
Continuous Spatial Automata

B. J. MacLennan

Department of Computer Science

University of Tennessee

Knoxville, TN 37996-1301

maclennan@cs.utk.edu

CS-90-121

November 26, 1990

Abstract

A continuous spatial automaton is analogous to a cellular automaton, except

that the cells form a continuum, as do the possible states of the cells. After an

informal mathematical description of spatial automata, we describe in detail

a continuous analog of Conway's \Life," and show how the automaton can be

implemented using the basic operations of �eld computation.

1 Introduction

A continuous spatial automaton is the continuous analog of a cellular automaton

[Codd]. Typically a cellular automaton has a �nite (sometimes denumerably in�nite)

set of cells, often arranged in a one or two dimensional array. Each cell can be in one

of a number of states. In contrast, a continuous spatial automaton has a one, two or

higher dimensional continuum
 of loci x 2
 (corresponding to cells), each of which

has a state �

x

drawn from a continuum (typically [0, 1]). The state is required to

vary continuously with the locus, which means that � :
! [0; 1] is continuous. We

make the additional stipulation that � have a �nite L

2

norm, which makes it a �eld

and allows us to apply the theory of �eld computation [MacLennan, p. 12]. We write

�(
) for the set of all �elds over
.

In a cellular automaton there is a transition function that determines the state of

a cell at the next time step based on the state of it and a �nite number of neighbors at

the current time step. A discrete-time spatial automaton is very similar: the future

state of a locus is a continuous function of the states of the loci in a (closed or open)

1

bounded neighborhood of the given locus. A continuous-time spatial automaton is

much the same, except that the states change continuously in time, rather than at

discrete time intervals.

It is usually convenient to assume that all the neighborhoods are the same \shape,"

i.e., they are all translations of each other. Unfortunately this con
icts with an

assumption of �eld computation, namely that the domain
 is closed and bounded

[MacLennan, p. 10], since boundary points and interior points have neighborhoods

of di�erent shapes. Thus we must make some provision for \edge e�ects;" typical

solutions are discussed below.

2 xa le

An example will illustrate continuous spatial automata. Consider Conway's \Game of

Life," a well-known two-dimensional cellular automaton with binary states [Gardner].

The new state of a cell is determined by a population density rule. Let n be the

number of the eight surrounding cells in state 1. Then, if n � 1 or n � 3, the new

state is 0, otherwise it is 1 if n = 3 and unchanged from its previous state if n = 2.

Much of the complexity of \Life" results from the fact that the transition rule is

nonmonotonic (and hence nonlinear) in the population density.

2.1 ontinuous \ ife"

Now we consider a discrete-time, continuous analog of \Life." For convenience we

take the set of loci to be
 = [0; 1]

2

, so that the state of the automaton is � 2 �(
).

The future state at locus x 2
 is based on the states of the loci in a neighborhood

x

of x. For example,

x

could be a circle of radius � centered at x (with appropriate

provisions for edge e�ects):

x

= fy 2
 j kx� yk � �g:

There are several ways to handle edge e�ects. ne approach, common in cellular

automata, is to treat
 as a torus, thus extending � to function �̂, de�ned on the

in�nite plane

^

=

2

, by:

�̂(i x; y) = �(x; y) for 0 � x < 1; 0 � y < 1;

and i; integers. Continuity of �̂ requires that the edges of � match, but this is

easily accomplished. Another way to extend � to the in�nite plane is to assume it is

constant outside of [0; 1]

2

.

y analogy with \Life" we will make the new state at x a nonmonotonic function

of the \population density"

x

in the neighborhood

x

. The function : [0; 1]! [0; 1]

is de�ned by a parameter m, 0 < m < 1, and has the following properties:

(0) = 0

2

(1) = 0

(m) = 1

0

(p) � 0 for 0 � p � m

0

(p) � 0 for m � p � 1:

This means that (p) increases continuously from 0 at p = 0 to 1 at p = m, and then

decreases continuously to 0 at p = 1.

1

ince the population density

x

around x is just the average of � over

x

we can

write the new state �

0

2 �(
) as follows:

�

0

x

=

x

�

y

dy

x

dy

=

1

a

x

x

�

y

dy ;

where a

x

=

x

dy is the area of

x

.

Next we de�ne a \neighborhood aggregation" operator : �(
) ! �(
) to

compute the �eld :

(�) = where

x

=

1

a

x
x

�

y

dy:

Then �

0

x

= (

x

), so we may write

�

0

=

�

()

where

�

: �(
) ! �(
) is the \local transformation"

�

() that applies at each

point of [MacLennan, p.]. ence the state transition operator : �(
)! �(
)

is de�ned

(�) = �

0

=

�

[(�)];

or =

�

� .

2.2 o utin

�

There are several candidates for ; perhaps the simplest is a parabola (possibly ro-

tated) with maximum (m; 1) and passing through the points (0; 0) and (1; 0). uch

a parabolic nonlinearity can result in very complex | indeed, chaotic | dynamics

[ofbauer igmund, pp. 3 { 0]. In the simplest case, where m = 1 2, we have

(p) = p(1 � p):

ence we can express

�

directly by the �eld computation

�

() = (1 �);

where ` ' denotes \local product" [MacLennan, p. 0]: ()

x

=

x x

.

1

\ .

3

2. o utin

ur next task is to �nd a way to compute the aggregation operator . Let 2 �(
)

be the �eld

x

=

a

�1

if x 2

0 otherwise

where is the neighborhood of the origin and a = a is the area of . For circular

neighborhoods we have:

x x

=

1 �

2

if x

2

1

x

2

2

� �

2

0 otherwise

Although this function is discontinuous, it can be approximated arbitrarily closely by

continuous �elds.

2

If all neighborhoods are translations of we have

y 2

x

i� y � x 2 i�

y�x

= a

�1

:

ince for all x, a

x

= a, we have

[(�)]

x

=

x

= a

�1

x

x

�

y

dy

=

x

a

�1

�

y

dy

=

y�x

�̂

y

dy

= (�̂)

x

where �̂ is the correlation of and �̂, the result of which we assume to be restricted

to
. Alternately we could do a convolution with � where �

x

=

�x

:

(�) = �̂ = � �̂:

ence the new state is de�ned by

�

0

= (�) =

�

(�̂):

If we use the m = 1 2 parabola, then the new state is computed in two steps:

= �̂

�

0

= (1�)

Use of other values of m is a straight-forward extension, as is the use of other

functions.

.

2. i u tion

Tomislav Goles has implemented a version of the continuous Life system described

above. As expected it exhibits interestingand complex behavior, including the forma-

tion of strings and networks of high-density regions (Figs. 1{). The scale of these

structures seems to be closely related to the neighborhood radius. etails of the

implementation can be found in Goles' M thesis [Goles].

e erence

[Codd] Codd, E. F. ellular utomata. Academic ress, N , 1 .

[Gardner] Gardner, Martin. \Mathematical Games: The Fantastic Combinations of

ohn Conway's New olitaire Game `Life'." cienti c merican , (ctober

1 0), pp. 120{123.

[Goles] Goles, Tomislav, \General urpose Field Computer imulator." M thesis,

Computer cience epartment, University of Tennessee, noxville, ecember

1 0.

[ofbauer igmund] ofbauer, osef, and igmund, arl. e eor o olu-

tion and namical stems, London Mathematical ociety tudent Texts .

Cambridge University ress, Cambridge U , 1 .

[MacLennan] MacLennan, . . \Field Computation: A Theoretical Framework for

Massively arallel Analog Computation, arts I{I ." University of Tennessee,

noxville, Computer cience epartment Technical eport C - 0-100, February

1 0.

Figure 1: Typical tate,
 = [0; 1]

2

; � = 0:02

Figure 2: Typical tate,
 = [0; 1]

2

; � = 0:02

Figure 3: Typical tate,
 = [0; 1]

2

; � = 0:0

Figure : Typical tate,
 = [0; 1]

2

; � = 0:0

