, ACM Transactions on Graphics 22 (2003)
908–916.

[4] J. D. Hall, N. A. Carr, J. C. Hart, Cache and bandwidth aware matrix
multiplication on the GPU, Tech. Rep. UIUCDCS-R-2003-2328, UIUC
(2003).

[5] K. Fatahalian, J. Sugerman, P. Hanrahan, Understanding the efficiency of
GPU algorithms for matrix-matrix multiplication, in: In Graphics Hard-
ware 2004, 2004, pp. 133–137.

[6] N. Galoppo, N. K. Govindaraju, M. Henson, D. Manocha, LU-GPU: Ef-
ficient algorithms for solving dense linear systems on graphics hardware,
in: Proceedings of Supercomputing 2005, Seattle, WA, 2005.

[7] NVIDIA, NVIDIA CUDATM Programming Guide Version 3.0, NVIDIA
Corporation, 2010.

[8] NVIDIA, NVIDIA CUDATM Best Practices Guide Version 3.0, NVIDIA
Corporation, 2010.

[9] S. Tomov, R. Nath, P. Du, J. Dongarra, MAGMA version 0.2 User Guide,
http://icl.cs.utk.edu/magma (11/2009).

[10] E. Anderson, Z. Bai, C. Bischof, S. L. Blackford, J. W. Demmel, J. J. Don-
garra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. C.
Sorensen, LAPACK User’s Guide, Third Edition, Society for Industrial
and Applied Mathematics, Philadelphia, 1999.

[11] R. J. Rost, D. Ginsburg, B. Licea-Kane, J. M. Kessenich, B. Lichten-
belt, H. Malan, M. Weiblen, OpenGL Shading Language, 3rd Edition,
Addison-Wesley Professional, 2009.

[12] A. Munshi (Ed.), The OpenCL Specification, Khronos OpenCL Working
Group, 2009, version: 1.0, Document Revision:48.

[13] M. Papadopoulou, M. Sadooghi-Alvandi, H. Wong, Micro-benchmarking
the GT200 GPU, Tech. rep., Computer Group, ECE, University of
Toronto (2009).

[14] V. Volkov, J. Demmel, Benchmarking GPUs to tune dense linear algebra,
in: Supercomputing 08, IEEE, 2008.

[15] NVIDIA, NVIDIA Compute PTX: Parallel Thread Execution, 1st Edi-
tion, NVIDIA Corporation, Santa Clara, California, 2008.

[16] A. Kerr, G. Diamos, S. Yalamanchili, A characterization and analysis of
ptx kernels, in: Proceedings of 2009 IEEE International Symposium on
Workload Characterization (IISWC), 2009, pp. 3–12.

[17] J. Stratton, S. Stone, W. mei Hwu, MCUDA: An efficient implementation
of CUDA kernels on multi-cores, Tech. Rep. IMPACT-08-01, Univer-
sity of Illinois at Urbana-Champaign, http://www.gigascale.org/
pubs/1278.html (Mar. 2008).

[18] M. Wolfe, Special-purpose hardware and algorithms for acceler-
ating dense linear algebra, HPC Wirehttp://www.hpcwire.com/
features/33607434.html.

[19] R. C. Whaley, A. Petitet, J. J. Dongarra, Automated empirical optimiza-
tion of software and the ATLAS project, Parallel Computing 27 (1–2)
(2001) 3–35.

[20] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet,
R. Vuduc, R. C. Whaley, K. Yelick, Self-adapting linear alge-
bra algorithms and software, Proc. IEEE 93 (2) (2005) 293–312.
doi:http://dx.doi.org/10.1109/JPROC.2004.840848.

[21] J. Bilmes, K. Asanovic, C.-W. Chin, J. Demmel, Optimizing matrix mul-
tiply using phipac: a portable, high-performance, ansi c coding method-
ology, in: ICS ’97: Proceedings of the 11th international conference
on Supercomputing, ACM, New York, NY, USA, 1997, pp. 340–347.
doi:http://doi.acm.org/10.1145/263580.263662.

[22] Y. Li, J. Dongarra, S. Tomov, A note on auto-tuning GEMM for GPUs,
in: Computational Science ICCS 2009, Vol. 5544 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2009, pp. 884–892.

[23] R. Nath, S. Tomov, J. J. Dongarra, Accelerating GPU kernels for dense
linear algebra, in: Proceedings of VECPAR’10, Berkeley, CA, 2010.

[24] R. Weber, A. Gothandaraman, R. J. Hinde, G. D. Peterson, Com-
paring hardware accelerators in scientific applications: A case study,
IEEE Transactions on Parallel and Distributed Systems 99 (RapidPosts).
doi:http://doi.ieeecomputersociety.org/10.1109/TPDS.2010.125.

[25] ATI, ATI Stream Software Development Kit (SDK) v2.1, avail-
able at: http://developer.amd.com/gpu/ATIStreamSDK/Pages/

default.aspx (2010).
[26] NVIDIA OpenCL JumpStart Guide: Technical Brief, version 0.9 (April

11

2009).
[27] P. Du, P. Luszczek, S. Tomov, J. Dongarra, Mixed-tool performance anal-

ysis on hybrid multicore architectures, in: Proceedings of the First In-
ternational Workshop on Parallel Software Tools and Tool Infrastructures
(PSTI 2010), San Diego, CA, 2010.

[28] Tuning CUDA Applications for Fermi Version 1.0, available at:
http://developer.download.nvidia.com/compute/cuda/3_0/

toolkit/docs/NVIDIA_FermiTuningGuide.pdf (Feb. 2010).
[29] NVIDIA, Nvidia’s next generation cuda compute architecture: Fermi

v1.1, Tech. rep., NVIDIA Corporation (2009).
[30] NVIDIA, Tesla c2050/c2070 GPU Computing Processor: Supercomput-

ing at 1/10 the Cost, available at: http://www.microway.com/pdfs/
Tesla_C2050_C2070_Final_lores.pdf (2010).

[31] R. Nath, S. Tomov, J. Dongarra, An improved magma gemm for fermi
gpus., Tech. Rep. 227, LAPACK Working Note (July 2010).
URL http://www.netlib.org/lapack/lawnspdf/lawn227.pdf

[32] ATI, ATI Stream Computing OpenCL Programming Guide, avail-
able at: http://developer.amd.com/gpu/ATIStreamSDK/assets/
ATI_Stream_SDK_OpenCL_Programming_Guide.pdf (June 2010).

[33] N. Nakasato, Matrix Multiply on GPU, http://galaxy.u-aizu.ac.
jp/trac/note/wiki/MatrixMultiply.

12

