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ABSTRACT
As the general purpose graphics processing units (GPGPU) are
increasingly deployed for scientific computing for its raw perfor-
mance advantages compared to CPUs, the fault tolerance issue has
started to become more of a concern than before when they were
exclusively used for graphics applications. The pairing of GPUs
with CPUs to form a hybrid computing systems for better flexi-
bility and performance creates a massive amounts of computations
that have a higher possibility to be affected by transient error – a
soft error that silently modifies data causing errors to pass unno-
ticed. This is despite the fact that the newest Fermi generation of
GPUs from NVIDIA are equipped with error correcting units to
protect their memories. This problem is particularly serious for ap-
plications that employ numerical linear algebra since large sections
of data are often modified between steps, and therefore even a sin-
gle error could eventually propagate into a large area of result. In
order to give protection to dense linear algebra computations on
such hybrid systems, we developed an algorithm that is resilient
to soft errors. We chose the right-looking Householder QR fac-
torization as a demonstration of our algorithm for a hybrid system
that features both GPUs and CPUs. Algorithm based fault toler-
ance (ABFT) is used to protect from errors in the trailing matrix and
the right factor, while a checkpointing method is used to ensure the
left factor is error-free. This work is based on a previous study of
fault tolerance in matrix factorizations. Our contribution includes
(1) a stable multiple-error checkpointing and recovery mechanism
for the left-factor, which is also scalable in performance in the hy-
brid execution environment and does not cause severe performance
degradation. (2) optimized Givens rotation utilities on the GPU to
efficiently reduce an upper Hessenberg matrix to upper triangular
form, and (3) a recovery algorithm based on QR update inside a hy-
brid system. Experimental results show that, our fault tolerant QR
factorization can successfully detect and correct data altered by soft
errors in both the left and right factors and we observe a decreasing
percentage of overhead as the matrix size grows.

1. INTRODUCTION
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Since the introduction of general-purpose computing on graphics
processing units (GPGPU), GPUs have quickly become the back-
bone of the modern high performance computing systems. For in-
stance, China’s Tianhe-1A that ranked number one on the Novem-
ber 2010 TOP500 list [27] uses 7,168 NVIDIA Tesla M2050 GPG-
PUs to achieve 2.57 Pflop/s in the High-Performance LINPACK (HPL)
benchmark. While GPUs provide extremely high floating-point
processing power, when combined with a conventional multi-core
CPU in a hybrid fashion, it has been shown to be capable of further
boosting the performance of scientific applications [3] by execut-
ing tasks with less parallelism on CPUs, concurrently with tasks
that have high parallelism on the GPUs.

As the deployment of the GPGPUs grows rapidly, the issue of
fault tolerance that has been only affecting CPU-based computing
systems [34, 15] starts to emerge on GPU-based platforms. Tradi-
tionally, fault tolerance had been ignored in systems utilizing the
GPUs because they were originally developed mainly for graph-
ics applications, such as 3D games which favor performance over
reliability at bit-wise accuracy. Therefore, transient errors can be
tolerated in a vast majority of rendering situations. As technol-
ogy brings the GPUs into the scientific computing arena, transient
errors during computing are no longer acceptable, and, to worsen
the situation, in hybrid systems such errors could propagate be-
tween the CPUs and the GPUs making the hybrid systems even
more fragile. Unlike fail-stop failure which brings down the whole
system and halts the application execution, transient errors occur
silently causing a “silent data corruption” due to various sources,
mostly from cosmic radiation [19]. The errors leave no trace in
system logs for system administrators to react at the time of failure.
The consequences of the transient errors include incorrect applica-
tion results, unpredictable code paths taken as a result of errors, and
propagation of the initial failure which, all together, make the task
of error detection and recovery so much more daunting.

Among the fault tolerance mechanisms, checkpointing and restart
(C/R) is the most commonly used method. Straightforward in idea
and implementation, C/R suffers large overhead from the frequent
checkpointing which requires tedious and time consuming I/O op-
erations. In the field of soft error, since no indication of error
is made explicitly, there is a pressing need for more light-weight
mechanism for fault tolerance.

In this work, we set out to provide fault tolerance and soft er-
ror resilience to the algorithms featured in our Matrix Algebra on
the GPU and Multicore Architect (MAGMA) project [38]. As a
demonstration, a single-GPU hybrid QR factorization is chosen.
Future work will extend the algorithm in this work to multiple-
GPU platforms. The rest of this paper is organized as the follows:
Section 2 gives a lists the related work in the field of soft error pro-
tection on the GPGPU platforms. Section 3 introduces the target



QR algorithm and its implementation in MAGMA. Section 4 mod-
els soft error in the QR algorithm, and Section 5 details the recovery
algorithm including the optimization of primitives for Givens rota-
tions on the GPU. Section 6 proposes a multiple-error protection
algorithm for the left factor Q through tracing the MAGMA QR.
Section 7 shows experimental results that evaluate various aspects
of our fault tolerant algorithm and, finally, Section 8 concludes the
work and outlines possible future directions.

2. RELATED WORK
For parallel applications, checkpoint-restart (C/R) has been the

most commonly used method for fault tolerance [1], where the run-
ning state of the application is dumped to reliable storage at a cer-
tain interval, either by the message passing middleware automati-
cally or at the request of user application. C/R requires the least
user intervention, but suffers from high checkpointing overhead
when writing data to stable storage.

To reduce overhead, diskless checkpointing [32] is proposed to
use system memory for checksum storage rather than disk stor-
age. Even though diskless checkpointing has seen good applica-
tions such as FFT [13] and matrix factorizations [31], it is only
suitable for applications that modify small amounts of memory be-
tween checkpoints.

Both C/R and diskless checkpointing need the error informa-
tion for recovery, and unfortunately no such information is guar-
anteed with soft error. In order to detect error without frequently
checking, algorithm based fault tolerance (ABFT) was proposed
to remove periodical checkpointing and only perform error check
when the execution being protected is finished [20, 2]. This elimi-
nates checkpointing overhead, and the checksum during computing
could reflect the most current status of the data which harbors clues
for soft error detection and recovery. ABFT was originally intro-
duced to deal with silent error in systolic arrays. Matrix data is
encoded once before the computation begins. Matrix algorithms
are carried out along with the encoded checksum in addition to the
original matrix data, and the correctness is checked after the matrix
operation completes.

ABFT for matrix factorization was explored back in the 1980s
[22, 23] for a single soft error, which was later extended to multiple
errors [30, 14, 5] by adopting methodology from error correcting
code. These methods for systolic arrays offer promising direction,
but requires modification in both algorithm and implementation,
especially when dealing with hybrid systems and applications with
GPGPU, where soft error could occur from either the host (CPU
and the main memory) or the GPU. Soft error in the GPU has been
exploited [18], and methods have been developed to detect [36, 40]
and recover from error [35, 25, 24]. Recently, soft error in matrix
multiplication on a GPU has also been studied [10].

Since the introduction of the ’Fermi’ architecture [28], Error
Correcting Code (ECC) has been integrated to protect from errors
in the GPU global memory, however this adds overhead to commu-
nication and reduces overall computing performance.

In the realm of fault tolerant QR factorization, Givens rotation
based QR has been studied in [26]. However, since Householder
QR is widely used in most modern math libraries, in our work
we consider a right-looking Householder based QR for a hybrid
CPU/GPU system. Our method is based on the error model by Luk
et al. in [23]. We extended this model by adding protection to
the left factor Q and provided optimized recovery algorithm on the
GPU.

3. HYBRID QR

In linear algebra, a QR factorization decomposes a matrix A into
a product A = QR, where Q is an orthogonal matrix and R is an
upper triangular matrix. QR factorization is often used to solve the
linear least squares problem, and also in QR algorithm which is at
the center of a special version of eigenvalue algorithm.

Several methods exist for computing the QR factorization, such
as the Gram-Schmidt process, Householder transformations, and
Givens rotations. In today’s high performance math libraries, for
instance, LAPACK [4], ScaLAPACK [9], and MAGMA, a block
version of the Householder transformations is adopted to achieve
high performance with the memory hierarchy in modern systems.
For example, given an input matrix A, a Householder matrix Q1 is
multiplied to A such that

Q1A =


r11 r12 · · ·r1n
0
... A′

0


This zeros out the elements under the diagonal in the first col-

umn. The next step is carried out on the trailing matrix A′ with

Q2
′ =


1 0 · · · 0
0
... Q2
0


In practice, MAGMA uses a block version of the QR factoriza-

tion by accumulating a few steps of the Householder matrix. This
version is rich in level 3 BLAS operations and therefore achieves
high performance. The result of Q is stored under the lower di-
agonal of the input matrix in the form of WY representation of
Householder transformation products[33, 8].

Implementation-wise, the algorithm used by MAGMA is close
to the LAPACK QR, except the MAGMA QR is designed and op-
timized for heterogeneous architectures, in particular, consisting of
a CPU and a GPU. The way to accomplish this is described as fol-
lows.

The hybrid QR that we consider has the input matrix and the
result on the GPU memory. The computational pattern is similar
to the LAPACK’s QR – a sequence of panel factorization followed
by a corresponding trailing matrix update. The current panel to be
factored is sent to the CPU and factored using LAPACK. The re-
sult is copied back to the GPU memory and used on the GPU for
the trailing matrix update. The update is split into two – first is an
update for the columns that will form the“next” panel, followed by
the update for the rest of the trailing matrix. This splitting, known
as lookahead technique, is done so that the factorization of the next
panel can start before finishing the entire update for which the next
panel is part of. This allows overlapping the large update of the
trailing matrix and sending the panel to the CPU, its factorization
and copy back to the GPU. As a result, for large enough matrices,
the overall performance of the algorithm is dictated by the perfor-
mance of the matrix-matrix multiplications on the GPU. Note that
communication is minimized (and overlapped with computation) as
on each step the algorithm communicates a panel of size O(nb×n)
and performs operations of size O(nb× n2). For further detail on
the implementation, one can see the sources available through the
MAGMA site.

4. SOFT ERROR MODELING
MAGMA algorithms run with both the GPU and CPU, therefore



soft errors on both platforms are considered a source of contami-
nation. Also since the result of panel factorization and lookahead
trailing panel commutes between the CPU and GPU frequently, soft
error could propagate between the GPU and CPU as well, depend-
ing on when and where error occurs. To ease the error analysis and
avoid dealing with the timing of errors, we adopt the error modeling
technique proposed in [23].

4.1 Error Model
Luk et al. derived their model for both LU and QR using the

“ZU” notation where Z represents the left factor and U represents
the right factor that is upper triangular. We return to the “QR” no-
tation for clarity, and have in mind the right-looking Householder
QR algorithm as the implementation method.

Having the initial matrix,

A0 = A,

Householder QR is carried out by introducing Householder trans-
forms from the left to get the final triangular form. Let

At = Qt−1At−1

Qt−1 is the Householder transform matrix at step t − 1. At step
t−1, error occurs at random location (i, j) in matrix A as

Ãt = Qt−1At−1−λeieT
j (1)

= Qt−1(Qt−2 . . .Q0)A0−λeieT
j

ei is a column vector with all 0 elements except 1 as the ith element.
Since no error warning is raised, the factorization continues from
step t till the end. If the soft error at step t is viewed as the result of
perturbation to an erroneous initial matrix

Ã = A−deT
j (2)

where d = λ (Qt−1 . . .Q0)−1ei, then the erroneous process of QR
factorization equals to an error-free QR factorization from a erro-
neous initial matrix Ã.

In essence, this model treats soft error as a perturbation to the
initial matrix similar to rounding errors so that backward error anal-
ysis [39] can be used for designing the recovery algorithm.

4.2 Checksum for R
In MAGMA, the right-looking Householder QR algorithm fol-

lows LAPACK QR storage, where the right factor R overwrites the
upper triangular part of the input matrix, including the diagonals,
while the lower triangular part is replaced by Q in the form of vec-
tors that defines elementary reflectors.

During QR factorization, once a panel of Q is produced, its val-
ues do not change till the end. Theorem 4.1 shows that Q cannot
be protected by appending rows of checksum at the bottom of the
input matrix and having QR factorization along with the checksum
rows.

THEOREM 4.1. Q in Householder QR factorization cannot be
protected by performing factorization along with the vertical check-
sum.

PROOF. Append a m× n nonsingular matrix A with checksum
GA of size c× n along the column direction to get matrix Ac =[

A
GA

]
. G is c×m generator matrix. Suppose A has a QR factoriza-

tion Q0R0.

A

R

Q

Figure 1: Different regions of A during factorization

Perform QR factorization to Ac:[
A

GA

]
= QcRc =

[
Qc11 Qc12
Qc21 Qc22

][
Rc11
∅

]
Qc11 is m×m and Qc21 is c×m. Rc is m×n and ∅ represents c×n
zero matrix. Rc 6= 0 and is full rank. Rc is upper triangular with
nonzero diagonal elements and therefore nonsingular.

QcQT
c =

[
Qc11 Qc12
Qc21 Qc22

][
QT

c11 QT
c21

QT
c12 QT

c22

]
= I

Therefore,

Qc11QT
c11 +Qc12QT

c12 = I. (3)

Since A = Qc11Rc11 and Rc11 is nonsingular, then Qc11 6= 0 and is
nonsingular.

Assume Qc12 = 0:
Qc11QT

c21 + Qc12QT
c22 = 0, therefore Qc11QT

c21 = 0. We have
shown that Qc11 is nonsingular, so QT

c21 = 0 and this conflicts with
GA = Qc21Rc11 6= 0, so the assumption Qc12 = 0 does not hold.
From Equation 3, Qc11QT

c11 6= I. This means even though A =
Qc11Rc11, Qc11Rc11 is not a QR factorization of A.

Therefore, Q is protected by static checkpointing in this work.
The part of the matrix other than Q is divided into two regions,

the already formed R and the trailing matrix A′, as shown in Fig. 1.
Each iteration of the trailing update moves a few rows from A′ to
R, and therefore both A′ and R undergo constant changes during the
factorization, and cannot be protected by static checkpointing as for
Q. For R, we adopt the ABFT technique from [2, 21], which was
also used in Luk’s work [22, 23] for soft error in systolic arrays.

To capture one error, for input matrix A ∈ R m×n, two generator
matrices are used, e = (1,1, . . . ,1) and a random matrix w. e,w ∈
R m×1.

Before factorization, two columns of checksum (Ae Aw) are cal-
culated and appended on the right of the input matrix as Ac =
(A Ae Aw). Then QR factorization is applied to Ac:

(A Ae Aw) = Q(R c v) (4)

c,v ∈ R m×1 are checksum columns after factorization.
Due to soft error, A becomes the erroneous matrix Ã, and the

checkpointed matrix becomes

(Ã Ae Aw)

And the QR factorization becomes:

(Ã Ae Aw) = Q̃(R̃ c̃ ṽ) (5)



From eq. 5

c̃ = Q̃−1Ae = Q̃−1(Ã+deT
j )e

= Q̃−1(Q̃R̃+deT
j )e

= R̃e+ Q̃−1deT
j e = R̃e+ Q̃−1d

By the same token,

ṽ = R̃w+w jQ̃−1d

Assume residual vectors r,s ∈ R m×1

r̃ = c̃− R̃e = Q̃−1d (6)

and

s̃ = ṽ− R̃w = w jQ̃−1d (7)

Combining Equation 6 and 7,

s̃ = w j r̃. (8)

r̃ can be used to check for error, and in case an error occurs, the
column in which the error initially strikes can be determined by
Equation 8.

5. RECOVERY ALGORITHM
With the knowledge of error column j, Luk et al. [23] rec-

ommended a spike-reducing technique to recover the left and right
factors of ZU factorization without giving the actual algorithm. In
this section we continue this work on a slightly different path due
to the storage format of MAGMA QR.

5.1 Spike-Eliminating Technique
Using the QR notation, the spike reducing technique in [23]

starts with the difference of the true initial matrix A and the erro-
neous initial matrix Ã, obtained in Equation 2.

A− Ã = (a· j− Q̃R̃· j)eT
j

A = Q̃R̃+(a· j− Q̃R̃· j)eT
j

A = Q̃R̃+ Q̃(Q̃T a· j− R̃· j)eT
j

A = Q̃(R̃+ peT
j )

A = Q̃C̃, C = R̃+ peT
j , p = Q̃T a· j− R̃· j (9)

C in Equation 9 is an upper triangular matrix with a spike in
column j. Since QR requires Q to be an orthogonal matrix, orthog-
onal transformations are needed to remove non-zeros related to the
spike.

There are a few choices of algorithm such as Householder trans-
formation and Givens rotation. Householder is more computing
intensive and has higher parallelism which is more suitable for the
GPU, but it also requires higher amount of extra memory because,
while the first Householder transformation removes the spike in
column j, the triangular submatrix ( j + 1 : end, j + 1 : end) be-
comes a full matrix, and if j is small, this requires an extra buffer
almost as large as the data matrix A and since in MAGMA QR the
lower triangular is used to store Q, data matrix space cannot be
borrowed. Given that the global memory on the GPU is normally
used to the limit for matrix data , Householder transformation does
not qualify for this high memory demand and we choose Givens
rotation as the non-zero elimination algorithm. In [23], Luk et al.
also suggested a few methods including Givens rotation to elimi-
nate this spike with matrix factorization modifying method [16] in

O(k2) steps. Since Givens rotation is memory-bound, implementa-
tion on the GPU requires careful design for the best performance.
This will be covered in section 5.3.

5.2 QR Update as the Recovery Algorithm
From Equation 2, it can be seen that the recovery algorithm is in

essence a QR update problem. Since QR update is also widely used
in applications where repeated updating is required [37], this work
implements the QR update algorithm for the GPU and applies it to
the soft error recovery problem at hand.

The rank-1 update to QR factorization has been described in
[17]. We show the algorithm in the context of QR recovery.

Given the erroneous initial matrix and its QR factorization Ã =
Q̃R̃, the objective is to find the QR factorization of the true initial
matrix A = QR.

Let u = a· j− Q̃R̃· j, and v = e j,

A = Ã+uvT

= Q̃R̃+uvT

= Q̃(R̃+ Q̃T uvT )

∴ A = Q̃(R̃+wvT ), w = Q̃T u = Q̃T a· j− R̃· j

First, a series of Givens rotations JT = JT
1 · · ·JT

n−1 is used such
that

JT ×w =±‖w‖2 e1

The sequence 1 · · ·n−1 applied from left to w means the elimina-
tion is from bottom up. It can be shown that H = JT ×R is an upper
Hessenberg matrix, and therefore

JT × (R̃+wvT ) = H±‖w‖2 e1vT = Ĥ

is also upper Hessenberg.
To get R from Ĥ, another series of Givens rotations GT = GT

n−1 · · ·GT
1

is used such that

GT × Ĥ = R

The sequence n−1 · · ·1 means the elimination is from top down.
Combining J and G,

Q = Q̃JG = Q̃(Jn−1 · · ·J1)(G1 · · ·Gn−1)

Algorithm 1 describes the above recovery procedure.

Algorithm 1 QR Recovery Algorithm based on QR-update

Require: Ã, Q̃, and R̃
Obtain a· j and R̃· j
Calculate w = Q̃T u = Q̃T a· j− R̃· j
Zero out w using Givens Rotations as k1 = JT ×w =±‖w‖2 e1
Apply JT to R̃ as k2 = JT R̃, and store the subdiagonals of k2 into
extra storage Y
Perform Ĥ = k2 + k1eT

j
Zero out subdiagonals of Ĥ by Givens rotations GT × Ĥ = R

Along with Algorithm 1, there are some implementation details
worth noticing. First, the column j of the original matrix A is re-
quired for recovery. For scientific applications that expect soft er-
ror with high probability, a mechanism to recover some part of the
original matrix is required. Some applications can generate any
column of A easily, others need to store the whole matrix A. In our
implementation, at the beginning of QR factorization, matrix A on



the GPU memory is asynchronously copied to the CPU memory
during the first panel factorization for this purpose.

Second, recovery can be performed using the GPU in place or the
CPU with two data transfers, one to load data from the GPU to the
CPU and one to store result back. This solution is easier in imple-
mentation since LAPACK is equipped with Givens rotation utilities
like DLARTG and DLASR, but it suffers from performance impact
of data transfer and much lower parallelism of the CPU compared
to the GPU. Therefore, we choose to perform the QR recovery on
the GPU in place with the matrix data. Since R can only overwrite
the upper triangular of A, subdiagonals of k2 and Ĥ are kept in a
separate 1D buffer Y .

5.3 Givens Rotation Utilities for the GPU
Givens rotation is at the center of the recovery procedure. Two

operations involved are DROTG and DLASR. While these oper-
ations are readily available for the CPU, on the GPU they pose
a significant challenge to be implemented with good performance
especially in a fused fashion. We’ll first discuss the two major chal-
lenges and then our solution.

5.3.1 Memory Access Pattern
DROTG generates a plane rotation such that[

c s
−s c

][
f
g

]
=
[

r
0

]
In this work we use an improved version of DROTG called DLARTG,
which is more numerically reliable [7].

DLASR applies a set of plane rotations to a matrix in a certain
order, for example one set of plane rotation is applied to a 2×N
matrix, [

c s
−s c

][
x11 · · · x1N
x21 · · · x2N

]
=
[

y11 · · · y1N
y21 · · · y2N

]
(10)

The FLOP count is 12N and the memory operation is 4N +4, mak-
ing it a memory-bound operation. While each column of the right
hand side

[
y1 j, y2 j

]T can be fully parallelized, without data reuse,
on the GPU the performance of DLASR is still limited by the mem-
ory bandwidth between the GPU global memory and the registers.
To make this situation worse, since MAGMA QR uses column-
major storage, if each thread calculated one column of the right
hand side, the fetching of [xi1, · · · ,xiN ] and [yi1, · · · ,yiN ], i = 1,2 by
each thread does not fit the condition of global memory coalescing
on the GPU, and each column has to be accessed one at a time.

5.3.2 Data Caching
In Algorithm 1, DLARTG and DROTG are fused together to

firstly create the upper Hessenberg matrix H, and then reduce it
to upper triangular. This common operation has two steps:

1. Generate a plane rotation
[

c s
−s c

]
using DLARTG for a

vector
[

x1
y1

]

2. Apply
[

c s
−s c

]
to a 2×N matrix as in Equation 10 (DLASR)

Both of these steps are carried out on the GPU. These two steps are
consecutive. Figure 2 is an example in the last step of Algorithm 1.
The plus signs on the subdiagonal are those elements to be zeroed
out, and the red plus signs are the values being eliminated in the
current step. Green and red are the elements that participate in

+
+

+
+

+
+

+
+

[

[

+

+
+

+
+

+
+

[

[

Figure 2: Reduction from upper Hessenberg to upper triangu-
lar

+
+

+
+

+

DLARTG+DLASR DLASR

Figure 3: Reduction from upper Hessenberg to upper triangu-
lar (block algorithm)

the current step. This operation sweeps from top to bottm until an
upper triangular matrix is produced.

Take the first two steps for example, the second row of the ma-
trix is updated by the DLASR in the first step and then used as
input for the second step. To reduce global memory access that
is far more expensive than that of registers and shared memory
on the GPU, this row should be cached for the next step rather
than read from global memory after being just written there. Natu-
rally we use one thread to handle each column of H, and given the
size of H, more than one thread blocks is needed for each step.
In addition, one thread blocks (one thread per se) performs the
DLRTG before all the DLARTG thread blocks could start, hence
a synchronization is needed to hold DLASR threads while wait-
ing for the one thread that does DLARTG to finish. To achieve
the aforementioned caching using registers, both DLARTG and
DLASR functionalies need to reside in one GPU kernel, otherwise
the DLASR kernel calls are separated from each other by DLARTG
kernel calls, and caching can only be done through shared mem-
ory, which is less efficient. The dilemma here is that CUDA of-
fers no lightweight mechanism to synchronize all thread blocks
from within threads. Available synchronization mechanisms in-
clude global synchronization initiated by host, and synchronization
of all threads within a thread block. The atomic operation pro-
vides some possibilities but threads that participate in an atomic
operation through a variable in global memory are serialized, and
therefore suffers a large performance penalty.

5.3.3 Algorithm for fused DLARTG and DLASR op-
eration

For dense linear algebra, blocked algorithms have been widely
used to achieve high performance on modern computer systems
with complex cache hierarchy [11]. To bridge the requirement of
caching intermediate rows to reduce global memory access and the



difficulty of no lightweight synchronization from within threads,
we devised the following algorithm for the fused DLARTG and
DLASR operation by having each step work with a block of data
rather than only 2 rows.

Two types of kernels are designed. The first kernel generates a
set of plane rotations and use these rotations to reduce an NB×NB
upper Hessenberg submatrix on the diagonal to upper triangular.
NB is selected as the maximum number of threads per thread block
allowed by the GPU in use except for edge cases. In our experi-
ment, with a Tesla T20, aka ’Fermi’, NB = 1024.

The second kernel applies this set of plane rotations to all the
data on the right of the diagonal NB×NB. Global synchroniza-
tion on the host is used between these two kernels. This algorithm
moves down along the diagonal with a step size of NB until an up-
per triangular matrix is produced. Figure 3 is an example of this al-
gorithm with NB = 5. During each iteration, only one thread block
is spawned for the first type of kernel and as many thread blocks as
needed are spawned for the second kernel.

Within the first kernel, steps proceed as in the unblocked version
of fused DLARTG and DLASR. Intermediate rows that are pro-
duced by step i−1 and will be used in step i are cached in registers
to avoid loading from global memory. Thread-block level synchro-
nization is used to separate DLARTG and DLASR functionalies.
Within the second kernel, steps proceed from the top down, one
row each step. Similarly, intermediate rows are cached in registers.
The plane rotations are stored in two vectors, respectively, in global
memory to pass between the two kernels. In the second kernel, the
fetching of current plane rotation pair c and s that is on the criti-
cal path of execution is moved to the beginning of kernel execution
where NB threads are used to fetch NB plane rotation pairs in a
coalesced fashion.

5.3.4 Efficient Memory Access Scheme
Figure 4 is a modified memory access scheme to remedy the

problem discussed in section 5.3.1 for the type II kernel in section
5.3.3.

In the original kernel, all threads are lined up in a row, and during
each step each thread fetches two values in a column along with a
Given rotation pair from global memory. For double precision (8-
byte word) memory access within half warp to be coalesced, CUDA
requires all 16 words to fall in the same 16-word segment [29] but
since each element in consecutive columns of this row are separated
by the leading dimension, the coalescing rule does not hold.

In order to benefit from the throughput advantage provided by
coalescing, a level of inner blocking is added to the kernel. Take
Tesla T20 for example where the maximum number of thread per
thread block is 1024. Rather than striding one row down at each
step, a 4× 64 block of data (yellow) are fetched together from
global memory to the corresponding 64×4 piece in a shared mem-
ory buffer of size 1024× 4 using a 16× 64 layout of the 1024
threads such that all 16 threads in each column of the grid have
consecutive thread IDs. Therefore the 4×64 = 256 elements in the
yellow zone are fetched by 64 coalesced accesses. These fetching
loops continue from left to right until the four rows are completely
loaded. After the loading, thread layout is re-arranged to 1024×1
in the inner blocking. Each thread loads two consecutive elements
in a row from the shared memory. The layout of the shared mem-
ory buffer lowers the bank conflict to minimum. The inner blocking
loop consumes the four rows of data (four columns in shared mem-
ory) to apply the corresponding Givens rotations, and once this four
rows are finished, results are written back in the same coalesced
manner as loading.

The scheme described in this section can also be used for other
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Figure 4: Global memory accesses in the blocked DLASR ker-
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Figure 5: Run time comparison of the blocked DLASR (opti-
mized) kernel and the original version

similar kernels in this work.

5.3.5 Improvement Experiment
Figure 5 is an experiment result of the run time for the reduction

of H from upper Hessenberg to upper triangular. The matrix size
derives from actual recovery experiment in section 7.3 where the
impact of the new reduction algorithm on recovery performance
is shown in Figure 9. By using a more efficient memory access
pattern and the blocked algorithm for fused DLARTG and DLASR
operation, 5x speedup is achieved.

6. PROTECTION FOR Q
Theorem 4.1 has shown that Q cannot be protected by ABFT as

R, and the spike-eliminating algorithm 1 inherited from work by
Luk et al. [23] function under the assumption that no soft error
strikes Q̃, which is the erroneous Q caused by soft error in R or
A′. In MAGMA QR, since Q occupies half of the matrix, it is as
eligible to be soft error victim as other section of the matrix and
therefore has to be protected.

6.1 Static Checkpointing for Q
In order to provide soft error resilience to Q, we propose to use a

checkpointing algorithm because once a panel is factorized on the
CPU, the result remains unchanged until the end of factorization.
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Figure 6: MAGMA QR tracing

For any column of the factorized panel [v1,v2, · · · ,vk]T , the ob-
jective of the checkpointing scheme is to allow recovery from er-
rors that occur to random items in the column. It has been shown
in [12] that one soft error in a column of L in LU can be protected
with trivial overhead. In this work, we extend this to two errors per
column in Q.

For any column of the factorized panel, [v1,v2, · · · ,vk]T , the ver-
tical checkpointing produces the following two sets of checksums: v1 + v2 + · · ·+ vk = c1

w1v1 +w2v2 + · · ·+wkvk = c2
u1v1 +u2v2 + · · ·+ukvk = c2

(11)

Since all computation are carried out in floating point number
with a fixed number of digits for exponent and fraction, the selec-
tion of wi and ui must fall in a certain range such that they do not
cause large rounding errors. For example, in [14], the use of Van-
dermonde matrix where wi = j and ui = j2 make it not practical
on modern computing systems because the fast increase of check-
pointing weight causes notable precision loss by rounding errors.
In this work we choose wi and ui as random numbers. Supposed
errors cause vi and v j to be changed to ṽi and ṽ j, i < j, we have:

 v1 + · · ·+ ṽi + · · ·+ ṽ j + · · ·+ vk = c̃1
w1v1 + · · ·+wiṽi + · · ·+w j ṽ j + · · ·+wkvk = c̃2
u1v1 + · · ·+uiṽi + · · ·+u j ṽ j + · · ·+ukvk = c̃2

(12)

Subtract Equations 12 from Equations 11, we have c̃1− c1 = ṽi− vi + ṽ j− v j
c̃2− c2 = wi(ṽi− vi)+w j(ṽ j− v j)
c̃3− c3 = ui(ṽi− vi)+u j(ṽ j− v j)

(13)

In order to solve ui, u j, wi and w j , let ui = w2
i , i = 1 · · ·k. Equa-

tions 13 can be reduced to

(c̃3− c3)− (wi +w j)(c̃2− c2)+wiw j(c̃1− c1) = 0 (14)

And wi, w j can be determined by iterating through all possibilities
with O(n2) complexity because i < j, and for each i, n− i pairs of
wi w j are tested in Equation 14.

This checkpointing method also applies to one-error recovery.
Supposed an error occurs to vi only, and Equation 11 becomes c̃1− c1 = ṽi− vi

c̃2− c2 = wi(ṽi− vi)
c̃3− c3 = ui(ṽi− vi)

(15)

The same method in [12] can be used to determine wi.

Using Equation 13, the error detection and recovery algorithm
is in Algorithm 2. Note that this error protection for Q applies for
each column of Q.

Algorithm 2 Error detection and recovery in Q

Require: Ã, error column s, wi 6= w j, i, j ∈ {1 · · ·k}
Calculate ĉi = c̃i− ci, i = 1,2,3
if ĉi == 0, i = 1,2,3 then

No error
else if ĉ2/ĉ1 == ĉ3/ĉ2 == wi then

One error in row i, column s of the output matrix
Recover by solving c̃1− c1 = ṽi− vi

else
At least two errors in column s of the output matrix
Iterate all possible pairs wi, w j ∈ w
if (c̃3− c3)− (wi +w j)(c̃2− c2)+wiw j(c̃1− c1) = 0 then

Two errors are in rows i and j, column s of the output matrix
Recover by solving the overdetermined least square equa-
tions in Equation13 with wi and w j as known constants and
x = ṽi− vi and y = ṽ j− v j as unknowns

else
More than two errors occurs

end if
end if

The error detection and recovery algorithm can be extended to t
errors with complexity O(nt) to determine the locations of errors.
Since the complexity of QR factorization is O(n3), when t > 3, it
becomes more expensive by doing recovery than actually restarting
the QR factorization or obtaining Q by solving Q = AR−1. The
overhead of O(nt) can be improved by implementing on the GPU
with a parallelized search algorithm for error locations. This will
be discussed in the future research.

6.2 Timing of Checkpointing
The checkponting for Q is carried out once per iteration. There-

fore the placement of this procedure is critical to avoid large per-
formance penalty, for example, by sitting on the critical path of
execution.

As described in section 3, The GPU onsite version of MAGMA
QR produces Q using the CPU implementation DGEQRF and dur-
ing step i, an Mi ×NB block of the trailing matrix is sent from
the GPU to the CPU memory to be factorized by DGEQRF. Then
the triangular factor T of a real block reflector H is constructed
by DLARFT on the CPU and both the panel factorization and T
are sent to the GPU to update the trailing matrix using a GPU ver-



sion DLARFB. This process is illustrated by the trace of an actual
MAGMA QR run on a 48-core CPU + Nvidia T20 GPU machine
shown in Figure 6 generated by TAU (Tuning and Analysis Utili-
ties) [6]. The size of this run is 17408× 17408, and only the first
few iterations are shown.

To minimize performance penalty, the checkponting is preferred
to reside in a time slot of overlapping between the CPU and GPU.
Even though the DLARFB on the GPU takes a long time to finish,
by using lookahead it keeps the CPU busy most of the time, leav-
ing very little room for extra operation. By closely examining the
tracing, we notice that the yellow section that represents cublasSet-
Matrix(), which sends panel factorization result from the CPU to
the GPU, actually takes longer than the actual communication, and
the reason is that cublasSetMatrix() is a blocking call on the GPU
and it does not start the data transfer until all activities on the GPU
started previously are finished. From Figure 6, clearly cublasSet-
Matrix() is always called on the CPU during the trailing matrix up-
date (DLARFB) on the GPU and this accordingly not only blocks
both the data transferring to the GPU, but also put the CPU in a busy
wait and therefore cannot perform other tasks. This does not affect
the performance of MAGMA QR since MAGMA QR uses 1-depth
lookahead and therefore the next trailing matrix update cannot start
anyway without the previous one finished.

To release the CPU from the busy wait, cublasSetMatrix() is re-
placed with an asynchronous data transferring function cudaMem-
cpy2DAsync(). This function initiates the data transferring and re-
turns control immediately to the CPU. The time gap between this
initiation time and when the GPU DLARFB is finished is large
enough to hide the checkpointing Q from the critical path. As the
trailing matrix becomes smaller, there is a certain threshold of time
when the GPU DLARFB finishes before the initiation of cublasSet-
Matrix(), and this could expose the checkpointing and cause per-
formance impact, but this only accounts for a small portion of the
execution. For such a situation, the checkpointing could be moved
to run on the GPU between the time GPU DLARFB finishes and
the initiation of cublasSetMatrix on the CPU.

7. PERFORMANCE EVALUATION
In this section we evaluate the performance of the fault tolerant

QR algorithm on a hybrid system. The configuration of the experi-
ment environment is in table 1:

MKL with 48 threads is used on the CPU and CUDA 4.0 is driv-
ing the GPU. All computing is in double precision and based on
MAGMA version 1.0. The maximal matrix size is limited by the
GPU global memory.

As discussed in section 5.2, the recovery algorithm requires a
column of the original matrix. While this column may be re-generated
cheaply, in our experiment we want to simulate the worst case
where this convenience is not available, and therefore the origi-
nal matrix is duplicated for the recovery process. Since the GPU
memory is relatively small compared to that of the host, and is nor-
mally fully utilized for computing, the copy of the original matrix
is put on the host memory. To avoid performance impact, the data
transferring is performed asynchronously during the first panel fac-
torization. The panel data is copied first so that DGEQRF on the
CPU could start as soon as possible, and while the CPU is busy with

Brand Frequency # cores Memory
CPU AMD Opteron 6180 SE 2.5 GHz 48 256 Gb
GPU NVIDIA C2050 1.1 GHz 14 2.7 Gb

Table 1: Experiment configuration
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Figure 7: Performance of FT-QR with/without checkpointing
for Q

the panel factorization, the rest of data is copied through DMA to
the host memory. All the performance results shown in this section
include this overhead.

7.1 Overhead Analysis
The overhead of fault tolerance comes from the following sources:

1. Duplicating the original matrix from the GPU to the CPU

2. Generating checksum on the GPU

3. Performing QR with two checksum columns on the GPU

4. checkpointing Q on the CPU

5. Check for error in R and A′ on the GPU

6. Check for error in Q on the GPU

7. Recovery from error in Q on the CPU and GPU

8. Recovery from error in R and A′ on the GPU

Each item of the overhead sources, except the memory copy, re-
quires O(n2) extra FLOPS. And comparing to the 4

3 n3 FLOPS of
QR factorization, the overhead fades away when matrix size is large
enough.

7.2 Checkpointing of Q
Figure 7 is an experiment to show the overhead caused by check-

pointing Q. The red line shows the performance without check-
pointing Q and the performance between the red line and blue line
is the overhead caused by (1)-(3) and (5)-(6) in the overhead source
list. With the checkpointing Q switched on, the green line perfor-
mance dips by another 5% at large matrix sizes. The green line
represents the case of our fault tolerant QR runs without any error.
To compare the performance with the CPU implementation, the re-
sult of MKL QR running with 48 threads is also shown. It can be
seen that even with the overhead of fault tolerance, our FT-QR is
still showing 2-3x speedup over the CPU implementation.

7.3 Recovery
Since our algorithm can deal with errors in the full matrix, the

recovery performance are divided into the left factor and the right
factor.
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Figure 8: Performance of Recovery for Errors in Q

7.3.1 The Right Factor
Figure 8 is the performance of recovery from errors in Q. Two

errors are injected to column 312 in rows 612 and 729 respectively.
This experiment is simulating random double errors in a column of
Q and therefore the error locations are not informed to the recovery
algorithm. Performance result shows a small overhead from the no-
error case of the fault tolerant QR, and about 15% decrease from
the original MAGMA QR. This percentage will continue to drop
as matrix sizes grows larger permitted by GPU with larger global
memory.

7.3.2 The Left Factor
Figure 9 is the performance of recovery from error initially in R

or A′. For all matrix sizes, error is injected to a random location
(7681,7682) in A′ on the GPU right before the 31st step of panel
factorization. The purple line is the performance of FT-QR with
checkpointing Q and no error.

Two recovery performances are shown. The green line is the
plain implementation of Givens rotation utilities on the GPU. This
implementation is limited by the GPU global memory access speed
without the help of coalescing and shared memory. The red line
is the optimized recovery performance where a blocked and fused
DLARTG and DLASR with better memory access mechanism is in
place. At the largest problem size available to this GPU, the opti-
mization improves 5% of the recovery performance. The recovery
from one soft error in A′, using the optimized algorithm, reduces
15% of the overall performance of QR. This percentage will also
continue to drop with larger matrix sizes.

8. CONCLUSION
In this work we developed a soft error resilient QR algorithm

for hybrid architecture where the CPU and GPU are utilized to-
gether. This work enables the high performance implementation of
MAGMA QR to be tolerant to soft errors caused by radiation-based
interference.

Based on the ABFT algorithm by Luk et al., the FT-QR algo-
rithm can tolerate up to one soft error in data section R and A′.
Since the recovery algorithm requires an error-free left factor Q,
which is not guaranteed by Luk’s algorithm, a stable and scalable
multiple-error checkpointing/recovery mechanism is devised and
placed in the computing environment based on the execution fea-
ture of MAGMA QR such that the checkpointing is hidden away
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Figure 9: Performance of Recovery for Error in R and A′

from the critical path and therefore prevents severe performance
impact. In addition, a more efficient recovery algorithm based on
Givens rotation is designed. This fast Givens rotation utilities can
also be used in other applications to reduce an upper Hessenberg
matrix to upper triangular on the GPU.

To future work, we will extend this FT-QR to multi-GPU for
larger problem size, and the multiple-error encoding method will
be applied to the protection of the right factor.
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