High Performance Bidiagonal Reduction
using Tile Algorithms on Homogeneous Multicore Architectures

Hatem Ltaief*, Piotr Luszczek! and Jack Dongarrat
*KAUST Supercomputing Laboratory, Thuwal, Saudi Arabia
Hatem.Ltaief@kaust.edu.sa
T Innovative Computing Laboratory, University of Tennessee, Knoxville, TN 37996, USA
luszczek, dongarra@eecs.utk.edu

Abstract—This paper presents a new high performance bidiagonal
reduction (BRD) on homogeneous multicore architectures. This paper is
an extension of the high performance tridiagonal reduction implemented
by the same authors (Luszczek et al., IPDPS 2011) to the BRD case. The
BRD is the first step toward computing the singular value decomposition
of a matrix which is one of the most important algorithms in numerical
linear algebra due to its broad impact in computational science. The
high performance of the BRD described in this paper comes from the
combination of four important features: (1) tile algorithms with tile data
layout which provide an efficient data representation in main memory,
(2) a two-stage reduction approach which allows to cast most of the
computation during the first stage (reduction to band form) into calls to
Level 3 BLAS and reduces the memory traffic during the second stage
(reduction from band to bidiagonal form) by using high performance
kernels optimized for cache reuse, (3) a data dependence translation layer
which maps the general algorithm with column-major data layout into
the tile data layout and (4) a dynamic runtime system which efficiently
schedules the newly implemented kernels across the processing units
and ensures the data dependencies are not violated. A detailed analysis
is provided to understand the critical impact of the tile size on the total
execution time which also corresponds to the matrix bandwidth size after
the reduction of the first stage. The observed performance results show a
staggering improvement over currently established alternatives. The new
high performance BRD achieves up to 30-fold speedup on a 16 core Intel
Xeon machine with a 12000 x 12000 matrix size against the state-of-the-
art open source and commercial numerical software packages, namely,
LAPACK compiled with optimized and multithreaded BLAS from MKL as
well as Intel MKL version 10.2.

Keywords-Bidiagional Reduction; Tile Algorithms; Two-Stage Approach;
Bulge Chasing; Data Translation Layer; High Performance Kernels; Dy-
namic Scheduling

I. INTRODUCTION

The bidiagonal reduction (BRD) is an important first step when
calculating the singular value decomposition (SVD) of any rectan-
gular dense matrix [1]-[3].

A=UsV! A XeRMN yeRM*M y RNV,

The necessity of calculating SVDs emerges from various computa-
tional science areas, e.g., in statistics where it is directly related
to the principal component analysis method [4], [5], in signal
processing and pattern recognition as an essential filtering tool
and in analysis control systems [6]. Following the decompositional
approach to matrix computation [7], we transform the dense
matrix A to an upper bidiagonal form B by applying successive
distinct orthogonal transformations [8] from the left (X) as well as
from the right (Y):

B=XTAY B,X,A Y eRVN,

This reduction step actually represents the most time consuming
phase when computing the singular values. Figure 1 shows the
time breakdown between the main phases of SVD calculations for
various matrix sizes using multithreaded LAPACK implementation
from Intel’s Math Kernel Library (MKL) version 10.2 on a Intel Xeon
core based on Core 2 architecture. The phases are: BRD (labelled
as Reduction), obtaining the singular values and calculating the
corresponding singular vectors from the reduced form using either
the dQds algorithm [9] (this method is labelled as dgds Iteration)
or using Cuppen’s divide and conquer algorithm [10], [11] (labelled
as Divide and Conquer Backtransformation.) Our primary focus is
the BRD portion of the computation which can easily consume
over 99% of the time needed to obtain the singular values and
roughly 75% if singular vectors are additionally calculated. The
QR iteration method for singular vectors [12], [13] takes longer by
roughly 50% of total time. This method is now deprecated but is
still included here for comparison in Figure 1 over the 100% mark.

120 ————————

Reduction mm

Divide and Gonquer Iteration ===

Divide and Conquer Backiransformation ::::::::
lads Iteration_memm

S N ————
% % % "% % Y % 0 %0 %0

Figure 1. Breakdown of time between three stages of SVD computation: Reduction
to bidiagonal form (BRD), various Iteration methods to obtain singular values, and
Backtransformation to obtain both sets of singular vectors using LAPACK’s routine
implementation from MKL 10.2 on an Intel Xeon core based on Core 2 architecture.

With the emergence of multicore architectures, the state-of-the-
art numerical libraries suffer tremendously from the new memory
design characterized by small data caches associated to each core.
However, in the relentless pursuit of adequate performance, this
problem has already been addressed in the PLASMA library [14]
in the context of the one-sided factorizations (LU, QR/LQ and
Cholesky) for solving systems of linear equations [15] by re-
designing the standard numerical methods using tile algorithms
and providing a flexible dynamic runtime system to sustain the

applications. More recently, the authors [16] implemented a very
efficient two-stage tridiagonal reduction (TRD) approach for dense
symmetric matrices using tile algorithms on multicore architec-
tures.

This paper extends the authors’ previous work (one-sided fac-
torizations and TRD) to tackle the BRD case, which presents
more challenges due to its increased algorithmic complexity. The
standard BRD algorithm interleaves the QR and LQ factorizations
and requires 8/3 N3 floating-point operations for an N by N
matrix: twice the cost of the TRD algorithm. Following a two-stage
approach, the matrix is transformed into a band bidiagonal form
with a bandwidth of size NB using compute intensive kernels,
introduced by Ltaief et al. [17]. The band form is then further
reduced to the required bidiagonal form using a bulge chasing
procedure. This second stage requires the development of new
memory-aware computational kernels, which reduce memory traf-
fic and memory contention. A dependence translation layer (DTL)
allows the mapping of the access pattern (column major) of the
bulge chasing technique onto the tile layout, and helps to define
the appropriate data dependencies. The dynamic runtime system
called SMPSs [18], [19] enables scheduling and overlapping tasks
generated from both stages while ensuring the data dependencies
are not violated. Two-stage reduction algorithms for two-sided
factorizations are not new approaches but have recently enjoyed
rekindled interests in the community. For instance, it has been
used by Bischof et al. [20] for TRD (SBR toolbox) and Kagstrom
et al. [21] in the context of Hessenberg and Triangular reductions
for the generalized eigenvalue problem for dense matrices. The
tile bidiagonal reduction that was obtained in this way consider-
ably outperforms the state-of-the-art open-source and commercial
numerical libraries.

The bandwidth size b, which also corresponds to the tile size in
our case, has a critical impact on the overall performance of the
BRD algorithm. It has to be adequately chosen, possibly through
an auto-tuning approach, so that the performance of either of the
stages is not negatively affected.

The remainder of this document is organized as follows: Sec-
tion II recalls the block BRD algorithm as implemented in LA-
PACK [22] and explains its main deficiencies. Section III describes
the implementation of the parallel tile BRD algorithm using a two-
stage approach. Section IV outlines the dependence translation
layer (DTL). Section V has an overview of the different code kernels
that are both compute intensive and memory efficient. Section VI
presents the performance results. A detailed analysis is provided to
understand the critical impact of the bandwidth size on the overall
algorithm. Comparison tests are run on shared-memory architec-
tures against the state-of-the-art, high performance dense linear
algebra software libraries, LAPACK [22] (open-source package) and
Intel MKL 10.2 [23] (commercial package). Finally, Section VII
summarizes the results of this paper and presents the ongoing
work.

II. Tue LAPACK BLock BRD ALGORITHM
This section recalls the notion of block algorithms in LAPACK
and describes, in particular, the block bidiagonal reduction (BRD).
A. Block Algorithms

LAPACK implements block algorithms to solve linear systems
of equations as well as eigenvalue problems and singular value

decompositions. Block algorithms are characterized by two suc-
cessive phases: panel factorization and update of the trailing
submatrix. During the panel factorization, the transformations are
only applied within the panel. The panel factorization is very rich
in Level 2 BLAS operations because the transformations are singly
applied. Once accumulated within the panel, those transforma-
tions are applied to the rest of the matrix (the trailing submatrix)
in a blocking manner leading to Level 3 BLAS operations. While
the update of the trailing submatrix is compute-bound and very
efficient, the panel factorization is memory-bound and may appear
to be a bottleneck for some numerical linear algebra algorithms.
Last but not least, the parallelism within LAPACK occurs only at the
level of the BLAS routines, which follows the expensive fork-join
model. Basically, all processing units need to synchronize before
and after each call to BLAS kernels.

B. LAPACK BRD Algorithm

The BRD algorithm with the TRD and the Hessenberg reduction
(HRD) are the three two-sided factorizations. As opposed to one-
sided factorizations (i.e., LU, Cholesky, QR/LQ), the computed
transformations are applied from the left as well as from the
right side of the matrix. In particular, Algorithm 1 and Figure 2
describe the LAPACK BRD algorithm for a square matrix of size
N for simplicity purposes with a block size NB. The panel fac-
torization (DLABRD) of the block BRD algorithm interleaves two
transformations, i.e. left and right Householder-based reductions.
The corresponding left and right reflectors are saved in the
original matrix A. Additionally, the accumulation of the left and
right transformations (saved in two temporary storages X and
Y) requires the memory access of the entire unreduced matrix
prior to moving to the next computational phase of the reduction.
The update of the trailing submatrix is then straightforward.
Two matrix-matrix multiplications are needed, one to apply the
accumulated transformations, X, using the left reflectors (V) and
the other one to apply the accumulated transformations, Y, using
the right reflectors (U). The final computed diagonal and upper
or lower diagonal elements are stored in D and E, respectively.
It is obvious that the panel factorization is the bottleneck phase
for the BRD algorithm due to the accumulation of the left and
right transformations which necessitates loading into memory the
whole unreduced part of the matrix at each single reduction step.
Moreover, this sequence of Panel-Update in LAPACK has clearly
shown strong limitations on multicore architectures. Indeed, the
LAPACK framework is not capable of performing any lookahead
computations, where panel or update tasks from multiple steps can
significantly overlap. Although, in practice, lookahead techniques
would algorithmically be possible only for one-sided factorizations.
For two-sided transformations, and the BRD algorithm in particu-
lar, the one-stage approach for the reduction to the bidiagonal
form necessitates the panel computational step to be atomic
because it requires access to the entire trailing submatrix. It is
also noteworthy that the BRD algorithm is perhaps the most
challenging two-sided transformation compared to HRD and TRD
because of the large amount of Level 2 BLAS operations required
during the panel factorization. The next section describes the
concept of tile algorithms and explains how these new algorithms
are able to supersede block algorithms, especially in the context
of the BRD algorithm.

Algorithm 1 LAPACK Block Bidiagonal Reduction

for =1 to N step NB do

— {Panel Factorization phase: Reduce rows and columns
I:I4+NB-1 to bidiagonal form and return the matrices X and Y,
which are needed to update the unreduced part of the matrix}
DLABRD(N-I+1, N-I+1, NB,

A(LI), LDA,

DD, E®D),

X, LDX, Y, LDY)
— {Update the trailing submatrix A(I+NB:N, I4+NB:N) using
an update of the form A:=A— V%Y’ —XxU"}
DGEMM('NoTrans’, "Trans’,

N-I-NB+1, N-I-NB+1, NB, -ONE,

A(I+NB, 1), LDA,

Y, LDY, ONE,

A(I+NB, I+NB), LDA)
DGEMM('NoTrans’, 'NoTrans’,

N-I-NB+1, N-I-NB+1, NB, -ONE,

X, LDX,

A(L, I+NB), LDA, ONE,

A(I+NB, I+NB), LDA)

end for

OUTPUT
PANEL

Figure 2. Panel-Update Sequence for the LAPACK BRD Algorithm

III. THE Two-STAGE TiLE BRD APPROACH

This section recalls the general principles of tile algorithms as
well as the idea behind two-stage approaches and describes how
these core aspects lead to the tile two-stage BRD algorithm.

A. Tile Algorithms

Tile Algorithms [14] have already shown promising results for
the one-sided factorizations as compared to LAPACK and vendor
libraries on multicore architectures [15]. The general idea is to
transform the original matrix to tile data layout (TDL) where each
data tile is contiguous in memory as in Figure 3. This may demand
a complete redesign of the standard numerical algorithm. The
panel factorization as well as the update of the trailing submatrix
are then decomposed into several fine-grained tasks which better
fit the memory of the small core caches. The parallelism is no

A A O
i
m

|

il
(AR

I

i
I
N

I

Figure 3. Translation from LAPACK Layout (column-major) to Tile Data Layout

longer hidden inside the BLAS routines but rather is brought to

the fore. The whole computation can then be represented with
a directed acyclic graph (DAG), where nodes are computational
tasks and edges represent the data dependencies among them.
Next, it becomes critical to efficiently schedule the sequential
fine-grained tasks across the processing units. A dynamic runtime
environment system is used to distribute the tasks as soon as the
data dependencies are satisfied.

Ltaief et al. [17] have previously attempted to apply the tile al-
gorithm principles on the BRD algorithm. They have implemented
new optimized kernels which dramatically decrease the overhead
of the panel factorization. Indeed, the standard BRD algorithm has
been redesigned so that the panel factorization phases now involve
only input/output data from the local corresponding tiles (and not
from the entire unreduced matrix). Although high performance
results were attained, the bidiagonal reduction was not complete
and only a partial reduction to band bidiagonal was feasible, which
is impractical since the full reduction needs to be achieved in order
to calculate the singular value decomposition. More details can be
found in Section IV C of [17].

B. Two-Stage Approach

Two-stage approaches have recently proven to be an interesting
solution in achieving high performance in the context of two-sided
reductions [16], [20], [21]. The first stage consists into reducing
the original matrix to band form. The overhead of the Level 2 BLAS
operations dramatically decreases and most of the computation is
performed in Level 3 BLAS, which makes this stage run closer
to the theoretical peak of the machine. This stage is actually
so compute-intensive that Bientinesi et al. [24] have proposed
to completely offload it to GPU accelerators to further benefit
from the underlying hardware. The second stage further reduces
the band matrix to the corresponding compact form. A bulge
chasing procedure using orthogonal transformations annihilates
the off-diagonal elements column-wise and hunts down the fill-
in elements to the bottom right corner of the matrix. Figure 4
depicts the execution breakdown of chasing the first column
(black elements) on a band bidiagonal matrix of size N=16 and
NB=4 with column-major data layout (CDL). The red and green
rectangles show the left and right transformations, respectively.
The dashed elements are the final elements of the bidiagonal
structure of the matrix. The dark grey elements represent the fill-in
elements left after this first sweep. They will eventually fade out
thanks to the subsequent sweeps. It is noteworthy to mention that
the introduced bulges are partially destroyed (actually only a single
column/row per left/right transformations, respectively). Were the
bulges destroyed in their entirety instead, the total number of
operations this would increase and the subsequent sweeps would
reintroduce them anew anyway. By only eliminating the necessary
parts of the bulges within one sweep we allow the following sweeps
to naturally chase down the leftover bulges. Finally, it may be
readily observed that the whole matrix has to be traversed in order
to annihilate a single column. Each sweep is very low in terms of
floating-point operations and involves only small regions around
the diagonal. Therefore, the standard bulge chasing procedure is
completely memory-bound and suffers considerably from the lack
of parallelism. Although successive sweeps could potentially be
pipelined, it would seriously increase the memory bus traffic as
each sweep would be working on different memory regions of the

matrix and will not be able forward the data between the cores’
caches.

C. Tile Two-Stage BRD Algorithm

The goal of this two-stage tile BRD algorithm presented in this
paper is to incorporate the strengths of both tile algorithms and
the two-stage approach in order to build an efficient framework
for reducing a matrix to bidiagonal form.

Implementing the first stage using tile algorithms has already
been implemented in Ltaief et al. [17]. Figure 5 recalls how the
band bidiagonal structure is obtained from a 4-by-4 tile matrix.
The matrix is reduced to band form by interleaving QR (left
transformations) and LQ (right transformations) factorizations. The
light gray tiles correspond to transient data, which still need to
be reduced. The black and dark gray tiles are being reduced
and the dashed tiles are final data tiles. Four interleaved QR/LQ
factorization steps are needed to achieve the band bidiagonal form.
The authors refer to the paper for more detailed information.

In the second stage, the bulge chasing algorithm is far from
trivial. The challenge resides in associating the different layouts
i.e., TDL for tile algorithms and CDL for the bulge chasing.
Figure 6 shows the dimension of the complexity. The bulge chasing
procedure on the tile matrix creates bulges, which could span
over multiple tiles, and therefore, they are not contiguous in
memory anymore. Special computational kernels need obviously
to be implemented to handle the various cases depending on
the number of tiles involved in one particular task. Besides the
development of new kernels, a layer of abstraction is required to
map the bulge chasing algorithm running on top of CDL format
into TDL format. This layer is a crucial component of the two-stage
tile BRD algorithm as it homogenizes the layout format across both
stages.

The next Section describes the data dependence translation layer
in the context of the BRD algorithm.

IV. DEPENDENCE TRANSLATION LAYER

To reiterate the premise explained in the previous sections: the
first stage (band reduction) of the BRD reduction fits well with the
tile data layout while the second stage (reduction from band to
bidiagonal form) does not. The main reason for the mismatch is
the misalignment of algorithmic tiles and storage tiles. The former
operates at increments of a tile and thus can be easily made to
match the storage tiles. The latter, on the other hand, works in one
column increments, as each column is annihilated by a similarity
transformation, and this results in algorithmic tiles spanning one,
two or four storage tiles. The four-tile case is shown in Figure 7
where the misaligned tile spans four storage tiles. The translation
layer (DTL), we have devised, provides a connection between the
data access originating from the algorithmic formulation and the
memory storage scheme. The abstraction provided by DTL affords
the programmer the flexibility of working with a column-major
layout while the data dependences between computational tasks
are appropriately propagated to the dynamic scheduling module
as if they were specified for tile storage.

Furthermore, DTL is essential in that it provides the necessary
information to the runtime system that allows for overlapping of
tasks from both stages. The translation layer supplies the data
dependences from the second stage in terms of data used in the

7

(a) Starting point: band bidiagonal matrix
in CDL format.

(b) First column annihilation.

(c) Bulge creation: starting to partially (d) Chasing it with the left and right Trans-
chase it. formations.

B8 Smamm

m
" HEn

(e) Chasing it further down.

(f) Reaching the bottom right corner of the
matrix.

“RRREn

(g) Final Matrix after the first sweep: the
original matrix has lost its band shape.

Figure 4. Execution breakdown of the bulge chasing procedure on a band bidiagonal
matrix of size N=16 and NB=4 with column-major data layout (CDL) after the first
column annihilation (black elements). The red and green rectangles show the left and
right transformations, respectively. The dark grey elements represent the fill-in elements,
which eventually need to be chased down to the bottom right corner of the matrix. The
dashed elements are the final elements of the bidiagonal structure of the matrix.

INEm

(a) Right Reduction (b) Left Reduction Step (c) Right Reduction
Step 1. 1. Step 2.

(d) Left Reduction Step
2.

Figure 5. First stage: reduction to band bidiagonal form applied on a 4x4 tile matrix.

first stage which allows the runtime to begin scheduling the second
stage tasks as soon as a sufficient portion of the first stage work
has been finished. This is readily visible in Figure 8 that shows a
DAG for reduction of a 6 by 6 matrix with tile size 2. The second
stage tasks (marked with gray) may already be scheduled when
only half of the first stage is done in step 12.

The operation of DTL may be explained by perusing Figure 7
where the algorithmic tile spans four storage tiles. The flexibility
of DTL allows specification of accesses to the matrix by using
column-based storage. DTL intercepts these accesses and first it
determines which tiles are affected. Depending on the number
tiles, DTL then selects either the 1-tile kernel, 2-tile kernel, or a 4-
tile kernel. Our formulation of bulge chasing guarantees that these
are the only possible choices. Once the kernel is selected, it is then
submitted to the runtime scheduling module for execution. To
keep the data dependences satisfied, the submitted task requests
exclusive access to the appropriate number of tiles: 4 tiles in the
case of the scenario from Figure 7.

The next Section gives a detailed overview of the high perfor-
mance computational kernels.

V. HiGH PERFORMANCE KERNEL DESCRIPTIONS

This Section recalls the computational kernels involved in the
first stage and presents the newly developed kernels for the second
stage in the context of the two-stage tile BRD algorithm.

A. General Kernel Descriptions

All kernels are written in standard C and are composed of
successive calls to BLAS routines. The kernels from the first stage
are mostly Level 3 BLAS and those from the second stage are
based on Level 1 and 2 BLAS. As implemented in LAPACK, these
kernels rely on orthogonal transformations using Householder
reflectors. Orthogonal transformations are an accepted technique
that is commonly used for two-sided reductions because they
guarantee numerical stability, as opposed to less computationally
expensive elementary transformations similar to what is used in
Gaussian elimination [3]. Also, as explained in Section III-A, the
partitioning of the panel engenders the orthogonal transformation

(a) Starting point: band bidiagonal matrix (b) First column annihilation spanning
in TDL format. across two tiles.

(c) Bulge creation: starting to partially (d) Chasing it with left and right tile trans-
chase it. The new bulges span over four formations.
tiles.

2 "-J]

(e) Chasing it further down.

(f) Reaching the bottom right corner of
the matrix. The left transformation span
over two tiles while the right transformation
involves only a single tile.

F
=

2 amEn

(g) Final Tile Matrix after the first column
annihilation: the tile band structure is re-
stored.

Figure 6. Execution breakdown of the bulge chasing procedure on a band bidiagonal
matrix of size N=16 and NB=4 with tile data layout (TDL) after the first column
annihilation (black elements). The red and green rectangles show the left and right
transformations, respectively. The dark grey elements represent the fill-in elements, which
eventually need to be chased down to the bottom right corner of the matrix. The dashed
elements are the final elements of the bidiagonal structure of the matrix.

Figure 7. An access to a misaligned tile is broken down by DTL into four subtiles.

00000000000000000000000000000000

Figure 8. Optimally scheduled DAG (32 steps) for bidiagonal reduction with first stage
node marked with dark gray and second - with light gray.

to be incremental rather than direct, as it would happen with block
algorithms.

B. Compute-Bound Kernels from the First Stage

Those kernels have already been introduced and implemented
in Section III A of [17]. Therefore, the purpose of this subsection
is only to make the paper self-contained. There are six compute-
intensive kernels overall. This stage basically interleaves the QR
and LQ factorizations at each step.
« DGEQRT/DGELQT perform a QR and an LQ factorizations of
a single tile, respectively.

« DTSQRT/DTSLQT compute a QR and an LQ factorizations by
combining a triangular tile (upper if QR, lower if LQ) with
a corresponding full square tile. DTSQRT and DTSLQT are
shown in Figure 5(a) and Figure 5(b), respectively.

« DLARFB applies the orthogonal transformations computed
from DGEQRT/DGELQT to the left/right side of the trailing
submatrix.

« DSSRFB applies the orthogonal transformations computed
from DTSQRT/DTSLQT to the left/right side of the trailing
submatrix. The right and left applications from DSSRFB are
laid out in Figure 5(c) and Figure 5(d) (the black and dark
grey data tiles), respectively.

Note that no extra storage is needed to save the Householder
reflectors generated from the QR and LQ factorizations. An extra
storage is only required to save the triangular factor T of the block
reflectors computed from both factorizations, in order to apply
them at once in the trailing submatrix.

C. Memory-Bound Kernels from the Second Stage

This second stage is clearly memory-bound and the new kernels
need to take into account this delicate property. There are four
kernels overall. Figure 9 shows the execution breakdown of the
bulge chasing procedure for four complete sweeps on a 4-by-4 tile
matrix. The figure represents the name of the consecutive tasks
along with the reduction step (from 0 to 3) and the corresponding
portions of the matrix accessed. Moreover, there are different cases
to consider depending on the region characteristic of the tile
matrix being updated (more precisely, the region can span over
one, two or four tiles), and for each case, a particular instance
of one of the three general kernels is required. In other words,
the higher level kernel needs to handle the diverse case in a
comprehensive manner. Below are some details about the new
kernels:

« DTSQR2 (red in Figure 9) is used to annihilate a single
column which can only fit on one or two tiles.

« DTSLQ3 (brown in Figure 9) applies the reflectors computed
in DTSQR2 to a diagonal block from the left. Then, it reduces
the first row of the introduced bulge and immediately applies
the corresponding reflectors on the right of the rest of the
diagonal tile. The block being affected can span over one,
two, or four neighboring tiles, as shown in the execution
breakdown in Figure 9.

« DTSQR3 (green in Figure 9) applies the reflectors calculated
in DTSLQ3 from the right. It then annihilates the first col-
umn of the created bulge and applies those freshly created
reflectors to the left within the block. Here, the block being
affected can span over one, two, or four neighbored tiles.

« DLARFX (cyan in Figure 9) applies the reflectors computed
from DTSLQ3 to the right and it always spans across two
tiles.

The bulge chasing procedure necessitates an extra storage to save
the generated Householder reflectors from the different bulges,
especially if the calculation of the singular vectors is required.
Furthermore, since those kernels are called extensively, the whole
performance of the second stage relies heavily on an efficient
implementation of those routines. All the functions called within
the kernels have been inlined up to the level of the BLAS routines.
Being memory-bound, this gives a certain flexibility to reorder
and to reorganize the successive computational steps within those
kernels in order to optimize for cache reuse and data locality.
Last but not least, the tile bulge chasing procedure magnifies the

DAG size and makes it much more complex with a number of
nodes/tasks growing exponentially with the matrix size.

i 2
i i i i
[N T
EEE
dtsqra(0) dtlsig3(0) dtisqr3(0) dtisig3(0) dtsgr3{0)
il 14
| R ER|
el
dtsiq3(6y T dtsqr:ﬁﬁ dtisig3(0) E dtisqrd(1) dtlsliq3(1)
i B
R]
dtisqr3(1) dtislg3(1) diisdqe3() dtisiq3(ah] dtsqr:(]g:
B T
i {E5]

S| EEEE|
dtislq3(1) dtisqra(2) dtislq3(2) dtisqr3(2) dtislq3(2)
disqi3(2) dtslq3(2)|£ dlarfx(2) dtisqr2(3) dtislq3(3)

inmmm]
dtisqr3(3) dtislg3(3) dff diislg3(3) ' ' '

Figure 9. Second stage: graphical representation of portions of the matrix accessed by
the consecutive tasks. The yellow lines represent division of the matrix into individual
entries and the long black lines delineate matrix tiles in the first stage of the tridiagonal
reduction and submatrices accessed in the second stage. The red tasks represent the
DTSQR2 kernel, the brown tasks identify the DTSLQ3 kernel, the green tasks show the
DTSQR3 kernels and finally, the blue tasks are the DLARFX kernels.

D. Algorithmic Complexity

Considering the original dense matrix square, the algorithmic
complexity of the standard BRD is 8/3 N® with N the matrix size.
The number of flops of the first stage in our tile two-stage BRD
is 8/3 N x(N—NB)x(N— N B), since the reduction is only achieved
up to the band form. The second stage chases the fill-in elements
created by the annihilation of the extra entries during the N
sweeps. Bach sweep calls at most 2xN/yg kernels and 2x N B2
flops are performed for each kernel. After removing the lower order
terms, the number of flops during the bulge chasing procedure
is then equal to 4 x N2 x N B. Therefore, the overall algorithmic
complexity of our tile two-stage BRD is roughly the same than the
standard BRD.

The next Section presents some performance results of the
overall two-stage tile BRD algorithm using the high performance
kernels described above. The DTL framework works in association
with the dynamic runtime system called SMPSs that is capable
of scheduling tasks from both stages simultaneously across the

cores of homogeneous multicore architectures as long as data
dependences are not violated.

VI. PERFORMANCE ANALYSIS AND EXPERIMENTS

This Section highlights the parallel performance results achieved
by the two-stage tile BRD algorithm. A detailed analysis on the
impact of the tile size NB on the overall framework is also
discussed.

A. Experimental Environment

The experiments have been conducted on a 16-core machine
based on an Intel Xeon EMT64 E7340 processor operating at 2.4
GHz. The theoretical peak is equal to 9.6 Gflop/s per core or 153.2
Gflop/s for the whole quad-core quad-socket board. There are two
levels of cache. The level 1 cache, local to each core, is divided into
32 KiB of instruction cache and 32 KiB of data cache. Each quad-
core processor is composed of two dual-core Core2 architectures,
the level 2 cache has 2x4 MB per socket (each dual-core shares
4 MB). The effective bus speed is 1066 MHz per socket leading
to a bandwidth of 8.5 GB/s (per socket). The machine is running
Linux 2.6.25 and provides Intel Compilers 11.0 together with the
Intel MKL 10.2 vendor library. All the experiments presented below
focus on asymptotic performance and have been conducted on
the maximum amount of cores available on the machine, i.e.,
16 cores. The two-stage tile BRD algorithm is compared against
the equivalent BRD function from the state-of-the-art open-source
and commercial numerical libraries i.e., LAPACK 3.2 linked with
optimized MKL BLAS and Intel MKL V10.2, respectively.

B. The Dynamic Runtime System

SMP Superscalar (SMPSs) [18], [19] is a parallel programming
framework developed at the Barcelona Supercomputer Center
(Centro Nacional de Supercomputacién). SMPSs is aimed at “stan-
dard” (x86 and like) multicore processors and symmetric multi-
processor systems. The programmer is responsible for identifying
parallel tasks, which have to be side-effect-free (atomic) functions.
Additionally, the programmer needs to specify the directionality of
each parameter (input, output, inout). However, the programmer
is not responsible for exposing the structure of the task graph.
The task graph is built automatically, based on the information of
task parameters and their directionality. The programming envi-
ronment consists of a source-to-source compiler and a supporting
runtime library. The compiler translates C code with pragma
annotations to standard C99 code with calls to the supporting
runtime library and compiles it using the platform native compiler
(Fortran codes are also supported). At runtime the main thread
creates worker threads, as many as necessary to fully utilize the
system, and starts constructing the task graph (populating its ready
list). Furthermore, the SMPSs scheduler attempts to exploit locality
by scheduling dependent tasks to the same thread, such that
output data is reused immediately.

C. Modeling Performance with Respect to Tile Size

In order to better understand the behavior of our implemen-
tation and how it changes with various matrix and tile sizes, we
created a performance model. There are two components in the
model:

1) Computation time (tx) which encompasses the floating-
point operations performed within each task inside the
computation kernel routines, and

2) Communication time (t.) which covers the latency of fetch-
ing the first cache line of a matrix tile and the time to
communicate the rest of it from the main memory to the
cache close to the computing core.

For a N by N matrix with a tile size NB, time to completion

t(N,NB) for both stages of the reduction is

t(N,NB)=t,(N,NB)+z.(N,NB)

In the first stage the individual components of running time are
(constant factors ommitted for simplicity of exposition):

number of flops per task

N ’ 3 3

£:(N,NB)= (@) . NB =N
number of tasks
and
number of tasks

—— latency

N,NB) = Ny? NB? 1
e (’) - (@ : +

items to transfer

N oL
h NBZ(NB)

Similarly for the second stage:

number of bulges
—~ =~
N
(NNNB)= N —
—~—

No. of columns

NB? =N2.NB
—

number of flops

NB

and
number of bulges
A~ latency
N P
t«(NNNB)= N = NBZ + 1
columns items to transfer

N (NB+g)

The model clearly indicates that we should expect a drastically
different behavior for the first and second stages of the reduction.
The first stage benefits from larger tile sizes because the time is
inversely proportional to the tile size NB. The second stage, on
the other hand, needs a particular tile size to achieve an optimal
behavior because the communication component of the second
stage is a rational function of the form x+1/x. In the next section,
we turn to experiment to investigate this phenomenon further.

D. Tuning the Tile Size Experimentally

Out of the many tunable parameters available for tuning in the
TRD code, the tile size NB stands out as the most critical for
achieving optimal performance. It determines both the number
of tasks and their granularity and is difficult to tune optimally
even for one-sided matrix factorizations [15]. In TRD, a two-sided
factorization, with the two-stage approach that we employ, there

exists a natural tension between the stages that affects the choice
of NB. The computational kernels from the first stage benefit
greatly from coarse task granularity which allows them to run
closer to their sequential kernel peak performance. This follows
from the compute-intensive nature of the kernels. On the contrary,
the kernels of the second stage are mostly memory-bound and
rely on data locality to achieve acceptable performance. Therefore,
these kernels depend on data reuse and minimization of data being
loaded from memory. The former is most commonly achieved by
proper arrangement of data access patterns which in our case can
be achieved by memory-friendly scheduling of tasks and having a
small NB so that all of the tile data can be retained in the highest
level of cache. The latter may simply be achieved by choosing a
small NB which results in small band.

Time in seconds.
Time in seconds

Tile/Bandwidth size NB Tile/Bandwidth size NB

(a) N = 4000. (b) N = 6000.

“Time in seconds
Time in seconds

Tile/Bandwidth size NB

(d) N = 10000.

Tile/Bandwidth size NB

(c) N = 8000.

Figure 10. Impact of NB on the elapsed time (in seconds) of the two-stage BRD for
different matrix sizes.

Figure 10 shows the impact of NB on the overall performance
of the two-stage BRD with various matrix sizes. For small matrix
sizes, i.e., 4000 and 6000, the elapsed time increases with the tile
size NB. However, for larger matrix sizes, i.e.,, 8000 and 10000,
the results are not this straightforward. The elapsed time of the
second stage is substantially shorter for tile size NB=50 than for
NB=100 and even for NB=200 when the matrix size is 10000.
Therefore, our simple assumption made above that a small tile size
will benefit the second stage is incorrect and it has to be closely
examined for a given matrix size. Intuitively, a large matrix size
N and a small tile size NB result in an increased number of data
requests to the main memory. On the other hand, performance of
the first stage deteriorates, as expected, for small tile size NB=50
and is virtually constant for NB=100 and NB=200. These simple
analysis and experiments lead us to believe that a good default
value for tile size is 100 and this is what we chose for the large
scale experiments. We also backed this choice with a series of
performance analysis experiments as shown below.

Figure 11 shows a detailed study of how the tile size influences

60

1st Stage p———
2nd Stage -0
50 ¢ Both Stages Combined - -A&- -
w L
©
c
3
g 40| |
2,
£
E a’ |
g a2
2 20+ . 7
= o
s .
L
10 + |
l-“III-"‘..-.I-I ------ & S — e
0 ‘) g . L L L L

0 20 40 60 80 100 120 140 160 180
Tile size (NB)

Figure 11. Running time for first, second, and both stages for various tile sizes NB for
matrix size 5040.

100
= 80r
o
c
[e]

o
&
2, 60
(0]
£
=)
£
c 40
2
©
]
[l 20 +
0

0 20 40 60 80 100 120 140 160 180 200
Tile size NB

Figure 12. Combined running time for various tile sizes NB for various matrix sizes.

the time to run the first and second stages of TRD as well as both
stages simultaneously. The matrix size was set to 5040 because
this allows us to have over 30 different NB values smaller than
200 (number 5040 has over 30 divisors due to its set of prime
factors). The figure clearly indicates the predicted behavior for the
first stage as the performance depends proportionally on the tile
size. The larger the tile size, the better the performance of the
computational kernel. However, the performance of the second
stage exhibits a less obvious trend of having a local minimum at 60.
Departure from this value causes deterioration in performance.
Accordingly, the cumulative performance of both stages has a
similar property. To investigate this further, we chose additional
matrix sizes that allow for a wide range of tile sizes and noted
the combined performance for both stages. Figure 12 summarizes
the results. Two observations are in order. First, for all matrix sizes
there exists a locally optimal tile size. And second, an optimal tile
size for one matrix size is not optimal for a different matrix size.

The former observation makes a case for an autotunig method to
be used to choose the optimal tile size [25]. The latter observation
raises a question of whether choosing an optimal tile size for
each stage independently would benefit performance. Table I
attempts to answer this question. The tabulated data shows stage-
independent minimums (in the column marked as “Sum”) and
the minimum of the total time. The stage-independent numbers
are purely theoretical as both stages have to share the same tile
size. But, in our opinion, it is still instructive to perform this
“what-if” experiment. The column labelled “Improvement” shows
the potential improvement in running time. It turns out that the
improvement is not large (at most 17%) and decreases with the
matrix size.
Table I

TIME BREAKDOWN AMONG THE REDUCTION STAGES FOR VARIOUS MATRIX SIZES AND POTENTIAL
IMPROVEMENT IF THE TILE SIZE WAS CHOSEN INDEPENDENTLY.

Shortest running time

N 1st stage 2nd stage Sum Actual Improvement
[seconds] [seconds] [%)]

2520 0.9 23 3.2 3.6 10.8%
4000 2.6 5.7 8.3 10.0 16.9%
5040 4.4 8.8 13.2 15.2 12.8%
7560 13.7 21.4 35.0 38.0 7.7%
9240 23.6 32.9 56.5 61.3 8.0%

Choosing the minimum time from both stages is at most 16%
faster than choosing the sum.

E. Analysis of Algorithmic Variants

The two most common renditions for numerical linear algebra
kernels are right- and left-looking [26]. The former is a preferred
option when the amount of available parallelism is the limiting
factor [27], [28]. The latter, on the other hand, has much better
locality characteristics especially with respect to write operations
and is the preferred option for out-of-core codes [29]. One of
the consequences of using dynamic DAG scheduling is the loss
of fine-grain control of the exact ordering of computations [30].
Despite this loss, we still attempted to investigate the influence
of the algorithmic formulation by changing the order in which
tasks are submitted to the runtime DAG scheduler. This is a
crude approximation of either of the two popular variants but
the performance results still give us an indication of which is the
more important trait in our code: parallelism or locality. It turned
out, that the former is more desirable as the right looking variant
consistently outperformed the latter one, albeit by a small margin.

E Experimental Results

This Section presents the performance results of the overall two-
stage BRD algorithm. Figure 13 compares our algorithm with the
state-of-the-art open-source and commercial numerical libraries
i.e., multithreaded LAPACK compiled with optimized MKL BLAS
and Intel MKL version 10.2, respectively. It is surprising to see
the same curve behaviors for both packages. The performance of
both libraries goes up for small matrix sizes but then it just dies
off considerably and does not scale while the matrix size increases.
Our two-stage BRD approach starts to go beyond both numerical
packages at the crossover point N=1500 and outperforms them

by far for large matrix sizes reaching up to 30-fold speed up on a
12000 x 12000 matrix size.

——PLASMA RL]
——PLASMA LL
37| —— MKL

LAPACK

0 2000 2000 8000 10000 12000

5000
Matrix Size

Figure 13. Performance Comparison of the Tile Two-Stage BRD Algorithm against Intel
MKL version 10.2 and LAPACK 3.2 xGEBRD.

VII. SUMMARY

This paper focusses on a new high performance two-stage tile
bidiagonal reduction (BRD) on homogeneous multicore architec-
tures. Using a two-stage approach on top of tile data layout,
the original matrix is first reduced to band form using high
performance compute intensive kernels and then further reduced
to the final condensed form with efficient memory-optimized
kernels. A data dependence translation layer allows us to merge
the directed acyclic graphs of tasks from both stages and removes
the unnecessary in-between synchronization step. The dynamic
runtime system SMPSs can then safely schedule the different
computational tasks across the processing units and ensure that
the data dependences are not violated. Tuning the tile size is
obviously paramount to get the best performance out of the
two stage. A brute force mechanism allows the retrieval of an
optimal tile size NB depending on the problem size N. We achieved
performance results that by far exceed what is available from any
alternative implementation we know. The new high performance
two-stage tile BRD achieves up to 30-fold speed up on a 16 core
Intel Xeon machine with a 12000 x 12000 matrix size against the
state-of-the-art open source and commercial numerical softwares
i.e., multithreaded LAPACK compiled with optimized MKL BLAS
and Intel MKL V10.2 (2.5 Gflop/s for both), respectively. Last but
not least, it is noteworthy to mention that the overall performance
of the two-stage tile BRD algorithm 40 Gflop/s represents only a
small portion of the theoretical peak of the machine, roughly 25%.
But considering the memory-bound nature of the second stage, the
performance obtained is actually very encouraging and exceeds the
expectation for such a type of algorithm.

One of the future projects in this direction will be the calculation
of the singular vectors. For that, the orthogonal transformations
from both stages need to be accumulated into U (left transfor-
mations) and V (right transformations). While the accumulation
of the reflectors from the first stage is straightforward and can
be implemented very efficiently, the second stage produces a
tremendous number of small transformations which would add
an O(n®) term in the overall complexity of the algorithm. This
is still an open research problem and the authors are currently
looking into removing this bottleneck. Finally, the authors are

also investigating how this work can be extended to distributed
environment systems within the DPLASMA framework [31].

REFERENCES

[1] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” Numer. Math., vol. 14, pp. 403-420, 1970.

[2] G. H. Golub and C. E Van Loan, Matrix Computation, 3rd ed., ser. John
Hopkins Studies in the Mathematical Sciences. Baltimore, Maryland:
Johns Hopkins University Press, 1996.

[3] L. N. Trefethen and D. Bau,
gebra. Philadelphia, PA: SIAM, 1997.
http://www.siam.org/books/OT50/Index.htm

Linear Al-
Available:

Numerical
[Online].

4

H. Hotelling, “Analysis of a complex of statistical variables into princi-
pal components,” J. Educ. Psych., vol. 24, pp. 417-441, 498-520, 1933.

[5] ——, “Simplified calculation of principal components,” Psychometrica,
vol. 1, pp. 27-35, 1935.

[6] B. C. Moore, “Principal component analysis in linear systems: Con-
trollability, observability, and model reduction,” IEEE Transactions on
Automatic Control, vol. AC-26, no. 1, February 1981.

[7]1 G.W. Stewart, “The decompositional approach to matrix computation,”
Computing in Science & Engineering, vol. 2, no. 1, pp. 50-59, Jan/Feb
2000, iSSN: 1521-9615; DOI 10.1109/5992.814658.

[8] A. S. Householder, “Unitary triangularization of a nonsymmetric ma-
trix,” Journal of the ACM (JACM), vol. 5, no. 4, October 1958, dOI
10.1145/320941.320947.

[9] V. Fernando and B. Parlett, “Accurate singular values and differential
qd algorithms,” Numerisch Math., vol. 67, pp. 191-229, 1994.

[10] E. Jessup and D. Sorensen, “A parallel algorithm for computing the
singular value decomposition of a matrix,” Argonne National Labora-
tory, Argonne, IL, Mathematics and Computer Science Division Report
ANL/MCS-TM-102, December 1987.

[11] M. Gu and S. Eisenstat, “A divide-and-conquer algorithm for the
bidiagonal SVD,” SIAM J. Mat. Anal. Appl., vol. 16, pp. 79-92, 1995.

[12] J. W. Demmel and W. Kahan, “Accurate singular values of bidiagonal
matrices,” SIAM J. Sci. Stat. Comput., vol. 11, no. 5, pp. 873-912,
September 1990, (Also LAPACK Working Note #3).

[13] P Deift, J. W. Demmel, L.-C. Li, and C. Tomei, “The bidiagonal singular
value decomposition and Hamiltonian mechanics,” SIAM J. Numer.
Anal., vol. 28, no. 5, pp. 1463-1516, October 1991, (LAPACK Working
Note #11).

[14] PLASMA Users’ Guide, Parallel Linear Algebra Software for Multicore
Architectures, Version 2.3, University of Tennessee, November 2010.

[15] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarrra, “Comparative study
of one-sided factorizations with multiple software packages on multi-
core hardware,” in SC '09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. New York,
NY, USA: ACM, 2009, pp. 1-12.

[16] P Luszczek, H. Ltaief, and J. Dongarra, “Two-stage tridiagonal reduction
for dense symmetric matrices using tile algorithms on multicore
architectures,” in Proceedings of IPDPS 2011. Anchorage, AK USA:
ACM, 2011.

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

H. Ltaief, J. Kurzak, and J. Dongarra, “Parallel two-sided matrix reduc-
tion to band bidiagonal form on multicore architectures.” IEEE Trans.
Parallel Distrib. Syst., pp. 417-423, 2010.

J. Perez, R. Badia, and J. Labarta, “A dependency-aware task-based
programming environment for multi-core architectures,” in Cluster
Computing, 2008 IEEE International Conference on. Tsukuba Inter-
national Congress Center, EPOCHAL TSUKUBA: IEEE, 29 2008-oct. 1
2008, pp. 142 -151.

“SMP superscalar (SMPSs) user’s manual, version 2.3,” September
2008. [Online]. Available: http://www.bsc.es/media/3833.pdf

C. H. Bischof, B. Lang, and X. Sun, “Algorithm 807: The sbr toolbox—
software for successive band reduction,” ACM Trans. Math. Softw.,
vol. 26, no. 4, pp. 602-616, 2000.

B. Kagstrom, D. Kressner, E. Quintana-Orti, and G. Quintana-Orti,
“Blocked Algorithms for the Reduction to Hessenberg-Triangular Form
Revisited,” BIT Numerical Mathematics, vol. 48, pp. 563-584, 2008.

E. Anderson, Z. Bai, C. Bischof, S. L. Blackford, J. W. Demmel, J. J.
Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. C. Sorensen, LAPACK User’s Guide, 3rd ed. Philadelphia: Society
for Industrial and Applied Mathematics, 1999.

[26] Q. Yi, K. Kennedy, H. You, K. Seymour, and J. Dongarra, “Automatic
blocking of qr and lu factorizations for locality,” in 2nd ACM SIGPLAN
Workshop on Memory System Performance (MSP 2004). Washington,
DC: ACM, 2004.

[27] L. S. Blackford, J. Choi, A. Cleary, E. E D’Azevedo, J. W. Demmel, I. S.
Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. W. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide. Philadelphia:
Society for Industrial and Applied Mathematics, 1997.

[28] J. Choi, J. J. Dongarra, S. Ostrouchov, A. Petitet, D. W. Walker, and R. C.
Whaley, “The design and implementation of the ScaLAPACK LU, QR,
and Cholesky factorization routines,” Scientific Programming, vol. 5,
pp. 173-184, 1996.

[29] E. D’Azevedo and P. Luszczek, “A framework for check-pointed fault-
tolerant out-of-core linear algebra,” in SIAM Conference on Computa-
tional Science and Engineering (CSE03). Hyatt Regency Islandia Hotel
and Marina, San Diego, CA: SIAM, February 10-13 2003.

[30] A. Haidar, H. Ltaief, A. YarKhan, and J. Dongarra, “Analysis of Dy-
namically Scheduled Tile Algorithms for Dense Linear Algebra on
Multicore Architectures,” Innovative Computing Laboratory, University
of Tennessee, Tech. Rep. ut-cs-11-666, 2011, submitted to Concurrency
and Computations: Practice and Experience.

“Intel, Math Kernel Library (MKL),” http://www.intel.com/software/products/iKi/,G- Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, J. K.

2011, version 10.2.

P. Bientinesi, E Igual, D. Kressner, and E. Quintana-Orti, “Reduction
to condensed forms for symmetric eigenvalue problems on multi-core
architectures,” Parallel Processing and Applied Mathematics, vol. 6067,
pp. 387-395, 2010.

E. Agullo, J. Dongarra, R. Nath, and S. Tomov, “Autotuned dense
QR factorization for multicore architectures,” Institut National de
Recherche en Informatique et en Automatique (INRIA), Tech. Rep. RR-
7526, 2010, arXiv:1102.5328.

Thomas Herault, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek,
A. YarKhan, and J. Dongarra, “Flexible Development of Dense Lin-
ear Algebra Algorithms on Massively Parallel Architectures with
DPLASMA,” in Accepted at the 12th IEEE International Workshop on
Parallel and Distributed Scientific and Engineering Computing (PDSEC-
11). Anchorage, AK, USA: ACM, May 2011.

