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every basis is computable. (Exhaustive computation could, at least in principle, be applied

until the trees were reached, after which it would be pointless to look further.)

Lemma 6.A makes it is easy to see that basis size grows monotonically. This and the fact

that the basis for parameter value four contains at least 122 million elements [Ki] suggest

that no other bases for this problem are likely to be isolated in the foreseeable future.
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Lemma 8.I No obstruction for 3-GML contains �ve or more faces.

Proof . The reverse of the replacement used in the proof of Lemma 7.I generates only known

obstructions 9.4.1 and 12.4.1. Thus there can be no obstruction with �ve or more faces some

of which are adjacent at and only connected through a single vertex. Thanks to Lemmas 7.G

and 8.G, no obstruction can contain either separated faces or a chain whose length exceeds

three. 2

9. Main Result

All elements of the 3-GML obstruction set are now known. The structure of this set is

reviewed in Table 4, which follows.

Table 4. A Review of the 3-GML Obstruction Set

Number of Faces
Number of Obstructions

none
10

one
23

two
39

three
29

four
9

�ve or more
0

Theorem 9.A There are exactly 110 obstructions for 3-GML, namely, those identi�ed in

preceding results and depicted in the appendix.

10. Conclusions

Gate matrix layout is a well-known but notoriously di�cult problem. Each of its �xed-

parameter variants, however, possesses a �nite-basis characterization that provides a polynomial-

time recognition algorithm. In this paper, we have isolated the basis for parameter value

three. In order to accomplish this, we have also derived a number of more general results to

bound and identify basis elements for any parameter value.

We conjecture that the trees are the largest elements in each basis. A proof of this, if it

is indeed true, would be particularly interesting, because it would automatically mean that
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intersect at a single edge if ji� jj = 1, and are either disjoint or intersect at a single vertex

otherwise. The length of a chain is the number of faces it contains. Figure 8.3 illustrates

four di�erent four-faced chains.
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Figure 8.3 Sample Four-Faced Chains

Lemma 8.G No obstruction for 3-GML contains a chain whose length exceeds three.

Proof . Assume otherwise for some obstruction G with chain F

1

, F

2

, . . ., F

h

where h � 4

and F

i

\ F

i+1

= v

i

w

i

for 1 � i < h.

Thanks to Lemma 8.D, we assume without loss of generality that w

1

= w

2

. To avoid

obstruction 8.3.1, G must contain either v

1

v

2

or a degree-three vertex x adjacent to v

1

, v

2

and pendant vertex y.

Let G

0

= G n fv

2

w

2

g, and let F

0

2

denote the (enlarged) face that results from the removal

of v

2

w

2

from F

2

. G

0

possesses a cost-three permutation in which the overlap of the spans

for F

1

and F

0

2

is v

1

w

1

, the leftmost column of F

0

2

. Since any attachment at v

1

must lie to

the left of the span for F

1

, since the span for F

4

must be to the right of v

1

w

1

, and since

outerplanarity ensures v

1

62 F

4

, column v

1

v

2

(or column v

1

x) must contain the rightmost 1

in row v

1

. Thus, with no increase in cost, column v

1

v

2

(or the set of columns a v

1

x, xy, xv

2

)

may be moved to the immediate right of v

1

w

1

, from which it is straightforward to construct

a cost-three permutation for G, a contradiction. 2

Lemma 8.H There are nine obstructions for 3-GML that have exactly four faces.

In summary, six new four-faced obstructions exist, bringing the total number of known

obstructions up to 110. We shall now show that there are no more.

8.7 Obstructions with Five or More Faces
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Table 3. Four-Faced Obstructions from Lemma 7.I

Starting Three-Faced Obstruction
Resultant Four-Faced Obstruction(s)

11.3.1
9.4.2

13.3.1
9.4.1

13.3.5
9.4.1

13.3.6
9.4.1

14.3.1
12.3.1

14.3.2
9.4.1

14.3.3
12.3.1

14.3.4
12.3.1

14.3.5
12.3.1

14.3.6
12.3.1

15.3.1
12.4.1

�

15.3.2
12.3.1

15.3.3
12.4.1

�

, 13.3.1

15.3.4
12.4.1

�

, 13.3.1

16.3.1
12.4.1

�

, 13.3.1

16.3.2
14.4.1

�

, 14.4.3

�

16.3.3
14.4.2

�

, 14.4.4

�

18.3.1
15.3.2

19.3.1
15.4.1

�

, 16.3.1

�

new obstruction

In any additional four-faced obstruction, each face must be edge adjacent to at least one

other. One face cannot be edge adjacent to the other three, else the graph contains known

obstruction 6.4.1. Furthermore, to avoid K

4

, at least two faces must be edge adjacent to

exactly one other face. Our next result ensures that all four-faced obstructions are already

known.

A chain in an outerplane graph is a sequence of faces F

1

, F

2

, . . ., F

h

such that F

i

and F

j
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Suppose F

2

is not a triangle. To avoid obstruction 8.3.1 (343-010000), F

2

must be a

square with vertex set fv

1

; v

2

; v

3

; v

r

g, and v

2

must be adjacent to pendant vertex u

2

. Let

G

0

= Gnfu

2

v

2

g. G

0

possesses a cost-three permutationM

0

in which v

1

v

2

and v

2

v

3

lie between

v

1

v

r

, the rightmost column of F

1

, and v

3

v

r

, the leftmost column of F

3

. It is straightforward

to verify that v

1

v

2

contains the rightmost 1 in row v

1

, that v

2

v

3

is to the immediate right

of v

1

v

2

, and that u

2

v

2

can be inserted in M

0

to produce a cost-three permutation for G, a

contradiction.

Thus F

2

must be a triangle. Without loss of generality, assume F

3

has at least four

vertices each with degree at least three. If v

2

has an attachment, then to avoid obstruction

11.2.1 (35-01e100) it follows that that F

3

must be a square with vertex set fv

2

; v

3

; v

4

; v

5

g,

the attachment at v

4

is the pendant edge u

4

v

4

, and the attachment at v

3

contains at least

one pendant path. Let G

00

= G n fu

4

v

4

g, and letM

00

denote a cost-three permutation for G

00

in which the span for F

3

is to the right of column v

1

v

2

v

5

. Since v

4

v

5

must be the rightmost

column in the span for v

5

, it is straightforward to construct a cost-three permutation for G,

a contradiction. Thus v

2

can have no attachment. Let G

000

denote the graph obtained from

G by contracting edge v

2

v

3

to v

2

, and let F

000

3

denote the (shrunken) face that results from

this contraction in F

3

. Using a cost-three permutation for G

000

in which the span for F

000

3

is to

the right of column v

1

v

2

v

r

, it is again straightforward to construct a cost-three permutation

for G, a contradiction. 2

Lemma 8.F There are 29 obstructions for 3-GML that have exactly three faces.

In summary, eighteen new three-faced obstructions exist, bringing the total number of

known obstructions up to 104.

8.6 Obstructions with Four Faces

To identify obstructions with four faces some of which are adjacent at and only connected

through a single vertex, we again apply the reverse of the replacement used in the proof of

Lemma 7.I. Table 3 summarizes the four-faced obstructions thereby obtained.
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any graph in which both v

2

and v

3

(or both v

1

and v

5

) have two or more pendant paths as

attachments. Any graph with attachments at all �ve vertices contains new obstruction 13.3.7

denoted by pattern-string 333-11e1e, from which new obstructions 13.3.8 and 13.3.9 are ob-

tained with type 2 replacements. Pattern-string 333-21e20 denotes new obstruction 16.3.2,

from which new obstruction 16.3.3 is obtained with a type 2 replacement. Pattern-string 333-

22030 denotes new obstruction 19.3.1, from which new obstruction 18.3.1 is obtained with

a type 1 replacement. Graphs with pattern-strings 333-00232 and 333-02032 contain known

obstruction 18.2.2 (33-0232). The graph with pattern-string 333-12021 contains known ob-

struction 17.2.2 (34-21120). All other possibilities are minors of a graph whose cost-three

permutation resides in the following list.

333-00323 A(v

3

), B

1

(v

4

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, B

2

(v

4

), A(v

5

)

333-01313 A(v

3

), C

1

(v

2

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

4

), A(v

5

)

333-01331 A(v

3

), C

1

(v

2

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

5

), A(v

4

)

333-03023 A(v

2

), B

1

(v

4

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, B

2

(v

4

), A(v

5

)

333-03113 A(v

2

), C

1

(v

3

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

4

), A(v

5

)

333-03131 A(v

2

), C

1

(v

3

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

5

), A(v

4

)

333-11033 A(v

4

), C

1

(v

2

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

1

), A(v

5

)

333-11303 A(v

3

), C

1

(v

2

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

1

), A(v

5

)

333-13013 A(v

2

), C

1

(v

4

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

1

), A(v

5

)

333-13103 A(v

2

), C

1

(v

3

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

1

), A(v

5

)

333-31031 A(v

4

), C

1

(v

2

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

5

), A(v

1

)

333-33011 A(v

2

), C

1

(v

4

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

5

), A(v

1

)

333-33020 A(v

2

), B

1

(v

4

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, B

2

(v

4

), A(v

1

)

333-33101 A(v

2

), C

1

(v

3

), v

2

v

3

v

4

, v

1

v

2

v

4

, v

1

v

4

v

5

, C

2

(v

5

), A(v

1

)

Other Patterns. The next result ensures that all three-faced obstructions with other

patterns are already known (either by Lemma 6.B or by type 2 replacements).

Lemma 8.E Obstruction 8.3.1 is the only three-faced outerplane obstruction for 3-GML in

which each face is edge adjacent to at least one other and one face has four or more vertices

each with degree at least three.

Proof . Assume otherwise for some obstruction G with faces F

1

, F

2

, and F

3

such that both

F

1

and F

3

are edge adjacent to F

2

. Thanks to lemma 8.D, we may assume F

1

\ F

2

= v

1

v

r

,

and F

2

\ F

3

= v

i

v

r

.
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K

4

.

Lemma 8.D No outerplane obstruction for 3-GML contains faces F

1

, F

2

, and F

3

, where

F

1

\ F

3

= ;, such that both F

1

and F

3

are edge adjacent to F

2

.

Proof . Assume otherwise for some obstruction G with faces F

1

, F

2

, and F

3

for which F

1

\F

2

= v

1

v

r

and F

2

\ F

3

= v

i

v

j

, where 1 < i < j < r.

Suppose F

2

is a square with vertex set fv

1

; v

2

; v

r�1

; v

r

g. Let G

0

= G n fv

1

v

r

g, and let

F

0

2

denote the (enlarged) face that results from the removal of v

1

v

r

from F

2

. G

0

possesses a

cost-three permutationM

0

in which the overlap of the spans for F

0

2

and F

3

is column v

2

v

r�1

,

the leftmost column of F

3

. If both v

1

and v

r

have attachments, then their spans must include

the leftmost column of F

0

2

, and v

1

v

2

can be placed to the immediate left of the span for F

0

2

to obtain a cost-three permutation for G, a contradiction. Thus v

1

or v

r

(and analogously

v

2

or v

r�1

) has no attachment. If neither v

2

nor v

r

has an attachment, then v

1

v

2

can be

moved to the immediate left of v

2

v

r�1

and v

r�1

v

r

can be moved to the immediate left of

v

1

v

2

, making it easy to construct a cost-three permutation for G, a contradiction. Thus v

2

or v

r

(and analogously v

1

or v

r�1

) has an attachment. So, without loss of generality, assume

both v

1

and v

2

have attachments. Let G

00

denote the graph obtained from G by contracting

edge v

r�1

v

r

to v

r

, and let F

00

denote the triangle with vertex set fv

1

; v

2

; v

r

g. G

00

possesses a

cost-three permutationM

00

in which v

1

v

2

lies between v

1

v

r

, the rightmost column of F

1

, and

v

2

v

r

, the leftmost column of F

3

. M

00

can now be modi�ed by adding row v

r�1

, replacing v

2

v

r

by v

r�1

v

r

and v

2

v

r�1

, and, in every column to the right of v

2

v

r�1

, interchanging the contents

of rows v

r

and v

r�1

, thereby producing a cost-three permutation for G, a contradiction.

F

2

must therefore have �ve or more vertices. Without loss of generality, assume v

2

does

not lie on F

3

and has degree three or more. The attachment at v

2

must be the pendant edge

u

2

v

2

and v

3

must lie on F

3

, else G contains obstruction 8.3.1 (343-010000). But now it is

a simple matter to modify a cost-three permutation for G n fu

2

v

2

g to obtain a cost-three

permutation for G, again a contradiction. 2

Three Triangles. Since known obstruction 13.2.1 has pattern-string 34-02200, and since

removal of v

1

v

4

(or v

2

v

4

) leaves an edge-adjacent triangle and square, we do not consider
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Table 2. Three-Faced Obstructions from Lemma 7.I

Starting Two-Faced Obstruction
Resultant Three-Faced Obstruction(s)

13.2.1
11.3.1

15.2.2
13.3.5

15.2.3
13.3.6

15.2.4
13.3.2

15.2.5
13.3.3

15.2.6
13.3.3

15.2.7
13.3.4

16.2.1
12.3.1

16.2.2
14.3.3

�

, 14.3.5

�

16.2.3
14.3.4

�

, 14.3.6

�

16.2.4
13.3.1, 14.3.2

�

16.2.5
12.3.1

16.2.6
12.3.1

17.2.1
13.3.1

17.2.2
15.3.1

�

17.2.3
13.3.1, 13.3.5

17.2.4
13.3.1, 13.3.6

17.2.5
15.2.1

17.2.6
15.2.2, 15.3.3

�

17.2.7
15.2.3, 15.3.4

�

18.2.1
15.2.1

18.2.2
14.3.1

�

, 16.2.1

19.2.1
15.3.2

�

, 16.2.1

20.2.1
16.3.1

�

, 17.2.1

�

new obstruction

In any additional three-faced obstruction, each face must be edge adjacent to at least one

other. Furthermore, the three faces cannot be mutually edge adjacent, else the graph contains
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this means that a cost-three permutation for G can be constructed fromM

0

, a contradiction.

Thus the attachment at v

4

is a pendant edge. It follows that F

2

must be a pentagon (else

v

5

has an attachment with one or more pendant paths and G properly contains obstruction

11.2.1). Additionally, both v

1

and v

5

must have attachments, since otherwise M

0

can again

be modi�ed to produce a cost-three permutation for G. It is now clear that F

1

must be

a triangle with vertex set fv

1

, v

5

, v

6

g, and that v

6

must have degree two, else G properly

contains obstruction 15.1.1 (6-1e1e1e). Also, the attachment at v

1

or v

5

must be a single

pendant path, else G contains obstruction 17.1.1 (5-2e1e2). But this means that G is a

minor of the graph with pattern-string 35-3e3e10, which has cost-three permutation A(v

1

),

C

1

(v

5

), v

1

v

5

v

6

, v

1

v

2

, u

2

v

2

, v

4

v

5

, u

4

v

4

, v

3

v

4

, v

2

v

3

, A(v

3

), again a contradiction.

Suppose the attachment at v

2

is one or more pendant paths. The attachment at v

4

must

be a pendant edge, from which it again follows that F

2

must be a pentagon, reducing this

by symmetry to the previous case. 2

Lemma 8.C There are 39 obstructions for 3-GML that have exactly two faces.

In summary, sixteen new two-faced obstructions exist, bringing the total number of known

obstructions up to 86.

8.5 Obstructions with hree Faces

To identify obstructions with three faces some of which are adjacent at and only connected

through a single vertex, we again apply the reverse of the replacement used in the proof of

Lemma 7.I. Table 2 summarizes the three-faced obstructions thereby obtained.
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obstructions 14.2.5 and 14.2.6 are obtained with type 2 replacements. Graphs with pattern-

strings 44-2e10e2 and 44-0e22e1 contain known obstruction 17.1.1 (5-22e1e). The graph with

pattern-string 44-0e2320 contains known obstruction 19.1.2 (4-232e). If a string contains no

e, then its �rst and fourth characters must both be 0 (Lemma 7.A and avoidance of known

obstruction 15.1.5 (5-11111)). Known obstruction 13.2.1 (34-02200) is a minor of any graph

with pattern 44 in which both v

2

and v

3

(or both v

5

and v

6

) have two or more pendant paths

as attachments. All other possibilities are minors of a graph whose cost-three permutation

resides in the following list.

44-0e1313 A(v

4

), C

1

(v

3

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

, v

4

v

5

, v

1

v

6

, v

5

v

6

, C

2

(v

5

), A(v

6

)

44-0e1331 A(v

4

), C

1

(v

3

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

, v

4

v

5

, v

1

v

6

, v

5

v

6

, C

2

(v

6

), A(v

5

)

44-0e3113 A(v

3

), C

1

(v

4

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

, v

4

v

5

, v

1

v

6

, v

5

v

6

, C

2

(v

5

), A(v

6

)

44-0e3131 A(v

3

), C

1

(v

4

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

, v

4

v

5

, v

1

v

6

, v

5

v

6

, C

2

(v

6

), A(v

5

)

44-0e323e A(v

3

), B

1

(v

4

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

, v

1

v

6

, u

6

v

6

, v

5

v

6

, v

4

v

5

, B

2

(v

4

), A(v

5

)

44-0e331e A(v

3

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

, v

1

v

6

, u

6

v

6

, v

5

v

6

, v

4

v

5

, C

2

(v

5

), A(v

4

)

44-031031 A(v

2

), C

1

(v

3

), v

2

v

3

, v

1

v

2

, v

3

v

4

, v

1

v

4

, v

1

v

6

, v

4

v

5

, v

5

v

6

, C

2

(v

6

), A(v

5

)

44-031013 A(v

2

), C

1

(v

3

), v

2

v

3

, v

1

v

2

, v

3

v

4

, v

1

v

4

, v

1

v

6

, v

4

v

5

, v

5

v

6

, C

2

(v

6

), A(v

5

)

44-1e31e3 A(v

3

), C

1

(v

4

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

, v

4

v

5

, u

5

v

5

, v

5

v

6

, v

1

v

6

, C

2

(v

1

), A(v

6

)

44-3e13e1 A(v

4

), C

1

(v

3

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

, v

4

v

5

, u

5

v

5

, v

5

v

6

, v

1

v

6

, C

2

(v

6

), A(v

1

)

44-3e31e1 A(v

3

), C

1

(v

4

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

, v

4

v

5

, u

5

v

5

, v

5

v

6

, v

1

v

6

, C

2

(v

6

), A(v

1

)

Other Patterns. The next result ensures that all two-faced obstructions with other pat-

terns are already known (either by Lemma 6.B or by type 2 replacements).

Lemma 8.B Obstruction 11.2.1 is the only two-faced outerplane obstruction for 3-GML with

edge-adjacent faces in which one face has �ve or more vertices each with degree at least three.

Proof . Assume otherwise for some obstruction G with faces F

1

and F

2

, where F

1

\F

2

= v

1

v

m

,

m � 5, and vertices v

2

; v

3

; . . . ; v

m�1

of F

2

each has an attachment. Since G does not by

assumption contain obstruction 11.2.1 (35-01e100), the attachment at v

2

or v

4

must be a

pendant edge, and the attachment at v

3

must be one or more pendant paths.

Suppose the attachment at v

2

is the pendant edge u

2

v

2

. Let G

0

= G n fu

2

v

2

g. Thanks to

Lemma 7.C, G

0

possesses a cost-three permutationM

0

in which the overlap of the face spans

for F

1

and F

2

is column v

1

v

m

, the leftmost column of F

2

. If the attachment at v

4

contains

one or more pendant paths, then v

1

v

2

must be the rightmost column in the span for v

1

. But
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18.1.8 (4-2221). Pattern-string 33-2e22 represents new obstruction 17.2.6, from which new

obstruction 17.2.7 is obtained with a type 2 replacement. All other possibilities are minors

of a graph whose cost-three permutation resides in the following list.

33-0323 A(v

2

), B

1

(v

3

), v

1

v

2

v

3

, v

1

v

3

v

4

, B

2

(v

3

), A(v

4

)

33-1313 A(v

2

), C

1

(v

1

), v

1

v

2

v

3

, v

1

v

3

v

4

, C

2

(v

3

), A(v

4

)

33-3113 A(v

1

), C

1

(v

2

), v

1

v

2

v

3

, v

1

v

3

v

4

, C

2

(v

3

), A(v

4

)

33-3131 A(v

1

), C

1

(v

2

), v

1

v

2

v

3

, v

1

v

3

v

4

, C

2

(v

4

), A(v

3

)

33-3320 A(v

2

), B

1

(v

3

), v

1

v

2

v

3

, v

1

v

3

v

4

, B

2

(v

3

), A(v

1

)

Triangle and Square. We assume the square is to the right of the triangle, so that both

v

2

and v

3

must have attachments. If there is no e in the string, then there is at least one 0

in a position corresponding to a vertex of the triangle. Since known obstruction 13.2.1 has

pattern-string 34-02200, we only consider graphs in which v

2

or v

3

has a pendant edge or

a single pendant path as its attachment. A string with three 2s and a 1 corresponds to a

graph that contains known obstruction 18.1.8 (4-2221). Pattern-string 34-21120 represents

new obstruction 17.2.2. Pattern-string 34-2e102 denotes new obstruction 16.2.2, from which

new obstruction 16.2.3 is obtained with a type 2 replacement. Pattern-string 34-1111e de-

notes new obstruction 14.2.7, from which new obstruction 14.2.8 is obtained with a type 2

replacement. Graphs with pattern-strings 34-2e230 and 34-0e232 contain known obstruction

19.1.2 (4-232e). The graph with pattern-string 34-1e22e contains known obstruction 17.1.1

(5-22e1e). All other possibilities are minors of a graph whose cost-three permutation resides

in the following list.

34-0e323 A(v

3

), B

1

(v

4

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

v

5

, B

2

(v

4

), A(v

5

)

34-01313 A(v

3

), C

1

(v

2

), v

2

v

3

, v

1

v

2

, v

3

v

4

, v

1

v

4

v

5

, C

2

(v

4

), A(v

5

)

34-01331 A(v

3

), C

1

(v

2

), v

2

v

3

, v

1

v

2

, v

3

v

4

, v

1

v

4

v

5

, C

2

(v

5

), A(v

4

)

34-03113 A(v

2

), C

1

(v

3

), v

2

v

3

, v

1

v

2

, v

3

v

4

, v

1

v

4

v

5

, C

2

(v

4

), A(v

5

34-03131 A(v

2

), C

1

(v

3

), v

2

v

3

, v

1

v

2

, v

3

v

4

, v

1

v

4

v

5

, C

2

(v

5

), A(v

4

)

34-1e133 A(v

4

), C

1

(v

3

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

v

5

, C

2

(v

1

), A(v

5

)

34-1e313 A(v

3

), C

1

(v

4

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

v

5

, C

2

(v

1

), A(v

5

)

34-11330 A(v

3

), C

1

(v

2

), v

3

v

4

, v

2

v

3

, v

1

v

2

, v

1

v

4

v

5

, C

2

(v

1

), A(v

4

)

34-13130 A(v

2

), C

1

(v

3

), v

2

v

3

, v

3

v

4

, v

1

v

2

, v

1

v

4

v

5

, C

2

(v

1

), A(v

4

)

34-3e131 A(v

4

), C

1

(v

3

), v

3

v

4

, v

2

v

3

,u

2

v

2

, v

1

v

2

, v

1

v

4

v

5

, C

2

(v

5

), A(v

1

)

34-3e311 A(v

3

), C

1

(v

4

), v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

v

5

, C

2

(v

5

), A(v

1

)

34-3e320 A(v

3

), B

1

(v

4

),v

3

v

4

, v

2

v

3

, u

2

v

2

, v

1

v

2

, v

1

v

4

v

5

, B

2

(v

4

), A(v

1

)

Two Squares. Pattern-string 44-1e101e denotes new obstruction 14.2.4, from which new
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from a type 2 replacement and has already been considered.

Lemma 8.A There are exactly 23 obstructions for 3-GML that contain only one face.

In summary, only one new one-faced obstruction exists, bringing the total number of

known obstructions up to 70.

8.4 Obstructions with wo Faces

To identify obstructions with two vertex-adjacent faces, we apply the reverse of the

replacement used in the proof of Lemma 7.I. Table 1 summarizes the two-faced obstructions

thereby obtained.

Table 1. Two-Faced Obstructions from Lemma 7.I

Starting One-Faced Obstruction
Resultant Two-Faced Obstruction(s)

17.1.1
15.2.4

17.1.2
15.2.5, 15.2.6

17.1.3
15.2.7

18.1.8
15.2.2, 16.2.4

�

18.1.9
16.2.5

18.1.10
16.2.6

19.1.1
15.2.1

19.1.2
15.2.2, 17.2.3

19.1.3
15.2.3, 17.2.4

20.1.1
16.2.1

21.1.1
17.2.1

�

new obstruction

Other two-faced obstructions must contain edge-adjacent faces.

Two Triangles. Pattern-string 33-0232 represents new obstruction 18.2.2, from which new

obstruction 17.2.5 is obtained with a type 1 replacement. Pattern-string 33-3230 denotes

new obstruction 20.2.1, from which new obstructions 19.2.1 and 18.2.1 are obtained with

type 1 replacements. The graph with pattern-string 33-2221 contains known obstruction
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2133 or 1233, since the corresponding graph contains a minor whose pattern-string is 3-333

(known obstruction 21.1.1).

Square Face. Pattern-string 4-2221 denotes new obstruction 18.1.8. Pattern-string 4-

232e represents known obstruction 19.1.2. Any other graph with this pattern either contains

one of these obstructions, or is a minor of a graph whose cost-three permutation resides in

the following list.

4-3131 A(v

1

), C

1

(v

2

), v

1

v

2

, v

2

v

3

, v

1

v

4

, v

3

v

4

, C

2

(v

4

), A(v

3

)

4-323e A(v

1

), B

1

(v

2

), v

1

v

2

, v

1

v

4

, u

4

v

4

, v

3

v

4

, v

2

v

3

, B

2

(v

2

), A(v

3

)

4-3311 A(v

1

), C

1

(v

4

), v

1

v

4

, v

1

v

2

, v

3

v

4

, v

2

v

3

, C

2

(v

3

), A(v

2

)

Pentagonal Face. Pattern-strings 5-11111 and 5-22e1e correspond to known obstructions

15.1.5 and 17.1.1, respectively. Any new obstruction with a pentagonal face contains at least

one, and at most two pendant edges. If a string has a single e and a single 1, then the

corresponding graph contains obstruction 18.1.8 (4-2221). Any other candidate obstruction

is a minor of a graph whose cost-three permutation resides in the following list.

5-3131e A(v

1

), C

1

(v

2

), v

1

v

2

, v

1

v

5

, u

5

v

5

, v

4

v

5

, v

3

v

4

, v

2

v

3

, C

2

(v

4

), A(v

3

)

5-3113e A(v

1

), C

1

(v

2

), v

1

v

2

, v

1

v

5

, u

5

v

5

, v

4

v

5

, v

3

v

4

, v

2

v

3

, C

2

(v

3

), A(v

4

)

5-1331e A(v

2

), C

1

(v

1

), v

2

v

3

, v

1

v

2

, v

1

v

5

, u

5

v

5

, v

4

v

5

, v

3

v

4

, C

2

(v

4

), A(v

3

)

Hereafter, no string with �ve or more entries from f1; 2; 3g will be considered, because the

corresponding graph contains known obstruction 15.1.5.

exagonal Face. If three vertices of a graph with a hexagonal face have pendant edges

incident on them, then the graph contains known obstruction 15.1.1 (6-1e1e1e). Thus we

need only consider strings whose two e characters are in the third and sixth positions. The

graph with pattern-string 6-22e11e contains known obstruction 17.1.1 (5-22e1e). All other

possibilities are minors of a graph whose cost-three permutation resides in the following list.

6-31e31e A(v

1

), C

1

(v

2

), v

1

v

2

, v

2

v

3

, u

3

v

3

, v

1

v

6

, u

6

v

6

, v

5

v

6

, v

3

v

4

, v

4

v

5

, C

2

(v

5

), A(v

4

)

6-13e31e A(v

2

), C

1

(v

1

), v

1

v

2

, v

2

v

3

, u

3

v

3

, v

1

v

6

, u

6

v

6

, v

5

v

6

, v

3

v

4

, v

4

v

5

, C

2

(v

5

), A(v

4

)

Other Faces. Any graph that contains a face with seven or more vertices, each with an

attachment, must contain either known obstruction 15.1.1 (6-1e1e1e) or known obstruction

15.1.5 (5-11111). An obstruction whose face contains seven or more vertices must therefore

have adjacent vertices of degree two on the face, in which case the obstruction can be obtained
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three pendant paths are incident on v, then we use A(v) in a permutation to indicate that

the six edges of the attachment are to be placed in the order listed.
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�

�

�

�

�

�

�

�

�
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Attachment Name Notation Permutation

A A(v) v 0 1 * 1 1 0

a 1 0 0 0 0 0

1 1 0 0 0 0

c 0 0 1 0 0 0

0 0 1 1 0 0

e 0 0 0 0 0 1

0 0 0 0 1 1

B B

1

(v) v 0 1

a 1 0

1 1

B

2

(v) v 1 0

c 0 1

1 1

C C

1

(v) v 0 1

a 1 0

1 1

C

2

(v) v 1 0

a 0 1

1 1

Figure 8.2 Shorthand sed in ermutations

8.3 Obstructions with One Face

Triangular Face. If two vertices of the face have degree two, then it is straightforward

to show that the graph can be obtained from Lemma 6.A. Otherwise, since the attachments

at the vertices of the face are minors of (K

1;3

), the graph can be obtained from Lemma

6.B. Hereafter, we shall not consider any string that contains 333, 3321, 3312, 3213, 3123,
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we shall use to identify obstructions that might otherwise be missed due to the assumptions

just stated.
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Figure 8.1 pe 1 and 2 eplacements

We can thus use a succinct (character) string to denote a graph's attachment structure.

We begin by visiting the vertices that lie on any internal face clockwise around the external

face. If two or more (internal) faces are present, then we start with the vertex at the \top" of

the edge shared by the leftmost two faces, otherwise we start at an arbitrary vertex. Letting

v

i

denote the ith vertex visited in this fashion, we represent the attachment at v

i

with the ith

character of the string. Such a character is either a 0 to denote that there is no attachment,

the letter e to denote that it is a pendant edge, or an integer in the range [1,3] to denote the

number of pendant paths it contains.

New obstruction candidates are now uniquely (modulo rotations and re ections) describ-

able in pattern-string form. For example, the graph denoted by 34-2e300 contains a triangle,

edge adjacent to a square to its right. These two faces share the edge v

1

v

4

. The triangle's

vertex set is fv

1

; v

4

; v

5

g. The attachments at vertices v

1

, v

2

, and v

3

are, respectively, two

pendant paths, a pendant edge and three pendant paths.

In describing permutations of graphs, we adopt the convention that u

i

denotes the other

vertex of an edge pendant at v

i

. It is also helpful to use a shorthand for (complete and

partial) permutations of more complicated attachments. See Figure 8.2. For example, if
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and two faces. For the reader's convenience, the entire set is displayed in an appendix to

this paper.

8.1 Obstructions From revious Constructions

Lemma 6.A provides twenty obstructions: ten are trees (22.0.1{10); six have one face

(18.1.1{6); four have separated faces (10.3.1 and 14.2.1{3).

Lemma 6.B provides forty-three more obstructions (6.4.1, 8.3.1, 9.4.1{2, 11.2.1{2, 11.3.1,

12.3.1, 13.2.1, 13.3.1{6, 15.1.1{4, 15.2.1{7, 16.2.1, 16.2.5{6, 17.1.1{3, 17.2.1, 17.2.3{4, 18.1.7,

18.1.9{10, 19.1.1{3, 20.1.1 and 21.1.1).

Lemma 6.C provides one additional obstruction (15.1.5).

Therefore, including the �ve non-outerplanar obstructions identi�ed in Section 7, sixty-

nine obstructions for 3-GML are known up to this point.

8.2 Conventions or escribing ew Obstructions

We know from [EST, Ki] and Lemma 7.J that no more tree or separated-face obstructions

are possible. Moreover, those with vertex-adjacent faces can be obtained indirectly with

Lemma 7.I. Thus we now consider only outerplane graphs with either a single face or with

two or more edge-adjacent faces. Without loss of generality, we assume the outerplane

embedding induces a left-to-right ordering of the faces, so that we can employ a simple

(decimal) integer pattern to denote its face structure. In such a pattern, the number of

digits equals the number of faces, and the value of each digit equals the number of vertices

in the corresponding face. (As we shall see later, this easy scheme su�ces, because we need

only consider candidate obstructions in which no interior face has more than six vertices.)

If a face contains four or more vertices, then we assume each vertex of the face has degree

at least three (Lemmas 5.E, 5.F and 7.E). If a vertex has an attachment, then we assume

this attachment is either a pendant edge or one, two or three pendant paths (Lemma 7.H). If

the attachment consists of three pendant paths, then a minimality-preserving replacement is

possible thanks to Lemmas 5.J and 7.E. We term this a type 1 replacement . If the attachment

is a pendant edge, then a minimality-preserving replacement is possible thanks to Lemma

5.F. We term this a type 2 replacement . Figure 8.1 illustrates these two replacements, which
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an edge of G whose removal places F

1

and F

2

in distinct connected components C

1

and C

2

,

respectively. Assume u 2 C

1

and v 2 C

2

. C

1

must possess an optimal permutation M

1

in

which every column to the right of the span for u has cost two, else C

1

n fug contains two

disjoint obstructions for 2-GML and the minimality of G ensures that it is obtained from

Lemma 6.A. Similarly, C

2

must possess an optimal permutation M

2

in which every column

to the left of the span for v has cost two. But now M

1

; uv;M

2

is a cost-three permutation

for G, a contradiction. 2

7.4 onextendabilit o hese esults o Four or More rac s

Unfortunately, the results of this section cannot be extended to values of 3. Consider,

for example, the graph depicted in Figure 7.2. We know from Lemma 6.A that it is an

obstruction for 4-GML.
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Figure 7.2 4- M Obstruction

Clearly, analogs of Lemmas 7.A and 7.E are ruled out by uv and w. Similarly, Lemma

6.B quickly gives rise to obstructions for 4-GML that eliminate analogs for Lemmas 7.G and

7.H. More complicated constructions [Ki] can be devised to rule out analogs for Lemmas

7.B, 7.C and 7.J.

. e Co lete ree- rac struction et

In this section, we shall complete the task of identifying all obstructions for 3-GML. Each

is given a three-integer name, denoting its number of vertices, its number of interior faces and

an index. For example, obstruction 8.2.3 is the third obstruction we list with eight vertices
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show that A

+

possesses an optimal permutationM

1

in which uvw

5

is the rightmost column.

Let G

0

= (G n A

�

) fx; yg fxv; vy; xyg. If A(v) contains a cycle, then G

0

<

m

G, and

thus G

0

has cost three. If A(v) is acyclic, then (K

1;3

) <

m

A(v), and thus (with the help

of Lemma 5.J) again G

0

has cost three. Now it is straightforward to show that G

0

possesses

an optimal permutation M

2

in which vxy is the leftmost column. But this means we can

construct a cost-three permutation for G by placing M

2

to the right of M

1

and removing

uvw and vxy, a contradiction. 2

Lemma .I If an obstruction for 3-GML contains two faces that are adjacent at and only

connected through a single vertex, then there is an obstruction for 3-GML with one less face

and with a vertex whose attachment is two or three pendant paths.

Proof . Let G denote an obstruction with faces F

1

and F

2

adjacent at and only connected

through v. Assume F

1

is a triangle in which only v has degree three or more (Lemma 7.G).

Let denote the graph obtained from G by deleting F

1

n fvg and identifying the degree-

three vertex of (a disjoint copy of) (K

1;3

) with v. has cost four (Lemma 5.J). Let G

0

denote an obstruction contained in . Observe that, in G

0

, the attachment at v contains

more than one pendant path, else G

0

<

m

G. Thus, due to Corollary 5.J.1, either G

0

=

or G

0

= n fvx; xyg where x and y are vertices on a pendant path incident on v, and the

lemma holds. 2

Corollary .I.1 If an obstruction for 3-GML contains two faces that are adjacent at and

only connected through a single vertex v, then v has no attachment.

We say that two disjoint faces are separated if the removal of some edge places the faces

in di�erent connected components.

Lemma .J If an obstruction for 3-GML contains a pair of separated faces, then the ob-

struction is one obtained from Lemma 6.A.

Proof . Assume otherwise for obstruction G with separated faces F

1

and F

2

. Let uv denote

5

s s e e . , e s r re rese r r ce c ree s

r er ree c s e c s.
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Proof . Let G denote an obstruction, with faces F

1

and F

2

adjacent at and only connected

through v. Assume neither F

1

nor F

2

is a triangle with two vertices of degree two.

Let C

1

denote the (unique) connected component of G n fvg that contains an edge of

F

1

nfvg. Let C

2

denote (Gnfvg)nC

1

. Let u and w denote a pair of isolated vertices not in G.

We de�ne G

1

= (G nC

2

) fu;wg fuv; vw; uwg and G

2

= (G nC

1

) fu;wg fuv; vw; uwg.

Observe that both G

1

and G

2

are proper minors of G and both, therefore, have cost-three

permutations. It is straightforward to show that G

1

must possess an optimal permutation

M

1

with the three columns of fu; v; wg on the extreme right, else G properly contains an

obstruction as described in Lemma 6.A. Similarly, G

2

must possess an optimal permutation

M

2

with the three columns of fu; v; wg on the extreme left.

But this means that we can construct a cost-three permutation for G by placing M

2

to

the right of M

1

and removing the (six) columns of fu; v; wg. This contradicts the fact that

G is an obstruction, however, and so the assumption that neither F

1

nor F

2

is a triangle

with two vertices of degree two cannot hold. 2

Let v denote a vertex on a face of an outerplane graph G. If the connected component of

Gnfvw j w lies on a faceg that contains v has at least one edge, then we term this component

the attachment at v.

Lemma .H If an obstruction for 3-GML contains a face in which two or more vertices have

attachments, then each attachment is a minor of (K

1;3

).

Proof . Assume otherwise for obstruction G, in which vertices u and v of face F have

attachments, with the attachment at v, A(v), not a minor of (K

1;3

).

No vertex of A(v) has degree greater than three unless A(v) contains a cycle (Lemmas

5.D and 7.A). No degree-three vertex of A(v) is adjacent to both a vertex of degree two and

a pendant vertex unless that vertex is v (Corollary 5.F.3). No degree-two vertex of A(v) is

adjacent to two vertices of degree three (Lemma 7.E). It follows that either A(v) contains a

cycle or (K

1;3

) <

m

A(v), and thus A(v) has cost three.

Let A

+

= A(v) fu;wg fuv; vw; uwg. Let A

�

= A(v) n fvg. It is straightforward to
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that are not outerplanar.

Proof . Assume otherwise. Let G denote a non-outerplanar obstruction for 3-GML other

than one of the �ve noted in the statement of the lemma. Thus, due to Lemma 7.D, there

is at least one embedding of G in which every edge is adjacent to the exterior face. From

the embeddings of G with this property, select one that maximizes the number of vertices

on the exterior face, and let v denote a vertex that is not on this face. It must be that v

has degree two, since otherwise G �

m

K

4

due to the way the embedding was chosen. Let

u and w denote the vertices adjacent to v. The maximality of the embedding ensures that

G contains three edge-disjoint paths of length two or more between u and w. Moreover,

Lemma 7.E implies that uw 2 G.

Consider this embedding restricted to G

0

= G n fvg. There are faces F

1

and F

2

in G

0

such that F

1

\ F

2

= uw. Let M

0

denote a cost-three permutation for G

0

in which, due to

Lemma 7.C, the overlap of the face spans for F

1

and F

2

is uw.

If uw contains no �ll-in, then we construct a new matrix M from M

0

by adding row v

and placing columns uv and vw to the immediate left of uw.

If uw contains a �ll-in in some row x, then it follows that ux and wx must exist, contain

the only 1s in row x, and lie immediately to each side of uw. In this case, we construct a

new matrix M from M

0

by adding row v and placing columns uv and vw to the immediate

left of the column to the immediate left of uw.

In either case, M is a cost-three permutation for G, contradicting the assumption that

G is an obstruction for 3-GML. 2

7.3 dditional roperties o hree- rac Obstructions

We shall henceforth consider only outerplane obstructions and outerplanar embeddings

in which all vertices lie on the exterior face. Thus the intersection of two faces is at most a

single edge.

Lemma .G If an obstruction for 3-GML contains two faces that are adjacent at and only

connected through a single vertex, then at least one of these faces is a triangle with two

vertices of degree two.
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vertices in , and a terminal vertex in . If three or more distinct terminals are contained

in the elements of , then G

m

K

4

, contradicting the presumed minimality of G. If every

element of contains the same terminal, then the connected component of G

0

containing uv

can be moved to the exterior face, contradicting the presumed maximality of (the number

of edges on or adjacent to) that face. Thus the elements of contain exactly two di�erent

terminals, which we denote by w and x.

It now follows that G contains three vertex-disjoint paths from w to x. Moreover, the

maximality of the exterior face dictates that each path either has length at least three, or

contains an internal vertex adjacent to a distinct, additional vertex not on any of the three

paths. Therefore G �

m

for some depicted in Figure 7.1. 2

Lemma .E No obstruction for 3-GML contains a vertex of degree two adjacent to vertices

of degree three or more unless those vertices are also adjacent.

Proof . Assume otherwise, and let G denote a plane obstruction for 3-GML with degree

two vertex v adjacent to vertices u and w, each of degree three or more, but not adjacent to

each other. Lemma 7.A and Corollary 5.F.3 guarantee that neither u nor w is adjacent to

a pendant vertex. Let G

0

denote the minor of G obtained by contracting edge uv to u, and

let M

0

denote a cost-three permutation for G

0

. Consider the overlap of the spans for u and

w, and without loss of generality, assume the leftmost column is uw and that it contains the

leftmost 1 in row w. If the overlap is uw, or if uw has cost two, adding row v and replacing

uw with uv and vw produces a cost-three permutation for G, a contradiction. If uw has

a �ll-in in row x, it is straightforward to verify that some column of the overlap contains

the rightmost 1 in row x, or that the overlap contains at most three columns one of which

is ux. In either case, a cost-three permutation for G can be constructed from M

0

, again

contradicting the assumption that G has no three-track layout. Therefore, an obstruction

for 3-GML contains a vertex of degree two adjacent to vertices of degree three or more, only

if (as obstruction 6.4.1 in the appendix illustrates) the three vertices are pairwise adjacent.

2

Lemma .F K

4

and the graphs depicted in Figure 7.1 are the only obstructions for 3-GML
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contains at most three columns, that uv and the leftmost column of F

2

are the same, and

that the column to the immediate right of uv must have the form uw (or vw) for some

w 2 F

1

. Thus column uv must have a �ll-in in row w, uw (or vw) must have a �ll-in in row

v (or u), and so uv and uw (or vw) can be interchanged at no extra cost, an action which

eliminates a column from the overlap. At most one more application of this interchange

reduces the overlap to uv alone. 2

7.2 hree- rac Obstructions hat re ot Outerplanar

Since K

4

, an obstruction for 3-GML, is a minor of both K

5

and K

3;3

, all obstructions for

3-GML are planar. We now establish that K

4

and the four graphs illustrated below are the

only obstructions for 3-GML that are not outerplanar.
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Figure 7.1 Four elated Obstructions

Lemma .D The four graphs depicted in Figure 7.1 are the only obstructions for 3-GML

with the property that, for any planar embedding, there exists an edge not adjacent to the

exterior face.

Proof . Computation su�ces to check that these four graphs are indeed obstructions for

3-GML; clearly, each has the property stated in the lemma. Thus we need only to establish

that these are the only obstructions for 3-GML that possess this property.

Let G = ; denote an arbitrary plane obstruction for 3-GML with the desired prop-

erty, and assume without loss of generality that its embedding maximizes the number of

edges on or adjacent to the exterior face. Let denote the set of vertices on this exterior

face, and let denote n . Let G

0

denote the subgraph of G induced by . Thus G

0

contains at least one edge, uv.

Let denote the set of (simple) paths in G with an initial vertex in fu; vg, internal
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collection of columns common to all spans.

Lemma .B If a plane graph of cost three contains two faces whose intersection is exactly

one vertex, then it possesses an optimal permutation in which the overlap of the spans for

these faces is empty.

Proof . Let G denote a plane graph of cost three with faces F

1

and F

2

such that F

1

\F

2

= v.

Let M denote a cost-three permutation for G, and suppose the overlap of the face spans for

F

1

and F

2

is nonempty. Because these faces are not edge adjacent, their overlap contains at

least two columns, each with cost two in the rows of F

1

, and each with cost two in the rows

of F

2

(Lemma 5.K). Since M has cost three, and since v is the only vertex on both F

1

and

F

2

, each column of the overlap represents an edge of either F

1

or F

2

that is incident on v.

Without loss of generality, assume the leftmost column of the overlap is vw of F

2

, with

a �ll-in in row u of F

1

. Since the cost of M is three, the column to the immediate right

of vw must be uv. If vx of F

1

is to the right of uv, then vw requires a �ll-in in row x as

well, contradicting the fact that M has cost three. Therefore, the overlap contains only vw

and uv, and interchanging the two columns yields a cost-three permutation for G with the

desired property. 2

Lemma .C If a plane graph of cost three contains two faces whose intersection is exactly

one edge, then it possesses an optimal permutation in which the overlap of the spans for

these faces is exactly one column.

Proof . Let G denote a plane graph of cost three with faces F

1

and F

2

such that F

1

\F

2

= uv.

Given a cost-three permutation for G, suppose the overlap of the face spans for F

1

and F

2

contains two or more columns (it cannot be empty because it must contain uv). Moreover,

suppose the overlap contains no pendant edges incident on u or v (any such edge can be

removed initially, then reinserted after our forthcoming permutation modi�cation at no extra

cost).

Without loss of generality, assume that the rightmost column of F

1

lies to the right of

both uv and the leftmost column of F

2

. It is straightforward to verify that the overlap
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Suppose (2) holds. If G

0

= G n feg, let M

0

denote the permutation M

2

, u

2

v

2

, M

3

, u

3

v

3

,

v

2

v

3

, v

1

v

2

, v

3

v

4

, v

4

v

5

, v

1

v

5

, u

4

v

4

, M

4

, u

5

v

5

, M

5

, M

1

, which has cost at most 2. If G

0

is

obtained from G by contracting e to u

1

, let M

0

denote the permutationM

2

, u

2

v

2

, M

3

, u

3

v

3

,

v

2

v

3

, v

2

u

1

, M

1

, u

1

v

5

, v

4

v

5

, v

3

v

4

, u

4

v

4

, M

4

, u

5

v

5

, M

5

, which has cost at most 2.

Suppose (3) holds. If G

0

= G n feg, let M

0

denote the permutation M

2

, u

2

v

2

, v

2

v

3

, u

3

v

3

,

M

3

, v

3

v

4

, u

4

v

4

, M

4

, v

4

v

5

, u

5

v

5

, M

5

, v

5

v

1

, u

1

v

1

, M

1

, which has cost at most 2. If G

0

is

obtained from G by contracting e to v

1

, let M

0

denote the permutation M

1

, u

1

v

1

, M

2

, u

2

v

1

,

M

3

, u

3

v

3

, v

1

v

3

, v

3

v

4

, v

1

v

5

, v

4

v

5

, u

4

v

4

, M

4

, u

5

v

5

, M

5

, which has cost at most 2.

In any case, M

0

is a permutation for G

0

, and thus the cost of G

0

is strictly less than that

of G. 2

. ecial ools for ree- rac structions

Unlike the work of the last two sections, the results we now derive hold only for = 3.

7.1 eneral roperties o hree- rac Obstructions

Lemma .A No obstruction for 3-GML contains a vertex of degree four or more adjacent to

a pendant vertex.

Proof . Assume otherwise, and letG denote an obstruction for 3-GML with vertex v adjacent

to vertices w, x, y and pendant vertex . Let G

0

= G n f g, and let M

0

denote a cost-three

permutation for G

0

. Without loss of generality, assume that column vw lies to the left of both

vx and vy, and that column vw has a 0 in row x. Let c denote the column that contains

the leftmost 1 in row x. We construct matrix M from M

0

by adding row and placing

column v to the immediate left of c. M is a permutation for G with cost at most three,

contradicting our assumption that G has no three-track layout. 2

This result (aided by the corollaries to Lemma 5.F) is easily extended.

Corollary .A.1 No obstruction for 3-GML contains two adjacent vertices each adjacent to

a pendant vertex.

Given a permutation for a plane graph, the o erlap of two or more face spans is the
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The graph G just de�ned may not, however, be an obstruction for -GML. For example,

obstruction 12.3.1 listed in the appendix is properly contained in the graph constructed by

setting G

1

= G

2

= K

3

and setting G

3

= (K

1;3

), with v

3

a vertex of degree one.

Lemma .C Let G

1

; G

2

; G

3

; G

4

and G

5

denote disjoint (but not necessarily distinct) obstruc-

tions for -GML, and let u

i

denote an arbitrary vertex of G

i

for 1 � i � 5. Let C

5

denote a

cycle graph of order �ve, with vertex set fv

i

: 1 � i � 5g, disjoint fromG

1

G

2

G

3

G

4

G

5

.

The graph G = G

1

G

2

G

3

G

4

G

5

C

5

fu

i

v

i

: 1 � i � 5g is an obstruction for

( 2)-GML.

Proof . Let G

i

, u

i

, C

5

, v

i

and G be as de�ned in the statement of the lemma. Let M denote

an optimal permutation for G and, inM , let c

i

denote a column of G

i

with cost at least 1

in the rows of G

i

. If any c

i

lies between the leftmost and rightmost columns of C

5

, then it

incurs at least two additional �ll-ins (in rows of C

5

). Otherwise, without loss of generality,

assume c

1

lies to the left of c

2

which lies to the left of c

3

which lies to the left of the leftmost

column of C

5

. In this event, c

3

incurs two additional �ll-ins (one in a row of G

1

fv

1

g, and

one in a row of G

2

fv

2

g). Thus the cost of G is at least 3.

Letting M

i

denote a cost 1 permutation for G

i

in which every column with cost 1

has a 1 or a �ll-in in row u

i

, we observe that G has cost exactly 3 as evidenced by the

permutation M

1

, u

1

v

1

, M

2

, u

2

v

2

, v

1

v

2

, v

2

v

3

, u

3

v

3

, M

3

, v

3

v

4

, v

4

v

5

, v

1

v

5

, u

4

v

4

, M

4

, u

5

v

5

, M

5

.

We now establish the minimality of G. As in the proof of Lemma 6.A, we need only

consider the e�ect of removing or contracting a single edge, e, and may assume that either

(1) e is in G

1

, (2) e = u

1

v

1

, or (3) e = v

1

v

2

.

Suppose (1) holds. Let G

0

1

and G

0

denote the minors of G

1

and G, respectively, that

are obtained by the removal or contraction of e (if a contraction, e is contracted to u

1

if

u

1

2 e). Because G

1

is minimal for parameter , G

0

1

possesses a permutation M

0

1

with cost

at most . Let M

00

1

denote the matrix formed at no extra cost from M

0

1

by adding row v

1

and placing column u

1

v

1

adjacent to an arbitrary column with a 1 in row u

1

. Let M

0

denote

the permutation M

2

, u

2

v

2

, M

3

, u

3

v

3

, v

2

v

3

, v

1

v

2

, M

00

1

, v

3

v

4

, v

1

v

5

, v

4

v

5

, u

4

v

4

, M

4

, u

5

v

5

, M

5

,

which has cost at most 2.
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most 1, and so M

0

has cost 1. If G

0

is obtained from G by contracting e to v

1

, letM

0

denote the permutation M

2

, v

1

v

2

, M

1

, v

1

v

3

, M

3

. Only the v

i

rows may require additional

�ll-ins. Again, because of the way each M

i

was chosen, any new �ll-in must lie in a column

that has cost at most 1, and so M

0

has cost 1.

In any case, M

0

is a permutation for G

0

, and thus the cost of G

0

is strictly less than that

of G. 2

Lemma .B Let G

1

, G

2

, and G

3

denote disjoint (but not necessarily distinct) graphs of

cost , and let u

i

and v

i

denote arbitrary (but not necessarily distinct) vertices of G

i

for

1 � i � 3. The graph G = G

1

G

2

G

3

fv

1

v

2

; u

1

v

3

; u

2

u

3

g has cost at least 1.

Proof . Let G

i

, u

i

, v

i

and G be as de�ned in the statement of the lemma. Let M denote an

optimal permutation for G and, in M , let c

i

denote a column of G

i

with cost at least in

the rows of G

i

. Without loss of generality, assume c

1

lies to the left of c

2

which lies to the

left of c

3

. If u

1

v

3

lies to the left of c

2

, then c

2

has a �ll-in in some row of G

3

. Otherwise, it

has a �ll-in in some row of G

1

. Thus the cost of G is at least 1. 2

The graph G just de�ned may not, however, have cost exactly 1, even if u

i

= v

i

,

1 � i � 3. An example is illustrated in Figure 6.2.
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Figure 6.2 raph o Cost 5 uilt rom hree raphs o Cost 3

Corollary .B.1 Let G

1

, G

2

, and G

3

denote obstructions for ( � 1)-GML, and let v

i

denote

an arbitrary vertex of G

i

for 1 � i � 3. The graph G = G

1

G

2

G

3

fv

1

v

2

; v

1

v

3

; v

2

v

3

g has

cost exactly 1.
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Figure 6.1 Constructions sed in emmas 6. 6. and 6.C

Lemma .A Let G

1

, G

2

and G

3

denote disjoint (but not necessarily distinct) obstructions

for -GML, let v

i

denote an arbitrary vertex of G

i

for 1 � i � 3, and let v denote an isolated

vertex not in G

1

G

2

G

3

. The graph G = G

1

G

2

G

3

fvg fvv

i

: 1 � i � 3g is an

obstruction for ( 1)-GML.

Proof . Let G

i

, v

i

, v and G be as de�ned in the statement of the lemma. It follows from

Lemma 4.3 of [FL1] that G has cost 2.

We now establish the minimality of G. Due to Corollary 5.G.1, each G

i

, 1 � i � 3

possesses a cost 1 permutation M

i

in which every column with cost 1 has a 1 or a

�ll-in in row v

i

. Since G is connected, the removal of a vertex necessarily means the removal

of an edge and, therefore, we only need consider the e�ect of removing or contracting a single

edge, e. Because of G's symmetry, we may assume that either (1) e is in G

1

, or (2) e = vv

1

.

Suppose (1) holds. Let G

0

1

and G

0

denote the minors of G

1

and G, respectively, that

are obtained by the removal or contraction of e (for notational simplicity in the case of

a contraction, we insist that e be contracted to v

1

if v

1

2 e). Because G

1

is minimal

for parameter , G

0

1

possesses a permutation M

0

1

with cost at most . Let M denote the

permutation M

2

, vv

2

,M

0

1

, vv

3

,M

3

. A column inM

2

orM

3

has cost at most 1. Columns

vv

2

and vv

3

each have cost two. Any column in M

0

1

incurs one additional �ll-in (in row v),

bringing its cost to at most 1. Thus,M has cost 1. We formM

0

fromM at no extra

cost by placing vv

1

adjacent to an arbitrary column in M with a 1 in row v

1

.

Suppose (2) holds. If G

0

= G n feg, let M

0

denote the permutation M

2

, vv

2

, vv

3

, M

3

,

M

1

. Since v now has degree two, no �ll-ins are required in its row. Because of the way M

2

and M

3

were chosen, any column that requires a new �ll-in in row v

2

or row v

3

has cost at
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Since

1

is an obstruction for -GML, some column c of

1

in M has cost 1 in the

rows of

1

. Either c is contained in the span for v (in which case c contains a 1 or a �ll-in

in row v), or else the connectedness of

1

ensures that every column of G lying between c

and the span for v has a �ll-in in some other row of

1

.

Due to Corollary 5.G.1,

2

possesses a cost 1 permutationM

2

in which every column

with cost 1 has a 1 or a �ll-in in row v. We use M

2

to construct a new matrix M

0

from

M as follows. We �rst eliminate the rows of

1

n fvg, then all resultant columns with at

most one 1 (one of which is c). We next insert M

2

into the position formerly occupied by

c (which requires a new row for each vertex of

2

n fvg). No inserted column can require

more �ll-ins than did c. Due to the way c was chosen and its relation to the span for v, no

column originally in M can incur an increase in its number of �ll-ins. Thus, the cost of M

0

is no more than that of M .

BecauseM

0

is a permutation for G

2

, the cost of G

2

cannot exceed that of G

1

.

The inequality is established in the reverse direction analogously. 2

Corollary 5.J.1 If G,

1

and

2

denote graphs as de�ned in in Lemma 5.J, and if G

1

is an obstruction for

0

-GML but G

2

is not, then any obstruction for

0

-GML contained

as a minor in G

2

has the form G

0

2

for some

0

2

<

m 2

.

Lemma 5. Let G be a plane graph with face F . In any permutation for G, every column

in the face span for F has a cost of at least two in the collection of rows that correspond to

the vertices of F , and every interior column of that span has a total cost of at least three.

Proof . Straightforward. 2

. struction Construction ools

The constructions studied in this section are depicted informally in Figure 6.1.
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contains an obstruction for ( � 1)-GML, then every optimal permutation for G n fvg has

cost . Therefore, every optimal permutation for G contains a column with cost that has

a 0 in row v.

If G n fvg does not contain an obstruction for ( � 1)-GML, then G n fvg possesses an

optimal permutationM

0

with cost at most � 1. Consider the matrixM obtained fromM

0

by adding row v and, for each vertex w adjacent to v in G, inserting column vw adjacent to

any column with a 1 in row w. In every case, the cost of column vw is at most . Since v is

the only row that may need additional �ll-ins,M is an optimal permutation for G of cost

in which every column with cost has a non-zero entry in row v. 2

Corollary 5.G.1 Let G denote an obstruction for -GML and let v denote a vertex of G. G

has cost exactly 1, and possesses an optimal permutation in which every column of cost

1 has a 1 or a �ll-in in row v.

Lemma 5.H Adding an edge to a graph increases its cost by at most one.

Proof . Straightforward. 2

Lemma 5.I If G contains K as a subgraph, then G has cost at least and possesses an

optimal permutation in which the edges of K are represented in adjacent columns.

Proof . Follows immediately from Lemma 4.1 of [FL1]. 2

Corollary 5.I.1 If G contains K as a minor, then G has cost at least .

Corollary 5.I.2 K is an obstruction for ( � 1)-GML.

Lemma 5.J Let G denote an arbitrary graph and let

1

and

2

denote obstructions for

-GML. If G \

1

= G \

2

= fvg for some vertex v, then the cost of G

1

equals that

of G

2

.

Proof . Let G,

1

,

2

and v be as de�ned in the statement of the lemma. Let M denote

an optimal permutation for G

1

.
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LetM

0

denote an optimal permutation for G

0

. Note that, in G

0

, vertex u has degree three

and is adjacent to vertices , w, and x. It su�ces to consider two cases for M

0

, in that either

(1) column uw lies between columns u and ux or (2) column uw contains the leftmost 1 in

row u.

Suppose (1) holds. We construct a new matrixM fromM

0

by replacing column ux with

column wx and changing the label on row w to v. Any �ll-ins required in row v lie in columns

that no longer require �ll-ins in row u. Thus, the cost of M is no more than that of M

0

.

Suppose (2) holds. If column uw has a �ll-in in row (or row x) then, at no extra cost, we

move column u (column ux) to the immediate left of column uw. M can now be constructed

as in (1). If column uw has 0s in both row and row x, then we may assume that columns

u and ux contain the leftmost 1s in rows and x, respectively. (To see this, note that if

another column c holds the leftmost 1 in row (row x), then c has a �ll-in in row u and

column u (column ux) can be placed to the left of c with no increase in cost.) If column

ux is to the right of column u then, at no extra cost, we move column uw to the immediate

left of column ux. Otherwise, at no extra cost, we move column uw to the immediate left of

column u. M can now be constructed as in (1).

Because M is a permutation for G, the cost of G cannot exceed that of G

0

. 2

Corollary 5.F.1 If G and G

0

denote graphs as de�ned in Lemma 5.F, then G is an obstruction

for -GML if and only if G

0

is.

Corollary 5.F.2 No obstruction for -GML contains two adjacent vertices of degree three

each adjacent to a pendant vertex as well.

Corollary 5.F. No obstruction for -GML contains a vertex of degree three adjacent to

both a pendant vertex and a vertex of degree two.

Lemma 5.G Let G denote an arbitrary graph with cost , and let v denote any vertex of

G. G possesses an optimal permutation in which every column with cost has a non-zero

entry in row v if and only if G n fvg does not contain an obstruction for ( � 1)-GML.

Proof . Let G denote a graph with cost and let v denote any vertex of G. If G n fvg
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by contracting the edge uv to u. (Observe that u and w each retain degree two in G

0

: no

increase in degree is possible; a decrease would imply either that G is K

3

and hence not an

obstruction for 2, or that G is not connected and hence not an obstruction for any .)

Because G is minimal and because G

0

<

m

G, G

0

must possess an optimal permutation M

0

with cost at most . From the facts that M

0

has no unnecessary �ll-ins in rows u and w and

that both u and w have degree two, it follows that either (1) the spans for these two rows

overlap only in column uw or (2) the span for one properly contains the span for the other.

Suppose (1) holds. For the sake of discussion, assume the single column of overlap

(column uw) contains the rightmost 1 in row u and thus the leftmost 1 in row w. We

construct at no extra cost a new matrixM from M

0

, by replacing column uw with columns

uv and vw.

Suppose (2) holds. For the sake of discussion, assume the span for u properly contains

the span for w, with column uw the rightmost in both spans. Let c denote the column that

contains the leftmost 1 in row w. We construct at no extra cost a new matrix M from M

0

,

by replacing column uw with column vw, and by inserting column uv to the immediate left

of column c.

In either case,M is a permutation forG with cost at most , contradicting the assumption

that G has no -track layout. 2

Lemma 5.F Suppose G contains a pair of adjacent vertices, u and v, each of degree two. If

G

0

is obtained from G by contracting the edge uv to u, adding a new vertex w, and adding

the edge uw, then the cost of G equals that of G

0

.

Proof . Let G, G

0

, u, v and w be as de�ned in the statement of the lemma. Let (x) denote

the other vertex adjacent to u (v) in G. Let M denote an optimal permutation for G.

We construct a new matrix M

0

from M by replacing column vx with column ux and

changing the label on row v to w. Row w contains a single 1 and requires no �ll-ins. Any

column that now needs a new �ll-in in row u originally had a �ll-in in row v. Thus, the cost

of M

0

is no more than that of M . BecauseM

0

is a permutation for G

0

, the cost of G

0

cannot

exceed that of G.
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column ux. We construct matrix M

0

from M by �rst moving column uv to the right until

it is to the immediate right of column ux. Since column ux had a �ll-in in row v, the cost

of column uv is no more than the original cost of column ux. To complete the construction

of M

0

, move column vw to the left until it is to the immediate right of column uv. Since

column vw does not require a �ll-in in row u, its cost is no more than that of column uv.

Therefore, the cost of M

0

is no greater than that of M .

Suppose (3) holds. We construct matrix M

0

from M by moving column uv to the right

until it is to the immediate left of column vw. Since column vw has a �ll-in in row u, the

cost of column uv is no more than the cost of column vw. Thus, the cost of M

0

cannot

exceed that of M . 2

Lemma 5.D No obstruction for -GML contains more than three pendant paths incident on

a common vertex.

Proof . Assume otherwise, and let G denote an obstruction for -GML with four or more

pendant paths incident on vertex u. Let u; v; w be one such pendant path, and let G

0

=

G n fuv; vwg. Because G is minimal and because G

0

<

m

G, G

0

possesses a permutation

M

0

with cost at most in which (due to Lemma 5.C) each pendant path incident on u is

represented by a pair of adjacent columns. Let the second such pair of columns represent

pendant path u; x; y. (We choose the second pair of columns since this guarantees that

column xy has a �ll-in in row u.) We construct matrix M from M

0

by adding rows v and

w, and by placing columns uv and vw to the immediate right of columns ux and xy. Since

no �ll-ins are required in rows x and y, the costs of columns uv and vw are the same as the

costs of columns ux and xy, respectively. Therefore, M is a permutation for G with cost at

most , contradicting our assumption that G has no -track layout. 2

Lemma 5.E For 2, no obstruction for -GML contains more than two consecutive

vertices of degree two.

Proof . Assume otherwise, and let G denote an obstruction for -GML, 2, with con-

secutive vertices u, v and w, each of degree two. Let G

0

be the graph obtained from G
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needed in row v. Moreover, the costs of all other columns remain unchanged, because no

�ll-ins are required anywhere in row w. Therefore, M is a permutation for G with cost at

most , contradicting our assumption that G has no -track layout. 2

Lemma 5.B No obstruction for -GML contains a pendant path of length greater than two.

Proof . Assume otherwise, and let G denote an obstruction for -GML with pendant path

x; . . . ; u; v; w of length three or more. Let G

0

= G n fwg. Because G is minimal and because

G

0

<

m

G, there is an optimal permutation M

0

for G

0

with cost at most . Since u has

degree two, we may assume by symmetry that column uv contains the rightmost 1 in row u.

Consider the matrixM obtained from M

0

by adding row w and inserting column vw to the

immediate right of column uv. Since column vw does not need a �ll-in in row u, its cost is

the same as that of column uv. The costs of all other columns remain unchanged, because

no �ll-ins are required in row v or in row w. Therefore, M is a permutation for G with cost

at most , contradicting the assumption that G has no -track layout. 2

Thus, a pendant vertex is an endpoint of either a pendant path of length one (which

we shall henceforth call a pendant edge) or a pendant path of length two (which we shall

without ambiguity henceforth term simply a pendant path, omitting reference to its length).

Lemma 5.C If a graph has a pendant path, then there is an optimal permutation for that

graph in which the edges of the path are represented by adjacent columns.

Proof . Let G denote a graph with pendant path u; v; w, and let M denote an optimal

permutation for G. Suppose that columns uv and vw are not adjacent, and that column uv

is to the left of column vw. The rightmost 1 in row u must be either (1) in column uv, (2)

in a column between columns uv and vw, or (3) in a column to the right of column vw.

Suppose (1) holds. We construct a new matrixM

0

fromM by moving column vw to the

left until it is to the immediate right of column uv. Since column vw does not require a �ll-in

in row u, its cost is no more than that of column uv. Moreover, no column now requires a

�ll-in in row v, and the cost of M

0

is no more than that of M .

Suppose (2) holds. For the sake of discussion, assume that the rightmost 1 in row u is in
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the number of edges it contains.

A planar graph along with a planar embedding is called a plane graph. Similarly, an

outerplanar graph [Ha] along with an outerplanar embedding is called an outerplane graph.

The regions of the plane bounded by the embedding are called faces. (The unbounded region

is known as the \exterior" face. Unless otherwise noted, a face is understood to mean an

interior face.) Two faces in a plane graph are edge ad acent if their intersection contains

one or more edges. Two faces are erte ad acent if their intersection contains one or more

vertices but no edges.

Given a permutation for a graph, the span for a erte is the collection of columns that

contain either a 1 or a �ll-in in its row. If the graph is plane, then the span for a face is

the collection of columns that lie between the leftmost and rightmost columns that represent

edges of the face, inclusive.

Finally, we assume the reader is familiar with standard graph operations, in particular

subtraction (n), union ( ) and intersection (\) [BM].

. struction C aracteri ation ools

In this section and the next, we shall derive

4

a number of results that help to characterize

or construct obstructions. These results hold for arbitrary .

Lemma 5.A No obstruction for -GML contains two or more pendant paths of length one

incident on a common vertex.

Proof . Assume otherwise, and let G denote an obstruction for -GML with pendant vertices

v and w, both adjacent to vertex u. Let G

0

= Gnfwg. SinceG is minimal for parameter , G

0

possesses a permutation M

0

with cost at most . (Recall that permutations are augmented

only as necessary with �ll-ins, and so M

0

has no �ll-ins whatsoever in row v.) Consider the

matrix M obtained from M

0

by adding row w and placing column uw adjacent to column

uv. The cost of column uw is identical to that of column uv, because still no �ll-ins are

s er s e, e s r s e e e e r re s res s,

s ere e re er e r er r e s r e s s ce. e re e e

res s r ec e s ress e s s rese s rs e, re r

r s, e e e c r r es, c e .
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attention to connected, simple graphs.

In the sequel, we shall use the term -GML to denote the -track variant of gate matrix

layout. Thus, an obstruction for -GML is a graph that represents a \no" instance for

parameter (it has no -track layout) and that is minimal for parameter (each of its proper

minors does have a -track layout). For 1-GML, it is trivial to see that the obstruction set

contains only K

2

. For 2-GML, the only obstructions are K

3

and (K

1;3

)

3

[BFKL]. (The

connected graphs that are \yes" instances for 2-GML are known as caterpillars.)
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Figure 3.1 Obstruction Set or 2- M

. e nitions an otation

Let G denote a graph, with vertex set and edge set , and letM denote an incidence

matrix for G, augmented as necessary with �ll-ins. For convenience, we assume a labeling

for and some appropriate bijection between these labels and the rows of M . Thus we

shall, for example, refer merely to \row u" rather that to the more precise but cumbersome

\row that corresponds to vertex u."

We term the matrixM a permutation for G, since the ordering of its columns determines

an ordering for . The cost of a column is the total number of 1s and �ll-ins it contains.

The cost of a permutation is the maximum cost of any of its columns. The cost of a graph

is the minimum cost of any of its permutations. These costs represent the number of tracks

required in a layout of the associated circuit.

A vertex of degree one is a pendant erte . A (simple) path is a sequence of distinct

vertices v

1

; v

2

; . . . ; v

h

such that edge v

i

v

i+1

2 for 1 � i < h. Vertices that form such a

sequence are consecuti e. A pendant path is a path in which v

1

has degree three or more, v

h

has degree one, and each v

i

, 1 < i < h, has degree two. The length of such a path is h � 1,

;

s e r e s e c e e

;

.
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Theorem 2.A [RS4] Any set of �nite graphs contains only a �nite number of minor-minimal

elements.

Theorem 2.B [RS3] For every �xed graph , the problem that takes as input a graph G

and determines whether �

m

G is solvable in polynomial time.

Theorems 2.A and 2.B guarantee only the existence of a polynomial-time decision algo-

rithm for any minor-closed family of graphs. In particular, no proof of Theorem 2.A can be

entirely constructive [FL5].

Letting denote the number of vertices in G, the time bound for algorithms ensured by

these theorems is (

3

). If F excludes a planar graph, then the bound reduces to (

2

).

In general, these algorithms possess enormous constants of proportionality [RS2], although

new techniques greatly mitigate them [Se], and methods speci�c to layout problems such as

the one we address here lower them even more [FL5].

. e ate Matri a out ro le

Gate matrix layout is a combinatorial problem that arises in several VLSI layout styles,

including gate matrix, PLAs under multiple folding, Weinberger arrays and others. It was

originally posed in terms of operations on Boolean matrices. Formally, we are given an m

Boolean matrix M and an integer , and are asked whether we can permute the columns

of M so that, if in each row we change to every 0 lying between the row's leftmost and

rightmost 1, then no column contains more than 1s and s. Such a is termed a ll-in. We

refer the interested reader to [DKL] for sample instances, �gures and additional background

on this challenging problem.

Although the general problem is -complete, it has been shown that, for any �xed

value of , an arbitrary instance can be mapped to an equivalent instance with only two 1s

per column, then modeled as a graph on vertices such that the family of \yes" instances

is closed under the minor order and excludes a planar graph.

Theorem .A [FL1] For any �xed , gate matrix layout can be decided in (

2

) time.

Thanks to this mapping de�ned on arbitrary Boolean matrices, it su�ces to restrict our



2

note that it is fortuitous that our e�orts contribute to the understanding of this important

width metric.

Our proofs are of two general types. Some describe characteristics of obstructions, and

thereby help to delimit the search space. Others show how a number of obstructions can be

constructively obtained. Since these techniques alone are su�cient to bound but insu�cient

to isolate all obstructions, many obstructions were identi�ed with the aid of exhaustive case-

checking. To assist in this heroic undertaking, massive computational power

2

was used to

verify that each obstruction represents a circuit that has no three-track layout, and to check

that each proper minor of each obstruction represents a circuit that does have a three-track

layout.

In the next two sections, we discuss relevant background information. In Section 4,

we present the notation and terminology used throughout the remainder of this paper. In

Sections 5 and 6, we prove several general results and constructions that hold for any number

of tracks. In Section 7, we determine some speci�c properties required of three-track layouts

and isolate all nonouterplanar obstructions. In Section 8, we enumerate the entire three-track

obstruction set and prove that this set is complete. In the �nal two sections, we summarize

our work and pose a few related open problems.

. e Minor r er

A graph is less than or equal to a graph G in the minor order, written �

m

G, if and

only if a graph isomorphic to can be obtained from G by a series of these two operations:

taking a subgraph and contracting an arbitrary edge. A family F of graphs is said to be

closed under the minor order if the facts that G is in F and that �

m

G together imply

that must be in F . The obstruction set for a family F of graphs is the set of graphs in

the complement of F that are minimal in the minor order. Therefore, if F is closed under

the minor order, it has the following characterization: G is in F if and only if 6�

m

G for

every in the obstruction set for F .

e e e e c r r r s e s s re e . e

r s c s e s ce s e r s s se s e er res r c e s ces

er e s e r s re e e es .
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1. ntro uction

Traditionally, decision problems

1

have been classi�ed as either \easy" or \hard," de-

pendent on whether low-degree polynomial-time decision algorithms exist to solve them.

Until recently, one could expect any proof of easiness to be constructi e. That is, the proof

itself should provide \positive evidence" in the form of the promised polynomial-time de-

cision algorithm. Surprising advances, however, dramatically alter this appealing picture.

See, for example, [FL1{FL3] for applications of tools from [RS1{RS4] that nonconstructi ely

establish the existence of low-degree polynomial-time decision algorithms for a number of

challenging combinatorial problems.

In general, problems amenable to this approach are modeled as graphs. The algorithm

can decide whether a given encoding of a problem is a \yes" instance or a \no" instance by

determining if it contains an element of a �nite basis of forbidden graphs (the obstruction

set). Strikingly, the underlying theory does not tell how to identify all members of such a

set, the cardinality of the set, or even the order of the largest member of the set. The only

fact we are given is that the set is �nite.

Perhaps the best-known example of an algorithm based on such \negative evidence" is

the celebrated �nite-basis characterization of planar graphs [Ku]: a graph is planar if and

only if it contains no member of a two-element obstruction set in the topological order. The

main result we present in this paper is a similar �nite-basis characterization for the three-

track gate matrix layout problem: a graph represents a circuit with a three-track layout if

and only if it contains no member of a 110-element obstruction set in the minor order.

Interestingly, it has recently been recognized [FL5] that gate matrix layout with param-

eter is identical to the path-width problem with parameter � 1. (That is, a graph G

represents a circuit with a -track layout if and only if G has a path decomposition [RS1]

of width at most � 1.) Because the work we report here was originally derived in terms of

circuit layout, and because gate matrix layout has received considerable attention in the lit-

erature, we shall neither state nor prove our results in terms of path-width. Instead, we only

s r s se e r , c c e ses es s er s r e s,

r er re r r r e s. r e , e r cess e

s ces r s r ec s r s se rc r r s , .
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Gate matrix layout is a well-known -complete problem that arises at the heart of a

number of VLSI layout styles. Despite its apparent general intractability, it has recently been

shown that it can be solved in (

2

) time whenever the number of tracks is �xed. Curiously,

the proof of this is nonconstructive, based on �nite but unknown obstruction sets. What

then are such sets, and what is their underlying structure The main result we report in this

paper is a proof that the obstruction set for three tracks contains exactly 110 elements. We

also describe a number of methods for obstruction identi�cation that extend to any number

of tracks.
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