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FORMALIZING GENETIC ALGORITHMS†

1 Introduction

Designed to search irregular, poorly understood spaces, GAs are general purpose algorithms devel-

oped by Holland (1975). Inspired by the example of population genetics, genetic search proceeds

over a number of generations. The criteria of “survival of the fittest” provides evolutionary pressure

for populations to develop increasingly fit individuals. Although there are many variants, the basic

mechanism of a GA consists of:

1. Evaluation of individual fitness and formation of a gene pool.

2. Mutation and Recombination.

Individuals resulting from these operations form the members of the next generation, and the

process is iterated until the system ceases to improve.

Fixed length binary strings are typically the members of the population. They are selected (with

replacement) for the gene pool with probability proportional to their relative fitness, which is

determined by the objective function. There, they are mutated and recombined by crossover.

Mutation corresponds to flipping the bits of an individual with some small probability (the mutation

rate). The simplest implementation of crossover selects two “parents” from the pool and, after

choosing the same random position within each string, exchanges their tails. Crossover is typically

performed with some probability (the crossover rate), and parents are otherwise cloned. This

recombination cycle repeats, contributing one of the resulting “offspring” each time until the next

generation is full.

While this description may suffice for successful application of the genetic paradigm, it is not

particularly amenable to mathematical analysis. Our objective is to formalize a simple GA. We

model GAs geometrically in sections 2 and 3 as dynamical systems in a high dimensional Euclidean

space. In section 4, we develop basic structure of the model and establish preliminary results which

demonstrate feasibility. The geometric object which simple genetic search explores is identified

in section 5 and we consider simple examples illustrating some of its properties. In section 6 we

indicate directions for future research.

†This research was supported by the National Science Foundation (IRI-8917545).
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2 Preliminary Considerations

Let Ω be the set of all length ℓ binary strings, and let N = 2ℓ. Thinking of elements of Ω as binary

numbers, we identify Ω with the interval of integers [0, N − 1]. We also regard Ω as the product

group

Z2 × . . . ×Z2

where Z2 denotes the additive group of integers modulo 2. The group operation ⊕ acts on integers

in [0, N − 1] via these identifications, and we use ⊗ to represent componentwise multiplication.1

The t th generation of the genetic algorithm is modeled by a vector st ǫRN , where the i th compo-

nent of st is the probability that i is selected for the gene pool. Populations excluding members of

Ω are modeled by vectors st having corresponding coordinates zero. Let pt ǫRN be a vector with

i th component equal to the proportion of i in the t th generation, and let ri,j(k) be the probability

that k results from the reproductive process based on parents i and j.

Lemma 1 Let E denote expectation, then

E pt+1
k =

∑

i,j

st
i st

j ri,j(k)

Proof: The expected proportion of k in the next generation is computed by summing

over all possible ways of producing k. If k results from reproduction based on parents

i and j, then i is selected for reproduction with probability st
i, j is selected for repro-

duction with probability st
j, and k is the result of reproduction with probability ri,j(k).

�

Taking the limit as population size → ∞, the law of large numbers gives pt+1
k → E pt+1

k . Thus

Lemma 1 can be used to determine how the probability vector st changes from one generation to

the next in a GA with infinite population. But first, we note an important property of ri,j(k):

Lemma 2 If reproduction is a combination of mutation and crossover, then

ri,j(k ⊕ l) = ri⊕k,j⊕k(l)

Proof: Let C(i, j) represent the possible results of crossing i and j. Note that k ⊕
l ǫ C(i, j) if and only if k ǫC(i ⊕ l, j ⊕ l). Let X(i) represent the result of mutating i,

for some fixed mutation. Note that k ⊕ l = X(i) if and only if k = X(i ⊕ l). Since

reproduction is a combination of operations which commute with group translation, the

result follows. �

Let F be the nonnegative diagonal matrix with i th entry f(i), where f is the objective function,

and let M be the matrix with i, j th entry mi,j = ri,j(0). Define permutations σj on RN by

σj <y0, . . . , yN−1 >T = <yj⊕0, . . . , yj⊕(N−1) >
T

1Hence, ⊕ is exclusive-or on integers and ⊗ is logical-and.
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where vectors are regarded as columns, and T denotes transpose. Define operators M, F , and G
on RN by

M(s) = <(σ0 s)T Mσ0 s, . . . , (σN−1 s)T MσN−1 s>T

F(s) = Fs

G = F◦M

Theorem 1 Let ∼ represent the equivalence relation on RN defined by x ∼ y if and only if

∃λ>0 . x = λy, then

E st+1 ∼ G(st)

Proof: We have

E pt+1
k =

∑

i,j

st
i st

j rij(k)

=
∑

i,j

st
i st

j ri⊕k,j⊕k(0)

=
∑

i⊕k,j⊕k

st
i⊕k st

j⊕k rij(0)

= (σk s)T Mσk s

Since st+1 ∼ Fpt+1 (the probability of selection is proportional to relative fitness), the

result follows. �

The (expected) behavior of a simple GA is therefore determined by two matrices; fitness information

appropriate for selection is contained in F , while M encodes mixing information appropriate for

recombination. Moreover, the relation

st+1 ∼ G(st)

is an exact representation of the limiting behavior as population size → ∞.

3 Formalization

The matrix M has many special properties, the most obvious of which are:

Theorem 2 The matrix M is nonnegative, symmetric, and for all i,j satisfies

1 =
∑

k

mi⊕k, j⊕k

Proof: M is nonnegative since its entries are probabilities, and is symmetric since

mi,j = ri,j(0) and the results of reproduction depend on the unordered set of parents.
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Moreover,

1 =
∑

k

ri,j(k) =
∑

k

ri⊕k, j⊕k(0) =
∑

k

mi⊕k, j⊕k

�

The previous considerations lead us to the following formalization:

Definition 1 Given a nonnegative, injective objective function f defined on Ω, a simple genetic

search is the pair of operators (F ,M) except that M may be any matrix satisfying Theorem 2. An

initial population is modeled by a point s0 ǫRN , and the transition between generations is defined

by st+1 ∼ G(st).

This formalization generalizes the mixing induced by mutation and crossover, and regards GAs

with finite populations as approximations to the ideal of simple genetic search. Note that simple

genetic search can be implemented without resorting to any population since F is simply matrix

multiplication and M is represented by a collection of quadratic forms.

One natural geometric interpretation of simple genetic search is to regard F and M as maps from

S, the nonnegative points2 of the unit sphere in RN , to S (since apart from the origin, each

equivalence class of ∼ has a unique member of norm 1). An initial population then corresponds to

a point on S, the progression from one generation to the next is given by the iterations of G, and

convergence (of the GA) corresponds to a fixed point (of G).

4 Basic Properties

Regarding F as a map on S, its fixed points correspond to the eigenvectors of F , which are the

unit basis vectors u0, . . . , uN−1.
3

Theorem 3 The basin of attraction of the fixed point uj (of F) is given by the intersection of

S with the (solid) ellipsoid
∑

i

(

si

f(i)

f(j)

)2

< 1

Proof: Let s ǫS. The cosine of the angle between s and uj is given by the dot product

s ·uj , and the cosine of the angle between F(s) and uj is given by Fs/‖Fs‖ ·uj . Hence,

the angle between s and uj is decreased by F when

sj <
sjf(j)

‖Fs‖

which is equivalent to the statement of the theorem. �

Only the fixed points corresponding to the maximal value of the objective function f are in the

interior of their basins of attraction. Hence all other fixed points are unstable. This follows from

2i.e., points with nonnegative coordinates.
3Here uj differs from the zero vector only in that the j th component of uj is 1.
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the observation that when f(j) is maximal, no point of S moves away from uj since

∑

i

(

si
f(i)

f(j)

)2

≤
∑

i

s2
i = 1

Regarding M as a map on S, the set Mfixed of fixed points of M is more difficult to analyze;

it can range from all of S to the single point υ = <
√ 1

N
, . . . ,

√ 1
N

>. Moreover, intermediate

behavior is possible; matrices corresponding to crossover can have surfaces of fixed points. In order

to investigate Mfixed further, we need some properties of the differential DM(x) of M at x. We

need to be careful, because the differential is changed by regarding M as a map from S to S. We

therefore interpret M strictly (i.e., as was originally defined) in what follows.

Lemma 3 Let the sum of the coordinates of s ǫS be denoted by |s |.

1. M(αx) = α2M(x) for all α ǫR.

2. If M(x) ∼ x then M(x) = |x | x.

3. The i, j th component of DM(x) is 2
∑

k mi⊕j,k xi⊕k.

4. A maximal eigenvalue of DM(x) is 2 |x |.

Proof: Noting that each component of M(x) is a homogeneous polynomial of degree 2

in the coordinates of x establishes the first claim. Using Theorem 2,

|M(x) | =
∑

k

∑

i,j

mk⊕i,k⊕j xixj =
∑

i,j

xixj

∑

k

mk⊕i,k⊕j = |x |2

Hence M(x) = λx =⇒ |M(x) |= λ | x | =⇒ λ = | x | which establishes the second

claim. The calculation of DM follows from taking partial derivatives and using the

symmetry of M to simplify the resulting Jacobian. The last claim follows from Perron

– Frobenius theory,4 since Theorem 2 implies that DM(x) is a nonnegative matrix with

column sums equaling 2 |x |. �

We will need the following discrete analogue from Lyapunov’s theory of stability: 5

Lemma 4 Suppose that x is a fixed point of a map W and that the spectrum of the differential

DW (x) is contained in the open unit disk. Then x is asymptotically stable.

Note that for all k,

I − υυT = σ−1
k (I − υυT )σk

4See H. Minc, Nonnegative Matrices, Wiley-Interscience, 1988.
5See G. R. Belitskii and Yu. I. Lyubich, Matrix Norms and their Applications (1988).
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where the σk are regarded as permutation matrices.6 Next define M∗ = (m∗
i,j) to be the matrix

determined by m∗
i,j = mi⊕j,i, and observe that

DM(x) = 2
∑

k

σ−1
k M∗σk xk

Since the column sums of M∗ are constant, as is also the case for DM(x), it follows from Perron –

Frobenius theory that when M∗ is positive, υ is the unique eigenvector for both MT
∗ and DM(x)T .

Moreover, since the corresponding eigenvalues are simple and maximal, this discussion leads us to

a sufficient condition for a fixed point to be an attracter. Let

Λ = {x ǫRN | x is nonnegative and |x |= 1}

Theorem 4 Let x ǫMfixed. If the matrix M∗ is positive, then x is asymptotically stable

whenever the second largest eigenvalue of M∗ is less than 1
2 .

Proof: According to Lemma 4, it suffices to check the spectrum of the differential of M.

Since Λ is mapped into itself by M, it suffices to consider the action of M restricted to

Λ. The kernel of the projection I − υυT is normal to Λ, hence the spectral radius in

question is ρ = ρ(DM(x)(I − υυT )). Because a matrix and its adjoint share the same

norm and spectrum, the discussion following Lemma 4 shows

ρ ≤ ‖(I − υυT )DM(x)T ‖

≤ 2
∑

k

‖(I − υυT )σ−1
k M∗

T σk‖xk

= 2
∑

k

‖σ−1
k (I − υυT )M∗

T σk‖xk

= 2 |x | ‖(I − υυT )M∗
T ‖

Since given any matrix, a Euclidean norm can be chosen to make its norm arbitrarily

close to its spectral radius, the proof is completed by observing that premultiplication

of M∗
T by the projection I − υυT sends the maximal eigenvalue of M∗

T to zero and

otherwise leaves the spectrum alone. �

Although Mfixed can vary drastically, there is a group of symmetries which acts on it.

Theorem 5 For all j, and for every mixing matrix M , M(σj x) = σjM(x). In particular, we

have σjMfixed = Mfixed , and υ ǫMfixed.

Proof:

σjM(x) = σj <(σ0 x)T Mσ0 x, . . . , (σN−1 x)T MσN−1 x>T

= <(σj+0 x)T Mσj+0 x, . . . , (σj+N−1 x)T Mσj+N−1 x>T

6Recall that υ =<
√

1

N
, . . . ,

√
1

N
>, and, interpretating the σk as a permutation matrices, σk = σ−1

k = σT
k .
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= <(σ0σj x)T Mσ0σj x, . . . , (σN−1σj x)T MσN−1σj x>T

= M(σj x)

Since x = M(x) ⇒ σj x = σjM(x) = M(σj x), it follows that σjMfixed = Mfixed .

Since σjM(υ) = M(σjυ) = M(υ), it follows that M(υ) is fixed by each σj and must

therefore have equal components (i.e., M(υ) ∼ υ). �

Theorem 6 If the objective function f is positive, then a necessary condition for simple genetic

search to converge to a population consisting of a single integer is that m0,0 = 1.

Proof: Since f is positive, the matrix F is nonsingular. Suppose that simple genetic

search starting at some initial population s0 will converge to a population consisting of

a single integer, that is

lim
n→∞

Gn(s0) = uj

Since G is the interleaving of M and F , it follows that uj must be a fixed point of M: If

not, then the continuity of M implies the existence an arbitrarily small neighborhood C

of uj such that M(C) is at least some fixed distance δ away from uj . But the invertibility

of F and the fact that uj is an eigenvector imply that if C is sufficiently small, then

F−1(C) is within δ of uj. Hence G(C)∩C = ∅ which contradicts convergence. Moreover,

a direct calculation shows the k th component of M(uj) is the k th component of uj

exactly when

mj⊕k,j⊕k =

{

1 if j = k

0 otherwise

which, by Theorem 2, is equivalent to the condition that m0,0 = 1. �

We end this section with an illustrative example. Consider the case of one point crossover with

mutation. If χ is the crossover rate and µ is the mutation rate, then a simple calculation shows

mi,j is

(1 − µ)ℓ

2

{

η|i|

(

1 − χ + χ
ℓ−1
∑

k=1

η−∆i,j,k

)

+ η|j|

(

1 − χ + χ
ℓ−1
∑

k=1

η∆i,j,k

)}

where η = µ/(1−µ), integers are to be regarded as bit vectors when occurring in | · |, where division

by zero at µ = 0 and µ = 1 is to be removed by continuity, and where

∆i,j,k = |(2k − 1) ⊗ i | − |(2k − 1) ⊗ j |

Several computer runs calculating the spectrum of M∗ support the following:

Conjecture 1 If 0 ≤ µ ≤ 0.5, then

• The second largest eigenvalue of M∗ is 1
2 − µ

• The third largest eigenvalue of M∗ is 2
(

1 − χ
ℓ−1

)

(

1
2 − µ

)2

7



Applying Theorem 4, we would infer from this conjecture that every fixed point of M is an attracter

when 0 < µ < 0.5. When µ = 0, calculations indicate that the elements of Mfixed are not isolated

but form a surface, which suggests the condition of Theorem 4 may be necessary and sufficient in

this case.

The following conjecture of G. R. Belitskii and Yu. I. Lyubich applies to our example:

Conjecture 2 If maxx ǫX ρ(DW (x)) < 1, where X is the compact and convex domain and

codomain of W , then the fixed point of W is unique, and the sequence of iterates W k(x) converges

to it for every choice of initial point x.

Applying Theorem 5, we would infer from this conjecture that υ is the unique fixed point of M
when 0 < µ < 0.5, and all of S is its basin of attraction. 7

Finally, Theorem 6 confirms our intuition that a GA cannot converge to a population consisting

of a single integer when µ > 0. Moreover, population fitness cannot in general be monotonic since

when m0,0 6= 1 every population consisting of a single integer is unstable.

5 The GA-surface

Assume that the objective function f is nonzero so that F is invertible. Recall from Section 2

that a point st ǫΛ (i.e., a probability vector), determines a population pt by st ∼ F(pt) where st
i is

regarded as the probability that i is selected for recombination. Moreover, the relationship between

the t th and t+1 st generation is given by pt+1 = M(st). Because pt+1
i describes the proportion of i

in population t+1, it follows that |F(pt+1) | represents the average population fitness at generation

t+1. For notational simplicity, we denote this population fitness by ϕt+1. Note that these remarks

establish the relation ϕt+1 = |G(st) |.

Definition 2 The GA-surface corresponding to a simple genetic algorithm is the set

{s0
∞
∏

i=1

ϕ−2−i

i | s0 ǫΛ}

The next theorem identifies the GA-surface as the object explored by simple genetic search.

Theorem 7 The GA-surface is differentiable and is mapped by G into itself.

Proof: Since ϕt is continuous as a function of the initial population s0, and since Λ

is compact, it follows that the infinite product defining the GA-surface converges uni-

formly. Moreover, the surface is differentiable since G is polynomial in every coordinate,

st =
G(st−1)

|G(st−1) |
7Regarding M as a map on S . Conjecture 2 would actually be applied with X = Λ to obtain a unique fixed point

on the simplex Λ.
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and the denominator is uniformly bounded away from 0. From Lemma 3 we know that

G(α x) = α2G(x), hence

G(s0
∞
∏

i=1

ϕ−2−i

i ) = G(s0)

∞
∏

i=1

ϕ−21−i

i = s1ϕ1

∞
∏

i=1

ϕ−21−i

i = s1
∞
∏

i=1

ϕ−2−i

i+1

This finishes the proof, since the last expression is the point on the GA-surface corre-

sponding to s1 ǫΛ. �

Although population fitness cannot in general be monotonic, decreases are typically slight and

transient. If we consider the L1 norm8 of the trajectory of successive generations through the GA-

surface, we discover that it can be monotonic even when population fitness is not. Let ri = ϕi/ϕi+1

be the ratio of population fitness for successive generations. The ratio of L1 norms for the points

on the GA-surface corresponding to s1 and s0 is

∞
∏

i=1

(

ϕi

ϕi+1

)2−i

=

√

r1

√

r2

√

r3

√
· · ·

Simple genetic search moves downhill with respect to the L1 norm exactly when this nested sequence

of square roots is less than 1. Consequently, population fitness may decrease between generations

(r1, . . . > 1) but if the decrease is slight and transient (rk, . . . < 1) then the L1 norm of the trajectory

through the GA-surface can be monotonic. The GA-surface exaggerates the natural tendency of

population fitness to be monotonic. We believe a simple GA approximates (with mild restrictions)

hill climbing (downhill ) on the GA-surface.

To illustrate, consider the minimal deceptive problem (Goldberg 1987). Let crossover and mu-

tation be χ = 0.8 and µ = 0.01, and consider the objective function f(0) = 4, f(1) = 3,

f(2) = 1, f(3) = 5. This is a type-II problem analyzed by Goldberg.9 The GA-surface for f is a

curved three dimensional space in four dimensions. Intersecting with the coordinate hyperplane

u2 = 0 (the low fitness of 2 moves genetic search into this area), we obtain the following surface:

Each corner of this surface corresponds to a population consisting of the integer which labels it.

The basin of attraction for each corner is approximately that region of the surface for which all

downhill motion leads to it. Hence 0 and 3 are attracters, and the geometry of the GA-surface

8Note that ‖x‖1 =|x | since all coordinates of points on the GA-surface are nonnegative.
9He assumed an infinite population (as in our model) but did not consider the effects of mutation.
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makes the trajectory of most populations apparent.

If we consider the objective function f(0) = 4, f(1) = 4.1, f(2) = .1, f(3) = 4.11, we have a

type-I problem. It is because the effects of mutation were not considered that Goldberg’s results

indicate GA convergence to the optimal. By intersecting the GA-surface corresponding to f with

the coordinate hyperplane u2 = 0 (as before, the low fitness of 2 moves genetic search into this

area) we obtain:

The GA-surface is tilted slightly towards the forward corner indicating that 1 is the only attracter.

Hence the GA should converge to a population near this suboptimal corner. In fact, the fixed point

of G is <.04, .77, .00, .18>. It is interesting to note that with µ = 0, the GA-surface is tilted slightly

towards the right corner, confirming Goldberg’s result that without mutation, a type-I problem is

not hard.

6 Future research

The mathematical elegance of the definitions, proofs, and conjectures associated with our model is

indicative of fertility; our framework supports several promising research areas:

• integration of the actions of the transformations F and M into the behavior of G,

• further development of the interaction between the geometry of the GA-surface and the tra-

jectory of populations (under G),

• incorporation of schemata analysis by developing its geometric analogue.
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