
LAPACK working note 50

Distributed Sparse Data Structures

for Linear Algebra Operations

�

Victor Eijkhout

Department of Computer Science

University of Tennessee, Knoxville

eijkhout@cs.utk.edu

September 15, 1992

Abstract

Distributed data structures for matrices and vectors representing sparse data,

both structured and unstructured, are described. For unstructured data it is

described how processors can derive communication information from the data

structure.

1 Introduction

On distributed memory computers data structures are more complicated than

on shared memory computers. Ideally, every processor handles a certain set

of variables and needs only the data pertaining to those variables. However,

since operations such as the matrix-vector product involve combining data from

variables that may belong to di�erent processors, the data structures need to

be extended with connectivity information.

This paper will describe extended data structures for both problems on struc-

tured and unstructured grids. Rather than talking about processors directly,

the discussion here will describe the data structures pertaining to regions in the

physical domain. Multiple such regions may be assigned to a single processor.

Distributed storage of sparse matrices was considered in [4], where it was shown

that `integrity preserving' random assignments of nonzeros to processors have

a high probability of generating an even distribution for matrices with limited

numbers of nonzeros per row/column.

�

. This work was supported by DARPA under contract number DAAL03-91-C-0047

1

2 Regular grid problems

On grids that are (topologically) a Cartesian product of intervals both vectors

and matrices can be represented simply in terms of Fortran arrays. The easiest

way to select a region from such a grid is to let it be a product of subintervals,

so that a vector x can be allocated as

real x(ipts,jpts)

Sparse problems typically come from di�erence equations, such as the �ve point

central di�erence stencil, where the matrix-vector multiplication y = Ax on a

point (i; j) of the grid takes the form

y

ij

= a

ij

x

ij

� b

ij

x

ij+1

� c

ij

x

ij�1

� d

ij

x

i+1j

� e

ij

x

i�1j

:

In distributed computation, for some value of i and j one or more of the neigh-

bouring elements of x will be part of another region.

It is obvious that some data will have to be moved from the owning region of

the input data to the region storing the �nal result. Less clear is which of the

two should do the computation involving the input data. Suppose that we are

computing b

ij

x

ij+1

and that x

ij+1

is owned by a neighbouring region. In the

usual regime the region that contains location (i; j 1) will send x

ij+1

to the

region that has (i; j), and there the multiplication will be performed. This is

called `owner computes', but `writer computes' would be a more accurate term,

re
ecting that a region does all of the computation that will be written in it.

lternatively, following a `reader computes' rule, the owner of (i; j 1) can do all

of the computation using its data as input, in this case performing the multipli-

cation b

ij

x

ij+1

and sending the completed result to the owner of location (i; j).

Since the matrix of a �ve-point stencil is structurally the Cartesian product

of two tridiagonal matrices, we consider the multiplication with a tridiagonal

matrix as atomic for the moment. This corresponds to an operation

y

i

= a

i

x

i

� b

i

x

i�1

� c

i

x

i+1

;

and let us assume for the moment that we are considering computing this for

the range i = 1; . . . ; n.

In the `writer computes' regime additional input elements x

0

and x

n+1

are

needed, so if we allocate

real x(0:n+1)

the above three-term averaging can be performed for all elements 1::n without

exceptional conditions on the boundary. It corresponds to a matrix multiplica-

tion y = x if the coe cients a

i

, b

i

, c

i

are stored in a tridiagonal matrix

as

i;i

= a

i

;

i;i�1

= �b

i

;

i;i+1

= �c

i

:

2

ote that we require that the matrix includes nonstandard element

1;0

and

n;n+1

. Storing this matrix in a Fortran array can be done by allocating

real (n,-1:1)

with the conversion convention

(i; j) =

i;i+j

:

This allocates the three nonzero diagonals of the matrix in contiguous storage,

so that the matrix-vector multiplication can be performed by diagonals [3].

llocating the matrix as

real (-1:1,n)

puts the rows of the matrix in consecutive storage, and requires a conversion

convention

(i; j) =

i+j;j

:

Figure 1: Diagonal and row storage for `writer computes' rule.

ote that, whereas the input vector requires two additional elements, the output

vector can simply be allocated with the elements 1::n.

In the `reader computes' regime we need no additional input elements, but we

perform the extra computations b

n+1

x

n

and c

0

x

1

, to be sent to the right and

left neighbouring region respectively. Storing the a

i

, b

i

, c

i

coe cients again in

a tridiagonal matrix , we now need nonstandard elements

�1;1

and

n+1;n

.

Such a matrix can be stored in a Fortran array declared as

real (n,-1:1)

(storing diagonals contiguously) with a conversion convention

(i; j) =

i+j;i

;

or (storing columns contiguously) as

3

real (-1:1,n)

with a conversion convention

(i; j) =

i+j;j

:

Figure 2: Diagonal and column (Linpack) storage for `reader computes' rule.

This latter storage mode is the band storage used in Linpack [2] and Lapack [1].

eneralizing the above storage modes to multidimensional problems implies

that vectors may have to be stored as

real x(0:ipts+1,0:jpts+1, ...)

and that the o�-diagonals of the matrix have to contain some nonstandard

elements.

Irregular grid problems

If the physical domain no longer has a simple product topology it becomes harder

to know which variables border on a certain region. Thus, in addition to the

real array storing values of variables a number of integer arrays with information

about the domain, its partitioning into regions, and the connectivity of those

regions, will have to be declared.

. ss s

In a distributed computing environment it is not only a question how con-

nectivity is arranged, but also how communicating regions get to know this

4

information. The discussion in this section will assume that a matrix has been

centrally constructed, and that processors receive some part of it and construct

the connectivity information themselves based on what information about the

matrix they receive.

`writer computes' mode of computation is assumed.

. s

Since for irregular grids the concept of dimension of the physical domain dis-

appears, we have to store variables in a linear array. s in the case of regular

grids above, we store for a region both the owned variables and the bordering

variables the information of which is needed to compute values of the owned

variables.

ven under the assumption that the global numbering of variables is such that

every region has variables that are numbered consecutively, the numbers of

bordering variables need not obey any pattern (for the regular grids they came

in sequences with constant stride). Thus, skips in numbering between bordering

variables and local variables can be arbitrarily large, and since we want to keep

local storage to a size proportional to the number of local values, we have to

remap the global numbering into a local numbering that is contiguous. e need

1
7

12

15

31
32

33

47

53
2

3

4 5

6

Figure 3: xample domain, with owned and bordering variables of a certain

region indicated.

one real array for the data, and an integer array of the same size with the

renumbering information:

real x(n_ ars)

inte er l al_n (n_ ars)

In order to distinguish between owned and bordering variables it is necessary

to have another integer array:

4 5 6

327 12 15 31 33 47 53
n_vars = 8
global_num(n_vars)

x(n_vars)

n_owned_vars = 3
owned(n_owned_vars)

Figure 4: Remapped input vector and information on which indexes are owned.

inte er ne (n_ ne _ ars)

Computation then will take the form

i=1,n_ ne _ ars

x(ne (i)) = ...

en

nder the simplifying assumption that all owned variables in a region are num-

bered consecutively we can reduce this to a single integer storage

inte er ne _l

with the computation taking the form

i= ne _l , ne _l +n_ ne _ ars-1

x(i) = ...

en

.

For the bordering variables it is necessary to know to what bordering region

they belong, or rather, for each region sending bordering values it is necessary

to know where these have to be stored in the not-owned portion of the vector.

To this end we need two integer arrays

inte er in_l cs(n_in_ ars)

inte er in_re i ns(n_in_re i ns+1)

such that if region i sends incoming data, the number of items is

in l cs(i 1)� in l cs(i)

and they have be stored in x(in l cs()) for

= in re i ns(i); . . . ; in re i ns(i 1)� 1:

n_in_regions=3
1 2 4

in_region_nums(n_in_regions)
1 3 6

7 12 15 31 32 33 47 53

1 2 3 7 8

in_regions(n_in_regions)

n_vars = 8

global_num(n_vars)

x(n_vars)

n_in_vars = 5

in_locs(n_in_vars)

Figure : ointer structure for incoming data items.

nalogously, a pointer structure is needed for sending outgoing data items to

bordering regions.

. s

In this section we will consider an extension of Compressed Row Storage to

distributed computation. Ordinary CRS is based on one real and two integer

arrays

real atrix_ele ents(n_n n er)

inte er c l n_n s(n_n n er)

inte er r _ irst_l cs(n_r s)

The nonzero elements of row i are stored in locations

r irst l cs(i)::r irst l cs(i 1)� 1

of atrix_ele ents, where the corresponding element in c l n_n s gives

the column number of the nonzero.

e now consider the case where a processor handling a region receives the rows

corresponding to the variables of that region. First of all we note that, because of

the remapping from global to local variable numbering, the array c l n_n s

has to be updated accordingly.

Strictly speaking, a region needs only the rows corresponding to its owned vari-

ables in the course of the computation. However, in addition arrays such as

in_re i ns are needed, and if possible we want to construct those in a dis-

tributed manner. The following two assumptions make that possible.

. c region no s e r i ioning o ri es o er e se o regions.

. c region s ro s o e g o ri e non ero coe -

cien a

ij

ere i or j is n o ne ri e.

connections among owned vars

connections to incoming data

connections to outgoing data

Figure : onzero structure needed for parallel matrix operations.

In e�ect, we require each processor to have the nonzero variables in the shaded

regions in �gure .

few remarks about this.

� If the variables are numbered in such a way that each region ownes a

block of consecutively numbered variables, then the �rst assumption can

be satis�ed with for each region only two integers per region extra storage.

� The rows a

i�

for which i is an owned variable will be named `essential' since

they are necessary for the computation of Ax under the `writer computes'

rule. Rows a

i�

for which i is not owned will be called `non-essential'.

However, we will see in the next section that they make it possible that a

region can construct its own connectivity information.

� Including some non-essential rows gives each region those rows that are

necessary to compute the matrix-vector products with both A and A

t

.

The multiplication with A

t

involves some, but not all, elements in the

non-essential rows of A.

� The extra rows are those values of i for which there is a j such that

a

ij

= and j is an owned variable. Such i-values correspond to variables

bordering on the region, and their number is usually of a lower order than

the number of variables in the region. Thus the amount of extra storage

needed is not prohibitive.

� From the previous point it follows that the number of rows is n_ ars (see

section 3.2), that the array l al_n describes what rows they are, and

that the array ne gives the numbers of the rows that are needed for

the matrix-vector product with A.

a
7,:

a
12,:

a
15,:

a
31,:

a
32,:

a
33,:

a
47,:

a
53,:

essential matrix rowsnon−essential matrix rows

row_first_locs(nvars)

ownd(n_owned_vars)

Figure : Row compressed storage of the essential and non-essential matrix rows.

. s

ith the extended matrix described above, it is easy for a region to construct

its connectivity information. Let r be a neighbouring region, then

� region r sends variable j as incoming data if j is not an owned variable

and a

ij

= for some i that is an owned variable;

� region r is sent variable j as outgoing data if j is an owned variable and

a

ij

= for some i that is not an owned variable.

ote that a region knows what incoming data to expect from its essential rows,

but that it needs the non-essential rows to �gure out what outgoing data to

send. For the incoming data, the sending region determined the need for this

from its non-essential rows.

In conclusion we can state that, under the assumption that the regions know

how the variables are partitioned, it is enough if each region has copies of certain

matrix rows as described above, plus the array l al_n .

References

[1] . nderson, . ai, C. ischof, . Demmel, . Dongarra, . Du

Croz, . reenbaum, S. Hammarling, . Mc enney, S. Ostrouchov, and

D. Sorensen. sers' i e. SI M, 1 2.

[2] . . Dongarra, C. . Moler, .R. unch, and . . Stewart. sers'

i e. SI M, 1 .

[3] . . Madsen, .H. Rodrigue, and .I. arush. Matrix multiplication by

diagonals on a vector/parallel processor. n or . roc. e ers, :41{4 ,

1 .

[4] ndrew T. Ogielski and illiam iello. Sparse matrix algebra on parallel

processor arrays. Technical report, ell Communications Research, 1 1.

1

