
THE DEVELOPMENT

AND IMPLEMENTATION

OF A PERFORMANCE

DATABASE SERVER

Brian Howard LaRose

Computer Science Department

CS-93-195 August 1993

The evelopment and

Implementation of a erformance

atabase Server

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Brian Howard LaRose

August 1993

Dedication

To John and Bess Dunning, Ed and Melba LaRose and Mom, Dad and Sherri.

ii

Acknowledgements

I am indebted to my loving wife Ginger for her understanding and her support

throughout my work on this and other projects. Her support is constant and strong

and without it I would not succeed. I thank Jack Dongarra for keeping this project

pointed in the right direction. I thank Michael Greene for being my friend through

this e�ort and keeping me pointed in the right direction. I thank God for blessing me

with the ability and the desire to continue achieving my goals. I would also like to

extend my deepest thanks for my advisor, Michael Berry. His support and ideas along

with his personal touch have meant much to me and continue to be an inspiration to

my work. I am here but for the support and love of my parents. Their e�orts to put

their children �rst have set a model for my life for that I am thankful.

This research was supported by NASA under grant number NAG{5{2083, and by

ARPA under grant number DAAL03{92{G{0284.

iii

Abstract

The process of gathering, archiving, and distributing computer benchmark data

is a cumbersome task usually performed by computer users and vendors with little

coordination. Most importantly, there is no publicly-available central depository of

performance data for all ranges of machines: supercomputers to personal computers.

We present an Internet-accessible performance database server (PDS) which can be

used to extract current benchmark data and literature. As an extension to the X-

Windows-based user interface (Xnetlib) to the Netlib archival system, PDS provides

an on-line catalog of public-domain computer benchmarks such as the Linpack Bench-

mark, Perfect Benchmarks, and the Genesis benchmarks. PDS does not reformat or

present the benchmark data in any way which con
icts with the original methodology

of any particular benchmark, and is thereby devoid of any subjective interpretations

of machine performance. We feel that all branches (academic and industrial) of the

general computing community can use this facility to archive performance metrics

and make them readily available to the public. PDS can provide a more manageable

approach to the development and support of a large dynamic database of published

performance metrics.

iv

ontents

1 Overview of Benchmarking 1

1.1 Introduction : 1

1.2 De�nition of Benchmarking : 1

1.3 Complexity of Benchmarks : 4

2 Benchmarking today 6

2.1 Benchmark Organizations : 6

2.2 Presentation Standards : 7

3 Taxonomy of Benchmarks 9

3.1 Classi�cation by Type : 9

3.2 Usage of Popular Benchmarks : 11

4 Motivation 13

4.1 Introduction : 13

4.2 Initial PDS goals : 14

5 The Design of a Performance Database 16

5.1 Design Factors : 16

v

5.2 Acquisition of benchmark data : 17

5.3 Client Function Goals : 18

6 The Speci�cations of the PDS Implementation 20

6.1 Choice of DBMS : 20

6.2 Xnetlib Server (nlrexecd) : 22

6.3 Client-server interface : 25

6.4 Client development : 26

6.5 Rank Ordering : 27

6.6 Browse : 28

6.7 Search : 28

7 Xnetlib 3.3 with the PDS Performance Extension 30

7.1 Features : 30

7.2 Simple ueries : 39

7.3 Actual Internet ueries : 40

8 Conclusion 45

8.1 Summary : 45

8.2 Availability : 45

8.3 Future work : 46

8.3.1 Addition of Graphical Interfaces : : : : : : : : : : : : : : : : : 46

8.3.2 Tool development : 46

8.4 Updating Bibliography : 47

Bibliography 48

vi

Appendix 52

vii

ist of i res

1.1 Sample of Perfect data. : 3

3.1 Classi�cation by benchmark usage. : : : : : : : : : : : : : : : : : : : 12

6.1 A telnet session showing the full capabilities of the server. : : : : : : 23

6.2 A telnet session accessing the server's query feature. : : : : : : : : : : 24

6.3 A telnet session accessing the server`s search-or feature. : : : : : : : : 25

6.4 A telnet session accessing the server`s search-and feature. : : : : : : : 26

6.5 The PDS client-server interface: the X workstation (a) communicates

over the Internet via Berkeley socket connection (b) to the Xnetlib

server, which queries the database using rdb tools (c), and returns

benchmark data via the socket connection. : : : : : : : : : : : : : : : 27

7.1 Entry level screen for the Performance Database Server. : : : : : : : : 32

7.2 A sample rank ordering of some available machines. : : : : : : : : : : 33

7.3 A result from selecting the flops icon from Figure 9 . : : : : : : : : 34

7.4 The Browse feature allowing speci�c machine benchmark selections. : 35

7.5 The Browse feature returns results into a scrollable window. : : : : : 36

7.6 The Search feature allowing multiple keyword searches. : : : : : : : : 37

viii

7.7 The Search feature returns results into a scrollable window. : : : : : : 38

7.8 Simple queries for PDS client. : 39

7.9 Actions to produce comparison of Sparc r3000 r4000 680404 80486

chips. : 40

7.10 Comparison of Sparc r3000 r4000 680404 80486 chips . : : : : : : : : 41

7.11 Actions to view rank ordering of Linpack results. : : : : : : : : : : : 42

7.12 Actions to compare SGI and Cray results. : : : : : : : : : : : : : : : 43

7.13 Actions to view the Linpack report online. : : : : : : : : : : : : : : : 43

7.14 Actions to view numerous CM-5 results. : : : : : : : : : : : : : : : : 44

ix

vervie of enchmar in

1.1 tro ctio

Given the current rate of change in computer technology, high-performance machines

purchased today may well be obsolete within 5 years, if not before. The new advance-

ments often lead to solving larger problems in smaller amounts of time. In order to

monitor progress in such problems, we may attempt to compare the performance of

various machines quantitatively with benc ar s. Although benchmarking has be-

come very popular because of the diversity and competition in the computer hardware

business, there are only a limited number of libraries or archive sites for benchmark

data. The real need for a central repository of performance metrics is becoming a

major concern.

1. itio o c r i

The term benc ar �rst appeared in the 1840's and is derived from surveying studies.

A benchmark was an elevation mark on a permanent object to be used as a reference

1

in topological surveys [Webs83]. This term became a standard in the surveys of North

America, but within the context of the computer performance, the term has come

to �nd new meaning. The Random House Dictionary [Rand87] de�nes a benchmark

as \an established point of reference against which computers or programs can be

measured in tests comparing their performance". For an objective comparison of

machines, benchmark numbers tend to become permanent marks by which others

can be measured. Machines are most often compared by reviewing their performance

on a number of well-de�ned programs or benchmarks [Hock91].

A benchmark code is a program designed to be run on an architecture and pro-

duce a relativemeasure of its execution. Measures of execution are often scalar values,

such as: the number of instructions executed compared with some prede�ned con-

trol system run, the number of instructions completed in a �xed time interval, the

time required to execute a certain set of instructions, or many other metrics. Scien-

ti�c benchmarks typically involve program segments that are
oating-point intensive

[BeCL91], so that in addition to measuring and reporting execution (elapsed or CPU)

times, scienti�c benchmarks often report the rates at which
oating-point operations

were performed in M
ops sec.

1

Performance metrics can also be multi-valued functions [Hock92]. The Perfect

Benchmarks [Berr89] produce 13 distinct values for each run. Furthermore, the Per-

fect methodology allows four modes of runs each of which produce 13 values. Perfect

can be run to measure baseline wall-clock time, or baseline cpu (M
ops sec) and

users can also optimize the codes to obtain optimized wall-clock time or optimized

1

- .

ac ine AD ase ARC D ase BD A ase

wa -c oc time wa -c oc time wa -c oc time

Cra - C9 -1
13.9 1 sec . 5 sec 5. 9 sec

u itsu 1
1 . sec . sec 3. sec

igure 1.1: Samp e o er ect data.

cpu (M
ops sec). Hence, this leads to a variety of numbers to interpret and rank

order machines. Lets consider a few of the Perfect Benchmarks [Berr89] to illustrate

this problem. As shown in Figure 1.1 the baseline wall-clock time for ADM when run

on the Cray -MP C90-1 is faster than that of the Fujitsu P2600 10 con�guration.

However, if you compare ARC2D and the BDNA baseline wall-clock times for these

machines, you can see that the Fujitsu is the faster machine. This might appear to be

an inconsistency in the data, but it is not. This is a good example of di�erent machine

con�gurations performing di�erently on application-based benchmarks. It could be

that the ADM program exhibits some characteristic which the Cray -MP C90-1

can perform faster than the Fujitsu, however, ARC2D and BDNA may exhibit some

characteristics which the Fujitsu can perform faster than the Cray. This is a common

occurrence when comparing performance metrics. While some computer vendors con-

centrate on building faster
oating-point processors, others will build faster integer

processors, and some try to achieve an even balance. Perhaps the best indicator of

expected target system performance on a certain application is to run the speci�c

application on the target architecture. Because porting the code to the target is not

always feasible, benchmarks exist to attempt to describe general system performance.

3

1. o it o c r

In the changing world of computer technology, there are hundreds of di�erent archi-

tectures available. Subsequently, there are millions of application programs that have

been written for solving problems arising in both academic and industrial settings.

Programmers are typically concerned about the performance of a given computer

when running their speci�c application. Many users want a computer that will per-

form well for their general application type, but do not necessarily care about other

applications. This, of course, leads to di�erent views on which system parameters are

important. Thus, benchmarks tend to evolve from individual applications which may

not stress all features of a given architecture.

Just as there are hundreds of di�erent vendors in the industry, there are often

several compilers for each vendor's machine. There are compilers which optimize,

vectorize, and parallelize, and while such compilers are necessary, they complicate

the amount of performance data one may accumulate. In theory, every benchmark

code should be run with every compiler version on every available machine in order

to completely cover all the possibilities. This, however, is simply not possible, and

we instead make generalizations about performance based on available data.

The number of combinations of architectures, machines, applications, compilers,

benchmarks, and performance metrics is staggering. In this study, we have accumu-

lated over 3 megabytes of performance data in ASCII format in just over 4 months.

The need for standardized benchmark methodologies and measures of performance

will grow as the amount of data becomes overwhelming.

In future benchmarking e�orts, there must be an attempt to describe the compo-

sition of the benchmarks. Running some speci�c codes which return a number for a

machine does not imply a survey of general machine performance. These numbers

instead describe the performance of the machine on the algorithm or application class,

not all usage patterns. The composition of the benchmark codes is a very important

matter which is often overlooked. Users who read read performance data extrapolate

rank orderings from speci�c benchmark usage and imply general system performance

rankings. The �rst statement in the Linpack Report [Dong88] addresses this con-

cern: \The timing information presented here should in no way be used to judge the

overall performance of a computer system. The results re
ect only one problem area:

solving dense systems of equations." This statement clearly lays out the intent of the

benchmark and its characteristic usage however, in practice this statement is rarely

applied.

The Author of the Bonnie Benchmark Disk Suite [Bray93], Tim Bray of the Uni-

versity of Waterloo, states his intentions in the Bonnie introduction. \The author

wishes to go on record that he feels this is relatively low-quality information, and

that as presented it probably misrepresents, in some fashion, the performance of ev-

ery manufacturer named herein. For heaven's sake, don't use this as a guide in a

procurement exercise, and if you do, don't say I told you to".

5

enchmar in toda

.1 c r r i tio

Because of the diversity of computing and the numerous metrics of system perfor-

mance, there are very few comprehensive public domain (free) benchmark results.

A few businesses, such as the Transaction Processing Council (TPC), have evolved

to distribute performance metrics at cost. Other than these organizations, broad

ranging metrics are not widely available. Although the major hardware vendors re-

lease metrics to the public, it is often better that a company publishes only the best

numbers for a particular code and restrict the release of other intermediate numbers.

As Weicker describes in [Weic91], small benchmarks typically make a machine look

better, and therefore are more popular with marketing departments.

The Standard Performance Evaluation Corporation (SPEC) was formed to try

to bridge the gaps in performance metrics by specifying a standard set of metrics

that will be used to describe system performance. SPEC is a non-pro�t organization

whose common goal is to provide the industry with a realistic yardstick to measure

the performance of advanced computer systems through the education of the user

community [Dixi90]. Some of the SPEC membership includes: Apple, AT T, NCR,

Bull, Compaq, Control Data, Data General, DEC, Fujitsu, Hal Computer, Hewlett-

Packard, IBM, Intel, Intergraph, MIPS, Motorola, NeXT, Prime, Siemens Nixdorf,

Silicon Graphics, Solbourne, Sun, and Unisys [Unie89].

As SPEC has gained acceptance both through usage and recognition by vendors

and customers, it has become a requested metric. A good portion of the questions

posted to the Usenet news group c .benc ar s are related to SPEC and SPEC

numbers. Many potential customers who need ar s [Unie89] request them

from the hardware vendors themselves. This seems a bit like asking the grocer

res s r r

In the past few years a movement to develop and release public domain performance

data over the Internet has gained some momentum. Internet news groups such as

c .benc ar s and c . ara e have provided valuable postings and related

discussions of performance data. In the 1980's the National Institute of Standards

and Technology (NIST) attempted to collect and make performance data available

through over the Internet. Recently some Internet sites have been established

yet the amount of performance data tends still to be sparse, and the interfaces are

quite limited.

. r t tio t r

Currently there are as many presentation formats as there are benchmarks. Linpack

[Dong88] presents 3 numbers: n 100 M
ops sec, n 1000 M
ops sec and theoretical

peak performance numbers. The �rst two numbers re
ect the solution of a dense linear

system of equations of order 100 and 1000 respectively. Theoretical peak performance

is de�ned as the absolute upper bound on performance, which is enforced by the

architecture limits.

The Perfect Benchmarks [Berr89] are in a very di�erent format than Linpack.

Refer to Figure 1.1 for a small sample of some Perfect data. Perfect is a set of 13

scienti�c and engineering application programs which are individually run and mea-

sured for elapsed CPU time and M
ops sec. Each program in the Perfect Benchmarks

can be run in optimized or unoptimized mode, and hence, 52 separate numbers can

be produced for each machine con�guration. Perfect and Linpack are just exam-

ples of the diverse presentation formats that one may encounter in the benchmark

�eld. Nonetheless, these presentation formats are derived from the very nature of the

benchmarks themselves, and should be preserved.

Ta onom of enchmar s

.1 i c tio

Although there are numerous performance metrics, we may classify them [BeCL91]

into four major categories: synthetic, kernel, algorithm, and application.

Synthetic Benchmarks.

Synthetic benchmarks are not representative of any real computation, rather, they

exercise various basic machine functions. IO one, a package written by Bill

Norcott

1

, primarily tests disk throughput by s ress es n the reading and writing

of very large data �les [Norc92]. Dhrystones and Whetstones [Weic91] are examples

of once-popular synthetic benchmarks which are rarely used today. Dhrystones were

designed to stress integer performance and use many string operations. The use of

Whetstones is on the decline because they prevent vectorization and various compiler-

based optimizations.

1

.

9

ernel-based Benchmarks.

ernel-based benchmarks contain sections or erne s of a sample application code.

A large library of routines with many di�erent functions may be characterized by a

small code sample. An example might be a loop that is processed millions of times

in the application. The Livermore Loops [McMa86] are representative of this type of

benchmark. These benchmark programs contain intensive
oating-point operations,

and typically stress a single functional unit of the hardware.

Algorithm Benchmarks.

Algorithm-based benchmarks are implementations of well-de�ned algorithms that

vary slightly over di�erent platforms. Algorithms that have been optimized are imple-

mented in that optimized format. Because of the large number of operations typically

processed, however, small variations in speci�c implementations or machine-speci�c

calls can be masked in the long run. Thus, barring new optimizations or radically new

approaches, these benchmarks give consistent measures of performance over various

platforms and implementations. Examples of algorithm benchmarks are LINPAC

[HoPa87], Slalom [Gust91a], and the NAS Fortran kernels [BaBa85].

Application Benchmarks.

Application benchmarks may be complete samples of engineering, scienti�c or busi-

ness applications. These applications typically stress several functional groups of the

hardware. The Perfect Benchmarks [Berr89] are examples of application benchmarks.

This benchmark suite comprises 13 di�erent scienti�c and engineering applications

that can be run in prede�ned con�gurations. Such benchmarks are especially interest-

ing to scientists whose researchmay closely resemble that modeled by the benchmarks.

Application benchmarks are the closest performance estimation to actually running

a real engineering application on candidate hardware.

1

. o o r c r

Benchmarks are usually targeted at a certain operating environment. There is an

attempt to describe operating environments and to address performance concerns

within such environments. Some benchmarks are indicative of workstation or per-

sonal computer (PC) environments, while others are intended for mainframes or

supercomputers. The Dhrystones, for example, were designed to test integer per-

formance, spend signi�cant time in string operations, and are therefore considered

more representative of a workstation environment. The NAS parallel benchmarks

[Bail91], on the other hand, are intensively parallel and considered representative of

a multi-processor system environment.

Peripheral devices and local area networks (LANs), however, generally lack ade-

quate benchmarks. Two notable exceptions are the IO one benchmark and the Bon-

nie Benchmark Disk suite, which both could be classi�ed as a er era benchmarks

since they test the disk performance and I O bandwidth. Given the the growing in-

terest in distributed programming environments such as P M [BDGM91] and Linda

[CaGe92], we anticipate benchmarks for homogeneous and heterogeneous networks of

machines in the near future. Figure 3.1 illustrates the typcial usage of several popular

benchmark suites.

11

arget ac ines

Benc mar
or stations Supercomputers erip era

ame
ersona Computers ara e Computers Devices

Linpac

er ect

S C

one

D r stones

Livermore Loops

S a om

ops

etstones

AS ara e

igure 3.1: C assi cation enc mar usage.

1

otivation

.1 tro ctio

Given the current evolution of computer hardware technology, computer vendors are

consistently producing more advanced versions of current machines as well as in-

troducing new architectures which can cause leaps in system performance. This

seemingly e nen a growth in machine performance is accompanied by new vari-

eties of computer benchmarks to track this growth [Gust91a]. Until recently, serial

benchmarks ([Weic91]) have been the primary available measures of processor perfor-

mance. With the advent of parallel benchmarks ([Bail91], [Gust91a]), the complexity

of benchmark acquisition and presentation will certainly increase. Recent meetings

of the Parallel Benchmark Working Group (PBWG), led by Professor Roger Hock-

ney at the University of Southampton, England, have led to proposals on bench-

mark methodologies, benchmark standards and classi�cations. These proposal drafts

should provide an open forum for discussions on the desemination of performance

metrics.

13

For example, classi�cations of parallel benchmarks may be based on communi-

cation characteristics, processor utilization and load balancing, data layout or map-

pings, and even parallel I O constructs. Hence, the number of variations of a s n e

parallel benchmark program can be large. The ability to store, organize, and dis-

seminate credible computer benchmark data is of paramount importance if we are to

categorize the performance of computers ranging from laptop computers (e.g., Apple

Powerbook) to massively parallel machines (e.g., CM-5).

The Performance Database Server (PDS) developed at the University of Tennessee

and Oak Ridge National Laboratory is an initial attempt at performance data man-

agement. This on-line database of computer benchmarks is speci�cally designed to

provide easy maintenance, data security, and data integrity in the benchmark infor-

mation contained in a na c performance database.

. iti o

The primary goal of this research is the development of a performance database.

Our objective is the accumulation, classi�cation, and distribution of benchmark data

acquired from industry and academia. The database server will be centrally located

on the Internet and will serve data to the remote sites. The distribution of the data is

more important than the format or details of the distribution. Thus, users should be

able to access speci�c data meaningful to their application or environment. Engineers,

for example, should be able to view performance metrics from machines which were

running ca engineering applications. Users interested in certain machines can

view data on only those machines, if they so choose. PDS can serve performance

data to clients in whatever format they wish from a central database.

1

Therefore, a database was built which contains performance metrics from many

published sources. Initially, we could only include public domain data which had

been published, such as the Perfect Benchmarks [Berr89], the Linpack benchmark

[Dong88] and the NAS Parallel benchmarks [BaBa85].

The PDS interface was designed to provide users with easy access to a massive

amount of on-line benchmark metrics. The access has to be general enough to allow

the users to access data in whatever format they wish. The r en interface which we

desired could be easily accomplished by writing a X-windows graphical user interface

to the database.

We designed a Graphical User Interface (GUI) for the database using a c en -

ser er [BiNe84] model for network computing. The database is centralized in one

location for easy management and update, but the GUI client can be distributed over

many sites. The interface would give the appearance that the data was local to the

user.

The Xnetlib tool [DoRW93] developed at Oak Ridge National Laboratory and the

University of Tennessee is a GUI socket-based retrieval tool to allow access to a set of

public domain software packages which are available. Xnetlib is a n -c c driven

interface into a software database. In this way, Xnetlib met our PDS functionality

requirements perfectly, and was an existing client-server interface. Subsequently, our

performance database client interface became an extension of Xnetlib. This certainly

facilitated our implementation of the PDS client and should proliferate its use among

Netlib users.

15

The esi n of a erformance

atabase

.1 i ctor

Several issues need to be addressed in building a performance database. The foremost

issue is the organization of the data. Due to the complexity and volume of the data

involved, storage should occur in some data management mechanism. A database

management system (DBMS) will help in managing the data and the various presen-

tation formats associated with the benchmarks.

1

It seems logical for PDS to organize data in the DBMS according to the bench-

marks themselves: a Linpack table, a Perfect Benchmarks table, etc. Separate tables

are required due to the drastic di�erences in the data formats. It would be nearly

1

, ,

, .

1

impossible to rce these numerous presentation formats to adhere to a single presen-

tation standard just for the sake of storage and reporting. Individual tables preserve

the display characteristics of each benchmark but still allow users to query all tables

for various machines.

Parsing the data into these tables is routine, except that a custom parser must be

written for each benchmark. This parser must feature regular-expression matching

and can be written in any high-level language, thus er [WaSc90] appears to be a

good choice. In the parsing process, building a standard format ASCII �le from a

ra data�le would ease migration of the data into the database.

. c i itio o c r t

We initially construct the database, with entries from a few popular benchmarks.

The Linpack and Perfect Benchmarks are widely-accepted public domain benchmarks.

Interest in these benchmarks stem from the fact that () they contain a large spanning

set of data, () the results are freely distributed, and () the benchmark programs

are representative of many scienti�c applications. We will use a
exible design format

so that incorporation of new and variant data sets will be simple.

The functionality required by PDS is not very di�erent from that of a standard

database application. The di�erence lies in the user interface. Financial databases,

for example, typically involve speci�c queries like

EXTRACT ROW ACCT NO R103049

in which data points are usually discrete and the user is very familiar with the data.

The user, in this case, knows exactly what account number to extract, and the format

of retrieved data in response to queries. With our performance database, however,

1

we would expect the contrary: the user does not really know () what kind of data

is available, () how to request extract the data, and () what form to expect the

returned data to be in. These assumptions are based on the current lack of coordi-

nation in (public-domain) benchmark management. The number of benchmarks in

use continues to rise with no standard format for presenting them. The number of

performance-literate users is increasing, but not at a rate su cient to expect proper

queries from the performance database. Often, users simply want to know the best-

performing machines for a particular benchmark. Hence, a simple rank-ordering of

the r s of machines according to a speci�c benchmark c n may be su cient for

a general user.

. i t ctio o

We initially want the client to have a menu of options which are available. This

menu-driven format will reduce the complexity of the user interface. The main PDS

user interface menu should include:

1 the ability to extract speci�c machine and benchmark combinations that are of

interest,

2 the ability to search on multiple keywords across the entire dataset,

3 the ability to view cross-referenced papers and bibliographic information about

the benchmark itself, and

4 the capacity to build up results from queries and store them locally.

We include (3) in the above list to address the concern of proliferating numbers

without any benchmark methodology information. PDS provides abstracts and com-

1

plete papers related to benchmarks and thereby provides a needed educational re-

source without risking improper interpretation of retrieved benchmark data.

This client interface design accounted for three di�erent kinds of users: na e

be nners and e er . Features were incorporated so that any of the three potential

users could �nd relevant information quickly. For example, we anticipated that users

maywant to utilize upper or lower case keywords in the search process. As a result, we

have designed all searches to be case insensitive. We considered that users might want

to alias families of machines when they know the terminology. We also considered

that a user might not know anything about benchmarking, and they might want

to obtain references or articles. We considered that some users might want to view

s ec c data and others might want to view 500 lines of performance data. Some

users might want to view only the top performing machines and nothing else, while

others might simply want to see what is available in PDS. The interface that we have

designed will easily facilitate all the above functions at a minimal cost to the new

user and minimal penalty to the expert.

19

The Speci cations of the S

Implementation

In this chapter, we describe the speci�cations of the PDS tool developed and main-

tained at the University of Tennessee and the Oak Ridge National Laboratory.

.1 oic o

Benchmark data is represented in a database format using a Relational DataBase

(RDB) query language tool [Hobb91] developed by Walter Hobbe from Rand Cor-

poration. This database query language is su cient for our needs and permits easy

database maintenance. Based on the er language [WaSc90], RDB uses Unix

1

pipes

to run entirely in memory. We have converted raw performance data into RDB

format using only a few perl commands. Additionally, RDB provides several report

1

.

features that help standardize the presentation of the performance data.

The RDB implementation speci�es that database tables are de�ned using a schema

of the form:

01 Computer 35

02 OS Compiler 45

03 N 100 7N

04 N 1000 7N

05 Peak 7N.

The �rst column is the �eld number, the second is the �eld label, and the third

is the �eld type, in (type-size) format. The default form is ASCII, and denotes

numeric data so that the ea entry, for example, is a size 7 numeric �eld.

The contents of the data �les themselves are expected to be in some regular gram-

mar, usually a space separated columnar format. A perl script takes a description

of the columns and builds a tab-separated �le. The schema is converted to a tab-

separated �le using the RDB command ea c . The data �les are appended to the

end of the schema �le, and the resulting
at tab-separated �le becomes the rdb format

table. RDB uses the schema in the header to process the �le. An example from the

linpack.rdb is provided below.

- - - -

- - - -

- - - -

- - - -

1

This rdb table may then be searched for query matching. An example query for a

Linpack Benchmark with l o is given below.

--------------------------------- ------------------- ------- ------- ----

- - - -

. t i r r r c

An implementation of the Xnetlib server [DoRW93], n re ec , is currentlymaintained

at the University of Tennessee and Oak Ridge National Laboratory. However there

were some additional Xnetlib features needed by PDS, so that, several major features

were added to an extension of the Xnetlib server. The modi�ed server simply acts as

a database engine for retrieving and distributing data to the clients. We note that

the users of PDS will not normally see or access this interface, in that it is strictly

designed for the client interface which the user directly controls. Figure 6.1 shows

the full range of available nlrexecd services which are available to the client and other

users. Notice that twelve of the services are native to nlrexecd, and the three services

pre�xed with er r ance- are the extensions for PDS.

The �rst feature added was the ability to obtain performance results on a per

machine, per request basis. This feature called er r ance- er , allows the user to

make individual queries to the performance database tables. The query operations

thud> telnet performance.cs.utk.edu 5555
Trying...
Connected to AUSTIN.CS.UTK.EDU.
Escape character is ’^]’.
larose@cs.utk.edu
list−services
xxxx
who
keyword−or
keyword−and
keyword−and
keyword−lsi
keyword−literal
keyword−literal−case
keyword
file−tag
file−get
file−get−dep
index−get
performance−query
performance−or−search
performance−and−search
list−services
Connection closed by foreign host.
thud>

igure .1: A te net session s owing t e u capa i ities o t e server.

are typical database operations, and one query returns the complete list of all rows

which match the search string. A sample query is given below.

p fo l p o

Because Berkeley sockets are the underlying transfer mode, the Unix tool e ne is

used. This tool allows varying ports to be accessed for connections to di�erent socket-

based services. In Figure 6.2 a e ne connection is made to the server socket and the

bold text is sent. The user's electronic mail address, when available, is used for Netlib

records. The service requested in this example, performance- uery, is followed by

, ,

.

3

the arguments to that service, the table name performance linpack.rdb followed

by the parameters to the search row N 100 e 388. The query displayed in Figure

6.2 returns the entries in the Linpack table of performance data which have N 100

numbers equal to 388 (in this case only 1 machine, a 4 processor Cray -MP).

larose@cs.utk.edu
performance−query
performance/linpack.rdb row N=100 eq 388

thud> telnet performance.cs.utk.edu 5555
Trying...
Connected to AUSTIN.CS.UTK.EDU.
Escape character is ’^]’.

Computer OS/Compiler N=100 N=1000 Peak
−−−
CRAY Y−MP (4 proc. 4.2 ns) CF77 5.0 −Zp 388 3272 3810
Connection closed.
thud>

igure . : A te net session accessing t e server s uer eature.

The second server feature required is the literal search of the database. This fea-

ture provides a literal string matching over the performance database. To permit

a boolean-based search capability, the search feature is split into two separate ser-

vices: performance-or-search and performance-and-search. These searches are

invoked with multiple keywords to allow the user the capability of performing a full

spectrum of searches ranging from very general to very speci�c. The user speci�es

the keywords along with o , . The results are returned in an ASCII format via

the socket connection.

In Figure 6.3, the connection is opened to the server socket for a performance-

or-search. The service name is followed by the arguments to that service, the ta-

ble name performance ops.rdb followed by the parameters to the search S I

mips. The user then obtains the results of the query, and the connection to perfor-

mance.cs.utk.edu is closed.

larose@cs.utk.edu
performance−or−search
performance/flops.rdb SGI mips

SGI IRIS 4D/25 one processor, ccR3000 20.0 6.0395 7
SGI 4D/420 one processor, ccR3000 40.0 18.1572 3

thud> telnet performance.cs.utk.edu 5555
Trying...
Connected to AUSTIN.CS.UTK.EDU.
Escape character is ’^]’.

VENDOR COMPILER CPU−TYPE CLOCK MFLOPS NOTES
−−−
MIPS RC6380 cc3.0 −O3 −mips2 R6000 60.0 17.4 4
SGI 4D/310 Irix 4.0.1, cc−O3 R3000 −−− 9.3525 2

Connection closed.
thud>

igure .3: A te net session accessing t e server s searc -or eature.

In Figure 6.4, the user requests the performance-and-search, and speci�es the

arguments to that service, the table name performance linpack.rdb followed by

the parameters to the search IBM 6000 550. The user then obtains the IBM

RS 6000 550 results and the connection to performance.cs.utk.edu is closed.

. i t r r i t r c

Within PDS, the database manager runs only on the server, and the c en s commu-

nicate via Berkeley sockets [BiNe84] to attach to the server and access the database.

This socket-based functionalitywas provided by the pre-existing Xnetlib tool [DoRW93]

and was extended to provide support for the performance data. As previously shown,

the server port is available to the client to serve data from the database. The client

5

Computer OS/Compiler N=100 N=1000 Peak
−−−
IBM RISC Sys/6000−550 (42 MHz) v2.2.1 26 70 84
Connection closed.
thud>

larose@cs.utk.edu
performance−and−search
performance/linpack.rdb rios 6000 550

thud> telnet performance.cs.utk.edu 5555
Trying...
Connected to AUSTIN.CS.UTK.EDU.
Escape character is ’^]’.

igure . : A te net session accessing t e server s searc -and eature.

opens a socket to the available port on the server and submits a query string. The

er r b tools then access the database using the query string returning typical query

results. The output socket is opened, read and then channels the output into the X

client. Figure 6.5 illustrates the client-server interactions.

. i t o t

After the server was developed, the client was built to interact with the server. The

development of the performance client option of the Xnetlib client has coincided with

the continuing development of Xnetlib version 3.3. We decided to develop the PDS

as a compile time option to Xnetlib. De�ning the object before the compile with the

-DPERFORMANCE option invokes a Unix a e which produces Xnetlib with

PDS.

The Xnetlib client is an X windows interface that obtains data via sockets from

the server. The client is a view-only tool which provides the user a window into

the database, and prohibits data modi�cations. The fo button under the

c

I
N
T
E
R
N
E
T

X
N
E
T
L
I
B

S
E
R
V
E
R
S

 The "rand"
RDB TOOLS
(written in perl)

 RDB
 DATABASE

(performance
 data only)

xnetlib

xnetlib

xclock

The Xnetlib client running
on a X Display connected
to the Internet.

Berkeley Socket

 Connection

a

b

igure .5: e DS c ient-server inter ace: t e wor station a communicates over t e nternet

via Ber e e soc et connection to t e net i server w ic ueries t e data ase using rd too s

c and returns enc mar data via t e soc et connection.

main Xnetlib menu will allow the user to access the PDS interface. At this point

users will have numerous menu options to access the various PDS functions. In the

following sections, we will describe the functions as outlined in the design process.

Users familiar with Xnetlib 3.0 will have an easy transition in using the Xnetlib

performance client.

A top levelmenuwith major functions is provided using list widgets under X11 Athena

[Pete92]. The options , o s , , p s o s, and

l o p appear as main buttons under the PDS main menu.

. r ri

The �rst goal was to allow the user the ability to view rank orderings of the perfor-

mance data online. This rank ordering is a sorted output of the performance data.

There is no interpretation of the data, simply a report of the data sorted on relevant

�elds. This goal could be accomplished while still allowing the user to see on-demand

current rank orderings. The database maintenance tools will update the information

as the reports are published, and the user simply receives the most current informa-

tion. In this way, the PDS can provide immediate information on the fastest machines

available. The rank is implemented with a variant of the Athena text widget [Pete92].

The user selects the icons of interest, and the data is displayed within the window.

The download of data is transparent to the user, and occurs only on demand.

. ro

The second goal was to allow the user the ability to browse through performance

data on-line. To address this need, a list of available vendors and benchmarks is

kept in the database and downloaded to the client upon startup. The Athena form

widget contains an appropriate number of box widgets representing the vendors and

the benchmarks (see Figure 7.4). We note that as the database manager changes

the master database, the clients across the internet will add buttons as needed. After

selecting the requested items, a socket to the server is opened, and the query-matched

results downloaded displayed.

. rc

An Athena form widget contains the search window details [Pete92]. The buttons

needed for �eld entry, search
ags, clearing the search �eld and the display window

are all action-based buttons. Within PDS, the search option will operate in a literal

sense. It will search for the requested string over the entire performance database and

return whatever hits are found. The search feature does allow boolean searches over

multiple keywords. Using this ability, users may build up a query using logical and, or

with the keywords. Because of the many names used to describe today's architectures,

aliasing is an important feature. The alias r s, for example, is associated with the

IBM RS 6000 series workstation family. It is also important that users be able to

query the database multiple times, and build up an entire collection of performance

information. Accumulating search results is accomplished by adding the display text

to a text widget. This permits a user, who might want to compare two machines

directly, to search for both machines separately, yet have both sets of search results

on the same screen.

9

netlib ith the S

erformance tension

.1 t r

Figure 7.1 displays the entry window to the performance extension (client PDS).

The user obtains this window after clicking on the Xnetlib fo button and

can then select any of the available PDS features for extracting viewing data.

will allow the user to view a sorted list of machines which have been ranked

according to a relevant performance metric. The and p s features

are similar in nature as both are icon-driven data access paths.

Figure 7.3 shows the rank ordering of results when the user selects an icon from

Figure 7.2. This rank-ordered list for machines from the flops is displayed when

the icon flops is selected. This information is downloaded to the local

machine on demand thus making e cient use of network bandwidth.

Figure 7.4 illustrates the PDS browse facility. Here the user selects the vendor(s)

3

and benchmark(s) of interest and then selects o ss to query the database. The

client then opens a socket connection to the server, and using the query language

(rdb) remotely queries the database.

The format of the result of the query is shown in the Figure 7.5. Notice the column

headings which will vary with each benchmark. Results are displayed via an ASCII

widget [Pete92] with scrollbars when needed.

The PDS keyword search facility is demonstrated in Figure 7.6. This feature allows

keyword searches into the database. Literal searches are case insensitive and do allow

a moderate amount of aliasing. Notice that multiple keywords are permitted, and

that a boolean
ag is provided for complex queries. The user has the option of

entering vendor names, machine aliases, benchmark names and speci�c strings thus

complicated boolean-based keyword searches are possible.

The results of the search from Figure 7.6 are displayed in Figure 7.7. Here the alias

os matched the IBM RS 6000 series and the p and f terms limited

the search to the Linpack and Perfect benchmarks only. Due to the complexity of the

Perfect Benchmarks [Berr89], results were separated into 4 database tables (scrollbars

can be used to view the entire table).

31

igure .1: ntr eve screen or t e er ormance Data ase Server.

3

igure . : A samp e ran ordering o some avai a e mac ines.

33

igure .3: A resu t rom se ecting t e icon rom igure 9 .

3

igure . : e Browse eature a owing speci c mac ine enc mar se ections.

35

igure .5: e Browse eature returns resu ts into a scro a e window.

3

igure . : e Searc eature a owing mu tip e e word searc es.

3

igure . : e Searc eature returns resu ts into a scro a e window.

3

. i ri

The following performance-related questions were posted to the Internet news group

c .benc ar s by various users. Figure 7.8 lists a few examples of usage pat-

terns for potential users of PDS. The left-hand column describes the type of query

requested, while the right-hand column describes how to achieve the desired results.

Search descriptions are provided with the assumption that the user has already in-

voked Xnetlib and has selected fo .

1

o view t e est per orming

mac ines in t e Linpac Benc mar
Ran rdering

per ormance ran inpac

o view t e S resu ts

rom t e anoi enc mar
Browse S anoi rocess ..

o searc t e data ase

or Linpac resu ts on itan
Searc Return

o save t e current window

contents to a oca e
Save Return

igure . : Simp e ueries or DS c ient.

1

,

.

39

. ct t r t ri

Now that we have showed the usage patterns and things that you can do with PDS,

we would like to demonstrate it's usefulness answering actual questions posted in

the Internet news group c .benc ar s. For the query below, we illustrate a

corresponding PDS search description and results in Figures 7.9 and 7.10, respectively.

o f o o s l o pos s

f o o p o sso s l p p

o o o p o o s s

Compare t e data ase

resu ts or Sparc r3 r Searc

c ips
Return

igure .9: Actions to produce comparison o Sparc r3 r c ips.

igure .1 : Comparison o Sparc r3 r c ips .

1

The following benchmark question was posted by Erik Hoel from University of

Maryland, College Park, MD:

loo fo s o fo s l

o o l op o s ll o l l o l o l

s l p fo of s s of

op o sso s fo l p pos o p o

We illustrate the actions required to answer this question in Figure 7.11.

o view t e state o t e art

mac ines on t e inpac
Ran rdering per ormance ran inpac

igure .11: Actions to view ran ordering o Linpac resu ts.

The following question was posted by David ickers (vickersd gecko.ee.byu.edu)

at Brigham oung University, Provo UT USA:

o o s p p o p ll l p o ss o l

pp s o o l s

fo s s o o ll p ll l p o ss sp s

p sp f s p o sso s

p o sso

We illustrate the actions required to answer this question in Figure 7.12.

o compare S mode s wit

Cra mode s
Searc Return

igure .1 : Actions to compare S and Cra resu ts.

The following question was posted by Alkiviadis azacopoulos av0h andrew.cmu.edu

at Carnegie Mellon, Pittsburgh, PA:

o l l o o l s s o of p p

of o fo of o s o p s s

o s of

We illustrate the actions required to answer this question in Figure 7.13.

o view t e Dongarra

Linpac report on ine apers otes per ormance papers inpac

igure .13: Actions to view t e Linpac report on ine.

3

The following was posted by Anshu Aggarwal at Boston University:

s o fo o s l l fo

o p s

We illustrate the actions required to answer this question in Figure 7.14.

o view C -5 num ers Searc Return

igure .1 : Actions to view numerous C -5 resu ts.

oncl sion

.1 r

The Performance Database Server (PDS) provides an on-line catalog of available per-

formance metrics. This X-windows based tool provides a user-friendly interface with

multiple views into a dynamic set of data. PDS allows direct performance compar-

isons of machines using popular benchmarks. It is anticipated that PDS will serve a

valuable role in the dissemination of performance information and standardization of

benchmark presentation formats.

. i i it

To receive the Xnetlib client package to a Unix system send the electronic mail mes-

sage sen ne b.s ar r ne b to l l o l o . ou can the ns ar

the �le and compile it by following the included directions. Once compiled, this shar

�le will enable you the full functionality of Xnetlib along with the latest PDS client

tool. If you have questions or comments about PDS you may send electronic mail to

5

p s s Information concerning the acquisition inclusion of additional

benchmark data is certainly welcome.

. t r or

The PDS project continues to evolve. In fact, PDS has several new features which

need to be developed, and as always, the data needs to be frequently updated in order

to track performance trends.

8.3.1 Addition of raphical Interfaces

A major problem with the current performance interface is the deluge of data that

a user is confronted with. A simple query can produce more data than the user can

comprehend without a great deal of expertise. Because of the
ood of performance

data that we have uncovered during the course of this project, it is important that

we work on ways to better display this massive amount of data for the user. A

graphical interface which could display a graph of data, either bar chart or simple

plots, would reduce the user strain and improve the tool signi�cantly. A spreadsheet-

based display so that users can easily extract subsets of performance data with little

e�ort is anticipated.

8.3.2 Tool development

We also anticipate adding a compare feature to the client interface. The compare

option will allow users to make head-to-head comparisons of machines. Using a

spreadsheet, appropriate benchmarks and vendors may be searched so that data �lls

the spreadsheet and may be display in a variety of forms for the user. This direct

comparison feature will be a powerful tool for users who want to quickly view a very

small subset of data.

. ti i io r

The process of gathering papers and references relating to performance metrics, par-

allelizing compilers, benchmarks and machine architectures will never cease. It is

important that the bibliography be kept up to date.

iblio raph

iblio raph

[BaBa85] D. Bailey and J. Barton. The NAS ernel Benchmark Program. NASA

Ames Technical Memorandum 86711, 1985.

[Bail91] D. Bailey et al. The NAS Parallel Benchmarks. NAS Systems Division,

RNR{91{002, January 1991.

[BDGM91] A Beguelin, J Dongarra, G Geist, R Manchek and Sunderam. Solv-

ing Computational Grand Challenges using a Network of Supercomput-

ers. r cee n s e n erence n ara e r cess n ,

Philadelphia, PA, SIAM, 1991.

[Berr89] M. Berry et al. The Perfect Club Benchmarks: E�ective Performance

Evaluation of Supercomputers. n erna na rna erc er

ca ns, 3(3):5{40, Fall 1989.

[BeCL91] M. Berry, G. Cybenko and J. Larson. Scienti�c Benchmark Character-

izations. ara e n , 17:1173{1194, 1991.

[BeDL93] Michael W. Berry, Jack J. Dongarra and Brian H. LaRose. PDS: A Per-

formance Database Server. Submitted to erc n , Portland,

OR., November, 1993.

9

[BiNe84] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Pro-

cedure Calls. ransac ns n er s e s, 2(1), February

1984.

[Bray93] Tim Bray. Personal Correspondence, May 1993.

[CaGe92] N. Carriero and D. Gelernter. Supercomputing Out of Recycled

Garbage: Preliminary Experience with Piranha. r cee n s e

n erna na n erence n erc n , ACM Press, 1992.

[Dixi90] . M. Dixit. Speculations: De�ning the SPEC Benchmark. n ec

rna , ol 1, January 1990.

[DoRW93] Jack J. Dongarra, T. Rowan, R. Wade. Software Distribution Using

XNETLIB. n ca ns e , To appear, 1993.

[Dong88] Jack Dongarra. Performance of arious Computers Using Standard Lin-

ear Equations Software in a FORTRAN Environment. er c -

ence e ar en ec n ca e r University of Tennessee,

March, 1990.

[Gust90] J. Gustafson et. al. The Design of a Scalable, Fixed-Time Computer

Benchmark. ec e r . Ames Lab, Iowa State Uni-

versity, 1990.

[Gust91a] J. Gustafson et. al. SLALOM: The First Scalable Supercomputer Bench-

mark. rna ara e an s r b e n , 12:388{401, Au-

gust 1991.

5

[Gust91b] John Gustafson et al. Slalom Update: The Race Continues. erc -

n e e , 56{61, March 1991.

[Hobb91] W. . Hobbs. e a na a abase ana e en s e . Rand

Corporation, December 1991.

[Hock91] Roger Hockney. Performance Parameters and Benchmarking of Super-

computers. ara e n , 17:1111{1130, December 1991.

[Hock92] Roger Hockney. A Framework for Benchmark Performance Analysis.

erc er, March 1992.

[HoPa87] E. N. Houstis, T. S. Papatheodorou and C. D. Polychronopolous. The

LINPAC Benchmark: An Explanation. erc n , (Springer

Lecture Notes on Computer Science) 297:456{474, 1987.

[McMa86] Frank McMahon. The Livermore Fortran ernels: A Test of the Nu-

merical Performance Range. ec n ca e r - , Lawrence

Livermore Lab, Livermore CA., 1986.

[Norc92] Bill Norcott. Personel Correspondence, October, 1992.

[Pete92] Chris Peterson. ena e e an a e n er ace. X ersion

11, Release 5, MIT X Consortium, MIT Press, Boston, MA., 1992.

[Rand87] an se c nar e n s an a e Second edition,

unabridged. Random House Publishing Co., New ork, 1987.

[Unie89] Joseph Uniejewski. SPEC Benchmark Suite: Designed for Today's

Advanced Systems. e s e er, 1(1), Fall 1989.

51

[WaSc90] L. Wall and R. Schwartz. r ra n n er . O'Reilly and Associates,

Inc., Sebastopol, CA., 1990.

[Webs83] ebs er s n e e a e c nar . Merriam{Webster, Inc,

New ork, 1983.

[Weic91] Reinhold P. Weicker. A Detailed Look at Some Popular Benchmarks.

ara e n , 17:1153{1172, December 1991.

5

ppendi

53

ic r c i

When compiling Xnetlib 3.3 to include the PDS client please be sure to use the

ag in the f l at compile time. This will include all the

PDS client's source in creating the object. ou will then have access to both current

Xnetlib and current PDS X-windows interface. If you do not see the fo

button under the main Xnetlib menu, then the performance section was not compiled

correctly. Please re-edit the f l and verify that the is not

commented out. After checking Imake�le, type \make clean" to remove the old

objects, and f to remake the Make�le. Then remake the client with the Unix

command . If you are having trouble building the client, please contact your

system administrator for assistance. Send mail to p s s for further

assistance with the installation.

To access the PDS database from the Xnetlib client, select the fo button

with your left mouse button. After doing this, the six buttons of the Performance

Extension will popup. Select the button of your choice to gain access to the online

database. A brief description of the available functions is given below:

Ran rdering

-

Browse

-

5

Searc

-

Save

-

apers

-

Bi iograp

-

55

ita

Brian Howard LaRose was born in Newport News, irginia on April 25, 1967. He

graduated from Farragut High School in noxville in 1985. After matriculating to

the University of Tennessee, he received his Bachelors of Science in May of 1989. In

September, 1989, he entered the graduate program in Computer Science. While a

graduate student, he has worked as a Graduate Teaching Assistant in the Computer

Science Department, and a Graduate Research Assistant for Jack Dongarra in the

Innovative Computing Laboratory at UT . In the spring of 1993, he took a position

with Hewlett-Packard Company as a system engineer. He and his wife Ginger moved

to Georgia in April 1993. Brian's interests include spending time with his friends,

camping, playing basketball, antique autos, �shing, street rods and hiking.

5

