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Abstract

In this thesis, improved sequential and data-parallel implementations of landscape
ecology model components are presented. Parallelization efforts on the (SIMD) Mas-
Par MP-2 focus on three model components: cluster identification, mean squared
radius computation (cluster geometry), and animal movement.

The NOrthern YELlowstone Park ungulate model (NOYELP), developed by Drs.
Monica Turner and Yegang Wu of the Environmental Sciences Division, Oak Ridge
National Laboratory, serves as the example landscape ecology model for the model
components studied. Modifications made to the original Fortran-77 NOYELP program
as part of this thesis project resulted in a revised serial version which executes 11
times faster than the original (CPU time on a Sun SPARCstation 2).

Parallel implementations were tested and compared to functionally comparable se-
rial algorithms using both random maps and maps extracted from runs of the NOYELP
model. Speed improvements of MasPar MP-2 parallel kernels over serial implementa-
tions on Sun SPARCstations on the order of 9 and 150 for cluster identification and
mean squared radius computation, respectively, were measured on 512 x 512 random
maps with a resource probability of 0.85. Speed improvements generally increased
with map size and density. For landscape maps tested, speed improvements were
somewhat lower, due largely to the inclusion of map pixels outside the study area
(54% of total map pixels) in the data maps analyzed.

Results of this study indicate that parallel adaptation of kernels for cluster identi-
fication and geometry is straightforward, but that effective parallelization of animal
movements in the NOYELP model and similar individual-based models will involve re-
conceptualizing the movement rule. Issues involved in the parallelization of landscape
ecology models are discussed and suggestions are made for future work in this area.
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Chapter 1

Introduction

1.1 Motivation

The impracticality of large scale experimental perturbations of natural systems has
made computer modeling an important research tool in landscape ecology ([TWWR+493]).
Computer simulations are becoming increasingly important in assessing the degree of
habitat fragmentation (clustering phenomena) and its ecological implications in many
different contexts and at varying spatial and temporal scales. Unfortunately, most
landscape ecology models rely on sequential programming, which imposes practical
limitations on the size and density of maps which can be analyzed. Parallel com-
puting can expand the capability of these models to simulate spatial and temporal
pattern in large ecological systems ([Haef92]).

Individual-based ecological models represent population dynamics by simulating
the behavior and interaction of individuals or small groups of individuals responding
as discrete units to pattern changes in the environment. Individual movement is
simulated in two- or three-dimensions depending on the particular ecological context
([Lomn92]). These models generally have greater computational requirements than
population models and can potentially benefit greatly from parallel programming
([Haef92]).

The NOrthern YELlowstone Park ungulate model (NOYELP), the example land-
scape ecology model used in this thesis, was developed by Drs. Monica Turner and
Yegang Wu of the Environmental Sciences Division, Oak Ridge National Laboratory.
NOYELP is an individual-based stochastic model which simulates ungulate population
dynamics by representing the movement and foraging behavior of small groups of elk
and bison in response to changes in the environment that impact the availability of
forage and the distance a group can travel in a single day. Computing time for the
original serial NOYELP model increases with the number of animals included in the
model, as well as with the level of available resources. Parallel computing can be
used to increase the number of individuals and the range of environmental conditions



considered in individual-based models like NOYELP.

1.2 Objectives

An important objective of this research effort is to produce scalable map analysis
algorithms for the identification and characterization of clusters for large, complex
maps on massively-parallel SIMD computers. In landscape ecology models, cluster
analysis kernels are often called at the end of each model time step to record and
evaluate pattern changes, making them key components of many models. For ex-
ample, the NOYELP model performs cluster analysis twice per model day over 180
days and over 5 replications, for a total of 1800 calls per execution cycle. Cluster
radius, a measure of the compactness or density of clusters, has many potential uses
in landscape ecology. However, determining radius measures can be computationally
intensive, resulting in their exclusion from many applications because of constraints
associated with computing time. An efficient parallel kernel for radius computation
could make the use of cluster radius (and other measures derived from radius) feasible
in landscape ecology modeling.

A second thesis objective is to investigate issues associated with parallelization of
the animal movement component of landscape ecology models. Animal movement
is typically implemented in serial programs as nested loops of activity repeated over
each time-step of a model cycle, a situation for which parallel processing appears
well-suited. However, many subjective decisions are made in formulating the rules
governing the search and movement of animals in serial models. Some of these rules
are based on the serial paradigm and may be unsuited to the constraints of parallel
computing. Reconceptualization of movement rules may be necessary for parallel
implementations of individual-based models.

1.3 Thesis Overview

Improved sequential and data-parallel implementations of landscape ecology model
components are presented in this thesis. Parallel kernels are implemented on the
MasPar MP-2, a single instruction, multiple data (SIMD) massively parallel machine.
Three model components are examined: cluster identification, mean squared radius
calculation (cluster geometry), and animal movement. The first two components are
not model-specific and could serve as kernels or modules in other landscape ecology
models. The animal movement component is specific to the NOYELP model. Parallel
implementations of these landscape model components are tested on random maps
and on landscape maps extracted from runs of the NOYELP model. Performance of
parallel kernels is compared to that of optimized serial programs.

Chapter 2 of this thesis briefly describes the MasPar MP-2 system, the MasPar



Programming Language (MPL) and the two data-mapping strategies (i.e., hierar-
chical and cut-and-stack) supported by MasPar. Chapter 3 provides background
information about the NOYELP model. Procedures and concepts common to the de-
velopment and testing of all kernels are presented in Chapter 4. Chapters 5 through 7
address cluster identification, cluster geometry, and animal movement, respectively.
Both serial and data-parallel algorithms, along with performance comparisons, are
discussed in these chapters. Chapter 8 states conclusions drawn from parallelization
efforts and suggests future work in this area. Supplementary information is provided
in Appendices A-D.



Chapter 2

Data-Parallel Programming on

the MasPar MP-2

The MasPar MP-2 is a massively data-parallel distributed memory processing system
consisting of a front end machine and a Data Parallel Unit (DPU). The front end of
this single instruction, multiple data (SIMD) system is a DECstation 5000 model 200
workstation with an ULTRIX operating system, windowing capabilities, and standard
[/O devices. The DPU, which handles all parallel processing, consists of the Array
Control Unit (ACU), the processor (PE) array, an 8-way X-net communication mesh
and a global router. Figure 2.1 is a schematic diagram of the MasPar MP-2 system.

The ACU has 24 32-bit registers for user-declared register variables, 128 KBytes
of data memory, and 1 MByte of physical instruction memory (RAM), expandable to
4 GBytes of virtual instruction memory. The ACU performs operations on singular
(shared) variables which are visible to all processors, and controls the PE array,
sending data and instructions to each PE simultaneously via the dedicated ACU-PE
bus.

The MasPar MP-2 used for this study! has 4096 processors arranged in a 64 x 64
grid. Each PE is a RISC-based processor with 32 32-bit registers available for user-
declared variables and 64 KBytes of private (unshared) memory. Each PE has a 16-bit
datapath connecting local memory to PE registers. During program execution, all
PEs receive the same program instruction from the ACU. All PEs which are active
(enabled) at that point in the program execute the same operation simultaneously
on their private data. PEs are connected by an 8-way X-net communications mesh
and by a global router. In order for one PE to access the private data of another PE,
special communication constructs must be used.

Lsupported by the Joint Institute for Computational Science (JICS) at the University of Tennessee, Knoxville.
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Figure 2.1: Diagram of the MasPar MP-2 system.

2.1 MasPar Programming Language

All kernels developed for this thesis were written in the MasPar Programming Lan-
guage (MPL), MasPar’s ANSI-C compatible language for programming the DPU.
MPL is the most efficient and flexible language supported by MasPar. It is also Mas-
Par’s lowest level language, allowing more user control over communication and data
mapping to processors than can be obtained with MasPar Fortran (MPF). MPL ex-
tensions to ANSI C include the capability to allocate plural variables across PEs and
the ability to perform operations on these variables. MPL adds the keyword plural
to specify that the associated variable is parallel. An example is provided below.

int i /* allocates 4 bytes in the ACU’s memory */
plural int j; /« allocates 4 bytes in each PE’s memory */

Three communication constructs are provided for sending and receiving values
between sets of PEs: iproc, xnet, and router. The iproc construct allows access
to a plural variable on a single PE. The xnet construct is used to access processors



which are a uniform distance away from active processors in one of eight directions:
north, south, east, west, northeast, northwest, southeast, or southwest, requiring both
a distance and a direction specifier. Automatic toroidal wraparound is employed with
xnet to allow circular shifting of data values. East-west borders and north-south
borders are connected for shift purposes. For example, the bottom row of PEs is 1
xnet shift north of the top row of PEs. The global router is used for communication
between a particular PE and any other member of the PE grid.

2.2 Data Virtualization on the MasPar MP-2

Typical cluster analysis applications involve data sets larger than the size (64 x 64)
of the MasPar MP-2 processor array. In situations such as this, where individual pro-
cessors must handle more than one data point (i.e., map pixel), data must be mapped
onto the processor array in some fashion. MasPar systems provide two general data
mapping strategies for allocating multiple data points to individual processors: cut-
and-stack and hierarchical. Figures 2.2 and 2.3 show in schematic form MasPar MP-2
cut-and-stack and hierarchical virtualization, respectively.

Two Dimensional Array of Data Data Allocation
B | D A Cl|l B D
@ @ PEO PE 1
E F G H I K| J L
J L E G||F H
@ @ PE 2 PE 3
M N!'O P M O N P

2 x 2 PE Array
0 1
2 3

Figure 2.2: Cut-and-stack virtualization on the MasPar MP-2.

With cut-and-stack mapping (Figure 2.2), the data set is divided into a number of
segments, called pages, equal to the total number of pixels divided by the total number
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Figure 2.3: Hierarchical virtualization on the MasPar MP-2.

of PEs (i.e., 4096). Each page is the size of the PE array and each PE receives one
piece of data from the same relative position in each page. Therefore, if the data pages
were stacked, the data assigned to each PE would be an array whose elements form
a column running vertically through the stacked pages. In cut-and-stack mapping,
logically consecutive data points (i.e., adjacent map pixels) are assigned to physically
adjacent processors, accessed by using the MPL communication construct xnet. In
Figure 2.2, circled data items are assigned to PE 0.

To implement hierarchical data mapping, the data set is divided into as many
equally-sized rectangular blocks of adjacent elements as there are PEs, with each PE
being allocated one logically contiguous block representing a sub-grid of the original
data set. No communication constructs are required for operations within each PE’s
sub-grid of values. The xnet construct is used to communicate between border row
and column elements of adjacent sub-grids. As with cut-and-stack mapping, for maps
greater than 64 x 64 processors are assigned more than one pixel, and these pixels
are stored as data arrays at each processor.

In choosing between these two strategies, one tries to maximize processor utiliza-
tion by balancing the workload across processors, while at the same time minimizing
communications between processors. Hierarchical mapping is generally more efficient
when communication needs are localized in subareas of the data map. Algorithms



implementing cut-and-stack mapping are generally simpler to encode, and are often
more efficient when there is no advantage to having adjacent data in each PE memory
(i.e., when communication requirements are not localized) because work is distributed
more evenly across processors.

There exists a family of MasPar mpi conversion functions which allow data con-
figurations to be changed within a program. If different data mapping strategies are
more efficient for different parts of a program, the programmer can switch between
cut-and-stack and hierarchical mapping as needed. See Appendix A for a list of these
functions.

Data-parallel cluster analysis kernels employing both hierarchical and cut-and-
stack data mapping were developed on the MasPar MP-2 for this study and perfor-
mance comparisons were made for the two strategies. These results are discussed in

Chapters 5, 6, and 7.



Chapter 3

Northern Yellowstone Park
Ungulate Model

The programming efforts discussed in this thesis use as an example the spatially
explicit, individual-based NOYELP model. The NOYELP model simulates the search,
movement, and foraging activities of individuals or small groups of free-ranging elk
(Cervus elaphus) and bison ( Bison bison) on the part of their winter range which lies in
northern Yellowstone National Park (NYNP). The model was developed to explore the
effects of fire scale and pattern on winter foraging and survival of ungulate populations
on the heterogeneous, multi-habitat NYNP landscape. The information presented in
this chapter is a summary of [TWWR+93], which provides a detailed description
of the model and its application to the assessment of impacts of fire on ungulate
survival in the context of related studies. A summary list of NOYELP subroutines and
formulas used for computation of forage biomass and animal energetics are included
in Appendix B.

NOYELP simulations are conducted for each of 180 days during the (approximate)
period of November 1 through April 30. Within a day, an animal group makes one
to several moves in its search and foraging activities. Available forage biomass varies
as a function of foraging activity and snow cover. Ungulate body weight is decreased
whenever daily forage intake does not meet energy requirements. Starvation during
winter, the main factor influencing ungulate mortality in the study area, occurs when
calculated body weight falls below survival thresholds. The model does not project
ungulate reproduction or plant growth. For each year simulated, new data (e.g.,
weather conditions during the 180-day period, number of ungulates present at the
beginning of winter, and amount of forage in kg/hectare present in each habitat
category at the beginning of winter) are input to the model. Because NOYELP is
a stochastic model, five replications of the 180-day simulation period are run with
each set of input conditions, and results are summarized statistically over the set of
replicates.



3.1 Description of the Study Area

Yellowstone National Park (YNP) was established in 1872 as the nation’s first National
Park. It covers 9000 km? (900,000 hectares) of the landscape in the northwest corner
of Wyoming and immediately adjacent parts of Montana and Idaho. The NYNP study
area encompasses 77,020 ha in the north central part of YNP. Approximately 83% of
the elk winter range is included within the NYNP study area. Ecological dynamics on
the winter range largely control ungulate survival and population sizes in YNP.

YNP is characterized by long, cold winters and short, cool summers. The climate is
somewhat warmer and drier in the study area compared to the rest of the Park. The
northwestern-most part of the study area lies in a precipitation shadow. Snowfall in
this area is typically lower than in the winter range as a whole. While elevations in
YNP range from 1500 m to more than 3000 m, those characteristic of the NYNP study
area are in the lower end of the range. The vegetation of the study area consists
primarily of lower-elevation grassland or sagebrush steppe interspersed with aspen
and conifer woodlands.

3.2 Model Description

In the NOYELP model, the NYNP landscape is represented as a gridded irregular
polygon with a spatial resolution of 1 hectare. The irregular shape of the study area
requires a 285 by 584 grid (166,440 grid cells) to span the 77,020 1-hectare grid cells
for serial implementations.

Spatial heterogeneity across the NYNP landscape is represented by a series of data
maps. Some of the environmental data (e.g., elevation, slope, aspect) are constants,
while others (e.g., baseline snow depth and forage biomass) may vary from simulation
to simulation. Many of the abiotic data were obtained from the YNP geographic
information system (GIs). Elevation is used primarily to initialize bison locations at
the beginning of the simulation. Slope, aspect and baseline snow depth are used to
estimate effective snow depth.

Initial quantities of pre-winter forage assigned to each habitat grid were derived
from data collected during late summer and early fall of 1990. Unlike other habitat
variables, forage biomass values are influenced by animal foraging activities and ef-
fective snow depth. Ungulate groups search the study area for forage according to a
detailed serial movement rule. When snow depth exceeds the brisket height of the
particulate ungulate category, foraging cannot occur. Daily forage intake is balanced
against daily energy expenditure in estimating weight loss by ungulate individuals.
When weight drops below a survival threshold, mortality occurs.

The NOYELP model was originally calibrated by adjusting the values of two param-
eters, maintenance energy (enmb) and the upper threshold of snow equivalent at which

10



foraging is precluded (swhi), for which field data were not available ([TWWR+93]).

3.2.1 Habitat types

To simulate ungulate foraging and survival, the NYNP landscape is discretized into
six habitat types (Figure 3.1). Four of these six habitat types are grasslands, dif-
ferentiated primarily on the basis of moisture availability, species composition and
biomass production. At elevations characteristic of NYNP, the sagebrush-grassland
habitat types form a patchwork mosaic with the two woody habitat types, aspen
stands and coniferous (canopy) forests (dominated by pine and fir). In general, ungu-
lates appear to respond to forage quantity rather than quality or subtle community
differences, which simplifies the modeling process. At the start of the model year,
forage is distributed within each habitat type by assigning to each grid cell in the
habitat type a forage biomass value drawn randomly from the 95% confidence interval
(i.e., £ 2 standard errors) of a normal distribution around the mean for the particular
vegetation class, as determined by field sampling.

3.2.2 Ungulate Categories and Distribution

Six ungulate categories were defined for simulation purposes. Bison groups consist of
9 cows, 9 calves, or 2 bulls, while elk cow, calf and bull groups each include four indi-
viduals. Since calf groups follow the foraging pattern of the cow groups to which they
are assigned, the model effectively simulates groups of 8 and 18 combined cow/calf
groups for elk and bison, respectively. The model places no constraints on the num-
ber of groups that may occupy a grid cell at one time. All animals within the same
ungulate group are assigned the same initial body weight.

Elk are initially distributed randomly within grid cells containing forage (i.e., re-
source sites) across the winter range. Bison groups are initially distributed randomly
in grassland habitats at elevations < 2100m, resulting in approximately 90% being
assigned to the eastern portion of the study area.

3.2.3 Snow Simulation

Snow conditions are extremely important in determining the winter dynamics and
survival of ungulate populations in the NYNP. Both foraging and movement can be
affected by snow. Snow depth and snow density (%) are used to determine ener-
getic costs of travel and maximum daily moving distances. Snow water equivalent
(swe), the product of snow depth and density, influences daily forage intake. When
snow depth exceeds brisket height, ungulates generally cannot forage. Even shallow,
densely packed snow may limit foraging. There is an upper limit of snow /water equiv-
alent (swhi) above which no foraging can take place. This limit is category-specific,
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depending largely on the size of the animal (i.e., brisket height). For example, bulls
can travel and graze in deeper, denser snow than calves.

To simulate snow conditions, the northern range is first subdivided into two regions
(the snow-shadow area and the rest of the study area), based on amount of winter
precipitation, and baseline snow depths and densities are then projected within each
area, assuming no slope or aspect effects. These baseline projections are subsequently
modified according to the slope and aspect of each grid cell. Snow conditions are
updated at 3-day intervals.

3.2.4 Foraging

Daily ungulate forage intake on a grid cell is a function of maximum daily intake.
This intake is a product of two constants, initial body weight (bw) and maximum
daily foraging rate, (feed), and one of two negative feedback terms representing the
amount of available forage at the site (fbbio) and the depth and density of snow
(fbswe). Each feedback term is a number between 0 and 1. Whichever feedback term
is smaller has the greater impact on foraging and is allowed to operate.

The hyperbolic forage availability feedback term (fbbio) reflects a direct relation-
ship between the amount of available forage and the instantaneous rate of feeding.
As ungulates graze, the feedback term decreases, reflecting a decrease in the amount
of available forage on the grid cell. Because no regrowth of vegetation occurs during
the winter (dormant) season, and no other sources of forage attrition are considered
in the model, biomass can only remain the same or decrease. The feedback function
utilizes the concept of a refugium value of biomass not available to ungulates. When
forage biomass falls to the refugium value (13% of Fall biomass), the value of the
feedback term is set to zero. When the refugium value is greater than 0, the feedback
term will be less than 1.

The snow water equivalent (swe) feedback term reflects the effect of both snow
depth and snow density on the ability of ungulates to obtain forage. Two thresholds
(the value at which foraging is set to zero and the value at which limitation of foraging
begins) are used in defining the snow feedback term. At swe values greater than those
which limit foraging, an animal can forage at its maximum rate. Between the two
thresholds of swe, a linear change in the value of the feedback term is assumed.

3.2.5 Search and Movement Rules

The NOYELP model utilizes a simple algorithm to simulate an ungulate’s search and
movement strategy. If an ungulate group is located on a grid cell containing available
forage at the start of the day, the animal grazes. If forage intake on that cell is less
than the daily maximum, the animal searches for another grazing site. Because the
forage feedback term has an upper limit at 0.87 (with the refugium level set to 13%),
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the ungulate group cannot attain its maximum daily intake of forage from one grid
cell, and must move at least once per day. An ungulate group is prohibited from
remaining at the same grid cell, revisiting a grid cell during the course of one day’s
movement, or moving to a grid cell outside the boundary of the study area. Searching
procedures are described in detail in Chapter 7.

During fall and early winter, when forage is generally available, ungulate groups
will typically move only once per day. Later in the winter, when forage becomes less
available due to foraging and/or the presence of snow cover, an ungulate group may
move several times per day in its search for food. Maximum movement distance (and,
therefore, the number of moves an ungulate group can make in one day) decreases as
snow conditions become more extreme because of increases in energy costs associated
with travel in snow.

3.2.6 Energetics

Daily energy balance is the difference between daily energy gain, engain, and daily
energy expenditure, encost. Engain is the product of total intake of forage in kg (£d)
and habitat type specific forage energy content in kcal/kg (enpk). Encost is the sum of
maintenance energy cost (enme) and travel energy cost (enmov). Maintenance energy
cost, represented as a power function of current body weight, includes the energy costs
associated with all the animal’s daily activities which occur within the grid cells. For
initial model parameterization, estimates of maintenance energy cost obtained from
the literature were used, but these estimates were subsequently adjusted during model
calibration. Travel energy cost is computed by first calculating the (per unit distance)
energy cost of travel in the absence of snow (a function of body weight), and then
modifying this value to account for the relatively higher travel costs associated with
travel in snow (a function of snow depth and snow density). These costs increase
exponentially as a function of relative sinking depth, and may limit maximum daily
distance traveled and (consequently) the number of cells a group can search during
the day.

Whenever forage intake is insufficient to meet the animal’s energy expenditures,
ungulate body weight is adjusted downward. No weight gain is permitted. Death by
starvation is assumed to occur when ungulates lose both 70% of their fat and 30% of
their non-fat body weight. Since no predators are included in the model, death by
starvation is the only significant source of population attrition on the winter range.

3.3 Example Data Set
For the example data set used in simulations for this study, 19,972 animals in 5,015

groups were input to the model. Greater than 96% of the total number of ungulates
were elk. Table 3.1 presents a listing of ungulate cow, calf and bull groups, with
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Table 3.1: Sample composition of animal groups in a NOYELP model simulation.

Fraction of  Size of  Number of Number
Category Population Groups Individuals of Groups
Elk:
Cows 0.65 4 12524 3132
Calves 0.16 4 3084 771
Bulls 0.19 4 3660 915
Total 1.00 19268 4819
Bison:
Cows 0.38 9 270 30
Calves 0.18 9 126 14
Bulls 0.44 2 308 154
Total 1.00 704 196
All ungulates 19972 5015

a count of individuals of each species belonging to each of the categories. Since
movement of calf groups follows that of the cow groups to which they are assigned,
the model effectively simulates the movement of 4,230 groups.
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Figure 3.1: Map of NOYELP study area showing habitat types.
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Chapter 4

Preliminaries

In developing kernels for diverse applications requiring cluster identification and ge-
ometry, the programmer must make the kernels adaptable to the needs of the appli-
cation. Clusters might represent resources, animals, landscape patterns, or dispersal
patterns of pollutants ([TWWR+493]). Map size and density may be static or may
change during program execution.

To simulate cluster analysis on landscape maps, random maps are generated having
a proportion, p, of 1’s. The proportion of 1’s (or non-zero elements) in a map is
called the p wvalue of that map ([StAh91]). These random maps are then used to
facilitate algorithm development and to test parallel implementations for accuracy.
Using random maps, performance of an algorithm can be predicted on prospective
real world maps of various sizes and densities from actual landscape ecology models.
For testing purposes, m x m random maps of density p are generated, where m =
64, 128, 256, 512, 768, 1024, and p = 0.10, 0.30, 0.62, 0.85, and 1.00 for each value
of m.

In landscape ecology models, the non-zero pixel elements generally represent an
assigned level or range of some specific habitat parameter (e.g., moisture less than
10%, biomass greater than 100 kg/hectare, or a flammability index of 7), animal
group density, or some aggregate of parameters representing habitat suitability on
the unit area of landscape.

For this study, 1 hectare landscape units with available resource (i.e., forage
biomass) above a pre-assigned threshold level is represented by setting the grid el-
ements of the random maps to 1 with a probability of p. For these random maps,
a setting of 0 (with probability 1 — p) represents habitat with resource levels below
the threshold. Thus, pm? is the number of pixels of suitable resource habitat (or 1’s)
within the map. For irregularly-shaped real world study areas, such as NYNP, the
rectangular or square data grid will include pixels outside the study area, thereby
decreasing the p value of the map as a whole.
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4.1 Map Density

Table 4.1 summarizes cluster size distribution, size of the largest cluster, and total
number of clusters for the five p values and six map sizes used in this study. All
clusters for maps with p = 0.10 and p = 0.30 have fewer than 100 members (or
pixels), while maps with p > 0.62 have a large dominating cluster, along with smaller
clusters. This change in maximum cluster size is explained by percolation theory
([StAh91]). According to this theory, maps with p values greater than a threshold
of 0.5928 are characterized by a large dominating cluster that percolates across the
map from boundary to boundary. A random map with p = 0.10 is a sparse map with
small, isolated clusters; p = 0.30 yields a map with many fragmented clusters; a map
with p > 0.59 is dominated by one large cluster.

Figure 4.1 illustrates the differences in cluster numbers and sizes associated with
p values of 0.30 and 0.62 for 64 x 64 maps.

I-I

Figure 4.1: Sample 64 x 64 random maps with (a) p = 0.30 and (b) p = 0.62.

As the p value of a map increases, the amount of the work involved in cluster
identification and geometry computations changes. The relationships of number of
clusters, maximum cluster size, and average cluster size to p value for 256 x 256
maps are illustrated in greater detail in Figure 4.2. The number of clusters gradually
increases to a peak around p = 0.33, after which it gradually decreases to 1. The av-
erage cluster size remains small until p values exceed 0.80 and the number of clusters
drops to about 100. Maximum cluster size stays relatively small until the percola-
tion threshold of p = 0.5928 is reached, after which the size of the largest cluster
increases dramatically and remains large. For larger p values, the average cluster size
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Table 4.1: Distribution of cluster sizes for randomly generated maps of six sizes and five p values.

Size of Total Cluster Size

Map  Largest  No. of 101- 501- 1001- 10001- 100001-
p Size  Cluster Clusters <100 500 1000 10000 100000 500000  >500000
0.10 64 8 325 325

128 6 1305 1305

256 7 5227 5227

512 12 20917 20917

768 8 47281 47281

1024 15 84140 84140
0.30 64 25 534 534

128 29 2157 2157

256 33 8484 8484

512 42 33891 33891

768 44 75941 75941

1024 55 135122 135122
0.62 64 1981 110 109 1

128 6609 382 376 4 1 1

256 34363 1400 1393 5 1 1

512 141190 5503 5490 10 1 1 1

768 323676 11989 11965 22 1 1

1024 577501 21141 21099 37 4 1
0.85 64 3455 4 3 1

128 13862 9 8 1

256 55523 30 29 1

512 222417 129 128 1

768 500409 259 258 1

1024 890080 510 509 1
1.00 64 4096 1 1

128 16384 1 1

256 65536 1 1

512 262144 1 1

768 589824 1 1

1024 1048576 1 1
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Figure 4.2: Comparison of cluster characteristics across p values for 256 x 256 maps (a) standard
scale and (b) log scale.
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approaches the size of the largest cluster as the number of clusters approaches one.

Execution times for cluster identification and geometry programs can be related
to changes in cluster characteristics as a function of map density. Different cluster
analysis algorithms developed during the course of this study generally reach perfor-
mance peaks at characteristic p values. Some algorithms performed well on sparse
maps (p values below about 0.15) or handled large numbers of small clusters well
(p values near 0.30), but did not process dense maps containing a small number of
large clusters efficiently. Algorithms which perform well on the large dominating clus-
ters found in maps with p values above 0.59 often were not well adapted to handle
the numerous smaller clusters found in sparser maps. Testing with maps of widely
varying densities is necessary to identify the combination of algorithms which provide
optimal performance over the entire range of densities found in real landscape maps.

The relationship between cluster characteristics and p values is somewhat different
for non-random landscape maps. While the size of the largest cluster (and hence
computational complexity) is predictably tied to the p value in random maps, this
is not the case with landscape maps. For example, calculation of the mean squared
radius of a cluster of size n requires computing O(n?) squared row and column dif-
ferences. The random map of size 64 x 64 (4096 pixels) with p = 0.30 (1229 resource
pixels) generated for this study contains 534 clusters, all with fewer than 25 pixels
and an average cluster size of 2.3. A total of 6103 row and column comparisons
are required for all cluster geometry computations. By comparison, a 64 x 64 (non-
random) landscape map with a p value of 0.30 could have 1229 clusters of 1 pixel each,
requiring no row/column comparisons for mean squared radius calculation or, at the
other extreme, could have 1 cluster with 1229 pixels, requiring 1229 x 1229 = 151044
comparisons. Because the relationship of p value and cluster size is not predictable
for landscape maps, the size of the largest cluster is a more accurate indicator of
performance than p value for these maps.

While results from random maps might not be directly comparable to those from
landscape maps of the same size and density, the trends in algorithm performance
over a set of random maps of varying sizes and densities can serve as a general guide
to performance on landscape maps with known cluster characteristics. The similarity
between performance results for random and landscape maps increases as the p value
increases, since the range of possible cluster configurations decreases as maps become
more dense.

Some modeling applications require analysis of clusters in a static map of known
density while in other applications, such as NOYELP, changes in a given landscape
feature (i.e., available biomass) over time must be evaluated by identifying and char-
acterizing clusters at each time step. A typical dynamic application might start
with a dense map (high p value) and analyze progressively sparser maps as resources
are depleted; other applications will involve a map that is initially sparse, with the
p value increasing as complexity is added. In these dynamic applications, a small
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improvement in cluster analysis time could save hours in total computing time.

4.2 Map Size

The relationship between random maps and landscape maps is complicated by the
irregular shape of real landscape unit, and the resulting need to include pixels in real
maps which are outside the study area to attain a regular (i.e., rectangular) grid for
spatial analysis. For example, the 77,020 hectare NYNP study area is an irregularly-
shaped polygon. Because of its irregular shape, the study area must be represented
in the serial NOYELP simulation model as a 285 x 584 grid. If the study-area pixels
were contained in a square, it could be represented as a 278 x 278 grid, with a spatial
resolution of 1 hectare. Pixels outside the NOYELP study area constitute 54% of the
model grid and are assigned the value —1 to distinguish them from habitat pixels.

When NOYELP input files are adapted to the 4,096-processor MasPar MP-2 im-
plementations, the model grid must be further extended to 320 x 640, so that all
rows and columns are multiples of 64, the row and column dimensions of the MasPar
PE grid. This increases the proportion of non-study area pixels to 62% of the total
map area. For MasPar MP-2 implementations, each processor is assigned 50 pixels,
with an average of only 19 of these representing study area pixels. As a result, speed
improvements for parallel NOYELP implementations will be smaller than for random
maps of the same size. Processors which have been assigned map segments outside
the study area will be idle, causing performance degradation. For this reason, the
shape of the study area is a much more serious concern for parallel simulations than
for serial models.

Algorithm performance for NOYELP maps will also differ from that of random maps
of the same size and density because of the non-random distribution of forage biomass,
a product of environmental heterogeneity and non-random foraging activities. This
clumping of biomass distribution will affect different cluster analysis algorithms in
different ways (see discussion in Section 4.1 above).

4.3 Verification

In developing parallel cluster analysis and ungulate movement algorithms, testing
with maps of varying size and density is important not only for predicting perfor-
mance, but also for verification of results. Error detection in parallel programming
is not as straightforward as it is with serial programming, especially when data vir-
tualization (via MPL) is involved. Care must be taken to exercise all permutations
of inter-layer communication to ensure that no data are lost. Implementations which
function correctly for dense maps (i.e., which “turn on” most or all virtualized layers
to the active state) may fail when maps are sparse. On the other hand, these dense
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maps may generate large intermediate sums or products which test the limits of vari-
able sizes and the accuracy of variable casting. During the algorithm development
phase of this thesis effort, several errors appeared in only 1 of the 30 size/density test
combinations, pointing to the need for testing over a range of combinations.

4.4 Serial Computing Environment

The computing environment used for serial program development and testing for this
thesis consists of two architectures: the Sun SPARCstation 2 and the SPARCsta-
tion IPX. The SPARCstation 2 has a SunOS 4.1.2 operating system, a clock speed
of 40 MHz, and 64 Mbytes of RAM. The Sun SPARCstation IPX is very similar, with
a SunOS 4.1.3 operating system, a clock speed of 40 MHz, and 16 Mbytes of RAM.
Both are capable of a peak computation rate of 4.2 Mflops (Millions of FLOating-
Point operations per second). Performance of these machines on SPEC benchmarks
is shown in Table 4.2.

Table 4.2: Performance specifications for architectures used in the sequential computing environ-
ment.

Machine Sun SPARCstation IPX | Sun SPARCstation 2
MIPS 28.5 28.5
SPECmark89 24.4 25.0
SPECint92 21.8 21.8
SPEC{p92 21.5 22.8
Mflops 4.2 4.2

The serial timings presented in the results sections of Chapters 5 through 7 were
obtained from one of these two architectures, as specified in discussions and in table
and figure captions. The Sun SPARCstation 2 was generally used, except for pro-
grams which compute mean squared radius. These programs required many hours
of computing time, and were run on the Sun SPARCstation IPX because of the
availability of dedicated time. Dedicated wall-clock times are used when times for
serial implementations are compared to those for parallel implementations. When
serial implementations are compared with other serial implementations, CPU times
for programs run on the same machine (Sun SPARCstation 2 or Sun SPARCstation
IPX, as specified) are used. When computing times are specified as excluding 1/0
time, 1/0 refers to reading data from input files and writing results and times to a
standard output device (screen).
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Chapter 5

Cluster Identification

Cluster identification is not unique to landscape ecology. It is important in such
diverse fields as image processing and lattice field theory in physics ([ApCM92]). In
physics, cluster identification is performed on n-dimensional maps and is referred to
as connected component labeling, with map elements considered as boolean variables
set to on or off. The goal is to have the same unique label on all connected sites and
a different label for each disconnected cluster.

In landscape ecology applications, cluster identification typically involves locating
and labeling clusters in a 2-D grid, and determining cluster characteristics such as
total number of clusters, size of each cluster, size of the largest cluster, and average
cluster size. Adjacent pixels are considered to belong to the same cluster if they have
the same value (e.g., habitat or resource level), as defined by a particular nearest-
neighbor rule. The neighbor rule implemented in the serial and parallel algorithms
investigated in this thesis considers pixels containing the same value to belong to the
same cluster if they are north, east, west or south (NEWS) neighbors of each other
or of some other element in the cluster. Diagonal adjacency is not considered in this
rule. In the following discussion, grid cells or pixels having a positive value indicating
membership in the map class being analyzed are called resource pixels, consistent
with the NOYELP model example utilized in this effort (where forage biomass is the
resource variable of interest). Figure 5.1 shows a simple grid with cells belonging to
each cluster (according to the neighbor rule) in a common enclosure.

5.1 Serial Algorithms

Serial cluster identification algorithms fall into one of two classes: (1) those which
build entire clusters in sequence (i.e., one at a time) in the order in which they are
encountered during grid traversal, and (2) those which build clusters incrementally,
as members are encountered in grid traversal.
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Figure 5.1: Two-dimensional spatial grid showing showing 7 individual clusters.

Recursive and pseudo-recursive cluster identification programs fall into the first
class (i.e., they build cluster in sequence). Recursive programs have a cluster-building
function which labels one pixel, then calls itself recursively with the location of any
nearest neighbors of that pixel. Pseudo-recursive programs simulate recursion by
storing pixel locations in arrays, which serve as stacks of cluster elements from which
clusters are sequentially built. Cluster labeling is accomplished by traversing the grid
one element at a time. When a pixel containing a resource value is encountered, it
is labeled with a unique cluster number. Then all nearest neighbors of this pixel
are examined and added to the growing cluster if they are also resource pixels. This
process continues with examination of nearest neighbors of nearest neighbors, until
all pixels in a particular cluster are identified and labeled. Traversal of the grid (and
building of the next cluster) then continues with the next unlabeled pixel and the
process continues until all clusters members are labeled.

Algorithms which fall into the second class embody an alternate approach to cluster
identification, incremental cluster building. The grid is traversed from top down and
left to right. Pixels are given temporary labels as they are encountered, and labels
are updated as clusters take shape concurrently. Examples of this approach are the
Hoshen-Kopleman algorithm, discussed in more detail below, and the local diffusion
or label propagation method ([ApCM92]).
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In the following subsections, (5.1.1 to 5.1.3), five serial cluster algorithms are
discussed. Three of these (the original NOYELP function, a revision of this function,
and the Hoshen-Kopleman algorithm) implement incremental cluster identification,
while the other two, based on recursion and pseudo-recursion, respectively, process
clusters sequentially.

5.1.1 Original NOYELP incremental algorithm

The original cluster identification algorithm used in the serial NOYELP model is a
type of local diffusion algorithm, wherein repeated local nearest-neighbor comparisons
(using the NEWS rule) result in correct labels diffusing throughout the grid. As the
resource grid is traversed one element at a time, each element compares its resource
value with those of its nearest neighbors. Elements with matching values are included
in the same cluster by assigning to all the lowest (numerical) cluster label in the
cluster. Cluster labels are updated as cluster membership changes. In the original
NOYELP version, grid traversal is repeated four times, with four comparisons made for
each pixel on each pass. It was assumed that all clusters had been properly labeled
at this point.

As implemented in the original NOYELP model, this cluster identification algorithm
had several deficiencies. One involved a minor array index error which would have led
to aberrant results, but was easily corrected. The other, which involved the inefficient
and incomplete implementation of the basic algorithm, was more significant. Testing
with several 10 x 10 data files representing several known levels of cluster complexity
showed that this algorithm correctly identified simple cluster patterns, but complex
clusters were incompletely labeled. Testing with larger random maps revealed that
errors in cluster identification began to appear as resource pixel density approached
the percolation threshold (p = 0.59). Large clusters which spread from border to
border were incorrectly labeled as several smaller clusters. These results indicated
that four traversals of the grid were not sufficient for complete cluster identification
when densities were near the percolation threshold.

The original algorithm was modified to identify clusters correctly by adding an
activity flag and making repeated passes through the data until no cluster-building
activity was detected. As many as 32 4-comparison (NEWS) passes through a 1024 x
1024 map with p = 0.62 were required to accurately label all clusters, resulting in a
substantial increase in execution time. Clearly, a more efficient algorithm was needed
to deal with the range of map densities which might be encountered in modeling
natural environments.

Yegang Wu, author of the original NOYELP program, subsequently developed an-
other incremental cluster-building Fortran-77 algorithm (ORFOR) which correctly
identified all clusters and showed significant speed improvements over the original
algorithm (modified for accuracy by adding the activity flag, described above) but
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required large arrays and performed poorly on maps with large clusters.

5.1.2 Recursive and pseudo-recursive algorithms

Cluster identification is most easily conceptualized in recursive terms, but recursion
is not available in Fortran-77. Nonrecursive versions of recursive algorithms are of-
ten more efficient, even in recursive languages, because they lack the overhead of
repeated parameter passing, and because nonrecursive code is more easily optimized
by compilers ([HoSa83]).

A two-step approach was taken to develop this more efficient Fortran cluster iden-
tification algorithm:

1. A recursive C program (RECRC) was written and tested for accuracy. This pro-
gram provided the conceptual basis for development of a functionally comparable
pseudo-recursive Fortran program.

2. Following a procedure outlined in Horowitz and Sahni ([HoSa83]), the recursive
C program was translated into a pseudo-recursive Fortran-77 program (PRFOR).
The pseudo-recursive version builds clusters in the same way as the recursive
program, but uses only iteration to control program flow. Arrays of row and
column numbers (x- and y-coordinates) are used to simulate a stack. Pixel coor-
dinates are pushed onto the stack by adding elements to the arrays; coordinates
are popped from the stack by decrementing the count of items, which serves as
the maximum array index.

After testing for accuracy and performance on random maps of various sizes and
densities, the revised algorithm proved to be an acceptable alternative for cluster
identification. PRFOR was included in the revised NOYELP model and is used for
performance comparisons with the parallel kernels discussed below.

Figure 5.2 traces the performance of PRFOR for 1024 x 1024 random maps as
p value increases from 0 to 1. A direct linear relationship exists between execution
time and map density. Memory requirements for arrays which record the number of
elements per cluster peak near p = 0.32, while working stack array sizes increase with
increasing maximum cluster size and p value.

5.1.3 Implementation of the Hoshen-Kopleman algorithm

Another serial algorithm for incremental cluster identification, the Hoshen-Kopleman
algorithm ([HoKo76]), was implemented later in the thesis effort to serve as a basis
for the hierarchically-mapped parallel version of cluster identification. This algorithm
(HKFOR) traverses the map to be analyzed pixel by pixel, assigning pixels to tem-
porary clusters as they are encountered. Two working arrays, level and label, are
maintained to keep track of clusters-in-progress. Level is the length of a row in the
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Figure 5.2: CPU time versus p-values ranging from 0 to 1 for 1024 x 1024 random maps using the
serial PRFOR algorithm on a Sun SPARCstation 2 (excluding I/0).

main map, and records the cluster identification label of elements in the previous
row analyzed. Label is an array which has an entry for each cluster and records an
accumulating total of cluster membership. Figure 5.3 illustrates the status of these
arrays after one row of the grid has been analyzed. Shaded circles in the level array
indicate pixels which are not in the map class being analyzed.

Each cluster identification label stored in the level array serves as an index into
the label array, pointing to either a positive or negative number. If the number is
positive, it is the number of members to date in that cluster; if it is negative, the
absolute value of the number represents the true cluster label/index. As each row of
the map is traversed, the ID number of each map element is compared to that of the
previous element in that row (west neighbor) and that of the element in the same
column of the previous row (north neighbor). If they are all in the same cluster, the
smallest label is assigned to all three elements, and any changes in the status of the
west and north neighbors are recorded in the working arrays. When the map has been
completely traversed, the 1abel array holds all final assignments of cluster labels and
the number of pixels in each cluster. This innovative 1-pass algorithm is efficient and
does not require the large amount of stack space which makes recursive approaches
for maps with very large clusters prohibitive on many machines.
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Figure 5.3: Status of level and label arrays after one row of grid has been traversed using the
Hoshen-Kopleman algorithm.

5.1.4 Comparison of serial algorithm performance

Table 5.1 compares the elapsed CPU times (in seconds, excluding 1/0) for these four
serial cluster identification algorithms on a Sun SPARCstation 2 for seven map sizes
and five p values. Execution times for all algorithms increase with map size and
density.

The relative efficiency of the four cluster identification algorithms was consistent
across map size and density. The incremental cluster identification HKFOR was consis-
tently the most efficient of the four algorithms. The pseudo-recursive PRFOR sequen-
tial algorithm demonstrated efficiency comparable to that of HKFOR for maps with
the lowest densities, and was marginally but consistently slower at high p values.
The recursive C sequential cluster identification algorithm, RECRC, was compara-
ble in efficiency to PRFOR and HKFOR for maps with low densities, but was clearly
slower at higher p values. The incremental cluster identification algorithm ORFOR
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was consistently the slowest over all p values and map sizes.

Cluster identification methods which build clusters incrementally are preferred for
SIMD parallel implementations because they embody more inherent parallelism. Even
the local diffusion method, which is very slow in serial applications, is more efficient
as the serial component of SIMD parallel implementations on the MasPar MP-2 than
either the recursive or pseudo-recursive algorithms developed in this thesis effort. A
modification of the Hoshen-Kopelman algorithm ([F1Ta92]), the more efficient of the
two serial incremental approaches evaluated, was chosen as the serial component in
the parallel cluster identification kernels developed for this thesis.

5.2 MasPar MP-2 Algorithms

Cluster identification algorithms implemented on the MasPar MP-2 employed the
two data mapping (virtualization) strategies supported by MasPar in order to handle
maps larger than the 64 x 64 PE grid: cut-and-stack and hierarchical (see Chapter 2
for a discussion of these strategies). For both implementations, work is divided into
two distinct tasks: (1) labeling cluster elements and (2) collecting information from
the PEs. In Sections 5.2.1 and 5.2.2, the cluster labeling task is discussed for cut-and-
stack and hierarchical data mapping, respectively. Collection of cluster data, which
is similar for both mapping strategies, is discussed in Section 5.2.3.

5.2.1 Cluster labeling in implementations with cut-and-stack data map-
ping

In implementing cluster labeling with cut-and-stack mapping, each map pixel with a
resource value greater than 0 is initially assigned a unique ID number based on its
position in the map. Repetitive comparisons of north-south and east-west pairs of
pixels are then made. This is very similar to the serial local diffusion method (also
called label propagation ([ApCM92]), except for the fact that adjacent map pixels
are on adjacent PEs, and label comparisons are made using the xnet communica-
tion construct. Contiguous map pixels in the same cluster are given the cluster ID
corresponding to the smallest pixel label in the group of contiguous pixels.

Figure 5.4 shows a simple 4 x 4 map at four stages of the cut-and-stack labeling
process: (a) starting state, (b) after labeling with a unique ID, and after each PE
looks (c¢) north and (d) west. This process of comparison and relabeling continues
until all adjacent cluster elements have the same label and no label updating activity
is detected (using an activity flag).
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Table 5.1: Comparison of CPU times for serial cluster identification algorithms on a Sun SPARC-
station 2 (all times are in seconds).

Map Size

Algorithm | p-value 64 128 256 512 768 1024 2048
HKFOR 0.10 0.00 0.02 0.07 027 061 1.25 527
0.30 0.00 0.02 0.10 039 091 167 7.00
0.62 0.01 0.03 0.13 061 137 260 10.79
0.85 0.02 0.04 0.19 076 1.69 3.23 13.08
1.00 0.02 0.05 0.21 088 1.96 3.73 14.74
ORFOR 0.10 0.01 0.02 0.17 070 1.60 3.00 13.45
0.30 0.02 0.05 0.27 1.13 254 4.59 20.00
0.62 0.02 0.10 0.44 179 4.13 7.23 30.34
0.85 0.03 0.12 059 232 541 9.41 38.88
1.00 0.04 0.14 0.69 274 6.35 11.11 45.72
PRFOR 0.10 0.00 0.01 0.06 031 074 1.30 5.22
0.30 0.01 0.02 0.11 046 1.13 191 7.80
0.62 0.01 0.03 0.17 068 1.56 2.75 11.09
0.85 0.01 0.04 0.22 088 2.04 356 14.62
1.00 0.02 0.06 0.25 1.08 254 4.49 18.03
RECRC 0.10 0.01 0.02 0.10 041 093 1.69 10.68
0.30 0.01 0.03 0.13 052 1.18 2.08 12.26
0.62 0.01 0.04 0.17 070 1.62 2.87 22.32
0.85 0.02 0.16 0.59 162 532 7.21 *
1.00 0.03 023 092 376 878 9.38 *

*exceeds stackspace limits

HKFOR: Hoshen-Kopleman (Fortran-77)
PRFOR: Pseudo-Recursive (Fortran-77)
ORFOR: NOYELP (revised) (Fortran-77)
RECRC: Recursive (C)
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5.2.2 Cluster labeling in implementations with hierarchical data mapping

The hierarchical cluster labeling strategy adapted for parallel algorithm development
was influenced by the work of Tamayo ([F1Ta92]) in quantum physics. The process,
which involves three-steps, is shown in the context of the entire cluster identification
process in Figure 5.5 and is discussed below. In Figure 5.5, the two large boxes
represent adjacent PE subgrids, each with 9 data elements (map pixels). The number
in the center of each small box (one map pixel) represents the resource level in the
Starting State, and the cluster label thereafter. The number in the lower right corner
of each pixel represents the unique pixel label. The circled number in the upper left
corner represents the total number of pixels in a cluster (stored at the head pixel of
each cluster). The box in the upper right-hand corner denotes a local cluster head
and contains a local cluster sum.

1. Step 1. As was the case for implementations employing cut-and-stack mapping,
each map pixel is initially assigned a unique ID number (label) based on its
position in the map. Clusters are first resolved locally (within the subgrid of
each PE) using an adaptation of the Hoshen-Kopelman algorithm ([StAh91]) for
incremental cluster identification. Modifications to the serial Hoshen-Kopleman
algorithm required for parallel implementation included labeling each pixel with
its local cluster number and storing local cluster sums at the local head pixels
for local clusters. Each pixel is assigned a pointer to the local head of its cluster
(i.e., the cluster member on its PE with the smallest label).

Alternative recursive or pseudo-recursive algorithms for this serial step in cluster
labeling are not well-suited to an SIMD approach and are much less efficient.
With the sequential cluster labeling pseudo-recursive algorithm, subgrid traversal
stops when a local cluster head is encountered and local building of that cluster
takes place. As a consequence, some processors are idle while local cluster build-
ing takes place on one or more other processors, resulting in poor performance.
Since the Hoshen-Kopleman adaptation adds new members to each cluster as
they are encountered in local subgrid traversal, work is distributed more evenly
over local subgrids for more efficient SIMD performance.
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2. Step 2. For each PE (in parallel), comparisons are made of local cluster labels in
border rows and columns with those in immediately adjacent rows and columns
of adjacent PEs The smallest cluster label is assigned across PE boundaries to
border elements of the adjacent PE which are in the same cluster. Label changes
are then transferred (by pointer) to the local head of the cluster to which each
border pixel belongs. An activity flag is set whenever relabeling occurs.

3. Step 3. The process of border comparison and relabeling is continued until an
equilibrium state is reached in which corresponding border cluster elements on
all adjacent PE’s share the same cluster label. This state is detected when no
activity flags are set recording relabeling activity. Total number of pixels in each
cluster are stored at the cluster’s head pixel.

The number of iterations required for complete label propagation depends on
sizes and densities of the clusters. For random maps, p values near the critical
region (0.5928) result in cluster characteristics requiring the maximum number
of iterations for resolution. When maps are sparse, clusters are smaller and labels
do not have far to propagate. When maps are denser, most pixels belong to the
same cluster, requiring little relabeling.
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5.2.3 Collection of cluster data

In serial implementations of cluster identification, collection of cluster data is ac-
complished within the cluster labeling function. Cluster size is accumulated in arrays
with one entry per cluster. For parallel implementation, where memory is somewhat
limited on both the ACU and the DPU, potentially large arrays such as these cannot
be maintained. Cluster data must be maintained on the PEs, and are not collected
until after cluster labeling has been completed.

For both mapping strategies, collection of cluster data is accomplished by having
all members of a cluster report to the local head pixel on their PE, which then reports
to the global head pixel for that cluster (i.e., the cluster member with the smallest
original label over all processors, whose ID number has been used to label all other
members). Local collection for hierarchical implementations is shown in Step 1 in
Figure 5.5. The boxes in the upper right-hand corner of each grid cell denote local
cluster sums. Implementations of both mapping strategies would be expected to
benefit from the local collection of cluster information for each cluster represented
on a PE before sending the sums to the head element. Local collection would be
expected to improve efficiency of the hierarchical algorithm more for sparse random
maps (p = 0.10 and 0.30) than for dense random maps because of the high likelihood
that clusters would be confined to individual PEs. Local collection would improve the
cut-and-stack version only for denser maps (p > 0.59), since only the large clusters
typically found in dense maps are likely to have a significant number of members on
the same processor.

For either mapping strategy, each member of a cluster can calculate the address
(PE number and subgrid position) of the head pixel of that cluster from its own final
cluster label, as follows:

PE number = label mod nproc,

layer = label / nproc,
where PE number is a unique processor identifier, layer is a virtualized data layer
on that processor (see Chapter 2 for a discussion of virtualization), and nproc is the
total number of PEs, which is 4096 for the MasPar MP-2. The MPL communication
construct p_sendwithAdd() is used to report membership of the pixel to the head
element of the cluster to which it belongs (by sending a 1). Sums representing total
cluster membership are maintained by each head element. Global collection is denoted
by circled integers in the upper left-hand corner of cells, shown in Step 3, Figure 5.5.
The MPL function reduceMax () is then used to find the size of the largest cluster,
as follows:

largestcluster= reduceMax (clustersize).

where largestcluster is a singular variable and clustersize is a plural value
allocated on all PEs. Number of clusters is determined by counting head elements,
as follows:
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Table 5.2: Speed improvement of MasPar MP-2 versions over pseudo-recursive Fortran version on a
SPARCstation 2 for cluster identification (excluding 1/0).

Mapping Map Size

strategy p value 64 128 256 512 768 1024 2048
Cut-and-stack | 0.10 0.00 0.62 4.00 2.48 1.74 1.27  0.41
0.30 0.83 1.25 2.35 2.19 1.87 1.34  0.55
0.62 0.23 0.35 047 0.54 0.60 0.50 0.34
0.85 0.18 0.1 1.13 1.33 1.42 1.36 1.24
1.00 0.39 0.73 1.47 1.95 2.14 214  2.23
Hierarchical 0.10 0.00 2.50 5.00 8.21 844 7.06 4.81
0.30 0.83 2.50 7.50 7.12 6.89 5.31 3.24
0.62 0.21 0.73 1.67 3.16 4.08 4.04 2.14
0.85 0.20 0.65 3.14 8.98 12.68 15.08 12.40
1.00 0.36 1.02 4.58 1541 28.83 38.84 52.29

if (myclusterlabel==myoriginallabel) reduceAdd32(one).

The average cluster size is simply calculated by dividing the number of non-zero
elements by the number of clusters.

In the early stages of parallel algorithm development, collection time dominated
cluster identification time, largely because of the improper functioning of the initial
MasPar MPL version of the p_sendwithAdd() function (used to collect data on head
elements). The error was reported to MasPar, and a less efficient collection strategy
which required all receiving PEs to be in an active state was devised as a tempo-
rary alternative. The p_sendwithAdd() error was corrected in subsequent software
releases, and modifications to the collection algorithm utilizing the corrected function
resulted in a substantial decrease in cluster data collection time.

5.3 Results

For both parallel cluster identification programs implemented on the MasPar MP-2
(i.e., hierarchical and cut-and-stack), total elapsed wall-clock time was compared with
that of the pseudo-recursive serial Fortran version (PRFOR) on a Sun SPARCstation 2
for random maps of seven sizes and five densities (Table 5.2). For these comparisons,
work time is defined as the sum of label and collect times for cluster identification,
excluding time for reading data from a binary input file and writing results to the
screen (I/0). Speed improvements are calculated by dividing work time for the serial
program by work time for each parallel implementation. Tables C.1 through C.3 in
Appendix C list actual read, work, and total wall-clock times for both MasPar MP-2
versions and for PRFOR.

Trends in performance of the two parallel kernels on these random maps across
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p values within a given map size and across map sizes within a given p value were
generally consistent. For the smallest maps (i.e., 64 x 64), both parallel algorithms
were generally less efficient than the serial algorithm (i.e., speed improvement values
less than 1.00). The cut-and-stack algorithm was also slower than the serial algorithm
for maps with p values near the percolation threshold (p = 0.62) regardless of map
size, and for all 2048 x 2048 maps of densities <= 0.62. In contrast, the hierarchical
algorithm showed speed improvements over the serial algorithm for all p values for
map sizes larger than 128 x 128.

Figure 5.6 graphically presents the speed improvements of the hierarchically-mapped
MasPar MP-2 implementation for these same mapsizes and p values. Of the five den-
sities considered, the worst parallel algorithm performance was typically seen for
maps with p = 0.62, near the percolation threshold (Table 5.2 and Figure 5.6). For
both parallel algorithms, an overall trend of maximum speed improvement at smaller
than maximum map size was evident for all but the densest maps (i.e., those with
p = 1.00). The greatest speed improvement for the hierarchical algorithm (52.29) was
observed for the densest and largest map, while the greatest speed improvement for
the cut-and-stack algorithm (4.00) was observed for the sparsest map (i.e., p = 0.10)
of size 256 x 256.

For all random maps which were virtualized (i.e., those larger than 64 x 64), the
hierarchically-mapped kernel was more efficient than its cut-and-stack counterpart,
with the relative performance of the hierarchical algorithm generally increasing with
increasing map size and density (Table 5.2). For sparse maps (p = 0.10 and 0.30),
hierarchical mapping benefited from the local collection of cluster data on PEs, which
reduces the number of p_sendwithAdds required to transmit data to the head element
of each cluster when cluster elements are sparsely distributed. Local collection is
useful for cut-and-stack mapping only when clusters are large enough to have multiple
members on each PE. For dense maps dominated by a single large cluster (p >
0.62), the cluster labeling component dominates cut-and-stack execution time. The
hierarchical mapping strategy outperforms cut-and-stack mapping for these denser
maps because it labels large clusters more efficiently.

An increase in the speed of xnet communications projected for future MasPar
releases would improve the relative performance of the cut-and-stack algorithm, which
requires more inter-processor communication than the hierarchical algorithm.

Figure 5.7 shows how the labeling and collection components of cluster identifica-
tion using the two mapping strategies perform as p values increase from 0 to 1 for
maps of sizes 256 x 256 and 2048 x 2048. Elements (pixels) for these graphs were
produced by MPL programs using the MPIPL routine mpigenrand to generate and
distribute appropriate random values on MP-2 PEs for each p value. Note the y-axis
(time) scale differences for graphs showing results from the two mapping strategies.
This reflects the consistently better performance of the hierarchical algorithm across
all p values and both map sizes considered. Hierarchical total time is superimposed
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on cut-and-stack graphs for comparison. Performance differences for the hierarchi-
cal and cut-and-stack algorithms are most evident for cluster labeling of maps with
densities near the p = 0.59 threshold, especially for the larger maps.

A comparison of these results with the changes seen in cluster characteristics across
p values for random maps (e.g., compare Figure 5.7 with Figure 4.2(a) in Chapter 4)
illustrates their relative importance in determining execution times of cluster iden-
tification algorithms. For the random maps analyzed, peak execution (i.e., work)
times for both parallel cluster identification algorithms occur at p values near the
0.59 threshold, when the maximum cluster size begins to climb dramatically and the
number of clusters is still relatively large. This is the point at which the maximum
amount of border updating and label reassignment within PE subgrids is required.
Execution times decrease as map density increases and one cluster becomes dominant.
Under these conditions, most PE subgrid elements and border elements on adjacent
PEs belong to the same dominant cluster, requiring much less border updating and
label reassignment.

Memory requirements for the two SIMD algorithms are constant for a given map
size over all p values. This is in sharp contrast to results for the serial algorithm
PRFOR, which is characterized by increasing CPU time and memory requirements as
the maximum cluster size increases (see Figure 5.2). These differences in the rela-
tionship of execution time to cluster characteristics for serial and parallel implemen-
tations largely explains why speed improvements of parallel kernels were generally
lowest for random maps with p values near the percolation threshold. In fact the
cut-and-stack cluster identification algorithm was slower than the serial Fortran al-
gorithm at p = 0.62 for all map sizes (Table 5.2). By studying these relationships
during code development and by anticipating cluster characteristics of non-random
maps for a particular application, parallel processing bottlenecks can be pinpointed,
and an optimized cluster identification strategy can be developed for each parallel
application.

A more efficient cut-and-stack approach to cluster identification has been proposed
([ApCM92]) which includes power-of-2 neighbors (on processors which are 2" units
away, 0 < n < m — 1, where map size = 2™ x 2™) in the list of neighbors which are
checked on each iteration of cluster label updating. This approach should reduce the
number of iterations required for complete label propagation for the dendritic clusters
characteristic of maps with p values near the critical threshold.
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5.4 Performance of MasPar MP-2 algorithms on NOYELP
maps

5.4.1 Test map characteristics

Figure 5.8 illustrates the temporal pattern of density variation (expressed as p value)
in maps of available biomass (resources) generated during a 180-day cycle of the
NOYELP model. Resource maps of the study area extracted from the same 180-day
cycle of the NOYELP model at day 1, day 90, day 120, and day 180, respectively, are
presented in Figures 5.9 through 5.12.

All portions of the maps which are light green represent available resource pix-
els. Pixels which have high resources levels, defined as sufficient available biomass
to satisfy at least 50% of the daily forage intake requirements of a bison bull, are
represented by red.

At the beginning of the model year (November), resource levels, p values, and
maximum cluster size are all high (Figures 5.8 and 5.9). As winter progresses,
resources are depleted by the grazing of ungulates or are made inaccessible to the
ungulates by heavy snowfall. This is reflected in lower p values for the resource maps
(Figure 5.8), smaller, more fragmented clusters, and lower levels of available biomass
(Figure 5.10 and 5.11). The model year ends in April before spring regeneration of
vegetation begins; however, melting snow exposes ungrazed resources, causing map
density to increase near the end of the 6-month cycle (Figures 5.8 and 5.12).

5.4.2 Results

Cluster identification is performed twice at each time step in the NOYELP model,
once for clusters of any available resource level and again for clusters with available
resources above a fixed limit (high resources)." Table 5.3 compares performance of the
two MPL cluster identification algorithms with that of the serial NOYELP algorithm
(PRFOR) on 285 x 584 resource maps extracted from the NOYELP model runs for seven
days in the 180-day cycle. Maps were expanded to 320 x 640 for input to the MasPar
MP-2 kernels, so that row and column dimensions are multiples of 64, the size of the
PE grid. The p values calculated in Table 5.3 are based on the total number of map
pixels in the expanded resource map, and include pixels outside the study area, while
the graph of p values in Figure 5.8 includes only study area pixels.

Wall-clock time for the hierarchical parallel implementation is typically 4 to 5
times faster than that for the serial algorithm, while the cut-and-stack parallel im-
plementation is slower than the serial algorithm for most maps. These results are not
inconsistent with the relative performance of the parallel kernels on random maps of

I This is a simplification of what the actual resource matrix represents. Cluster analysis is performed on the matrix
of feedback modifiers which limit the maximum daily intake of forage by ungulates, based on limitations associated
with levels of forage biomass and snow depth/density.
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Table 5.3: Comparison of wall-clock times for parallel implementations of cluster identification with
the serial NOYELP function PRFOR on Sun SPARCstation 2 on 285 x 584 resource maps extracted
from NOYELP model runs (all times are in seconds).

Time Resource p Largest | Serial Parallel
step level value Cluster | PRFOR | hierarchical | cut-and-stack
1 any 0.30 55554 | 0.41 0.08 0.41
1 high 0.27 51035 | 0.38 0.08 0.43
30 any 0.30 55554 | 0.40 0.08 0.41
30 high 0.27 51045 | 0.37 0.08 0.43
60 any 0.29 53800 | 0.39 0.07 0.40
60 high 0.22 29945 | 0.33 0.07 0.45
90 any 0.18 16515 | 0.31 0.06 0.50
90 high 0.04 4701 0.21 0.05 0.18
120 any 0.06 6158 0.23 0.05 0.23
120 high < 0.01 394 | 0.19 0.03 0.04
150 any 0.03 6153 0.23 0.05 0.23
150 high < 0.01 0 0.19 0.02 0.02
180 any 0.29 55190 | 0.39 0.07 0.41
180 high 0.14 4672 0.28 0.06 0.47

similar map size and maximum cluster size, except for the relatively poor performance
of the cut-and-stack implementation compared to PRFOR. Future work in this area
should involve a closer examination of the the range of cluster configurations and
characteristics encountered in landscape maps, the relative performance of parallel
kernels on these configurations, and methods of optimizing parallel performance over
the range of configurations.

5.5 Conclusions

Speed improvements of SIMD parallel algorithms on the MasPar MP-2 over serial
algorithms for cluster identification are modest, largely because of the high commu-
nication requirements associated with labeling of pixels. These results indicate that
the serial algorithms developed and evaluated are efficient enough for many purposes.
However, the hierarchical parallel algorithm consistently outperformed both the se-
rial and cut-and-stack algorithms, and could be useful in applications such as the
NOYELP model which call cluster identification functions many times within a single
program execution. NOYELP identifies clusters twice at each time step (once for high
resource patches and once for patches with any resource) over 180 time steps and over
5 replications of the 180-day cycle. This requires a total of 1800 calls to the cluster
identification function. Modest time savings per cluster analysis can result in signifi-
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cant savings in total execution time for models such as NOYELP. For a typical serial
NOYELP simulation involving 20,000 ungulates, approximately 20% of total execution
time for the revised model is spent identifying clusters (see Chapter 7 for a discussion
of serial modifications). A simulation involving fewer animals would require that less
model time be spent in the animal movement component and proportionately more
time be spent in cluster identification. The presence of fewer animals would also mean
less resource depletion due to grazing, and hence more pixels with available biomass
(i.e., higher p values) over the course of model execution. This would further increase
the proportion of total execution time allocated to cluster identification. Therefore,
the fewer animals input to NOYELP, the more important the efficiency of the cluster
identification component becomes.

To utilize the parallel cluster identification kernels for NOYELP model simulations,
the serial Fortran-77 NOYELP program could be run on the front end machine of
the MasPar MP-2 (DECstation 5000-200 workstation) and make calls to the MPL
cluster identification function running on the DPU, which would then blockIn the
data matrix to be analyzed. Since cluster identification results do not feed back into
the main NOYELP program (results are stored in an array for later output to a file),
an asynchronous call via callAsync() would allow the main program to continue
execution on the front end while cluster identification is being accomplished on the
DPU. Output from the parallel cluster identification kernels could be input to other
parallel modules to compute various cluster geometry indices, such as mean squared
radius, on distributed data on the DPU. Mean squared radius algorithms are discussed
in detail in the following chapter.
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Figure 5.4: Four stages of the cut-and-stack labeling process: (a) starting state, (b) after labeling
with unique ID, and after each PE looks (c) north and (d) west.
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Figure 5.5: Step-wise procedure for cluster identification in hierarchically-mapped MPL implemen-
tation of cluster identification.
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Figure 5.6: Speed improvement of MP-2 hierarchically-mapped implementation over the sequential
PRFOR version on a SPARCstation 2 for cluster identification (work time, excluding I/0).
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Figure 5.7: Comparison of wall-clock labeling, collection, and total work times versus p values for
256 x 256 maps ((a) and (b)) and 2048 x 2048 maps ((c) and (d)) using hierarchical ((a) and (c))
and cut-and-stack ((b) and (d)) virtualization.
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Figure 5.8: P values of the available resource matrix generated daily for a 180-d ay cycle of the
NOYELP model (excluding pixels outside the study area).

44



Figure 5.9: Resource map of the NOYELP study area extracted at day 1 from a 180-day cycle of the
NOYELP model.

Figure 5.10: Resource map of the NOYELP study area extracted at day 90 from a 180-day cycle of
the NOYELP model.
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Figure 5.11: Resource map of the NOYELP study area extracted at day 120 from a 180-day cycle of
the NOYELP model.

Figure 5.12: Resource map of the NOYELP study area extracted at day 180 from a 180-day cycle of
the NOYELP model.
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Chapter 6

Cluster Geometry

Once clusters in a map have been identified (i.e., labeled and counted) other descrip-
tive statistics may be computed to describe the geometry of clusters, such as radius,
mass, perimeter, and correlation length ([StAh91]). The radius measure, which is used
to derive correlation length, is the focus of thesis efforts presented in this chapter.
The radius of a cluster is the average distance between two cluster pixels, provid-
ing a measure of the compactness of a cluster. A cluster whose members are widely
dispersed across a map will have a larger radius than a cluster whose shape approx-
imates a regular polygon. Figure 6.1 shows two 64 x 64 maps, each with a single
cluster having 1024 member pixels. The radius for the compact cluster on the left (a)
is 14.12, while that of the more dispersed cluster on the right (b) is 31.09.

This chapter describes the data-parallel implementation of the mean squared ra-
dius (R?) computation for clusters, from which the radius measure is derived. R?
of an individual cluster is defined as the sum of all squared intra-cluster distances
between pixels, divided by two times the squared cluster size. FEach squared dis-
tance is calculated by squaring the row and column differences between the x- and
y-coordinates of two pixels. Because a 1 is added to coordinate differences before
squaring, the absolute values of coordinate differences are used in the calculation of
R?. The formula for R? of a cluster (as derived from [StAh91]) may be given as:

Yoilley — 2 + 12 + (ly; — vl +1)°
oIn? ’

where x;,y; and x;,y; are the coordinates of pixels i and j, respectively, (for 1 <7 <n

R =

(6.1)

and 1 < j < n)and n is the number of elements in the cluster.

The computation of cluster radius (\/BT%) has many potential uses in landscape
ecology. For example, if it has been determined through cluster identification that a
large fire had spread over 60% of a landscape, computation of cluster radius would
provide insight into whether the fire is concentrated in one compacted area, or if
significant amounts of unburned area exist within the area of the fire cluster.
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(a) (b)

Figure 6.1: Example 64 x 64 maps with a single cluster of size 1024 and radius equal to (a) 14.16
and (b) 31.09.

The computationally-intensive nature of the derivation of R? has limited its useful-
ness in many applications. The serial computation of R? for all clusters in a 512 x 512
random map with a p value of 0.85 typically requires about 12 hours (CPU time) on a
Sun SPARCstation IPX. Parallel implementations of mean squared radius algorithms
offer a way to address this problem.

6.1 Serial Algorithm

The serial program for mean squared radius computation used for timing comparisons
with data-parallel implementations presented in this chapter is a modified version of a
Fortran-77 program developed by Dr. Robert Gardner of the Environmental Sciences
Division at Oak Ridge National Laboratory and rewritten in C by Karen Minser of
the Computer Science Department at the University of Tennessee ([Mins93]). This
serial program implements an algorithm in which the grid is sequentially traversed for
each cluster. The z- and y-coordinates for each pixel belonging to the current cluster
are stored in arrays. After all coordinates have been stored, differences in coordinate
distances are calculated, squared, and added to an accumulating total.

For each pixel, squared differences between its x- and y-coordinates and those of
every other member of the cluster are computed as follows:
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fori=1ton—1do
forj=14+1tondo
re = abs(xcoord[j]-xcoord[i])+1
ry = abs(ycoord][j]-ycoord[i])+1
rSUM = r8um + rx ¥ rr +ry xry
enddo
enddo
where the x- and y-coordinates of all members of the cluster are stored in the arrays
zeoord and ycoord, respectively, and rsum is the (accumulated) sum of squared differ-
ences for each pixel. Hence, the computational complexity of Equation 6.1 is O(n?),
where n is the number of pixels in the particular cluster.

The serial C program was optimized for performance as part of this thesis effort,
and timing results for the optimized program are used for comparisons with MasPar
MP-2 parallel kernels. Decreasing the size of dynamically allocated coordinate arrays,
computing absolute values in place rather than calling the built-in C function abs(),
and removing calculations from for loop indices reduced execution time substantially.
Memory demands for processing maps with large clusters are lessened by computing
squared coordinate differences directly from for loop indices rather than storing x- and
y-coordinates in arrays. Optimizing modifications reduced CPU time for computing
R? of all clusters in a 512 x 512 random map with p = 0.85 on a Sun SPARCstation
IPX from 25 hrs. to 12 hrs. Further modification employed a look-up table of pre-
calculated distances read from an infile. The use of look-up tables (with separate
tables for each map size analyzed, stored in binary files) could provide significant
speed improvements for some applications. Performance improvements gained by
each of these serial program modifications are described in Appendix C.

Figure 6.2 shows the performance of the optimized serial algorithm on random
128 x 128 maps as the p value increases from 0 to 1. A comparison of this trend
with that of maximum cluster size vs. p value (Figure 6.3) suggests that maximum
cluster size is a major factor contributing to total computing time for B? computation
for random maps. As maximum cluster size increases sharply at densities above
the percolation threshold (p = 0.5928), there is a corresponding increase in CPU
time required to compute R%* This reflects the effective exponential nature of the
relationship between cluster size and number of computations required.
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Figure 6.2: CPU times for serial mean squared radius computations across p-values for 128 x 128
random maps on a Sun SPARCstation IPX.

15000 —
%35 j
% 10000
=) j
g |
8 j
k<) j

8

& 5000
2 ¢

0.2 0.4 0.6 0.8

p-value

Figure 6.3: Size of the largest cluster as a function of p value for the 128 x 128 random maps from
Figure 6.1.



6.2 MasPar MP-2 Algorithms

Two parallel algorithms for computing mean squared radius on the MasPar MP-2 were
implemented, one for each of the two explicit data mapping strategies used: cut-and-
stack and hierarchical. As discussed in Chapter 2, the two virtualization methods
differ in how pixels are allocated to PEs. In hierarchical mapping, continuous blocks
of the data map are assigned to each PE. Small clusters may be wholly contained in
the subgrids of individual processors, and can be processed locally. For cut-and-stack
mapping, contiguous map pixels are located on adjacent PEs, and must be accessed
by the MPL communication construct xnet (). The number of pixels assigned to each
PE is determined by the size of the map. Regardless of the method of virtualization,
data for a specific variable relevant to cluster geometry computations (e.g., cluster
size) for the pixels on the PE are stored in stacks or data arrays, with the length of
the array (i.e., number of layers) being determined by the number of pixels assigned
to each PE. Every pixel in the original map is represented in the array of one of the
PEs, and the stacks or data arrays in all PEs are of the same length. For data such
as cluster size, which is stored at the head pixel of each PE, these data arrays will
contain many zeros. In the following discussion, layer refers to a 64 x 64 matrix of
pixel data, all elements of which bear the same array index, and sub-grid refers to the
contiguous chunk of the map allocated to each PE in hierarchical mapping. Because
a layer has special relevance to cut-and-stack mapping, it is called by a special name,
page. Page is an abstraction referring to a 64 x 64 block representing a given layer
across all PEs in cut-and-stack mapping.

Both parallel R? computation algorithms are similar in overall approach, employing
the same three-step process: (1) resolve small clusters in parallel, (2) resolve large
clusters by copying pixel cluster labels and positions serially to shared data space,
and (3) collect sums for each cluster across members (pixels).

Figure 6.4 illustrates these steps for the hierarchical version. The Starting State
in Figure 6.4 represents the status of cluster analysis following completion of cluster
identification (see Figure 5.5 in Chapter 5). The large boxes in Figure 6.4 represent
two adjacent PE subgrids, each with 9 data elements (map pixels). The number in
the lower right corner of each pixel box represents the unique pixel label.

The number in the center of each pixel box represents the cluster 1D label. The
circled number in the upper left corner represents the total number of pixels in a
cluster (stored at the head pixel of each cluster), psum and ecsum in the upper right
corner denote the sum of squared x- and y-coordinate differences computed for each
cluster member (termed the partial sum of squares) and for the entire cluster, respec-
tively, and rad in the lower left corner represents the mean squared radius computed
for each cluster (stored at the head pixel of each cluster).
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Figure 6.4: Step-wise procedure for cluster labeling in hierarchically mapped MPL implementation
of mean squared radius computation.
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Step 1: Resolve small clusters. Resolution of small clusters is implemented
differently for the two mapping strategies.

o For the algorithm implementing cut-and-stack mapping, local cluster resolu-
tion (i.e., within a PE) is not effective, particularly for small clusters, since
pixels on the same processor are not adjacent to each other. Instead, radius
sums for clusters contained within one data page are computed, using an
xnet-shift operation which allows each pixel on a page to view the value
of every other pixel on that page. Data relevant to mean squared radius
computations (e.g., cluster labels and x- and y-coordinates) for members of
clusters found on more than one page are then copied to singular variables
readable by all processors (see Chapter 2) for global comparisons in Step 2.

e For the hierarchical data mapping version, radius sums for clusters wholly
contained in the sub-grid of a single PE are calculated on each PE using a
local serial algorithm, and collected locally (in parallel) before global com-
parisons are made in Step 2. Data relevant to mean squared radius com-
putation for only those pixels belonging to clusters represented on multiple
PEs are then copied to singular variables for global comparison. This is very
efficient for large, sparse maps (p = 0.10) because relatively few comparisons
of x- and y-coordinates across PE boundaries are required to resolve clusters
with hierarchical virtualization.

Step2: Resolve large clusters. Large clusters are resolved using shared variables
readable by all processors. Let the map element ¢ be an unresolved pixel whose
relevant data values have been copied to shared data space. Since data are vir-
tualized on each processor, each PE’s data arrays must be searched for members
of the same cluster to which e belongs. For every other element belonging to the
same cluster, the absolute differences between its x-and y-coordinates and those
of e are calculated (in parallel), and these differences are squared and summed
for each cluster member. The distance from element a to element b is calculated
only if the equivalent distance from b to @ has not been calculated. If the ele-
ment e is a member of layer i, the squared difference is calculated in layer ¢ only
for those cluster members whose original label is larger than that of e. For all
other data layers, duplicate calculations are avoided (without a condition (if)
test before each set of calculations) by searching only data layers i to n on each
processor, where n = number of layers. For maps with a large dominating cluster
(p > 0.59), this results in fairly effective load balancing, since many processors
have members of the dominant cluster in their data arrays for both cut-and-stack
and hierarchical virtualization strategies.

Step 3: Collect sums. Partial sums of squared differences are then summed
across members (csum in Figure 6.4) within each cluster and stored at the head
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element of each cluster (the member whose original cluster label was adopted for
all cluster members). The radius for each cluster (rad in Figure 6.4) is computed
by taking the square root of this sum divided by the number of cluster members.

When pixels in the map class being analyzed are very sparse relative to the map
as a whole, many processors will be intermittently idle during the traversal of the
virtualized data layers during R* computation because they have been allocated few
or no pixels belonging to the pertinent map class. This density problem is exacerbated
by the need to include map pixels outside the study area. If a significant number of
processors are idle, load balancing among processors, and hence performance, will be
less than optimal. To enhance performance, a variation of the cut-and-stack algorithm
was implemented which is more efficient when maps are very sparse (p < 0.20). Arrays
of cluster labels are compacted on each processor before R? is computed by moving
array elements associated with the study area forward in the processor’s label array.
This effectively eliminates array elements corresponding to pixels outside the study
area or pixels in a different map class. In this approach, the length of the data
arrays at each PE may differ, but there are fewer total active layers to traverse and
more processors are active in each layer traversed. Original x-and y-coordinates for
each map class member must be recorded in similarly compacted arrays, to preserve
locality so that inter-pixel position differences may be calculated. This approach
could also be implemented for hierarchically mapped data, but the advantage gained
would not be as great as with cut-and-stack mapping, since study area pixels are
more unevenly distributed (as subgrids of the landscape map) among processors with
hierarchical mapping. For example, compaction of a 50-element array could result in
some processors having 50 elements, while others might have none.

6.3 Results

For both parallel B? implementation on the MasPar MP-2, total elapsed wall-clock
time was compared with that of the optimized sequential C program on a Sun SPARC-
station IPX on both random maps and landscape maps extracted from runs of the
NOYELP model. For these comparisons, total time is the sum of times for reading
from a binary file, performing cluster identification, and computing R? for all clus-
ters. Total time is dominated by R? computation. Speed improvements are calculated
by dividing total elapsed wall-clock time of the serial program by that of the parallel
implementation. Tables C.4 through C.6 in Appendix C list actual wall-clock times
for both MasPar MP-2 versions and for the sequential C version.

As shown in Table 6.1, both parallel implementations show significant speed im-
provements over the sequential C program on a Sun SPARCstation IPX for random
maps of all sizes and p values tested, performing total map analysis over 150 times
faster than the serial algorithm for 512 x 512 random maps with p > 0.85. The se-
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Table 6.1: Speed improvement of MasPar MP-2 versions over the sequential C version on a SPARC-
station IPX for total map analysis, including mean squared radius computation.

Mapping Map Size

strategy p-value 64 128 256 512

Hierarchical 0.10 0.88 4.22 21.16 84.40
0.30 2.00 838 30.82 91.60
0.62 9.88 23.97 T71.24 101.17

0.85 22.89 7798 130.38 153.89
1.00 40.09 9746 154.89 175.92

Cut-and-stack | 0.10 1.03 4.43 20.38 62.55
0.30 1.81 8.58 41.53 148.23
0.62 9.20 24.52 73.72 105.70

0.85 20.76 72.64 12649 152.31
1.00 3540 90.76 150.68 174.14

quential C program required over 16 hours of elapsed wall-clock time to analyze the
512 x 512 random map with p = 1.00 (including read time, cluster identification and
geometry), while both parallel kernels resolved this same map in less than 6 minutes.
Figure 6.5 presents these speed improvements for the 512 x 512 maps in bar graph
form.

Speed improvements increased with map size and density, and were generally con-
sistent for both parallel implementations. For the largest sparse map tested (map
size of 512 x 512 with p = 0.10), the hierarchical implementation performed consider-
ably better than the cut-and-stack version. This was attributable to the abundance
of small clusters which can be evaluated locally on individual PEs (i.e., the ratio of
cluster size to number of pixels per PE is small), and the dispersal of these same
contiguous map elements across PEs in the cut-and-stack virtualization scheme for
these large maps (with the consequent need for inter-processor communication). The
cut-and-stack version is clearly more efficient for maps larger than 128 x 128 with
p = 0.30. These are maps with the maximum number of clusters. These clusters
typically have fewer than 50 members, but are large enough to overlap PEs when
hierarchical mapping is used. For these maps, the relative efficiency of the cut-and-
stack algorithm increased with increasing map size. Otherwise, performance of the
two parallel implementations is generally comparable.
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Figure 6.5: Speed improvements of MasPar MP-2 parallel implementations for total map analysis
over the sequential C version on Sun SPARCstation IPX for 512 x 512 random maps.
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Figure 6.6 shows in detail how the parallel kernels perform total map analysis
relative to the serial C version over a range of p values for random maps of size
128 x 128. Figure 6.7 shows how the same parallel kernels perform total map analysis
relative to each other over a range of p values for maps of size 512 x512. Data for these
graphs were produced by MPL programs using the MPIPL routine mpigenrand()
to generate and distribute appropriate random values on each PE. Execution times
(express in log units) for the serial program increase dramatically at densities near
the p = 0.59 threshold (Figure 6.6), in response to the abrupt increase in maximum
cluster size, while both parallel implementations show a relatively smooth, gradual
increase (in log scale) across the range of p values.
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Figure 6.6: Elapsed wall-clock times (in seconds) for total map analysis (map generation, cluster
identification and mean squared radius computation) across p-values for 128 x 128 maps for MasPar
MP-2 parallel implementations and for the serial C program on a Sun SPARCstation IPX (log scale).

Figure 6.7 provides a clearer contrast for trends in total map analysis time in
the vicinity of the percolation threshold for the two parallel kernels. While both
implementations show distinct increasing trends, the increase for the hierarchical
implementation begins at lower p values (i.e., p = 0.30) and is much more gradual than
the trend for the cut-and-stack implementation, which increases sharply in the vicinity
of the percolation threshold (i.e., 0.59). The cut-and-stack version is more efficient
in the range 0.30 < p < 0.60 because cluster sizes characteristic of maps with these
densities overlap hierarchically-mapped PFE subgrids, but can be resolved within cut-
and-stack pages. When maximum cluster size increases near the percolation threshold,
resolution of the largest cluster, which now overlaps page boundaries, dominates
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Figure 6.7: Elapsed wall-clock times (in seconds) for total map analysis across p-values for 512 x 512
random maps for MasPar MP-2 parallel implementations.

computing time, and performance is similar for the two mapping strategies.

As the size of a cluster approaches the size of its respective map class, possible
cluster configurations become limited. Consequently, at high densities cluster radius
becomes a less informative measure of cluster geometry compared to lower p values.
With adequate planning, many applications could probably limit R* computation to
clusters whose sizes are below a specific percentage of total map size. However, it is
recognized that in other applications it may be desirable to compute the maximum
radius possible for a given map class.

There exists a family of MasPar conversion functions (see Appendix A) which
allow data configurations to be changed within a program. If alternate data mapping
strategies are more efficient for different parts of a program, the programmer can
switch between cut-and-stack and hierarchical mapping as needed.

6.4 Performance of MasPar MP-2 algorithms on NOYELP
maps

Since the parallel kernels were developed to handle maps of varying sizes and densities,

they proved successful in the analysis of maps extracted from runs of the NOYELP

model. Table 6.2 compares performance of the MPL implementations for total map
analysis, including R?, with that of the serial C program on a Sun SPARCstation
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IPX for 285 x 584 maps of available biomass extracted from NOYELP model runs for
seven days of the 180-day cycle (see Figures 5.9 through 5.12 in Chapter 5). Maps
were enlarged to 320 x 640 to make row and column dimensions divisible by 64, the
dimensions of the MasPar MP-2 PE grid, contributing to the low p values for these
maps (< 0.30).

Speed improvements for the cut-and-stack MPL version are consistently higher
than those for the hierarchical version (Table 6.2) due to the more even distribution
of study-area pixels across processors with cut-and-stack mapping. As was the case
with random maps, speed improvements for both parallel algorithms increase with
increasing density (Table 6.1).

Table 6.2: Comparison of wall-clock times for total map analysis on 285 x 584 resource maps extracted
from NOYELP model runs for parallel MP-2 implementations and optimized serial program on a Sun
SPARCstation TPX (all times are in seconds).

Size of Parallel

Time Resource largest | Serial | Cut-and-stack | Hierarchical
Step Level p-value cluster | MSR time S.I* | time S.U1.*
1 any 0.30  555b4 | 2730.40 | 54.95  49.69 | 61.31 44.54

1 high 0.27 51035 | 2300.42 | 49.28  46.68 | 56.71 40.57
30 any 0.30  555b4 | 2713.92 | 54.95  49.39 | 61.31 44.27
30 high 0.27 50145 | 2218.71 | 47.43  46.77 | 56.44 39.31
60 any 0.29 53800 | 2546.09 | 53.69  47.42 | 59.53 42.77
60 high 0.22 29945 | 829.93 | 28.06 29.58 | 44.49 18.66
90 any 0.18 16515 | 299.83 | 18.85 15.90 | 36.91  8.12
90 high 0.04 4701 | 24.99 6.49 3.85 | 10.79  2.32
120 any 0.06 6158 | 49.49 8.15 6.08 | 14.07  3.52
120 high <0.01 394 1.96 2.73 0.72 | 3.00 0.65
150 any 0.03 6153 | 49.26 8.14 6.05 | 14.04  3.51
150 high <0.01 0 1.02 0.12 8.72 | 255 040
180 any 0.29 55190 | 2674.64 | 54.51  49.07 | 60.93 43.90
180 high 0.14 4672 | 94.08 | 11.97 7.86 | 27.99  3.36
*S.1. denotes speed improvement of parallel implementation over serial program.

6.5 Conclusions

MasPar MP-2 data parallel implementations of total map analysis, which is dominated
by R? computation, show substantial speed improvements over serial implementations
(over 150 for large, dense random maps), making radius measurements a viable tool
for many ecological applications. Speed improvements increased with map size and
density for both kernels. Elapsed wall-clock times for data-parallel implementations
do not increase as dramatically as those for the serial implementation at densities
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above the percolation threshold. Maximum speed improvements for landscape maps
tested were lower (<50), due largely to the high percentage (62%) of map pixels
outside the study area. These non-habitat pixels contributed substantially to the
low p values for the NOYELP maps. As with cluster identification, size of the largest
cluster (relative to map size) is a better indicator of performance than p value when
comparing random maps with landscape maps. For the limited range of p values
represented by NOYELP maps (<0.30), speed improvements increased with increasing
density, a trend consistent with results for random maps.

The parallel implementations discussed in this chapter have advantages over the
original serial versions other than speed. Data size is constant for a given map size
in the parallel implementations, regardless of map density. No arrays which are
dependent on the number or size of clusters in the map being analyzed are required.
While the revised serial R? program does not maintain arrays of coordinate differences
for each cluster element for large clusters, an array which records the size of each
cluster is maintained.

As is the case with cluster identification kernels presented in Chapter 5, parallel
kernels for R?* computation could run on the DPU of the MasPar MP-2 and be called
by a serial program running on the front-end DECstation 5000-200 machine. Results
could either be returned to the calling program or be written to an output file.
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Chapter 7

Animal Movement

The algorithm evaluation and development activities for animal movement for this
thesis are specific to the NOYELP model. The initial objective was to duplicate the
serial NOYELP movement rule on the MasPar MP-2. In the process of attempting
to address this objective, revisions were made to the serial NOYELP program which
improved its performance significantly (with no change in functionality). This revised
serial program then provided the basis for parallel model implementation efforts. The
following sections describe both serial and parallel efforts, including the initial scoping
of a revised movement rule that is more amenable to parallel processing.

7.1 Serial NOYELP Implementation

The serial NOYELP model is implemented by a 4736 line Fortran-77 program con-
sisting of 11 subroutines. Figure 7.1 illustrates the flow of program control through
the NOYELP subroutines. A summary of these subroutines is provided in Appendix B.
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Figure 7.1: Control flow chart for the NOYELP model.
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Abiotic data are input from files in subroutine INPUT; ungulate locations and biomass
are initialized on the landscape in subroutine initial; snow conditions are updated
every 3 days in subroutine SSNOW. At the heart of the NOYELP model are four
subroutines which simulate the movement and grazing of animal groups on the land-
scape: ungfind, move, graze, and energetics. On each day of the 180-day model
cycle, ungfind locates each animal group on the landscape and initiates a sequence
of search/move/graze activities for each group which results in animal movement,
biomass depletion due to foraging, and changes in ungulate body weight. These four
subroutines are the central focus of the efforts discussed in this chapter. In subroutine
patch, cluster analysis (see Chapter 5) is performed daily on the available biomass
matrix, with results stored for output to a file (in subroutine outfile).

7.2 Model Description

In the following discussion habitat pizel refers to a pixel within the boundaries of
the study area, animal category refers to one of the six types of animals (elk/bison
calf, cow, or bull) and animal group refers to a single group of 2-9 elk or bison, as
defined in Chapter 3. The input data set used in this model evaluation effort included
19,270 elk and 699 bison, forming 5015 ungulate groups. Awailable biomass refers to
that part of total biomass which is available for consumption by animals. A resource
pixel is a pixel containing available biomass (i.e., biomass above the preset refuge
level and not rendered unavailable due to snow cover). The movement rule defines a
set of constraints which govern the nature and sequence of events in the move-graze
component of the model (i.e., subroutines ungfind, move, graze, and energetics).
The movement series refers to the order in which ungulate groups move and forage
on a given day, and is constant for all model days. Group ¢ in the series makes all
its moves for a day before subsequent groups in the series move (where 0 < ¢ < n,
where n is the total number of groups in the model). This ordering of animal groups
is established randomly when groups are initially distributed on the landscape (in
subroutine initial). See Chapter 3 for a more detailed discussion of the NOYELP
model, including the input ungulate data set.

Subroutine ungfind comprises a loop over each time step (day) for all animal
groups in sequence, according to the movement series. For each group ¢, the amount
of energy required to move one unit of distance (i.e., pixel) across the landscape
and maximum moving distance for the day (maxdist) are calculated. The value of
maxdist is governed largely by snow depth and density, which are updated every three
days in the model cycle. Following the NOYELP movement rule, the pixel in which
group ¢ finished the previous day is first evaluated to determine if available biomass
exceeds the threshold biomass. If sufficient resources are available on group 7’s current
pixel at the start of the day, the group grazes before moving to a new site; otherwise,
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the day starts with a call to move. Since an ungulate group is not allowed to choose
the same pixel twice in any day, every other grazing event except the last of the day
is followed by a call to move.

In subroutine move, group ¢’s first move of each day is preceded by the calculation
of the group’s search area boundaries, which are based on maxdist. Figure 7.2 shows
a diagram of a 9 x 9 search area (maxdist = 4) in the context of the larger work map
and NOYELP data map. All movements for group ¢ over the course of the day are
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Figure 7.2: Typical search area for a NOYELP animal group, with maximum moving distance of 4
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restricted to this search area, as defined by maxdist.

For each habitat pixel in the search area, available biomass is calculated once per
day using a complex 18-variable formula. Group-specific available biomass values are
updated prior to each group’s moves to reflect the grazing activities of all previous
groups in the movement series. To implement a move, resource pixels along the
perimeter of concentric squares of dimension k& x k are searched in a stepwise process
(where k = d*2 41, 1 <d < maxdist, and d is the distance away from the current
pixel location). For each k, a comparison of available biomass values is made for all
perimeter pixels. If resource pixels are found, the search stops, and a move is made to
the pixel with the largest available biomass. If multiple pixels have the same available
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biomass level, one pixel is chosen at random from among them. Once a destination
pixel is selected, it becomes the center of a new search area (if another move is
indicated). The size of this and any subsequent search areas for this group on the
current day are constrained by the boundaries of the overall search area. The process
of searching for resource pixels along the perimeter of concentric squares continues.
If there are no resource pixels within the entire search area (i.e., d=maxdist), group i
chooses at random from habitat pixels maxdist away (the perimeter pixels of the
outermost search square) and starts the next day at that pixel.

Subroutine graze is called after a destination resource pixel has been chosen.
When group i grazes on the available biomass at the destination pixel, total biomass
at that pixel is decreased by an amount determined by the ungulate body weight for
group ¢ and the daily foraging rate. This updated total biomass value is used by the
next animal group in the series (if search areas overlap) for calculation of available
biomass at that pixel.

Group ¢ continues to search, move, and graze until one of two limiting conditions
is met: maximum daily forage is consumed or maximum daily moving distance is
traveled. Because it is not possible for an animal to consume its maximum daily
forage at one resource pixel, even when resources are plentiful, and because the group
is prohibited from visiting a pixel twice in the same day, each group must make at
least one move per day.

After the last graze of the day for group i, the daily energy balance is calculated
and body weight is adjusted downward for group members if the energy balance is
negative (no weight gain is permitted). If body weight falls below a pre-assigned
percentage of initial weight, mortality is simulated and the group is removed from
the landscape. These computations are included in the energetics subroutine.

This process of searching, moving, grazing and energy adjustment is repeated for
each ungulate group according to the movement series until all groups have completed
moving and grazing for the day. At the end of each day, daily statistics are calcu-
lated, and cluster analysis is performed in subroutine patch for two levels of available
biomass values (any resource and high resource).

7.3 Program Evaluation

7.3.1 Introduction

Computing time for the original serial NOYELP model is dominated by the simulation
of animal movement, which accounts for 95% of computing time when the maximum
number of 20,000 animals (composing 5015 groups) is input. Most of this time is
consumed in the calculation of group-specific available biomass values on which animal
groups base their movement decisions. These intensive computations are repeated in
a program loop for each animal group for all pixels in its search area at each time
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step. This situation is typical of those for which parallel processing is well-suited,
offering the potential for substantial speed improvements comparable to those for the
computationally-intensive mean squared radius calculation (see Chapter 6).

Three model constraints related to the NOYELP movement rule make recalculation
of available biomass values in search area pixels for each of the 5015 animal groups
on a daily basis seem unavoidable:

1. One of the eighteen variables involved in the calculation of available biomass,
swhi, which defines upper bounds for snow/water equivalent above which an
animal cannot forage, is (ungulate) category-specific. As a result, each of the
6 animal categories (elk calf/cow/bull, bison calf/cow/bull) “ sees” a different
available biomass value at each pixel in the study area. Unfortunately, the value
for swhi does not relate to the other variables in a scalar manner. As a result,
removing these calculations from the loop would entail creating six separate
available biomass maps (one for each category) and updating all maps after each
group grazes. The extra work this would require would offset any time saved
by removing the calculations from the loop, and could pose serious memory
constraints (i.e., in storing six maps encompassing the entire study area).

2. According to the movement rule, each ungulate group must be aware of the
results of resource depletion resulting from the grazing of previous ungulate
groups in the movement series. Knowledge-based foraging requires that total
biomass changes be recorded after each animal grazes, and available biomass
values be recalculated (from total biomass values) within the loop.

3. Each animal group must set its daily foraging path to 0 (i.e., set the category-
specific available biomass for each pixel visited to 0) to prevent multiple visits
to the same pixel by the same animal on the same day. In the original version
of NOYELP, a group can set its path to 0 on the available biomass map without
affecting subsequent groups, because the next group will recalculate the values
it requires from (updated) total biomass values. Removing available biomass
calculations from the loop would necessitate setting flags in a separate array
and checking these flags before each resource pixel comparison to see whether
the current group has used the current pixel on a previous move on the same
day. Again, the extra work required would probably offset any time saved by
removing calculations from the loop.

7.3.2 Modification of the serial algorithm

In the process of designing a parallel movement algorithm, a detailed evaluation of
the interrelations among the different parts of the movement rule was made. This
evaluation led to the identification of several areas in which the original serial code
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could be improved. Alternative approaches were developed, implemented and tested
to (1) map search area resource values to (smaller) work matrices, and (2) provide
current available biomass knowledge to moving animals. Incorporation of these ap-
proaches into the NOYELP program improved serial performance significantly. The
following changes were made to the serial algorithm without any change in function-
ality (i.e., all model outputs are identical).

1. Work maps the size of the maximum search area for any NOYELP ungulate group
(i.e., 85 x 85) are used for storing category-specific available biomass computa-
tions. Indices of the work matrix are mapped to corresponding indices of the
larger habitat map. Determination of the maximum resource value, the search for
duplicate maximum values, and random selection of the destination pixel from
duplicate maxima can be made directly from the work map. Biomass pixels are
calculated iteratively within the work map as the distance d from the home pixel
increases to maxdist. If a group finds a resource pixel at distance d, available
biomass values in concentric squares n units away (where d<n<maxdist) will not
have to be calculated. This differs from the original NOYELP program, in which
biomass values for the entire search area ((2+maxdist+1) by (2« maxdist 4+ 1))
are calculated before any searching begins.

2. At the start of each day, a partial computation of available biomass is made, up
to the point at which category-specific information (swhi) is required. These par-
tial available biomass values are stored in a study area-sized matrix (285 x 584),
referred to below as the shared map, for use by all groups in the daily sequential
calculation of category-specific available biomass. Within the daily movement
loop, as each group makes available biomass comparisons for selecting a destina-
tion pixel, the partial available biomass value is read (from the shared map) and
combined with the appropriate swhi value to calculate category-specific avail-
able biomass on a pixel by pixel basis. The available biomass values are then
stored in a work map.

3. When a group grazes at a resource pixel, total biomass depletion is calculated
for that pixel. Partial values for available biomass are then recalculated on the
shared map for just the one pixel grazed. In preparation for the next ungulate
group’s search for a destination pixel, these updated values are read from the
shared map, and new available biomass values are calculated on the work map
using category-specific information for the next group in the movement series.

4. Each animal group marks its movement path on the work map with flags (i.e.,
available biomass is set to an out-of-range value). This prevents the revisiting
of pixels on the same day without affecting the shared map which is read by
all groups. As a group makes its moves for the day, the work-map coordinates
of these moves are stored in an array, so that the flags which have been set to
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Table 7.1: CPU time (in seconds) for the original and revised NOYELP serial model versions and
speed improvement of the revised over the original version.

Version DECstation 5000-200 Sun SPARCstation 2
ORIGINAL 12780.80 9174.25
REVISED 828.15 840.72
Speed

improvement 15.43 10.91

mark one group’s path can be selectively removed before the next group uses the
map. The use of these flags and associated arrays is a crucial step in redesigning
available biomass calculations, because it eliminates the need to clear the entire
work map (i.e., set all elements to 0).

These modifications are interrelated, and full performance enhancement requires all
four changes. Other minor changes were made to the serial code to facilitate the
implementation of these modifications.

7.3.3 Comparison of performance of original and revised NOYELP model

The original and revised NOYELP models were compared for performance, based on
speed improvement (i.e., the ratio of CPU time for the original model to that of the
revised version). Both Fortran-77 programs were compiled with the -0 option for
the current £77 compiler. The results for total CPU time are shown in Table 7.1.
Figure 7.3 compares CPU time of the original and revised NOYELP models at each
time step of the 180-day model cycle and Figure 7.4 shows these same CPU times for
the revised model on an expanded y-axis.

Speed improvements of 10.91 and 15.43 were realized on a Sun SPARCstation 2
and DECstation 5000 model 200, respectively (Table 7.1). Most of this improvement
was attributable to changes in the movement component of the model. Trends of
CPU time over the 180-day model cycle for the original and revised versions were
very different (Figure 7.3). The original version required more CPU time during the
early part and at the very end of the NOYELP cycle, while CPU times for the revised
model increased slowly over the first 120 days, were highest from day 120 to day 165,
and decreased sharply during the last 15 days (Figure 7.4). The period during which
times were fastest for the original model coincided with the period when times were
slowest for the revised model.

The number or distance of moves made and distance traveled per day has little
effect on execution time of the original model, since all available biomass values within
a group’s search boundary are calculated each day, regardless of number of moves,
and biomass calculations consume the majority of CPU time. Instead, the major
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Figure 7.3: CPU time (in seconds) at each time step for the original and revised NOYELP model over
the 180-day model cycle on a Sun SPARCstation 2 (excluding I/0).

factor influencing execution time for the original version is the availability of biomass
on the NOYELP landscape (Figure 7.5). When components of available biomass are
low, category-specific calculations for available biomass are truncated, requiring less
execution time. The increasing availability of biomass in late winter—early spring
(Figure 7.5) requires increasing numbers of biomass computations in the original
NOYELP program, and computing time increases substantially from the mid-winter
low (Figure 7.3).

In contrast, CPU times for the revised version (Figures 7.3 and 7.4) vary directly
with the total daily distances traveled in ungulate movements (see Figure 7.6). Be-
cause biomass values are computed sequentially as the search area expands, both
number of moves and the length of each move increases the required number of re-
source pixel comparisons and hence the number of available biomass calculations that
must be made. Execution time is highest for time steps in which resources are sparse
and many moves are required per day to satisfy daily foraging requirements. As snow
cover melts in late winter and biomass becomes more available, CPU times decrease
sharply as the average number of moves per day for the ungulate groups decreases.
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Figure 7.4: CPU time (in seconds) for each time step of the revised NOYELP model over the 180-day

model cycle.

Performance gains from the truncation of biomass calculations are much smaller for
the revised model because fewer biomass calculations are made.
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Figure 7.5: Available biomass (in 2000kg units) in the study area over the 180-day NOYELP model
cycle.
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Figure 7.6: Total daily distance traveled (km/day) by all ungulate groups over the 180-day NOYELP
model cycle.



7.4 Parallelization of Animal Movements

As a first direct step toward parallelizing the NOYELP animal movement rule, a data-
parallel MPL version of the subroutine move was attempted. Cut-and-stack virtu-
alization was chosen because of the many non-habitat pixels which surround the
irregularly-shaped NYNP study area. While hierarchical virtualization clumps non-
habitat pixels together on the same processors, cut-and-stack mapping allocates these
non-habitat pixels more equitably among processors, leading to better load balanc-
ing. However, if an ungulate group’s search area were limited to the subgrid of one
processor, hierarchical mapping would have a strong advantage over cut-and-stack
mapping, even with the presence of a significant number of non-habitat pixels, since
no MPL communication constructs are required for comparison of pixels within a
processor’s subgrid.

A key issue in parallelization of animal movements in the NOYELP model is how
to distribute the data for animal groups across the processors. Two basic approaches
can be employed. In the first approach, group data are distributed evenly across
processors, regardless of the actual location of the group on the landscape. Each
group’s descriptive data are stored in one stationary place, and the value of a location
variable is changed when a move is made. This distribution would be advantageous
if a significant amount of data were maintained for each group, or if a large number
of groups reside on an individual pixels.

The second approach involves maintaining group data on the same processor and
data layer as the landscape pixel on which the group resides. When groups move from
one pixel to another, these data must be transferred to the appropriate destination
pixel. This is feasible for NOYELP because the model maintains only three pieces
of data about each animal group: category, location, and current body weight. If
more information were maintained, the required amount of data movement would be
prohibitive. The danger of memory constraints when multiple groups share a pixel
must also be considered.

Both approaches to storing animal group data were tested in this parallelization
effort. The first approach is more flexible and is recommended for a fully-implemented
parallel NOYELP model. Although this approach has the disadvantage of requiring
more inter-processor communication to access group data on a distant processor, its
use is warranted because it can better handle the presence of multiple groups on a
pixel and has the flexibility to accommodate additional group-specific data, as needed.

Execution times were measured at various stages of algorithm development, with
somewhat disappointing results. Progressively simpler parallel versions of the move-
ment rule were implemented in an attempt to identify a level at which speed improve-
ments over the serial model could be achieved. In the most simplified version of the
move subroutine, data for all categories of animals were read from the same available
biomass map, with the median swhi value used for all calculations. With this sim-
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plification, all ungulate categories would see the same available resource values. The
restriction from revisiting the same pixel on a given day was also removed. Unfor-
tunately, execution time was still about 20% slower than for the fully-implemented
serial model.

A parallel versions of the NOYELP movement component implementing the current
movement rule would be fairly communication intensive, due to the inter-processor
communication required to compare resource values from adjoining pixels within a
search area for each ungulate group several times each day over a 180 day simula-
tion period. Both the original and revised versions of NOYELP utilize nested loops
to simulate these repetitive activities. To benefit from parallelization, the number of
floating-point calculations performed inside these parallelizable program loops must
be sufficient to support the amount of interprocessor communication necessary for
parallel implementation of the movement rule chosen. The revisions made to the
original serial NOYELP model decreased the computational complexity of the loops in
the move subroutine to such an extent that inter-processor communication require-
ments associated with parallelization of the movement rule more than offset any gains
from parallelization of computations within the program loops.

This attempt to parallelize the animal movement component of NOYELP indi-
cates that development of a parallel version of the model will require fundamental
re-conceptualization of the movement rule. The parallel movement rule would have
to minimize communication/comparisons between processors to be effective in en-
hancing model performance. The re-conceptualized parallel model would have to be
recalibrated from suitable ecological data, adjusting flexible components in an itera-
tive process similar to the procedure used to calibrate the original serial model. The
development and implementation of such a rule, including the calibration and valida-
tion required to realize an operational parallel model, are topics for future research.

One approach which appears to be feasible and potentially efficient is based on
restricting of the movement of an animal group to the confines of a processor subgrid
for one move. This rule would favor hierarchical over cut-and-stack mapping because
the hierarchically-mapped subgrid represents a contiguous chunk of the landscape
map, keeping communications costs low. At the start of the each move, animals
which are on one of the border rows or columns of the subgrid could be moved to the
adjoining processor sub-grid. This would allow wider-ranging movement, but would
not require comparisons of pixel values across processor boundaries (which requires
the use of time-consuming communication constructs). More moves per day might
be required to obtain sufficient daily forage intake because of the restricted search
area for each day. A single suitability index for each subgrid might be communicated
to neighboring subgrids to guide direction of movements. Whether these changes
to the movement rule are sufficiently consistent with ecological theory or could be
compensated for by other adjustments to the model is difficult to judge at this point.
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7.5 Serial vs. Parallel Updating of Biomass Levels

A major concern in designing a parallel NOYELP model would be the updating of total
and available resource levels, which provides each ungulate group with knowledge
of the grazing effects of animal groups which precede it in the movement series.
The use of this movement series (which remains constant over the 180-day model
period) is critical to the serial processing of foraging activity. Its use implies a serial
process which, by definition, constrains concurrent grazing behavior. However, it is
possible that sequential grazing and consequent partial knowledge of grazing effects
may effectively simulate ecologically significant phenomena, such as unequal fitness
and/or dominance ranking among population members ([Lomn92]).

The influences of the serial constraint on searching and foraging imposed by use of
a movement series, and the consequent need for intra-move biomass updating, varies
over the 180 day NOYELP cycle. Biomass updating is not particularly important
in early time steps (i.e., during the autumn), when animals are widely distributed
over the landscape and infrequently choose the same destination pixel (Figure 7.7).
However, during the winter months when snow cover is deep and available resources
become scarce, animals tend to congregate in the low-elevation Mammoth-Gardiner
(snow-shadow) area and on south slopes throughout the study area where there is
less snow cover ([TWWR+93]). During these periods, population densities in the
more favorable habitat pixels can build to high levels, as each group chooses a shared
resource pixel solely because that pixel has the highest available resource level in its
search area, regardless of the number of other groups which may inhabit the same (1
hectare) pixel. Results of the NOYELP model run (Figure 7.7) indicate that from late
December through mid-February up to 80 groups (with 2 to 9 members per group)
share an individual pixel on a given day. Depletion of available biomass by groups
that rank high in the movement series can be a significant factor in the selection
of destination pixels by lower ranked groups during this period. Category-specific
resource updating can be a critical factor in determining animal movement during
the winter. As such, the serial constraints associated with the use of the movement
series for biomass updating becomes important during this period.

Once snow melt begins and these ungulate groups disperse, the importance of
biomass updating decreases, and the movement rule again becomes somewhat less
constraining to ungulate movement patterns.

Allowing multiple groups to share destination pixels constitutes an important and
ecologically consistent movement condition which should be retained in the parallel
model. However, biomass updating, which is based on the movement series, becomes
problematic when animal groups are required to make their destination choices in
parallel. An exact parallel implementation of NOYELP serial biomass updating would
still require the maintenance of a hierarchical ranking of animal groups (i.e., move-
ment series) identical to that used in the serial model. The series would be used to

74



60 —

40

Number of groups

20 —

o — . ' - 1 - - - T 1 - - T 1 1
50 100 150 180
Time steps (days)

Figure 7.7: Maximum number of ungulate groups which share a pixel over the 180-day cycle of the
NOYELP model.

implement a parallel-based movement algorithm that can accommodate the absence
of the serial biomass updating scheme in the initial selection of destination pixels.
In this parallel movement algorithm, animal groups on all processors would make a
given move as if no conflict existed. If more than one group chose the same destination
pixel on the same move, a rollback ([BeTs89]) technique based on the movement
series could be used to duplicate the serial behavior by allowing the effects of these
interactions to propagate backward to previous model decisions which were based on
biomass values that had not been updated to reflect the foraging activities of animal
groups higher in the movement series ([Palm92]). Figure 7.8 illustrates the chain
of events following the choice of the same destination pixel (pixel 9) by two animal
groups (1 and 2) on the third move of the day. The highest ranking group (group 1)
would be allowed to graze and biomass would be updated for its selected destination
pixel. Then, the next lower ranked group which selected the same destination pixel
(group 2) would roll back its pixel selection process by one move, reevaluating its
search area to choose its new maximum resource pixel (considering grazing effects for
the day by higher ranked groups, but not by lower ranked groups). If this new pixel
had been previously grazed by another (lower ranked) animal group (group 3) on the
same move, or on a previous move on the same day, group 2 would graze the pixel and
group 3’s pixel selections would be rolled back to the previous move. Group 3 would
reevaluate its search area and reselect its maximum resource pixel. The rollback
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Figure 7.8: Rollback mechanism for resolving resource depletion updates in exact parallel imple-
mentation of NOYELP movement rule.

sequence would be repeated after each move of a given day until all conflicts were
resolved. As is evident in comparing the first and final choices of group 4 on move 2
in Figure 7.8, a group may re-select the same pixel based on updated biomass. All
biomass updates for the day would be held in stacked buffers (along with information
about which group was responsible for the update) until all moves for a given day were
resolved. Note in Figure 7.8 that the rollback for group 3 was two moves, even though
biomass was updated after every move. Such multiple-move rollbacks are required to
effectively duplicate the outputs of the serial algorithm, wherein a particular group
makes all of its moves for a given day before groups lower in the movement series
make any moves.

Based on this reasoning, it appears that when pixel sharing is important in the
NOYELP model, as it is during winter, any parallel performance advantages would
quickly be lost in the recursive roll-backs required to emulate serial updating of
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biomass values for making movement decisions. When the average number of groups
per destination pixel is large and the number of moves made per day is high, com-
puting time required to implement this rollback procedure could quickly become pro-
hibitive.

If the goals of the parallelization effort were not driven by the need to duplicate
serial behavior and output but were rather to develop and implement an equally
meaningful parallel movement rule, these multiple-move rollbacks would not be nec-
essary. The parallel movement rule would resolve the issue of allocation of destination
pixel resources when multiple groups choose the same destination pixel in a way that
avoids this time-consuming serial component. One option would be to allow the sev-
eral groups on the pixel to share available biomass equally. Thus, if n groups choose
a pixel with resources of R kilograms, each could calculate their biomass consumption
from a base of R/n kg. An alternative option would be to allow the groups to graze
the destination pixel serially, with animal groups ranked low in the series grazing
from pixels whose biomass has been diminished by groups ranked higher in the se-
ries. If resources were very low, a low-ranked group might actually be shut out from
grazing (as resources are depleted to the refuge level by previously grazing groups)
even though alternate resource patches might be available in the search area.

A third parallelization option, one which incorporates knowledge updating, would
give groups sharing resource-limited pixels another opportunity to choose a destina-
tion (from among updated pixels). However, this capability would introduce another
time-consuming serial component into the move-graze function. Many processors
would be idle waiting for a few groups to move and model performance would be
degraded.

All of these alternatives would differ from the serial movement rule in that some
ungulate groups might have initially chosen other pixels in their search area based
on their knowledge of the effects of grazing by higher ranked groups (i.e., if resource
updating had occurred following the movement of each group).

In a parallel version of the NOYELP model, serial processing will be necessary at
several points in the simulation, regardless of the movement rule implemented, for
the following reasons:

1. The number of map pixels is greater than the number of MP-2 processors, re-
quiring each processor to handle more than one habitat pixel. As discussed
in Chapter 2, with 4096 processors and 320 x 640 habitat pixels, 50 pixels are
mapped to each processor. These pixels are stored in data arrays within each
processor. Each PE can process only one pixel at a time, so the pixels are
processed serially.

2. A habitat pixel may be host to more than one animal group. Each group residing
on a given pixel must be processed serially in its selection of a destination pixel.
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3. When more than one animal group chooses a particular destination pixel, a serial
component of some sort is unavoidably introduced into the move and graze
functions.

These unavoidable serial components should be recognized and exploited in par-
allel approaches to modeling ecologically significant animal behavior. Forcing serial
behavior at other points in the parallel model would cause performance degradation
and should be avoided. If, as appears to be the case with the serial NOYELP move-
ment rule, parallel constraints cannot be compensated for by adjusting flexible model
parameters, then modification of the basic move-graze structure will be required for
development of an efficient parallel model.

7.6 Conclusions

Improvements to the animal movement component of the serial NOYELP model made
over the course of this study removed much of the computational complexity from the
program loops and reduced execution time by an order of magnitude. Serial improve-
ments and the fundamental incompatibility of the serial movement rule with parallel
processing capabilities combined to make parallelization of animal movements on the
MasPar MP-2 infeasible for this study. A revised movement rule is proposed which
would exploit the advantages of parallel processing by incorporating the following
features:

1. Animal groups should be restricted to moving within the local processor subgrid
for any given move to accomplish resource pixel comparisons and destination selection
with a minimum of inter-processor communication. Hierarchical rather than cut-and-
stack mapping would be used to exploit localized communication. This movement
rule modification would have great speed advantages, but would necessitate rules
governing when a group is moved from one processor to another.

2. All animal groups should move and graze in parallel (within the constraints
of virtualization). A parallel move and graze algorithm requires different approaches
to biomass updating and allocation of resources when multiple groups are present
on a pixel. Available biomass values should be updated at the end of each parallel
move/graze action, so that on move m all groups are aware of any resource depletion
(which has occurred due to foraging) on move m — 1 before choosing its next desti-
nation pixel. An advantage of this feature would be the possible elimination of the
requirement that animal groups not revisit the same pixel in the same day (which
was implemented by setting the movement path to 0 on the available biomass map).
This constraint was necessary in the serial version in part to compensate for the fact
that an ungulate group could not see the effects of grazing by subsequent groups on
the same day. These other groups (lower in the movement series) might choose a
previously visited high-resource pixel and deplete its resources before the next graz-
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ing choice is made by the higher ranked group. In the parallel algorithm, all grazing
effects would be recorded at the end of each parallel grazing event, so that groups
could make a more informed choice at each move of the day.

The allocation of resources when multiple groups choose the same destination pixel
is a more complex issue presented by a parallel move/graze algorithm. In the serial
model, groups choose and graze in sequence, so a group chooses with knowledge of the
grazing effects of previous groups, and only chooses a given pixel if it is the maximum
resource pixel in its search area. In the parallel model, multiple ungulate groups
will choose a pixel at the same time, before any grazing is recorded, unaware of how
many other animals are choosing the same pixel. If they could see grazing effects of
other groups sharing the destination pixel, they might choose a different pixel as their
destination pixel, perhaps one with a smaller current resource level, but with fewer
grazers for the current move. To address this resource sharing issue, groups could
share resources on the destination pixel evenly, or graze in sequence, based on their
position in a movement series or randomly.

Another potential problem with a parallel move/graze algorithm that involves no
intra-move updating is that once animal groups share a pixel, they might tend to move
together to the same destination pixel. If selection of destination pixels were based
solely on available biomass at the start of the move, all groups on the pixel would have
the same available resource values to choose from and would choose the same pixel.
This phenomenon has been referred to as artificial synchronization ([TWWR+93]).
This situation is readily addressed by recognizing that animals located on the same
pixel are processed on the same PE, and hence are processed in series, thereby pro-
viding the opportunity to update biomass according to a movement series within a
particular move for groups on the same pixel. In other words, grazing effects for each
group could be recorded in sequence, giving subsequent groups on that pixel knowl-
edge of these effects, as in the sequential algorithm. Groups making knowledge-based
decisions would be less likely to choose the same destination pixel.

3. One available biomass map should be employed for all animal categories if
possible. This would eliminate category-specific variables in the calculation of avail-
able biomass, the most time-consuming component of the serial animal movement
algorithm. Serial values for the category-specific component of the feedback calcu-
lation (swhi) are currently 14 for elk calves, 15 for elk cows, 16 for elk bulls and
bison calves, and 18 for bison cows and bulls. A single value could be chosen for
all categories, and an attempt to compensate for this simplification could be made
by substituting complexity in another model component (i.e., adjusting the foraging
rate or maintenance energy values for each category). Category-specific information
could be retained in the pre-grazing calculation of feedback for foraging. This feature
could also be incorporated into the serial model.

79



Chapter 8

Conclusions

For this thesis, parallel kernels for performing cluster identification and mean squared
radius computation were implemented on the MasPar MP-2 using both hierarchical
and cut-and-stack data mapping strategies. These kernels were tested on random
maps as well as on resource maps extracted from runs of the NOYELP model. Speed
improvements for parallel implementations over serial algorithms for communication-
intensive cluster identification were modest (<12) for random maps of most sizes
and densities tested. The hierarchical algorithm consistently outperformed the cut-
and-stack algorithm, which was slower than the serial program for densities near
the percolation threshold for all map sizes tested. Larger speed improvements were
measured for dense maps with large, dominating clusters. For random maps with
p = 0.85, the hierarchically-mapped version was over 15 times faster than the serial
version on a Sun SPARCstation 2. When cluster identification is performed repeatedly
over time steps, as in the NOYELP model, even small speed improvements can be
significant.

Speed improvements for parallel implementations of the more computationally-
intensive mean squared radius computation, which increased with map size and den-
sity, were more substantial. Speed improvements of over 150 were realized for both
parallel mapping versions over the serial program on a Sun SPARCstation IPX on
512 x 512 random maps with p > 0.85. These results make radius measurements a vi-
able tool for many landscape ecology applications. Speed improvements for NOYELP-
derived maps were lower, due largely to the inclusion of many additional non-habitat
pixels in the NOYELP grid, which contributed to low densities for these maps. An area
for future research is the examination of strategies to improve SIMD performance
for applications with irregularly-shaped study areas, perhaps by blocking relevant
data (including locality-preserving references) out to the front-end machine and re-
distributing data equitably among processors. Future work in this area should also
involve a closer examination of the the spectrum of natural spatial patterns and clus-
ter configurations encountered in landscape maps, the relative performance of parallel
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kernels on these configurations, and methods of optimizing parallel performance over
the range of patterns.

Parallel kernels for cluster identification or mean squared radius computation could
be integrated into the NOYELP model or other landscape ecology models for efficient
cluster analysis. Parallel kernels (running on the MasPar MP-2 DPU) could be called
by serial programs running on the DECstation 5000-200 front-end machine. Data to
be analyzed would be blocked out to the DPU, and results could either be returned
to the calling program or be written to an output file.

Serial modifications to the cluster identification and animal movement components
of the original Fortran-77 NOYELP program resulted in a revised serial version which
executes 11 times faster than the original (CPU time on a Sun SPARCstation 2),
with no change in functionality. Modifications included replacing the original local
diffusion-based cluster identification algorithm with a more efficient pseudo-recursive
algorithm and revising the calculation of available biomass in the animal movement
component. Non-category-specific components in available biomass calculations were
removed from nested animal movement loops, so that these calculations are performed
once per time step rather than once per animal group per time step.

The results of this thesis effort indicate that, if benefits are to be realized from
parallelization of animal movement, the number and complexity of movement opera-
tions performed inside parallelizable program loops must be high enough to offset the
amount of interprocessor communication required to implement the movement rule
chosen. The original serial NOYELP model appeared to fit this criterion, spending
95% of program execution time in the animal movement component of the model.
Complex multi-variable calculations of available biomass feedback values are per-
formed repetitively within a daily sequential loop through animal groups. However,
performance improvements made to the movement component of the serial NOYELP
program (discussed above) resulted in a 24-fold speed improvement over the origi-
nal movement component (on a Sun SPARCstation 2). After these modifications,
insufficient computational complexity remained within the animal movement loop to
support the communication requirements associated with parallel implementation of
the current movement rule with any significant speed improvement.

The results of this research highlight the fundamental incompatibility of the NOYELP
serial movement rule, with its intra-move biomass updating schedule, with parallel
processing constraints. Integral to this movement rule is a movement series that
determines the order in which ungulate groups move and graze on the NYNP land-
scape. The model updates biomass prior to each day’s set of moves for each ungulate
group according to the movement series. It is concluded that efficient parallelization
would involve re-conceptualizing the movement rule. Recalibration of the parallel
model with suitable ecological data would also be required.

Components of a new parallel movement rule which exploit the advantages of
hierarchical mapping are proposed for NOYELP and similar individual-based landscape
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ecology models. It is suggested that the search area for selection of resource pixels
be limited for a given move to the pixels assigned to one processor, thereby limiting
the amount of inter-processor communication required. To expand the search area, a
group selecting a PE border pixel could be relocated to to the adjoining processor for
the next move. A composite suitability index could be computed for each processor’s
resource subgrid and communicated to adjacent processors to influence the direction of
movement. Group-specific information (i.e., location, body weight, category) should
be distributed across processors independently of group location on the landscape,
and maintained in one place rather than being moved when the group relocates.
Available biomass values should be updated at the end of each parallel move/graze,
to provide an acceptable level of knowledge in the foraging activities. Given parallel
grazing and updating, groups probably do not need to be constrained from revisiting
pixels on a given day. When resource pixels are shared by animal groups, biomass
could be shared equally or be allocated according to a ranking scheme consistent with
the autecology of the particular species. In addition, the new rule should minimize
the use of category-specific variables in the calculation of available biomass.

Further conceptualization and development of parallel algorithms to implement
the new movement rule are subjects for future research.
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A.1 Family of MPIPL Functions for Virtual Array Conver-
sion

mpildcsto2dh - MPIPL function to convert a virtualized array from 1D cut-and-
stack to 2D hierarchical.

mpildhto2dh - MPIPL function to convert a virtualized array from 1D hierarchical
to 2D hierarchical.

mpildhto2dh - MPIPL function to convert a virtualized array from 1D hierarchical
to 2D hierarchical.

mpi2dcsto2dh - MPIPL function to convert a virtualized array from 2D cut-and-
stack to 2D hierarchical.

mpi2dhtoldcs - MPIPL function to convert a virtualized array from 2D hierarchical
to 1D cut-and-stack.

mpi2dhto2dcs - MPIPL function to convert a virtualized array from 2D hierarchical
to 2D cut-and-stack.

Each of these functions takes the form:
mpi2sourceXtargetYN(imgSrc, rows, cols, imgDst),
taking a virtual array of N-bit objects located at imgSrc using X virtualization, and
returning in imgDst the same array revirtualized to use a Y virtualization, where

N = 8,16, or 32.
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A.2 Using the MasPar

Much of the code development for this project was done on the MasPar MP-1, main-
tained by the Joint Institute for Computational Science at the University of Ten-
nessee. This particular machine was upgraded in January (1993) to an MP-2, and
all execution times included in this thesis reflect MP-2 timings. The effective speed
of the MP-2 ranges between 2 and 4 times faster than that of the MP-1. Although
the number of processors remained at 4,096, the MP-2 upgrade uses 32-bit PEs with
a 16-bit datapath from PE memory to PFE registers. The original MP-1 machine, on
the other hand, employed 4-bit PEs with a 4-bit datapath from PE memory to PE
registers.

The progressive evolution of programming efforts for this project has been driven
by bottleneck resolution. When an algorithm is modified, performance and accuracy
over all mapsizes and p-values must be re-evaluated. Some approaches work well for
some size/density combinations, but perform poorly for others. The MPPE profiling
capability has been very useful for pinpointing where execution time is spent, and for
comparing the efficiency of alternative MPL functions.

The (ANSI C compatible) MasPar Programming Language is fairly well docu-
mented (except for the omission of specific data mapping examples) and it is relatively
easy for a C programmer to write MPL code that works. However, initial efforts are
often slow and inefficient. Programming for performance is especially important for
parallel applications, particularly in the following areas:

1. Registers. - Each PE has 32 32-bit registers available for user-declared register
variables. Use of these registers gave a 25-35% performance improvement for
cluster identification and radius calculation codes.

2. Communications - The availability of several communication constructs in
MPL: (proc, three types of xnet, and global routing) provide flexibility, allow-
ing the programmer to minimize communication overhead within the constraints
of the application. In some situations (i.e., when a large percentage of PEs need
to view the same value) it is more efficient to store values in singular variables
visible to all PEs and control access by limiting the active set rather than use
router constructs to broadcast these values selectively.

3. Pipelining. - Stores to memory are always time-consuming, but the program-
mer can take advantage of pipelining on the MasPar by intelligent use of registers.
For example:

registertemp=sum[n];

registertemp+=va1ue_to_store;
sum[n]=registertemp;

89



is significantly faster than

sum[n]+=value_to_store;

. Variable size. - Operations with shorts are twice as fast on MasPar PEs as
operations with ints, and operations with ints are twice as fast as operations with
long longs, so the programmer should carefully calculate the maximum variable
size needed. Significant performance improvements were seen in this project by
using ints for low-level calculations, and casting to larger sizes as values are
accumulated.

. Storage of results. - Address space limitations on the ACU (where singular
variables are handled) are fairly restrictive. Rethinking of traditional program-
ming approaches can often yield alternatives to array storage for collecting results
which are more efficient for parallel applications and allow larger problems to be
solved within the memory constraints.
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B.1 Outline of NOYELP Subroutines

The serial NOYELP model is implemented as a 4736 line Fortran-77 program, divided
into 13 subroutines.

SUBROUTINE INPUT()

lines: 304

Subroutine input () inputs the parameter values, snow index matrix, habitat type
matrix, and interface choices, and sets initial rows and columns for bison distri-
bution.

parameters: none

called by: main()

calls to to: none

SUBROUTINE INITIAL()
lines: 701
Subroutine initial() initializes biomass and ungulate location matrices and estab-
lishes the chosen pattern of burned areas on the landscape.
parameters: none
called by: main()
calls to to: unevenb(), ranmap()

SUBROUTINE UNEVENB()

lines: 40

Subroutine unevenb () creates an uneven biomass map for the landscape.
parameters: none

called by: initial()

calls to: none

SUBROUTINE RANMAP()

lines: 63

Subroutine ranmap() creates a random habitat map for the landscape, if random
landscape is chosen.

parameters: none

called by: initial()

calls to: none
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SUBROUTINE SSNOW()
lines: 174
Subroutine ssnow() distributes snow depth in each pixel and updates it at the start
of each snow period (3 days).
parameters: none
called by: main()
calls to: none

SUBROUTINE UNGFIND()
lines: 153
Subroutine ungfind () locates each ungulate group on the landscape map, then ini-
tiates moving and grazing for the day.
parameters: none
called by: main()
calls to: graze(), move()

SUBROUTINE GRAZE(I,],UNGRANK)
lines: 128
Subroutine graze() allows an ungulate in a resource pixel to forage. Total biomass
on the grazed pixel is reduced by the amount consumed by the grazing ungulate
group. Foraging is precluded on a given site when biomass declines below a

re futge level.

parameters: integer 1 row (x-coord.) of current group
integer j column (y-coord.) of current group
integer ungrank rank of current group in movement series
called by: ungfind ()
calls to: move(), energet()

SUBROUTINE MOVE(I,],UNGRANK)
lines: 277
Subroutine move () implements the destination resource pixel selection phase of the

movement rule.
parameters: integer 1 row (x-coord.) of current group

integer j column (y-coord.) of current group
integer ungrank rank of current group in movement series
called by: graze(), ungfind()
calls to: none
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SUBROUTINE ENERGET(I,J,UNGRANK)
lines: 169
Subroutine energet () calculates energy cost and gain each day for each ungulate.

Body weight lost is tracked and mortality is simulated.
parameters: integer 1 row (x-coord.) of current group

integer j column (y-coord.) of current group
integer ungrank rank of current group in movement series
called by: graze()
calls to: none

SUBROUTINE PATCH()

lines: 350

Subroutine patch() identifies clusters of available biomass pixels and reports the
number of clusters, average cluster size, and largest patch size for available re-
sources. Cluster analysis is performed twice each day: once for pixels with
available biomass above 0, and again for pixels with available biomass above a
preset alpha level.

parameters: none

called by: main()

calls to: none

SUBROUTINE STATIST( )

lines: 1018

Subroutine statist() provides a statistical summary over all replicate runs and
calculates mean, minimum, maximum values and standard deviation for each
replicate at day 180.

parameters: none

called by: main()

calls to: none

SUBROUTINE OUTFILE()

lines: 109

Subroutine outfile() writes summary results to an outfile.
parameters: none

called by: main()

calls to: none
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B.2 Selected Formulas used in NOYELP model computations

Feedback due to foraging: represents the effect of a reduction in the amount of
available forage on the rate of forage intake.

REF
B =1 - —
forage 510

where:
F Byorage = value ranging from 0-1 (unitless),

REF = refuge value of biomass not available to ungulates (kg/ha), and
BIO = actual biomass in that pixel (kg/ha).

Feedback due to snow: represents the effect of snow on the ability of an animal to
forage.

(SWE — SWLO),

Flmow = V= "Gvmr —swro |,

where:

F Bgpow = value ranging from 0-1 (unitless),

SWE = actual snow water equivalent in that grid cell,

SWLO = the SWE value at which limitation to foraging begins,
SWHI = the SWE value at which feeding goes to zero, and

+ indicates that the term must remain positive, i.e., it is set to zero if negative.

DIST: maximum daily moving distance as modified by snow conditions; used to

constrain animal movement such that elk or bison move a shorter distance when
snow conditions are severe.

MDISTM

DIST = —— 2" —
1+ Y/100

where:
DIST = the modified maximum daily moving distance in snow,

MDISTM = the initial maximum daily moving distance (category-specific) and,
Y = the relative increase in travel energetics in snow.

Energy balance equations:

Ebalance — Egain - Ecost
Eyn = 1 % ENPK
Ecost — Emaint - Etravel
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where:

I = total intake of forage(kg), KN PK = forage energy content (kcal/kg),
E,.qint = metabolizable energy needed for zero energy balance, excluding travel

(kcal), and

FEiraver = energy cost of travel (kcal).

Energy content of forage:

ENPK =GE«IVDMD x« MC

where:

ENPK = forage energy content (kcal/kg),

G'E = gross energy (4400 kcal/kg),

IVDMD = in vitro dry matter digestibility (0.374 from field data), and
MC = metabolizable energy coefficient (0.82).

E,.0ine: Maintenance energy

Euine = MFE x BW™

where:

M E = metabolizable energy needed per kg body weight (kcal/kg), and
BW = present body weight (kg) of the ungulate.

E; 0vci(no snow): Energy cost of traveling in the absence of snow.

Etravel(nosnow) = [297kcal/kg * BW_O'34] x* BW % S

where:
S = distance traveled (km), and
BW = present body weight of the animal (kg).

Y: relative increase in energy costs for travel in snow (%)

Y = [0.71 4 2.6(p — 0.2)] ¥ RSD % ™019+00160=021 pgp

where:

p = snow density (g/cm?), and RSD = relative sinking depth
[(sinking depth/brisket height) x 100].
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Table C.1: Wall-clock times for cluster identification with cut-and-stack data mapping on the MasPar
MP-2 (all times are in seconds).

Map Size
Operation  p-value 64 128 256 512 768 1024 2048
Read 0.10 0.020 0.020 0.047 0.129 0.297 0.523 10.406
Label 0.10 0.008 0.012 0.016 0.062 0.148 0.230 1.137
Collect 0.10 0.004 0.004 0.004 0.066 0.289 0.813 11.797
ClusterID 0.10 0.012 0.016 0.020 0.129 0437 1.043 12.934
Total 0.10 0.031 0.035 0.066 0.258 0.734 1.566 23.340
Read 0.30 0.012 0.023 0.047 0.133 0.297 0.520  9.980
Label 0.30 0.008 0.016 0.031 0.129 0.277 0.570  2.328
Collect 0.30 0.004 0.000 0.020 0.086 0.328 0.895 12.152
ClusterID 0.30 0.012 0.016 0.061 0.215 0.605 1.465 14.480
Total 0.30 0.023 0.039 0.098 0.348 0.902 1.984 24.461
Read 0.62 0.020 0.027 0.043 0.133 0.297 0.523 10.285
Label 0.62 0.020 0.070 0.297 1.094 2.188 4480 19.746
Collect 0.62 0.023 0.043 0.066 0.164 0.437 1.055 12.648
ClusterID 0.62 0.043 0.113 0.363 1.258 2.625 5.535 32.395
Total 0.62 0.062 0.141 0.406 1.391 2.922 6.069 42.680
Read 0.85 0.020 0.023 0.043 0.133 0.301 0.520 10.000
Label 0.85 0.020 0.039 0.148 0.582 1.270 2.293  8.977
Collect 0.85 0.035 0.039 0.047 0.082 0.191 0.445  5.168
ClusterID 0.85 0.065 0.078 0.195 0.664 1.461 2.738 12.145
Total 0.85 0.074 0.102 0.238 0.797 1.762 3.258 24.145
Read 1.00 0.016 0.023 0.039 0.133 0.293 0.519 10.215
Label 1.00 0.012 0.039 0.145 0.543 1.207 2.125  8.508
Collect 1.00 0.039 0.043 0.039 0.043 0.0569 0.070 0.176
ClusterID 1.00 0.061 0.082 0.184 0.586 1.266 2.195  8.684
Total 1.00 0.066 0.106 0.223 0.719 1.559 2.715 18.898

Note: ClusterID is the sum of Label and Collect times.
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Table C.2: Wall-clock times for cluster identification with hierarchical data mapping on the MasPar
MP-2 (all times are in seconds).

Map Size
Operation  p-value 64 128 256 512 768 1024 2048
Read 0.10 0.020 0.031 0.039 0.105 0.250 0.496  9.539
Label 0.10 0.008 0.004 0.012 0.023 0.043 0.074  0.305
Collect 0.10 0.000 0.000 0.004 0.016 0.047 0.113 0.801
ClusterID 0.10 0.008 0.004 0.016 0.039 0.090 0.187  1.105
Total 0.10 0.027 0.035 0.065 0.145 0.340 0.684 10.750
Read 0.30 0.027 0.023 0.043 0.559 0.250 0.477  9.668
Label 0.30 0.012 0.008 0.012 0.027 0.047 0.082  0.344
Collect 0.30 0.000 0.000 0.004 0.039 0.117 0.289  2.098
ClusterID 0.30 0.012 0.008 0.016 0.066 0.164 0.371  2.441
Total 0.30 0.039 0.031 0.069 0.625 0.414 0.848 12.109
Read 0.62 0.031 0.027 0.047 0.113 0.250 0.469 10.000
Label 0.62 0.023 0.027 0.039 0.074 0.113 0.160  0.488
Collect 0.62 0.023 0.027 0.062 0.141 0.273 0519 4.723
ClusterID 0.62 0.047 0.065 0.102 0.215 0.387 0.680  5.211
Total 0.62 0.078 0.082 0.148 0.328 0.637 1.148 15.211
Read 0.85 0.023 0.027 0.043 0.109 0.250 0.469  9.953
Label 0.85 0.016 0.020 0.023 0.031 0.059 0.094 0.363
Collect 0.85 0.035 0.043 0.047 0.066 0.105 0.152  0.855
ClusterID 0.85 0.061 0.062 0.070 0.098 0.164 0.246 1.219
Total 0.85 0.074 0.090 0.113 0.207 0414 0.715 11.172
Read 1.00 0.023 0.023 0.039 0.105 0.250 0.496  9.754
Label 1.00 0.012 0.020 0.020 0.031 0.047 0.074  0.305
Collect 1.00 0.043 0.039 0.039 0.043 0.047 0.047  0.666
ClusterID 1.00 0.055 0.069 0.069 0.074 0.094 0.121  0.371
Total 1.00 0.078 0.082 0.098 0.180 0.344 0.617 10.125

Note: ClusterID is the sum of Label and Collect times.
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Table C.3: Wall-clock times for pseudo-recursive sequential Fortran cluster identification program
on Sun SPARCstation 2 (all times are in seconds).

Map Size
Operation  p-value 64 128 256 512 768 1024 2048
Read 0.10 0.04 0.19 0.66 2.83 52.75 28.12 46.75
ClusterID 0.10 0.00 0.01 0.08 032 076 1.32 5.31
Total 0.10 0.06 0.23 093 3.78 b55.04 31.84 62.11
Read 0.30 0.33 134 0.68 23.69 6.34 11.45 46.53
ClusterID 0.30 0.01 0.02 0.12 047 1.13 197 7.92
Total 0.30 0.35 142 0.95 2499 892 16.04 64.35
Read 0.62 0.33 0.19 0.67 2.83 6.25 1141 46.62
ClusterID 0.62 0.01 0.04 0.17 068 1.8 275 11.16
Total 0.62 0.35 026 0.99 412 934 16.74 66.28
Read 0.85 0.0 0.15 0.68 2390 6.57 11.67 46.52
ClusterID 0.85 0.01 0.04 022 088 208 3.71 15.11
Total 0.85 0.07 025 1.04 2539 991 17.62 71.65
Read 1.00 0.35 1.33 5.51 23.82 6.41 11.26 46.89
ClusterID 1.00 0.02 0.06 027 1.14 271 470 19.40
Total 1.00 0.38 143 6.00 25.62 10.52 18.65 75.93
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Table C.4: Wall-clock times for total map analysis (including radius computation) with cut-and-stack
data mapping on the MasPar MP-2 (all times are in seconds).

Map Size
Operation  p-value 64 128 256 512
Read 0.10 0.020 0.031  0.047 0.141
ClusterID 0.10 0.016 0.020  0.039 0.145
Radius 0.10 0.090 0.277  1.106 6.027
Total 0.10 0.117 0316  1.176 6.230
Read 0.30 0.023 0.035  0.047 0.141
ClusterID 0.30 0.016 0.023  0.059 0.246
Radius 0.30 0.168 0586  2.242 9.949
Total 0.30 0.199 0.633  2.328  10.223
Read 0.62 0.023 0.027  0.051 0.133
ClusterID 0.62 0.074 0.172  0.703 2.684
Radius 0.62 0.305 1.422 13.934 187.158
Total 0.62 0.352  1.520 14.273 188.400
Read 0.85 0.023 0.027  0.047 0.141
ClusterID 0.85 0.102 0.234  0.758 2.863
Radius 0.85 0.418 2.207 21.289 289.184
Total 0.85 0.461 2.281 21.488 289.910
Read 1.00 0.024 0.026  0.046 0.135
ClusterID 1.00 0.109 0.266  0.855 3.215
Radius 1.00 0.387 2.340 24.301 337.777
Total 1.00 0.528 2.621 25206 341.927
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Table C.5: Wall-clock times for total map analysis (including radius computation) with hierarchical
data mapping on the MasPar MP-2 (all times are in seconds).

Map Size
Operation  p-value 64 128 256 512
Read 0.10 0.027 0.023  0.043 0.105
ClusterID 0.10 0.016 0.016  0.027 0.086
Radius 0.10 0.094 0.285  1.062 4.426
Total 0.10 0.137 0.332  1.133 4.617
Read 0.30 0.027 0.023  0.043 0.109
ClusterID 0.30 0.012 0.016  0.027 0.125
Radius 0.30 0.137 0.605  3.063  16.309
Total 0.30 0.180 0.648  3.137  16.543
Read 0.62 0.023 0.023  0.047 0.109
ClusterID 0.62 0.051 0.059  0.086 0.207
Radius 0.62 0.2564 1461 14.629 196.516
Total 0.62 0.328 1.555 14.770 196.836
Read 0.85 0.027 0.027  0.039 0.109
ClusterID 0.85 0.059 0.062  0.074 0.117
Radius 0.85 0.332 2.031 20.730 286.707
Total 0.85 0.418 2.125 20.848 286.938
Read 1.00 0.030 0.028  0.043 0.111
ClusterID 1.00 0.062 0.062  0.152 0.078
Radius 1.00 0.383 2363 24.316 337.453
Total 1.00 0.475 2454 24520 337.646

Table C.6: Wall-clock times for optimized sequential C program for total map analysis, including
read time, cluster identification, and mean squared radius computation on SPARCstation IPX (all
times are in seconds).

Map Size

p-value 64 128 256 512
0.10 0.12 1.40 23.97 389.66
0.30 0.36 5.43 96.69  1515.39
0.62 3.24  37.27 1052.27 19914.67
0.85 9.57 165.70 2718.12 44156.01
1.00 17.84 236.44 3791.13 59379.85
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[ kKoo sk ok skok sk ko ok o ok ookt sk stk sk o s sk ok ok kesk sk stk koo ok kb sk ko sk ok sk sk ok ok ke kok ok /
/* Original GMMSR mean squared radius
* C program fragment:

*/

Radius(1lbl,size,rms)
int 1bl;

int size;

double rms;

{
double rid,rjd,r2,s2,*istack,*jstack;
int 1,j,nstack;

/* allocate space for map coordinate vectors */
istack = (double *)malloc(((NROWS*NCOLS)+4)*sizeof (double))
jstack = (double *)malloc(((NROWS*NCOLS)+4)*sizeof (double))

/* £ill istack with x-coordinates of cluster (not shown) */
/* £ill jstack with y-coordinates of cluster (not shown) */

/* nstack = number of coordinates */
/* calculate squared coordinate differences */
for(i=0;i<nstack-1;i++){
for(j=i+1;j<nstack;j++){
rid = fabs(istack[j]-istack[i])+1;

rjd = fabs(jstack[jl-jstack[i])+1;
r2 += rid*rid + rjd*rjd;
t
t
/* calculate mean radius */
s2 = (double)size;
S2 = s2%s2;

*rms = sqrt(r2/s2);
by

[ oKk ok ok s ok sk ook ok ok skok e skok s ok ok ok sk ok sk skok sk ok ok skok sk ok sk skok s skok ok sk ko sk sk ok sk skok Rk sk ok ook /
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/3t s s sk sk st sttt st stk stk sk ok ok ok sk sk skok sk sk sk stk sk stk stk stk stk okt ook kol kol kol kokok sk /
/* Modifications made to GMMSR for improved performance
* (for array storage of x- and y—coordinates)

*/

Radius(1lbl,size,rms)
int 1bl;

int size;

double rms;

{

int *istack,*jstack,nstackl,nstack,i,j;
double rid,rjd,r2,s2;

/* allocate space for map coordinate vectors */
istack = (int *)malloc(size*sizeof(int))
jstack = (int *)malloc(size*sizeof (int))

/* £ill istack with x-coordinates of cluster (not shown) */
/* £ill jstack with y-coordinates of cluster (not shown) */

/* nstack = number of coordinates */
/* calculate squared coordinate differences */
nstackl=nstack-1;
for(i=0;i<nstackl;i++){
for(j=i+1;j<nstack;j++){
rid = istack[jl-istack[i]+1;
if((rjd = (jstack[jl-jstack[i]))<0) rjd=-rjd;
rjd+=1;
r2 += rid*rid + rjd*rjd;

/* calculate mean radius */
82 = size;
xrms = sqrt(r2)/s2;

}

[ oKk ok ok s ok sk ook ok ok skok e skok s ok ok ok sk ok sk skok sk ok ok skok sk ok sk skok s skok ok sk ko sk sk ok sk skok Rk sk ok ook /
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Table C.7: Comparison of CPU times on Sun SPARCstation IPX for Gardner/Minser mean squared
radius C program with four revision stages.”

Map Size
Algorithm | p-value 64 128 256 512
GMMSR: 0.10 0.09 1.41 25.25 406.23
0.30 0.35 5.48  102.39  1618.90
0.62 6.33  82.26 2166.23 36343.40
0.85 19.12  348.33 559556 89555.51
STAGEL: 0.10 0.09 1.42 25.21 405.85
0.30 0.36 5.47  102.07  1607.33
0.62 3.25  b4.75  1439.71 24311.35
0.85 9.44  232.30 3722.71 59800.57
STAGEZ2: 0.10 0.10 1.32 23.67 380.22
0.30 0.33 5.07 95.58  1506.37
0.62 3.18  36.86 1047.55 17750.05
0.85 9.44 164.68 2707.21 43564.97
STAGEJ3: 0.10 0.09 1.31 23.66 380.58
0.30 0.33 5.16 95.62  1507.75
0.62 3.21  36.86 1047.27 19701.13
0.85 9.49 164.60 2705.73 42282.11
LOOKUP: 0.10 0.07 0.94 18.76 303.55
0.30 0.24 3.67 75.72  1202.34
0.62 2.57 3519  837.57 14011.50
0.85 6.23  99.81 1741.30 28252.92

*See Table C.8 for a description of revision stages.
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Table C.8: Optimizing modifications made to serial C program for computing mean squared radius.

GMMSR: Gardner/Minser serial C program for mean squared radius computa-
tion. Note: the declaration of istack and jstack as pointers to doubles
and the subsequent calls to fabs() in the original program are more effi-
cient (require less CPU time) than declaration as ints with calls to abs ()
on the architectures tested.

Stagel: Eliminate calls to C library function fabs() by computing absolute
values in place for y-coordinate differences (i.e., if(i < 0) ¢ = —i). Dif-
ferences in x-coordinates will always be positive as implemented, so no
absolute value need be computed for x-coordinate differences.

Stage2: Use dynamically-allocated arrays which are the exact size of the clus-
ter being analyzed to hold x- and y-coordinates; remove arithmetic from
for loop indices.

Stage3: Do not store x- and y-coordinates in arrays when clustersize is greater
than half the map size. Instead, use indices of for loops to indicate
pixel positions in map and accumulate squared differences as for loop is
executed. This is somewhat faster for large clusters and reduces mem-
ory demands. The optimal cut-off size may vary for maps with different
cluster characteristics.

Lookup: Read squared coordinate differences and square roots from lookup
tables. Lookup tables are read from binary files, with a separate file for
each map size analyzed.
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Appendix D

Prologues of Selected Procedures
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[ oKk ok sk s ok sk ook sk ok sk ok e skeok s o ok ok sk ok sk ok sk skok s ok ok ok sk ok ok ok sk skok sk ok ok sk sk ok sk sk ok s skok ok sk ok ok ok ok sk skok ok ok ok

* *
* CSMSR *
* *

st ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok stk sk ko sk ok sk s ok sk sk e sk ok sk ok sk sk ok ok sk sk skok s skok s kok ok sk skok s skok s kok s ok k ok ok ko ok /
[ oKk ok s ok ok ook ok ok skok e skeok o ok sk ok sk ok s skok ok ok s sk ok sk ok sk skok sk ok ok sk sk ok sk skok s skok ok sk ko sk sk ok sk skok ok sk ko ok ok

Description

Cluster identification and mean squared radius computation using
cut-and-stack data mapping. Map size is specified by NROWS and
NCOLS in #define section.

Data values for map to be analyzed are read from a binary input
file of size NROWS x NCOLS specified on the command line.

Results are written to screen.

Cluster statistics: number of clusters, average cluster size,
maximum cluster size, and mean squared radius.

Wall-clock execution times: from gettimeofday(), in seconds,
for read, label, collect, cluster ID and radius separately,
for total I/0 (read plus printout), and for total time.

Functions called:
CSlabel(): assigns final cluster labels to plural int variable
"cluster[]".

CScollect(): collects cluster information at head element of cluster
and calculates cluster statistics.

CSradiusl(): calculates mean squared radius for small and large
clusters separately; returns largest mean squared radius as
a double.

CSradius2(): calculates mean squared radius for all clusters,
regardless of size; returns largest mean squared radius as
a double.

st ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok stk sk ko sk ok sk s ok sk sk e sk ok sk ok sk sk ok ok sk sk skok s skok s kok ok sk skok s skok s kok s ok k ok ok ko ok /
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[ oKk ok sk s ok sk ook sk ok sk ok e skeok s o ok ok sk ok sk ok sk skok s ok ok ok sk ok ok ok sk skok sk ok ok sk sk ok sk sk ok s skok ok sk ok ok ok ok sk skok ok ok ok

* *
* CSlabel() *
* *

st ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok stk sk ko sk ok sk s ok sk sk e sk ok sk ok sk sk ok ok sk sk skok s skok s kok ok sk skok s skok s kok s ok k ok ok ko ok /
[ oKk ok sk s ok sk ook sk ok sk ok e skeok s o ok ok sk ok sk ok sk skok s ok ok ok sk ok ok ok sk skok sk ok ok sk sk ok sk sk ok s skok ok sk ok ok ok ok sk skok ok ok ok

Description:

Function CSlabel() identifies and labels clusters for programs
using cut-and-stack mapping, using xnet() to make N/S and E/W
comparisons of cluster ID numbers. The numerically lowest ID
number is assigned to all contiguous cluster elements. This
algorithm does not require a border of 0s around the map, and
uses toroidal wrap to access stacked pages.

Arguments:

modifies cluster[] array to hold final cluster labels for each
map pixel.

st ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok stk sk ko sk ok sk s ok sk sk e sk ok sk ok sk sk ok ok sk sk skok s skok s kok ok sk skok s skok s kok s ok k ok ok ko ok /
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[ oKk ok sk s ok sk ook sk ok sk ok e skeok s o ok ok sk ok sk ok sk skok s ok ok ok sk ok ok ok sk skok sk ok ok sk sk ok sk sk ok s skok ok sk ok ok ok ok sk skok ok ok ok

* *
* CScollect() *
* *

sk sk ke sk ke sk ke sk ok 3 o sk ok 3 ok sk e sk ok ok ok sk K ok ke sk ok ok sk ok 3 ok sk s sk K ok sk sk sk ok ok ok sk ook ok sk ok ok sk sk sk ok sk sk ok kok /
/] 3Kk sk sk sk ke sk sk sk ok ok ok sk ok ok ok sk ok 3 ok sk ok 3 ok sk s sk K ok ke sk ok ok ok sk ook ok sk ook ok sk sk sk ok sksk sk sk ok k ok sk ok ok ok skok
Description:
Function CScollect() collects and sends cluster information from
cluster members to the head element of each cluster, and
reports number of clusters, average cluster size, and size of
the largest cluster. The address of the head element of
each cluster can be calculated locally from each member’s
new cluster label. Results are accumulated locally for
each cluster represented on a PE before using p_sendwithAdd()
to transmit local sums to the head element.

Arguments:
plural int cluster [NROWS*NCOLS/nproc]
plural int clustersize[NROWS*NCOLS/nproc]
plural int headcount [NROWS*NCOLS/nproc]
plural short headptr[NROWS*NCOLS/nproc]
int largest;
int numcl;
float average;

o size of each cluster whose head element is located on local PE
in the clustersizel[] array (in the array position indexed by
the array position of the head cluster element in cluster[];)

o size of the largest cluster in integer variable largest

o number of clusters in singular integer variable numcl;

o average cluster size in singular float variable average.

st ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok stk sk ko sk ok sk s ok sk sk e sk ok sk ok sk sk ok ok sk sk skok s skok s kok ok sk skok s skok s kok s ok k ok ok ko ok /
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[ oKk ok sk s ok sk ook sk ok sk ok e skeok s o ok ok sk ok sk ok sk skok s ok ok ok sk ok ok ok sk skok sk ok ok sk sk ok sk sk ok s skok ok sk ok ok ok ok sk skok ok ok ok

* *
* CSradius1() *
* *

st ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok stk sk ko sk ok sk s ok sk sk e sk ok sk ok sk sk ok ok sk sk skok s skok s kok ok sk skok s skok s kok s ok k ok ok ko ok /
[ oKk ok sk s ok sk ook sk ok sk ok e skeok s o ok ok sk ok sk ok sk skok s ok ok ok sk ok ok ok sk skok sk ok ok sk sk ok sk sk ok s skok ok sk ok ok ok ok sk skok ok ok ok

Description:

Function CSradiusl1() calculates mean squared radius for clusters
which do not overlap 64 x 64 cut-and-stack 'pages' separately
from larger, overlapping clusters. To compute mean squared
radius, an xnet-shift operation is used to allow each element
on a page to view all other elements. Cluster labels are compared,
and if elements are in the same cluster coordinate differences
are calculated, squared, and summed for all elements in a cluster;
the square root is then taken and divided by the number of elements
in the cluster. Radius is computed for clusters which overlap
pages as in function CSradius2().

Arguments:

plural int cluster [NROWS*NCOLS/nproc]
plural int clustersize[NROWS*NCOLS/nproc]
plural int headcount [NROWS*NCOLS/nproc]
int largest;

Outputs:

Largest radius is returned in singular double variable "rad".
Radius values for all clusters are stored in plural double array
"rsum'";

st ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok stk sk ko sk ok sk s ok sk sk e sk ok sk ok sk sk ok ok sk sk skok s skok s kok ok sk skok s skok s kok s ok k ok ok ko ok /
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[ oKk ok sk s ok sk ook sk ok sk ok e skeok s o ok ok sk ok sk ok sk skok s ok ok ok sk ok ok ok sk skok sk ok ok sk sk ok sk sk ok s skok ok sk ok ok ok ok sk skok ok ok ok

* *
* CSradius2() *
* *

st ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok stk sk ko sk ok sk s ok sk sk e sk ok sk ok sk sk ok ok sk sk skok s skok s kok ok sk skok s skok s kok s ok k ok ok ko ok /
[ oKk ok sk s ok sk ook sk ok sk ok e skeok s o ok ok sk ok sk ok sk skok s ok ok ok sk ok ok ok sk skok sk ok ok sk sk ok sk sk ok s skok ok sk ok ok ok ok sk skok ok ok ok

Description:

Function CSradius2() calculates mean squared radius of each cluster
and reports the largest mean squared radius among clusters having
the largest number of elements (as determined by cluster
identification functions). To compute mean squared radius,
differences between each element in a cluster and every other
element are squared and summed. This is accomplished by copying
the cluster label, x-coordinate and y-coordinate of cluster members
to singular (shared) variables visible to all PEs. Squared
differences are summed for all elements in a cluster; the square
root is then taken and divided by the number of elements in the
cluster.

Arguments:

plural int cluster [NROWS*NCOLS/nproc]
plural int clustersize[NROWS*NCOLS/nproc]
int largest;

Outputs:

Largest radius is returned in singular double variable "rad".
Radius values for all clusters are stored in plural double array
"rsum'";

st ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok stk sk ko sk ok sk s ok sk sk e sk ok sk ok sk sk ok ok sk sk skok s skok s kok ok sk skok s skok s kok s ok k ok ok ko ok /
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