
A Serial Implementation of Cuppen's Divideand Conquer Algorithm for the SymmetricEigenvalue ProblemJ. Rutter
Report No. UCB/CSD 94/799February 1994Computer Science Division (EECS)University of CaliforniaBerkeley, California 94720

A Serial Implementation ofCuppen's Divide and ConquerAlgorithm for theSymmetric Eigenvalue ProblemJe�ery D Rutter yDepartment of MathematicsUniversity of California at BerkeleyBerkeley, CA 94720February, 1994This also appears asComputer Science Division Report UCB//CSD-94-799,University of California, Berkeley.yThe author acknowledges the support by subcontract no. 20552402 to Argonne National Labo-ratory at the University of Chicago, under Department of Energy contract W-31-109-Eng-38, aswell as NSF grant ASC-9005933. This thesis was submitted in partial satisfaction of the require-ments for the degree Master of Arts in Mathematics in February 1993. The committee in chargeconsisted of Profs. J. Demmel, B. Parlett, and R. Fateman.

AbstractThis report discusses a serial implementation of Cuppen's divide and conqueralgorithm for computing all eigenvalues and eigenvectors of a real symmetricmatrix T = Q�QT . This method is compared with the LAPACK implementa-tions of QR, bisection/inverse iteration, and root-free QR/inverse iteration to�nd all of the eigenvalues and eigenvectors.On a DECAlpha using optimized Basic Linear Algebra Subroutines (BLAS),divide and conquer was uniformly the fastest algorithm by a large marginfor large tridiagonal eigenproblems. When Fortran BLAS were used, bisec-tion/inverse iteration was somewhat faster (up to a factor of 2) for very largematrices (n � 500) without clustered eigenvalues. When eigenvalues were clus-tered, divide and conquer was up to 80 times faster. The speedups over QR wereso large in the tridiagonal case that the overall problem, including reduction totridiagonal form, sped up by a factor of 2.5 over QR for n � 500.Nearly universally, the matrix of eigenvectors generated by divide and con-quer su�ered the least loss of orthogonality. The smallest eigensystem residualusually came from the eigensystem generated by bisection/inverse iteration,with divide and conquer coming a close second.

1

Contents1 Introduction 11.1. Results : 21.2. Notation : 31.3. Outline of Report : 42 Bisection, Inverse Iteration, and QR 52.1. Bisection Inverse Iteration : 52.2. The QR Method : 62.3. Root-Free QR : 63 Mathematical Formulation of Cuppen's Divide and Conquer Algo-rithm 84 The Divide and Conquer Code 134.1. Eigenvalues and Eigenvectors of a Tridiagonal : : : : : : : : : : : : : 134.2. Eigenvalues Only of a Tridiagonal : 204.3. Eigenvalues and Eigenvectors of a Reduced Matrix : : : : : : : : : : 245 Numerical Results 265.1. Measures of the Quality of a Method : : : : : : : : : : : : : : : : : : 275.2. Test Matrices : 305.3. General Results : 315.4. Results for Dense Matrices : 355.5. Results for Tridiagonal Matrices : 485.6. Theoretical Performance Analysis for Dense Matrices : : : : : : : : : 606 Future Work 68i

A Calling Sequence for sstedc 72B History of the Code 76

ii

List of Figures4.1.1 A divide and conquer tree : 155.2.1 BCS elements : 325.2.2 LUND elements : 335.4.1 Relative times on random dense matrices using the DEC Alpha withFortran BLAS : 355.4.2 kAQ̂�Q̂�̂kkAk on random dense matrices using the DEC Alpha with For-tran BLAS : 365.4.3 kQ̂T Q̂ � Ik on random dense matrices using the DEC Alpha withFortran BLAS : 365.4.4 Relative times on random dense matrices using the DEC Alpha withBLAS from the Digital eXtended Math Library : : : : : : : : : : : : 385.4.5 kAQ̂�Q̂�̂kkAk on the DEC Alpha with DXML BLAS : : : : : : : : : : : : 395.4.6 kQ̂T Q̂� Ik on the DEC Alpha with DXML BLAS : : : : : : : : : : 395.4.7 Relative times on dense matrices with geometrically distributed eigen-values (slatms, MODE=3) using the DEC Alpha with Fortran BLAS : 405.4.8 kAQ̂�Q̂�̂kkAk on dense matrices with geometrically distributed eigenvalues(slatms, MODE=3) using the DEC Alpha with Fortran BLAS : : : : : 415.4.9 kQ̂T Q̂ � Ik on dense matrices with geometrically distributed eigen-values (slatms, MODE=3) using the DEC Alpha with Fortran BLAS : 415.4.10 Relative times on dense matrices with geometrically distributed eigen-values (slatms, MODE=3) using the DEC Alpha with DXML BLAS : 425.4.11 kAQ̂�Q̂�̂kkAk on dense matrices with geometrically distributed eigenvalues(slatms, MODE=3) using the DEC Alpha with DXML BLAS : : : : : 435.4.12 kQ̂T Q̂ � Ik on dense matrices with geometrically distributed eigen-values (slatms, MODE=3) using the DEC Alpha with DXML BLAS : 43iii

5.4.13 Relative times on dense matriceswith arithmetically distributed eigen-values (slatms, MODE=4) using the DEC Alpha with DXML BLAS : 445.4.14 kAQ̂�Q̂�̂kkAk on dense matrices with arithmetically distributed eigenvalues(slatms, MODE=4) using the DEC Alpha with DXML BLAS : : : : : 455.4.15 kQ̂T Q̂ � Ik on dense matrices with arithmetically distributed eigen-values (slatms, MODE=4) using the DEC Alpha with DXML BLAS : 455.4.16 Relative times on dense matrices with random eigenvalues logarithmi-cally distributed (slatms, MODE=5) using the DEC Alpha with DXMLBLAS : 465.4.17 kAQ̂�Q̂�̂kkAk on dense matrices with random eigenvalues logarithmicallydistributed (slatms, MODE=5) using the DEC Alpha with DXML BLAS 475.4.18 kQ̂T Q̂�Ik on dense matrices with random eigenvalues logarithmicallydistributed (slatms, MODE=5) using the DEC Alpha with DXML BLAS 475.5.1 Relative times on random tridiagonal matrices using the DEC Alphawith DXML BLAS : 485.5.2 kAQ̂�Q̂�̂kkAk on random tridiagonal matrices using the DEC Alpha withDXML BLAS : 495.5.3 kQ̂T Q̂�Ik on random tridiagonal matrices using the DEC Alpha withDXML BLAS : 495.5.4 Relative times on tridiagonal matrices with geometrically distributedeigenvalues (slatms, MODE=3) using the DEC Alpha with DXML BLAS 505.5.5 kAQ̂�Q̂�̂kkAk on tridiagonal matrices with geometrically distributed eigen-values (slatms, MODE=3) using the DEC Alpha with DXML BLAS : 515.5.6 kQ̂T Q̂ � Ik on tridiagonal matrices with geometrically distributedeigenvalues (slatms, MODE=3) using the DEC Alpha with DXML BLAS 515.5.7 Relative times on tridiagonal matrices with arithmetically distributedeigenvalues (slatms, MODE=4) using the DEC Alpha with DXML BLAS 525.5.8 kAQ̂�Q̂�̂kkAk on tridiagonal matrices with arithmetically distributed eigen-values (slatms, MODE=4) using the DEC Alpha with DXML BLAS : 535.5.9 kQ̂T Q̂ � Ik on tridiagonal matrices with arithmetically distributedeigenvalues (slatms, MODE=4) using the DEC Alpha with DXML BLAS 535.5.10 Relative times on tridiagonal matrices with random eigenvalues loga-rithmically distributed (slatms, MODE=5) using the DEC Alpha withDXML BLAS : 54iv

5.5.11 kAQ̂�Q̂�̂kkAk on tridiagonal matrices with random eigenvalues logarithmi-cally distributed (slatms, MODE=5) using the DEC Alpha with DXMLBLAS : 555.5.12 kQ̂T Q̂ � Ik on tridiagonal matrices with random eigenvalues loga-rithmically distributed (slatms, MODE=5) using the DEC Alpha withDXML BLAS : 555.5.13 Relative times on tridiagonal matrices with 2's on the diagonal and1's on the o�-diagonal using the DEC Alpha with DXML BLAS : : : 565.5.14 kAQ̂�Q̂�̂kkAk on tridiagonal matrices with 2's on the diagonal and 1's onthe o�-diagonal using the DEC Alpha with DXML BLAS : : : : : : : 575.5.15 kQ̂T Q̂� Ik on tridiagonal matrices with 2's on the diagonal and 1'son the o�-diagonal using the DEC Alpha with DXML BLAS : : : : : 575.5.16 A composite of relative times on the DEC 5000 with Fortran BLAS 585.5.17 A composite of kAQ̂�Q̂�̂kkAk on the DEC 5000 with Fortran BLAS : : : 595.5.18 A composite of kQ̂T Q̂� Ik on the DEC 5000 with Fortran BLAS : : 595.6.1 De
ation on random dense matrices : : : : : : : : : : : : : : : : : : 645.6.2 Option \V" relative to option \I" on random dense matrices usingthe DEC Alpha with Fortran BLAS : : : : : : : : : : : : : : : : : : : 645.6.3 De
ation on dense matrices with geometrically distributed eigenvalues(slatms, MODE=3) : 655.6.4 Option \V" relative to option \I" on dense matrices with geometri-cally distributed eigenvalues (slatms, MODE=3) using the DEC Alphawith Fortran BLAS : 655.6.5 De
ation on dense matrices with arithmetically distributed eigenval-ues (slatms, MODE=4) : 665.6.6 Option \V" relative to option \I" on dense matrices with arithmeti-cally distributed eigenvalues (slatms, MODE=4) using the DEC Alphawith Fortran BLAS : 665.6.7 De
ation on dense matrices with random eigenvalues logarithmicallydistributed (slatms, MODE=5) : 675.6.8 Option \V" relative to option \I" on dense matrices with randomeigenvalues logarithmically distributed (slatms, MODE=5) using theDEC Alpha with Fortran BLAS : 67v

vi

Chapter 1IntroductionA broad range of applications involve real symmetric eigenproblems [18]. Matricesarising in such applications may be dense, irregularly sparse, banded, or even tridiag-onal. The typical method for solving non-tridiagonal symmetric eigenproblems �rstinvolves reduction to a tridiagonal matrix T which is similar to (a projection of) theoriginal matrix: UTAU = T where U is orthogonal (for simplicity of exposition, wewill assume that these matrices are all n � n). This is accomplished by applying aseries of Givens rotations or Householder re
ections or by the Lanczos method.There are many ways to compute the eigendecomposition T = Q�QT of thesymmetric tridiagonal matrix T . Once this has been done, the eigendecomposition ofthe full matrix can be computed by multiplying the two resulting orthogonal matrices:A = UTUT = UQ�QTUT = Z�ZT . Thus the eigenvalues � of A are the same as theeigenvalues � of T and the eigenvectors Z of A are simply related to the eigenvectorsQ of T .The symmetric tridiagonal eigenproblem has been attacked in many di�erent ways,including QR and QL methods, divide and conquer algorithms such as Cuppen'smethod, Laguerre iteration, Toda
ow, Rayleigh quotient iteration, Jacobi's method,homotopy method, and bisection (or another method for �nd eigenvalues only) withinverse iteration [18, 6, 4, 7, 5, 17, 13, 15, 16]. QR is the most commonly used method.In this report we will be comparing Cuppen's divide and conquer method, bisectionwith inverse iteration, the QR method, and root-free QR with inverse iteration.1

2 1.1. RESULTS1.1. ResultsThis report discusses a serial implementation of Cuppen's divide and conquer algo-rithm for computing all the eigenvalues and all the eigenvectors of a real symmetrictridiagonal matrix [4]. Our implementation incorporates recent improvements of Li[14], Gu and Eisenstat [10], and Kahan [12]. In contrast to earlier implementations,ours is designed to work correctly on the Cray XMP, Cray YMP, Cray C90, Cray 2,and other machines which similarly lack guard digits in their
oating point arithmetic.The method is compared to the LAPACK implementations of QR iteration (ssteqr),bisection followed by inverse iteration (sstebz and sstein), and root-free QR fol-lowed by inverse iteration (ssterf and sstein). Although we did not directly testthe algorithms based on homotopies and Laguerre iteration in [13, 16], we believe ourtesting of both bisection with inverse iteration, as well as root-free QR followed byinverse iteration, will bracket the behavior of these algorithms (this is suggested butnot guaranteed by the data in [13, 16], which used di�erent test matrices, so furthertesting would be of interest). All implementations use real single precision IEEEarithmetic [2]. The algorithms are compared for speed, accuracy of the eigenvaluesand eigenvectors (measured by residuals), and orthogonality of the eigenvectors. Weuse a variety of dense and tridiagonal test matrices of dimensions from 5 to 1000.The tests were run on a DEC Alpha (DEC 3000/500X), using both Fortran BLAS(Basic Linear Algebra Subroutines), and highly optimized BLAS. They were also runon a DEC 5000 and Sparc 2 using Fortran BLAS; the relative performance of thealgorithms was essentially the same as on the DEC Alpha with Fortran BLAS.The results are summarized as follows. When using optimized BLAS, divide andconquer is uniformly fastest for matrices of dimension n � 30, and essentially identi-cal in speed to QR for n � 30. Speedups over QR increase with increasing dimension,ranging up to 15 for tridiagonals resulting from reducing uniformly random densematrices to tridiagonal form, and up to 54 for tridiagonals with geometrically dis-tributed eigenvalues. Speedups over bisection/inverse iteration depend even morestrongly on test matrix type, decreasing from 5 to 1.5 for tridiagonals from uniformlyrandom dense matrices, and increasing to over 70 for tridiagonals with geometricallydistributed eigenvalues. The speedup over QR for the tridiagonal problem is so largethat the overall dense symmetric eigenproblem speeds up by a factor of 2.5 for n � 500| QR takes up to 3 times the time of the reduction to tridiagonal form whereas di-

3vide and conquer takes only about half the time of the reduction to tridiagonal form.When Fortran BLAS are used, the relative advantage of divide and conquer is smaller,and in fact for reduced random dense matrices, bisection/inverse iteration is fastestfor n � 500, by up to a factor of 2. With Fortran BLAS and geometrically distributedeigenvalues, divide and conquer is again much faster.As for accuracy, divide and conquer nearly always computes the most orthogonaleigenvectors of any of these algorithms; in all cases orthogonality is close to full ma-chine precision. Bisection/inverse iteration usually produces the smallest eigensystemresiduals, with divide and conquer a close second (and again always good to nearlyfull machine precision). In contrast, in some cases with tightly clustered eigenvalues,bisection/inverse iteration completely loses orthogonality.The only drawback of divide and conquer for the problem of computing all eigen-values and all eigenvectors is its need for much more workspace than either QR orbisection/inverse iteration: either 2n2 or 3n2. If this space is available, if the fulleigendecomposition is desired, and if either highly optimized BLAS are available orhighly clustered eigenvalues are possible, we recommend divide and conquer as thealgorithm of choice. The software will soon be available as part of the LAPACKlibrary [1].1.2. NotationIn general, upper case Roman letters will denote matrices, lower case Roman letterswill denote column vectors, lower case Roman letters that are italicized and sub-scripted will denote the entries in a vector (eg. x = (x1; : : : ; xn)T), and lower caseGreek letters will denote scalar quantities. A symmetric tridiagonal n�n matrix willbe denoted T , with entries a1; : : : ; an along the diagonal and b1; : : : ; bn�1 along thesuper- and subdiagonals. A symmetric dense n � n matrix will be denoted A. Aneigendecomposition of A or T will be denoted Q�QT , where � is an n � n diagonalmatrix with the eigenvalues as its diagonal entries. The n�n matrix Q is orthogonaland its columns are the eigenvectors corresponding to the eigenvalues in �.A unit vector in the ith dimension will be represented by ei = (0; : : : ; 0; 1; 0; : : : ; 0)T|the 1 occurs in the ith position.At times it will be necessary to distinguish between actual values and computedvalues. A circum
ex over a symbol will denote a computed quantity, eg. x̂.

4 1.3. OUTLINE OF REPORTThe eigenvalue of a matrix T which is largest in magnitude will be denoted j�jmax.The corresponding computed value is j�̂jmax � kTk2.1.3. Outline of ReportThe report is organized as follows: Chapter 2 reviews the bisection, inverse iteration,QR, and root-free QR algorithms. Chapter 3 gives a mathematical presentationof Cuppen's method. Chapter 4 describes the software in more detail. Chapter 5presents numerical results including a theoretical performance analysis in section 5.6.The �nal chapter mentions several possible directions for extension of this research.The two appendices contain information which may be helpful in understandingsome portions of this document. Appendix A contains the calling sequence as it ap-pears in the actual sstedc code. Appendix B roughly details how the code developedfrom its �rst incarnation to its �nal form.

Chapter 2Bisection, Inverse Iteration, andQRWe will now brie
y describe the competing algorithms.2.1. Bisection Inverse IterationBisection is based on Sylvester's Law of Inertia; speci�cally, this is used to computethe number of eigenvalues in a particular interval. First, the Gershgorin Disk Theoremis used to determine a �nite interval in which all of the eigenvalues lie.A fairly simple calculation can be performed to tell us how many eigenvalues lie tothe left (or right) of a particular value �. We use this calculation to repeatedly bisectthe interval until there is just one eigenvalue per interval. After that, we continueto apply bisection to isolate each eigenvalue to machine precision. The LAPACKbisection routine is sstebz.Algorithm 2.1.1 The Bisection Algorithm1. Determine a region which contains all of the eigenvalues: compute all Gersh-gorin disks to �nd an interval containing all n eigenvalues.2. Compute all eigenvalues to desired accuracy using bisection method.For details on the bisection algorithm, see [18].Inverse iteration is an application of the power method to (A� �̂I)�1, where �̂ isone of the computed eigenvalues. The eigenvectors computed by inverse iteration may5

6 2.3. ROOT-FREE QRnot be orthogonal if the eigenvalues are close together, and may need to be reorthogo-nalized by using modi�ed Gram-Schmidt. This reorthogonalization can dominate theoverall cost if many eigenvalues are close together. Despite these precautions, thereare still cases in which orthogonality can be lost (see chapter 5).Algorithm 2.1.2 The Inverse Iteration Algorithm1. Sort the eigenvalues and slightly perturb any which are too close for inverseiteration to function properly.2. Compute the eigenvectors using inverse iteration.3. Orthogonalize the eigenvectors corresponding to close eigenvalues.This algorithm is implemented in LAPACK routine sstein.2.2. The QR MethodEvery real square matrix A has a factorization of the form A = QR where Q is an or-thogonal matrix and R is upper triangular. The QR algorithm uses this factorizationto produce a sequence of symmetric matrices Ti:Ti � �I = QiRi Ti+1 = RiQi + �INote that Ti+1 = QTi TiQi.If �, which is called the shift, is chosen appropriately (as an approximate eigen-value), the Ti will converge globally and usually cubically to the diagonal matrix ofeigenvalues, and the product Q0Q1 � � �Qi will converge to the matrix of eigenvectors.QR is the standard algorithm for computing all eigenvalues and all eigenvectors. See[18] for details.The LAPACK routine which implements the QR algorithm on symmetric tridiag-onal matrices is ssteqr.2.3. Root-Free QRThis algorithm is the Pal-Walker-Kahan variant of the QR algorithm [18]. It computesall of the eigenvalues of a symmetric tridiagonal matrix using a QR algorithm which

7does not require the use of square roots. Root-free QR is implemented in the LAPACKroutine ssterf which is by far the fastest serial routine for the problem of �ndingall the eigenvalues of a symmetric tridiagonal matrix. We combine it with inverseiteration to �nd the full eigensystem. This has not been done traditionally, but provesto be fairly e�cient here | if the computed eigenvalues are su�ciently accurate.

Chapter 3Mathematical Formulation ofCuppen's Divide and ConquerAlgorithmThe primary focus of this report is on how Cuppen's divide and conquer algorithmwas implemented. In order to understand this, one should �rst understand how themathematics underlying the algorithm work.A tridiagonal matrix T can be decomposed into the sum of two matrices. Oneof the matrices is composed of two smaller, symmetric, tridiagonal matrices and theother is a very simple rank-one corrector for the o�-diagonals which were removed:
T = 266666666666664 am�1 bm�1bm�1 am bmbm am+1 bm+1bm+1 am+2 3777777777777758

3. MATHEMATICAL FORMULATION 9= 266666666666664 am�1 bm�1bm�1 am � jbmj am+1 � jbmj bm+1bm+1 am+2 377777777777775+ 2666666666664 jbmj bmbm jbmj 3777777777775where m = bn2 c (3.0.1)So, we haveT = 24 T1 T2 35+ �vvT, where � = jbmj andv = 8>>>>>><>>>>>>: 24 eme1 35 when bm > 024 �eme1 35 when bm < 0where em has length m and e1 has length n �m.Suppose we know the eigendecompositions of T1 and T2: Ti = Qi�iQTi . We relatethe eigenvalues of T to those of T1 and T2 as follows.T = 24 Q1�1QT1 Q2�2QT2 35+ �vvT= 24 Q1 Q2 35 8<:24 �1 �2 35+ �zzT9=; 24 QT1 QT2 35where z = 24 QT1 QT2 35 v = 24 �last column of QT1�rst column of QT2 35since v = [0; : : : ; 0; 1; 1; 0; : : : ; 0]T . Therefore, the eigenvalues of T are the same asthose of D + �zzT where D = 24 �1 �2 35 (3.0.2)D is diagonal and �zzT is rank-1. We apply a permutation P to fD + �zzTg so thatd1; : : : ; dn (the diagonal of D) is sorted: dP (1) � � � � � dP (n):P TP nD + �zzToP TP:

10 3. MATHEMATICAL FORMULATIONTo �nd the eigenvalues of D + �zzT , assume D � �I is nonsingular and computethe characteristic polynomial as follows:det(D + �zzT � �I) = det((D � �I)(I + �(D � �)�1zzT))Since D��I is nonsingular, det(I+�(D��)�1zzT) = 0 whenever � is an eigenvalue.Note that I + �(D��)�1zzT is the identity plus a rank-1 matrix; the determinant ofsuch a matrix is easy to compute:Lemma 3.0.1 If x and y are vectors, det(I + xyT) = 1 + yTx.Proof: Let X = h xkxk2 ;X2i be an orthogonal matrix with �rst column 1kxk2x. Thendet(I + xyT) = det(XT (I + xyT)X) = det(I +XTxyTX)We have XTx = [kxk; 0; : : : ; 0]T and yTX = [yTxkxk2 ;yTX2], soI +XTxyTX = 24 1 + kxk2 � yTxkxk2 yTX0 I 35which is upper triangular with determinate 1 + yTx. 2Thereforedet(I + �(D � �)�1zzT) = 1 + �zT (D � �)�1z = 1 + � nXi=1 z2idi � � � f(�) (3.0.3)and the eigenvalues of T are the roots of the secular equation f(�) = 0. If all diare distinct and all zi 6= 0, the function f(�) has the graph shown here (for n = 4and � > 0).

3. MATHEMATICAL FORMULATION 11
1

0
d_1 d_2 d_3 d_4

As we can see, the line y = 1 is a horizontal asymptote, the lines x = di are verticalasymptotes, and the roots of f(�) are interlaced by the di. Since f(�) is monotonicon the intervals (di; di+1) it is possible to �nd a version of Newton's method thatconverges fast and monotonically to each root with a starting point in (di; di+1). Weuse the zero-�nder in [14] which is faster and more reliable than the original one in[7] or in [3]; see [14] for details.It is also easy to derive an expression for the eigenvectors of T :Lemma 3.0.2 If � is an eigenvalue of D+�zzT then (D��I)�1z is its eigenvector.Proof:(D + �zzT)[(D � �I)�1z] = (D � �I + �I + �zzT)(D � �I)�1z= z+ �(D � �I)�1z+ z[�zT (D � �I)�1z]= z+ �(D � �I)�1z� z; since � is a root of (3:0:3)= �[(D � �I)�1z]as needed. 2Unfortunately, this simple formula for the eigenvectors is not numerically stable;this is the primary reason the algorithm took over a decade from its formulation until

12 3. MATHEMATICAL FORMULATIONit became su�ciently reliable to use. The trick which makes the algorithm work is anadded step once the roots of the secular function are found. At this point, we haved1; : : : ; dn and the newly computed �1; : : : ; �n. These values are used to recomputeẑ1; : : : ; ẑn and this ẑ is used to compute the eigenvectors. See [10] for more details.The overall e�ciency of the algorithm is also signi�cantly aided by de
ation,which means that some roots of the secular equation can be found very cheaply. Forexample, if di and di+1 are nearly the same, we know the eigenvalue which lies in(di; di+1) must also nearly be the same. A similar phenomenon occurs if some zi isvery small. These observations can save half the work for some matrices. There willbe further details on de
ation in the next chapter.See [4, 7, 19, 10] for more details.The overall divide and conquer algorithm can best be expressed recursively:Algorithm 3.0.1 Divide and Conquer Algorithm Finding eigenvalues and eigen-vectors of a symmetric tridiagonal matrix using divide-and-conquerproc dc eig (T;Q;�) from input T compute outputs Q and � where T = Q�QTif T is 1 by 1return Q = 1;� = Telse form T = 24 T1 T2 35+ bmvvT , as in 3.0.1call dc eig (T1; Q1;�1)call dc eig (T2; Q2;�2)form D + �zzT from �1;�2; Q1; Q2, as in 3.0.2�nd eigenvalues � and eigenvectors ~Q of D + �zzTby de
ating and solving the secular equationform (eigenvectors of T) = Q = 24 Q1 Q2 35 � ~Qreturn Q and �endifThis summary excludes many of the nuances involved in sorting �1 and �2 to getD, de
ation, and other considerations which will be dealt with in the next chapter.

Chapter 4The Divide and Conquer CodeIf the mathematical description seemed straightforward, the code is rather complexand requires explanation. The code is composed of 13 di�erent routines with a totalof 3863 lines of Fortran, 2009 of which are comments. The code covers two cases notdiscussed above | �nding only the eigenvalues of a symmetric tridiagonal matrix, and�nding the eigenvalues and eigenvectors of a dense symmetric matrix which has beenreduced to tridiagonal form (A = UTUT) by directly updating U by multiplyingthe intermediate eigenvector matrices into it as they are generated. Both of theseoptions use exactly the same mathematics as the eigensystem from tridiagonal case,but use additional storage to avoid having to accumulate the eigenvectors of thetridiagonal. The calling sequence for the main routine sstedc is given in appendixA. The complete software will be available as part of the LAPACK library [1].This chapter is organized in the following fashion: Section 4.1 details the struc-ture of the code with respect to the calculation of the eigensystem of a symmetrictridiagonal matrix. Section 4.2 explains the code used to �nd only the eigenvalues ofa symmetric tridiagonal matrix. Section 4.3 tells how the code which �nds only theeigenvalues is modi�ed to �nd the full eigensystem of a reduced symmetric matrix.4.1. Eigenvalues and Eigenvectors of a TridiagonalThis is code option COMPQ = \I" in sstedc. This option requires routines sstedc,slaed0, slaed1, slaed2, slaed3, slaed4, slaed5, slaed6, and slamrg.13

14 4.1. EIGENVALUES AND EIGENVECTORS OF A TRIDIAGONAL1. sstedc checks the tridiagonal for o�-diagonals which are small enough to betreated as if they were zero (i.e. tries to split the problem). It then scales eachsubmatrix and calls slaed0 to solve each in turn, scaling the eigenvalues backwhen �nished.2. slaed0 is the real driver of the divide and conquer algorithm. Since Fortran77doesn't support recursion, this routine divides the input matrix into submatricesby repeatedly halving the size of all submatrices until the largest submatrixis at most SMLSIZ (a parameter which is currently set to 25). The rank-oneperturbations which make the subproblems independent are then performed.The LAPACK QR code ssteqr is used to compute the eigensystems of theseindependent submatrices. Each rank-one perturbation is repaired by a call toslaed1. See �gure 4.1.1 for a diagram indicating the overall structure of thealgorithm.3. slaed1 acts primarily as a routing station. There are several steps requiredto repair one of these rank-one perturbations. First, the two lists of diagonalelements from the previous level need to be combined into a single sorted list.This enables us to e�ciently look for elements which are close together (whichin turn allows us to de
ate the problem). We also test whether the z-vectorentry corresponding to an element in the sorted diagonal (D) is exceptionallysmall (this also allows us to de
ate the given element from the secular equationproblem). De
ated eigenvalues are moved to the end of the list of diagonalelements so that they can be easily ignored by the zero �nder. These parts areperformed by slaed2.After the problem is de
ated as much as is possible, the zeros of the secular func-tion must be found. These roots are the eigenvalues of the current (sub)problemand are used to compute the associated vectors. The resulting matrix of eigen-vectors is multiplied into the larger matrix which holds the collective resultsof all previous eigenvector calculations. These latter parts are performed byslaed3.Finally, slaed1 determines a merge permutation which will reintegrate the de-
ated values into the full list so that the list will be easily brought to sortedorder. This permutation is stored list-wise (rather than as an n� n matrix) in

15

Level 2

Level 1

Level 0

Level 3

problem 0

problem 0 problem 1

problem 0 problem 1 problem 2 problem 3

problem 0 problem 1 problem 2 problem 3 problem 4 problem 5 problem 6 problem 7Figure 4.1.1: A divide and conquer treeThis �gure shows the organization of the various levels of divide and conquer tree.The horizontal and vertical cuts through a matrix problem indicate the rank-oneperturbation which is repaired by solving the problem. On the lowest level, QR isused to �nd the eigendecomposition of the smallest subproblems. The algorithm thenproceeds to work back up the levels, solving (in order) all of the problems on the levelbefore proceeding to the next level.

16 4.1. EIGENVALUES AND EIGENVECTORS OF A TRIDIAGONALINDXQ such that D(INDXQ(i)) � D(INDXQ(j)) whenever i � j:4. slaed2 is the sorting and de
ation routine. All sorted lists are in ascending or-der unless noted otherwise. First, elements which were de
ated on the previouslevel are merged back into each of the two lists using the permutation stored inINDXQ. Mathematically, we insert a permutation PIXQ to rearrange the diagonalelements and the z-vector:24 Q1 Q2 35P TIXQPIXQ0@24 �1 �2 35+ �zzT1AP TIXQPIXQ 24 Q1 Q2 35TThus there are two independent sorted lists. slamrg is called to generate apermutation which will merge these two lists. This permutation is stored inINDX.24 Q1 Q2 35P TIXQP TIXPIXPIXQ0@24 �1 �2 35+ �zzT1AP TIXQP TIXPIXPIXQ 24 Q1 Q2 35T= 24 Q1 Q2 35P TIXQP TIX| {z }PT1 �Dsort + �zsortzTsort�PIXPIXQ 24 Q1 Q2 35TThe permutations thus generated are not applied to the collection of eigenvec-tors at this time, but are maintained and will be applied later along with twoother permutations. Z and COLTYP are sorted according to the same permuta-tions as D. COLTYP is an array of length n which keeps track of the structure ofthe eigenvectors:COLTYP(i) = 8>>>>>><>>>>>>: 1 if the vector associated with D(i)is nonzero only in the upper half2 if the vector associated with D(i)is nonzero only in the lower halfCOLTYP tells whether the vector came from Q1 or Q2.Each D(j) is now checked to see if it can be de
ated from the problem. First,Z(j) is checked to determine if it is exceptionally small. If not, D(j) is checkedto determine if it is exceptionally close to the preceding unde
ated value. In

17the former case, D(j) is de
ated without further calculation. In the latter case,if D(i) and D(j) are the two values involved (with D(i) < D(j)), a Givens rotationis performed with the objective of changing Z(i) to zero.0@24 Q1 Q2 35P T1 GT1AnG �Dsort + �zsortzTsort�GTo0B@GP1 24 Q1 Q2 35T1CAHere, P1 = PIXPIXQ and G is the product of all of the Givens rotations performedduring de
ation. These rotations are also applied to D(i) and D(j), as wellas the associated vectors, now found in Q(1 : n; INDXQ(INDX(i))) and Q(1 :n; INDXQ(INDX(j))). If COLTYP(i) 6= COLTYP(j) then neither of these vectors canbe guaranteed to have any sparsity and so we assign COLTYP(i) = 4 to indicatethat the related value has been de
ated and COLTYP(j) = 3 to indicate thatthe related vector is dense. Then D(i) is de
ated, just as in the case when Z(i)was small in the beginning. Any values which are de
ated are moved to theend of the list. Note that this means that the de
ated values will be arrangedin descending order. The permutation thus generated is stored in INDXP forlater use; this permutation is represented below by PIXP. The values in D arepermuted into DLAMDA and likewise Z into W.24 Q1 Q2 35P T1 GTP TIXPPIXPGfDsort + �zsortzTsortgGTP TIXPPIXPGP1 24 Q1 Q2 35T= 24 Q1 Q2 35P T1 GTP TIXP 24 �D + ��z�zT �D4 35PIXPGP1 24 Q1 Q2 35TOnce all possible de
ation has taken place, a �nal permutation PIXC is generatedfor the eigenvectors. Recall that the �nal step in the repair process includes amatrix-matrix multiply:After computing �D + ��z�zT = ~Q ~D ~QT (computed by slaed3) we have24 Q1 Q2 35P T1 GTP TIXP 24 ~Q I 35| {z }to be evaluated ~D 24 ~Q I 35T PIXPGP1 24 Q1 Q2 35T

18 4.1. EIGENVALUES AND EIGENVECTORS OF A TRIDIAGONALPIXC is formulated to group the vectors according to their COLTYP|in this waywe can take maximal advantage of the structure of the matrix:24 Q1 Q2 35P T1 GTP TIXPPIXCP TIXC 24 ~Q I 35= 0@24 Q1 Q2 35P T1 GTP TIXPPIXC1A0@P TIXC 24 ~Q I 351A= 24 �Q1 �Q2 �Q3 �Q4 350@P TIXC 24 ~Q I 351AThe idea of distinguishing the columns of Q according to their sparsity structureappears in [10]. Since the order of the de
ated values is irrelevant to furthercomputation on this problem, PIXC looks like:PIXC = 24 �PIXC I 35The dimensions of I are the same as the number of de
ated values (i.e. thenumber of columns in �Q4). The matrix is thereby organized in such a way thatit is composed of four parts, some of which may be empty. This organizationallows us to use the BLAS to perform matrix-matrixmultiplies of minimal sizes.The permutation list for PIXC is stored in IXC. The vectors in Q are copied intoQ2, using all four permutations at once.Q2(1 : n; i) = Q(1 : n; INDXC(INDXP(INDX(INDXQ(i)))))5. slaed3 performs a sequence of calls to slaed4. Each such call solves for oneroot of the secular equation (stored directly into D) as well as its associatedeigenvector (stored temporarily in Q). Once all of the roots have been found,the eigenvectors are modi�ed according to the methods designed by Gu andEisenstat [10] and the rows of this eigenvector matrix are permuted accordingto premultiplication by P TIXC. In the code, we move Q into workspace S:S(i; 1 : k) = Q(INDXC(i); 1 : k)

19At this point, the matrix-matrix multiply is performed:24 �Q1 �Q2 �Q3 �Q4 3524 �PIXC ~Q I 35 = 24 24 �Q1 �Q2 �Q3 35 h �PIXC ~Qi �Q4 35We write �PIXC ~Q = 26664 ~Q1~Q2~Q3 37775(~Q is k � k, ~Q1 is k1 � k, ~Q2 is k2 � k, ~Q3 is k3 � k, where ki is the number ofcolumns in �Qi, k = k1 + k2 + k3; k + k4 = n), so the matrix-matrix multiply isbroken into three parts:24 �Q1 �Q2 �Q3 3526664 ~Q1~Q2~Q3 37775 = 24 �Q1 ~Q1 35+ 24 �Q2 ~Q2 35+ h �Q3 ~Q3 iStandard BLAS are used for each of these matrix-matrix multiplications whichare formulated as follows:Q(1 : bn2c; 1 : k) Q2(1 : bn2c; 1 : k1) � S(1 : k1; 1 : k)Q(bn2c+ 1 : n; 1 : k) Q2(bn2 c+ 1 : n; k1 + 1 : k1 + k2)�S(k1 + 1 : k1 + k2; 1 : k)Q(1 : n; 1 : k) Q(1 : n; 1 : k) + Q2(1 : n; k1 + k2 + 1 : k)�S(k1 + k2 + 1 : k; 1 : k)Q(1 : n; k + 1 : n) Q2(1 : n; k + 1 : n)6. slaed4 is a routine described in [14]. It calculates a single root of the secularequation and returns the information necessary to compute the eigenvectors.slaed4 also calls slaed5 and slaed6. slaed5 handles the solution of the secularequation when n = 2, and slaed6 computes one of the two roots least inmagnitude of f(x) = �+ z1d1 � x + z2d2 � x + z3d3 � x7. slamrg takes a vector containing two concatenated lists of
oating point num-bers which are independently sorted and generates a permutation list which willmerge them into a single sorted list.

20 4.2. EIGENVALUES ONLY OF A TRIDIAGONAL4.2. Eigenvalues Only of a TridiagonalThis is code option COMPQ = \N" in sstedc. This problem requires routines sstedc,slaed0, slaed4, slaed5, slaed6, slaed7, slaed8, slaed9, slaeda, and slamrg.Instead of performing manymatrix-matrixmultiplies to keep the eigenvectormatrix ofthe tridiagonal up to date, this option in the code simply stores all of the intermediateeigenvector matrices. Whenever a z-vector is needed, slaeda performs a series ofmatrix-vector multiplies to obtain it.1. sstedc performs exactly the same function as in the previous section.2. slaed0 performs exactly the same function as in the previous section. It alsosets up a number of workspaces which are required for this option and routesthe merge operation to slaed7. See the description of slaeda below for detailson the data structures.3. slaed4, slaed5, and slaed6 perform exactly the same functions as in theprevious section.4. slaed7 performs the same function as slaed1 above with some important ex-ceptions. The computation of the z-vector is no longer trivial. Since rows fromthe matrix of eigenvectors are not available, slaeda must be called in order tocalculate the relevant ones. The same steps are required to repair a rank-oneperturbation:(a) merge the two lists of diagonal elements(b) de
ate where possible(c) �nd the roots of the remaining secular equation(d) compute the associated eigenvectors, but do not multiply them against thepreviously computed eigenvectors.The �rst two steps are accomplished by slaed8, the latter two by slaed9.Finally, just as in slaed1, slaed7 determines a merge permutation which willreintegrate the de
ated values into the full list so that the list can be easilybrought to sorted order and stores it in INDXQ.

215. slaed8 is the sorting and de
ation routine. First, elements which were de
atedon the previous level are merged into each of the two lists by use of INDXQ.This results in two independent sorted lists. These are then merged and thepermutation used is stored in INDX. The permutations which accomplish thissorting are not applied to the collection of eigenvectors but are recorded andwill be combined with other permutations and stored for use in computingsubsequent z-vectors.De
ation is done in exactly the same manner as slaed2 with the exception thatwhen de
ation occurs because two diagonal elements are close to one another,the Givens rotation is not applied to the eigenvectors, but rather the columnsinvolved are stored in GIVCOL and the
oating point values of the rotation arestored in GIVNUM for use in computing subsequent z-vectors. The permutationused for de
ation is recorded in INDXP.Since no matrix-matrix multiplication will occur, no reorganization will takeplace.The combined permutations are recorded in PERM(1 : n),PERM(i) = INDXQ(INDX(INDXP(i))):6. slaed9 performs a sequence of calls to slaed4. Each such call solves for oneroot of the secular equation as well as its associated eigenvector. Once all of theroots have been found, the eigenvectors are modi�ed according to the methodsin [10]. This matrix of eigenvectors is stored for use in computing subsequentz-vectors.7. slaeda calculates the z-vector needed for a rank-one repair problem. Under-standing this section of code requires an understanding of the data structureused to store the permutations, Givens rotations, and intermediate eigenvectormatrices.The values which are required to decipher the data structure are TLVLS, CURLVL,and CURPBM. TLVLS is the highest numbered level in the overall divide andconquer tree (the root level is numbered zero), i.e. the number of splits requiredto make all of the submatrices of the problem submitted to slaed0 no largerthan SMLSIZ. TLVLS is constant over each call to slaed0. CURLVL is the level

22 4.2. EIGENVALUES ONLY OF A TRIDIAGONALof the tree on which the current rank-one repair problem resides. The root ofthe tree is level 0. There are 2CURLVL rank-one repair problems on level CURLVL.CURPBM is the number of the \current" rank-one repair problem on level CURLVL| the one for which z is to be computed; these are numbered 0; : : : ; 2CURLVL�1.The problems are numbered bottom to top, left to right in the divide andconquer tree, so that the problems on the lowest level of the tree are numbered0; : : : ; 2TLVLS� 1. Call this number prbnum (which is distinct from CURPBM):prbnum(TLVLS; CURLVL; CURPBM) = 1 + CURPBM TLVLSXi=CURLVL+1 2iEach problem has a permutation associated with it. The permutations arestored end-to-end in the array PERM. If t = TLVLS, the permutation whichmerges the two lists from level CURLVL = cl, in problems 2i � 1 and 2i (1 �2i�1; 2i � 2cl) is �rst used in problem i on level cl�1, so it is stored in locationsPRMPTR(prbnum(t; cl�1; i)) through PRMPTR(prbnum(t; cl�1; i+1))�1 of PERM.PRMPTR, like the rest of the pointer arrays, indicates the starting point of thedata of interest. The length of the permutation for a problem is the same asthe size of the problem before de
ation:permdim(prbnum(t; cl � 1; i))= PRMPTR(prbnum(t; cl� 1; i))� PERMPTR(prbnum(t; cl� 1; i+ 1))Similarly, the data necessary to perform the Givens rotations are stored inGIVCOL(2,*) (which stores the column numbers involved in the rotation) andin GIVNUM(2,*) (which stores the matrix elements involved in formulating therotation). The rotations for the aforementioned problem would be found inlocations GIVPTR(prbnum(t; cl�1; i)) through GIVPTR(prbnum(t; cl�1; i+1))�1.The storage of the intermediate eigenvector matrices is exactly similar. Q holdsthe matrices which are stored as one long vector by stacking the columns. Thematrix for the previous problemwould be found in locations QPTR(prbnum(t; cl�1; i)) through QPTR(prbnum(t; cl� 1; i+ 1)) � 1. The dimensions of the squareQ matrix thus found areqdim(prbnum(t; cl� 1; i))= qQPTR(prbnum(t; cl� 1; i))� QPTR(prbnum(t; cl� 1; i+ 1))

23The computation is fairly straightforward: (a pre-subscript here will designatethe level from which a matrix originates)z = 26664 cl+1 ~Q1 . . . cl+1 ~Q2cl 37775T 26664 cl+1 ~G1 . . . cl+1 ~G2cl 37775T 26664 cl+1 ~P1 . . . cl+1 ~P2cl 37775T� � �26664 t�1 ~Q1 . . . t�1 ~Q2cl 37775T 26664 t�1 ~G1 . . . t�1 ~G2cl 37775T 26664 t�1 ~P1 . . . t�1 ~P2cl 37775T�26664 t ~Q1 . . . t ~Q2t 37775T 24 eme1 35Algorithm 4.2.1 slaeda | computing zt = TLVLS,midprb = 2t�1,midz = bn2 c,zsize1 = qdim(midprb),zsize2 = qdim(midprb+ 1)z = 0 z[midz�zsize1:midz+zsize2] = 26666664 0last col of t ~QTmidprblast col of t ~QTmidprb+10 37777775For i = TLVLS - 1 downto CURLVL + 1midprb = 2i�1,zstart = midz � permdim(midprb) + 1,zfin = midz � permdim(midprb + 1)

24 4.3. EIGENVALUES AND EIGENVECTORS OF A REDUCED MATRIXz[zstart:zfin] = 24 iPmidprb iPmidprb+1 35T z[zstart:zfin]z[zstart:zfin] = 24 iGmidprb iGmidprb+1 35T z[zstart:zfin]z[zstart:zfin] = 24 i ~Qmidprb i ~Qmidprb+1 35T z[zstart:zfin]This simple routine computes the same z-vectors as were computed with codeoption COMPQ = \I", but with matrix-vector multiplies instead of matrix-matrixmultiplies.8. slamrg performs exactly the same function as in the previous section.4.3. Eigenvalues and Eigenvectors of a Reduced MatrixThis is code option COMPQ = \V". This problem requires routines sstedc, slaed0,slaed4, slaed5, slaed6, slaed7, slaed8, slaed9, slaeda, and slamrg. This case ishandled almost identically to the previous one. In this case, however, when operationsoccur which would alter the intermediate eigenvector matrix, they are instead appliedto U , the orthogonal matrix supplied to the routine (this is presumably the matrixused to reduce the dense or banded matrix to tridiagonal form).1. sstedc performs exactly the same function as in the previous section.2. slaed0 performs exactly the same function as in the previous section. Anadditional n�n
oating point workspace is required in order to perform matrix-matrix multiplies into U .3. slaed4, slaed5, and slaed6 perform exactly the same functions as in theprevious section.4. slaed7 performs exactly the same function as in the previous section. It alsoperforms a matrix-matrix multiplication: the newly computed intermediateeigenvectors into U .

255. slaed8 is the sorting and de
ation routine. Sorting happens as always. Thesorting permutations are stored as before. The required Givens rotations arestored as before and also applied directly to U . Once the de
ation permutationis calculated, the cumulative e�ect of the three permutations is applied to therelevant columns of U .6. slaed9, slaeda, and slamrg perform exactly the same functions as in theprevious sections.

Chapter 5Numerical ResultsThis section compares four methods for solving the symmetric tridiagonal eigenprob-lem in terms of run-time and accuracy. The methods are divide and conquer (referredto as EDC in the labels in the various �gures), QR (EQR), bisection/inverse itera-tion (EBZ), and root-free QR/inverse iteration (ERI). Reducing a dense matrix totridiagonal form and forming the corresponding orthogonal matrix is referred to byTRD and the �nal matrix-matrix multiply for bisection/inverse iteration and divideand conquer is referred to by MM. The COMPQ = \I" and COMPQ = \V" options weretested. The results in sections 5.4 and 5.5 are just for COMPQ= \I". Some performancecomparisons between COMPQ = \I" and COMPQ = \V" are given in section 5.6. Onlythe COMPQ = \I" option (section 4.1) was tested. The test cases and method of errormeasurement will be de�ned in this section.The tests were run on a DEC Alpha (DEC 3000/500X), using both Fortran BLAS(Basic Linear Algebra Subroutines), and highly optimized BLAS. They were also runon a DEC 5000 and Sparc 2 using Fortran BLAS; the relative performance of thealgorithms was essentially the same as on the DEC Alpha with Fortran BLAS.This chapter is organized as follows. Section 5.1 describes how we know whenan algorithm is performing well and how we compare the performances of di�erentalgorithms. Section 5.2 details the matrices which were used in the testing process.Section 5.3 gives the overall results of the testing procedure. Section 5.4 gives theresults for dense matrices. Section 5.5 gives the results for tridiagonal matrices.Section 5.6 gives a theoretical analysis of the performance di�erence between theoptions COMPQ = \I" and COMPQ = \V" with some experimental data.26

275.1. Measures of the Quality of a MethodThe speed with which a method computes a solution is measured straightforwardly.The accuracy of a method is determined by the residual error in the computed solutionand the orthogonality of the computed eigenvectors. For T = Q�QT with computedsolution Q̂�̂Q̂T , these errors are computed by:residual error = R = maxi k(TQ̂� Q̂�̂)eik2j�̂jmax ; andorthogonality error = O = maxi k(Q̂Q̂T � I)eik2:The errors thus determined are governed by the the largest error for any singlecomputed eigenpair.The theorem below shows that if the residual and orthogonality errors are small,then the computed eigendecomposition has small absolute error. The proof of thistheorem depends on some lemmas about the properties of matrix norms.Lemma 5.1.1 kAk2 � pnmaxi kAeik2Lemma 5.1.2 kAATk2 = kAk22.Lemma 5.1.3 If kXk < 1, thenk(I �X)�1k � 11 � kXkTheorem 5.1.1 Let Q̂�̂Q̂T be the computed eigensystem of a symmetric tridiagonalmatrix T . If R � �1 and O � �2, then there exists a matrix E such thatT + E = Q̂�̂Q̂T ; and kEk2 � pn�j�jmax�2 + j�̂jmax�1q1 +pn�2� :Proof: Let E1 = �(TQ̂� Q̂�̂); where � = 1j�̂jmax (5.1.1)E2 = Q̂Q̂T � I

28 5.1. MEASURES OF THE QUALITY OF A METHODLemma 5:1:1) kE1k2 � pnmaxi kE1eik2R � �maxi k(TQ̂� Q̂�̂)eik2 � �1) kE1k2 � pnR � pn�1Similarly, Lemma 5:1:1) kE2k2 � pnmaxi kE2eik2O � maxi k(Q̂Q̂T � I)eik2 � �2) kE2k2 � pnO � pn�2Lemma 5:1:2) pn�2 � kE2k2 = kQ̂Q̂T � Ik2� kQ̂Q̂Tk2 � kIk2 = kQ̂Tk22 � 1) kQ̂Tk2 � q1 +pn�2From (5.1.1), TQ̂Q̂T � Q̂�̂Q̂T = j�̂jmaxE1Q̂T . So,Q̂�̂Q̂T = TQ̂Q̂T � j�̂jmaxE1Q̂T= T (I + E2)� j�̂jmaxE1Q̂T= T + Ewhere E = TE2 � j�̂jmaxE1Q̂T and sokEk2 � j�jmaxkE2k2 + j�̂jmaxkE1k2kQ̂Tk2� pn�j�jmax�2 + j�̂jmax�1q1 +pn�2�as desired. 2Note that if we de�ne E3 = Q̂T Q̂� I and have �O � maxi kE3eik2 � �2 thenkEk2 � pn0@j�jmax�2vuut1 +pn�21 �pn�2 + j�̂jmax�1q1 +pn�21ASince kE2k2 � kE3k2vuut1 +pn�21�pn�2 (5.1.2)

29Proof: of (5.1.2) E2 = Q̂Q̂T Q̂Q̂�1 � I= Q̂ �Q̂T Q̂� I� Q̂�1= Q̂E3Q̂�1kE2k2 � kQ̂k2kE3k2kQ̂�1k2 (5.1.3)and Lemma 5:1:3)kQ�1Q�Tk2| {z }k = k(I + E3)�1k2 � 11� kE3k2kQ�1k22 � 11 �pn�2so, from (5.1.3) kE2k2 � q1 +pn�2kE3k2s 11�pn�2kE2k2 � kE3k2vuut1 +pn�21�pn�2as stated. 2As long as pn�2 � 1, this bound is meaningful. Our orthogonality residual isde�ned by �O; for our purposes it serves to bound the error entirely adequately.Furthermore, note that whenkTQ̂� Q̂�̂k2 � �1 andkQ̂Q̂T � Ik2 � �2;the error matrix E is bounded bykEk2 � j�jmax�2 + j�jmax�1p1 + �2;which is independent of the matrix order. The maximum column 2-norm is used inpractice because it is less expensive to compute.

30 5.2. TEST MATRICES5.2. Test MatricesThe following matrix types were used to evaluate the performance of divide andconquer relative to QR and bisection with inverse iteration:1. Symmetric dense matrices with random entries uniformly distributed on (-1,1)2. Symmetric tridiagonal matrices with random entries designed to \simulate"a dense matrix as above after it has been reduced to tridiagonal form|thediagonals are given by ai = rnd(�1; 1)and the o�-diagonals are given bybi = �vuut nXk=i[rnd(0; 1)]2 (5.2.1)[20].3. Symmetric dense and tridiagonal matrices generated by the LAPACK test codeslatms [1]. These matrices are of the form UDUT where U is a random orthog-onal matrix and D is a diagonal matrix chosen according to a \mode" as follows.Three of the possible six modes were tested. In each mode description, D(1 : n)is the array of eigenvalues, and eps = machine epsilon = 2�24 � 5:96� 10�8 forIEEE single precision.� mode = 3: sets D(i) = eps i�1n�1 (eigenvalues geometrically distributed from1 to eps)� mode = 4: sets D(i) = 1 � i�1n�1 (1 � eps) (eigenvalues arithmetically dis-tributed from 1 to eps)� mode = 5: sets D to random numbers in the range (eps; 1) such that theirlogarithms are uniformly distributed.

314. 10 glued 21 � 21 Wilkinson matrices (glue = � = 10�4)W = 266666666666664 10 11 9 11 0 11 10 377777777777775T = 266666666664 W �� W �� W �� W 3777777777755. Tridiagonal matrices T of dimensions 100, 200, 300, 400, and 500 with ai = 2and bi = 1.6. The tridiagonal in BCSST08.dat: a 1047 � 1047 test tridiagonal matrix fromrunning Lanczos on an example from the Boeing-Harwell collection. See �gure5.2.1 for a plot of the elements in this tridiagonal matrix.7. The tridiagonal in LUND.dat: analogous to BCSST08.dat, 147�147. See �gure5.2.2 for a plot of the elements in this tridiagonal matrix.5.3. General ResultsOn a DEC Alpha using optimized Basic Linear Algebra Subroutines (BLAS), divideand conquer was uniformly the fastest algorithm by a large margin for large sym-metric tridiagonal eigenproblems. When Fortran BLAS were used, bisection/inverseiteration was somewhat faster (up to a factor of 2) for very large matrices (n � 500)without clustered eigenvalues. When eigenvalues were clustered, divide and conquerwas up to 80 times faster. The speedups over QR were so large in the tridiagonalcase that the overall problem, including reduction to tridiagonal form sped up by afactor of 2.5 over QR for n � 500.

32 5.3. GENERAL RESULTS

0 500 1000 1500 2000 2500
10

2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

matrix entry number, D and E concatenated

va
lu

e

Matrix entries for BCSST08

Figure 5.2.1: BCS elements

33

0 50 100 150
10

0

10
2

10
4

10
6

10
8

10
10

10
12

matrix entry number, diagonal = +, off-diagonal = o

va
lu

e

Matrix entries for LUND

Figure 5.2.2: LUND elements

34 5.3. GENERAL RESULTSNearly universally, the matrix of eigenvectors generated by divide and conquer suf-fered the least loss of orthogonality. The smallest eigensystem residual (kTQ̂� Q̂�̂k)usually came from the eigensystem generated by bisection/inverse iteration, with di-vide and conquer coming a close second (except on those occasions where inverseiteration failed to compute orthogonal vectors).The plots will often be labeled with \Exx" where \x" is some other letter. Theseabbreviations refer to the code which was used to generate the given results. EDCrefers to the divide and conquer code (sstedc), EBZ is the bisection with inverseiteration code (sstebz and sstein), EQR is the QR code (ssteqr), and ERI refers tothe root-free QR code with inverse iteration (a slightly modi�ed ssterf and sstein).It is worth noting that all of the codes contain criteria for \splitting" matriceswith exceptionally small o�-diagonals. These criteria are not the same for di�erentcodes. For the purpose of comparison, it was decided that it would be fairest to altersome of the codes so that they all used the same splitting criteria. To this end, thefollowing splitting condition was used:T splits between ai and ai+1 ifjbij < epsqjaij �qjai+1j:This is the splitting condition which was coded into sstedc.

355.4. Results for Dense Matrices

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

matrix size

ex
ec

ut
io

n
tim

e
(in

cl
ud

in
g

re
du

ct
io

n)
 r

el
at

iv
e

to
 E

D
C

Random Dense matrices, .=EDC, x=EQR, +=EBZ, o.=ERI, *=TRD, o=MM

Figure 5.4.1: Relative times on random dense matrices using the DEC Alpha withFortran BLASThe random symmetric dense matrices generated have the property that their eigen-values are fairly evenly distributed. For inverse iteration this is good since less re-orthogonalization of eigenvectors is required. For divide and conquer it is bad sincethis means that there will be little de
ation within the intermediate problems. QRand root-free QR seem mostly una�ected by changes in matrix type.The bisection/inverse iteration combination almost always yields the smallestresidual. Divide and conquer is nearly always the next smallest. Sometimes divideand conquer gets a smaller residual than bisection/inverse iteration. This happenswhen a great deal of de
ation takes place within the divide and conquer algorithm|fewer computations mean less loss of accuracy. The root-free QR/inverse iterationcombination is fairly unpredictable. In general, QR seems to have the greatest resid-ual of all, but all of the codes are fairly accurate most of the time.

36 5.4. RESULTS FOR DENSE MATRICES
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Random Dense matrices, norm(AQ-QD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.4.2: kAQ̂�Q̂�̂kkAk on random dense matrices using the DEC Alpha with FortranBLAS
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Random Dense matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI, *=TRD

Figure 5.4.3: kQ̂T Q̂ � Ik on random dense matrices using the DEC Alpha withFortran BLAS

37Divide and conquer nearly always has the smallest error for the orthogonality test;it maintains orthogonal eigenvectors very well at each step, following the orthogonalityerror from the matrix used to reduce to tridiagonal form (TRD above) more closelythan any of the other methods. Both of the algorithms making use of inverse iterationgenerally yield low orthogonality errors, but occasionally inverse iteration will yieldvectors which are not orthogonal. When this happens, it often ruins the residualerror as well. QR reliably gets decently small residual and orthogonality errors, butit tends to be less accurate than the other codes.

38 5.4. RESULTS FOR DENSE MATRICES

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

matrix size

ex
ec

ut
io

n
tim

e
(in

cl
ud

in
g

re
du

ct
io

n)
 r

el
at

iv
e

to
 E

D
C

Random Dense matrices, .=EDC, x=EQR, +=EBZ, o.=ERI, *=TRD, o=MM

Figure 5.4.4: Relative times on random dense matrices using the DEC Alpha withBLAS from the Digital eXtended Math LibraryThe optimized BLAS make quite a bit of di�erence. Since divide and conquer isbased on BLAS3 (matrix-matrix multiplies) and bisection/inverse iteration is basedon BLAS1 (vector-vector operations), divide and conquer gets a much bigger boostfrom the use of optimized BLAS. QR, being based on small rotation operations, isnot helped at all by the addition of optimized BLAS.The errors are not independent of the BLAS used. Although the error plots forrandom dense matrices using DXML are nearly identical to the plots produced withFortran BLAS, some of the later DXML plots are profoundly di�erent from theirFortran counterparts.

39
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

matrix size

*
m

ac
he

ps

Random Dense matrices, norm(AQ-QD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.4.5: kAQ̂�Q̂�̂kkAk on the DEC Alpha with DXML BLAS
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Random Dense matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI, *=TRD

Figure 5.4.6: kQ̂T Q̂� Ik on the DEC Alpha with DXML BLAS

40 5.4. RESULTS FOR DENSE MATRICES

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

matrix size

ex
ec

ut
io

n
tim

e
(in

cl
ud

in
g

re
du

ct
io

n)
 r

el
at

iv
e

to
 E

D
C

Dense(mode 3) matrices, .=EDC, x=EQR, +=EBZ, o.=ERI, *=TRD, o=MM

Figure 5.4.7: Relative times on dense matrices with geometrically distributed eigen-values (slatms, MODE=3) using the DEC Alpha with Fortran BLASThe fraction of time spent in the �nal matrix-matrix multiply is considerablyless for these matrices when using Fortran BLAS than it was for the random densematrices. This is because the matrix of eigenvectors emerging from divide and conqueron the tridiagonal matrix is highly structured due to considerable de
ation in thelast subproblem in the divide and conquer tree. The Fortran matrix-matrix multiplyroutine from netlib try to take advantage of matrices with such structure by checkingto see if there are zero entries.The large amount of de
ation not only makes the divide and conquer algorithmgo very fast, but it also improves its accuracy considerably.

41
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Dense(mode 3) matrices, norm(AQ-QD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.4.8: kAQ̂�Q̂�̂kkAk on dense matrices with geometrically distributed eigenvalues(slatms, MODE=3) using the DEC Alpha with Fortran BLAS
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

10
4

10
5

matrix size

*
m

ac
he

ps

Dense(mode 3) matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI, *=TRD

Figure 5.4.9: kQ̂T Q̂�Ik on dense matrices with geometrically distributed eigenvalues(slatms, MODE=3) using the DEC Alpha with Fortran BLAS

42 5.4. RESULTS FOR DENSE MATRICES

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

matrix size

ex
ec

ut
io

n
tim

e
(in

cl
ud

in
g

re
du

ct
io

n)
 r

el
at

iv
e

to
 E

D
C

Dense(mode 3) matrices, .=EDC, x=EQR, +=EBZ, o.=ERI, *=TRD, o=MM

Figure 5.4.10: Relative times on dense matrices with geometrically distributed eigen-values (slatms, MODE=3) using the DEC Alpha with DXML BLASThe fraction of time spent in the �nal matrix-matrix multiply appears nearlyidentical to the same operation on random dense matrices. We can be fairly sure thatthe highly optimized BLAS do not check for zeros inside the matrices of a matrix-matrix multiplication.This time the error residuals are signi�cantly di�erent from the same residualsusing Fortran BLAS. Notice that QR is una�ected since it does not make use ofBLAS.

43
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

10
4

matrix size

*
m

ac
he

ps

Dense(mode 3) matrices, norm(AQ-QD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.4.11: kAQ̂�Q̂�̂kkAk on dense matrices with geometrically distributed eigenvalues(slatms, MODE=3) using the DEC Alpha with DXML BLAS
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

10
4

10
5

10
6

matrix size

*
m

ac
he

ps

Dense(mode 3) matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI, *=TRD

Figure 5.4.12: kQ̂T Q̂ � Ik on dense matrices with geometrically distributed eigen-values (slatms, MODE=3) using the DEC Alpha with DXML BLAS

44 5.4. RESULTS FOR DENSE MATRICES

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

matrix size

ex
ec

ut
io

n
tim

e
(in

cl
ud

in
g

re
du

ct
io

n)
 r

el
at

iv
e

to
 E

D
C

Dense(mode 4) matrices, .=EDC, x=EQR, +=EBZ, o.=ERI, *=TRD, o=MM

Figure 5.4.13: Relative times on dense matrices with arithmetically distributedeigenvalues (slatms, MODE=4) using the DEC Alpha with DXML BLASThis is very similar to the plot for random dense matrices.

45
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

matrix size

*
m

ac
he

ps

Dense(mode 4) matrices, norm(AQ-QD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.4.14: kAQ̂�Q̂�̂kkAk on dense matrices with arithmetically distributed eigenvalues(slatms, MODE=4) using the DEC Alpha with DXML BLAS
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

10
4

matrix size

*
m

ac
he

ps

Dense(mode 4) matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI, *=TRD

Figure 5.4.15: kQ̂T Q̂� Ik on dense matrices with arithmetically distributed eigen-values (slatms, MODE=4) using the DEC Alpha with DXML BLAS

46 5.4. RESULTS FOR DENSE MATRICES

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

matrix size

ex
ec

ut
io

n
tim

e
(in

cl
ud

in
g

re
du

ct
io

n)
 r

el
at

iv
e

to
 E

D
C

Dense(mode 5) matrices, .=EDC, x=EQR, +=EBZ, o.=ERI, *=TRD, o=MM

Figure 5.4.16: Relative times on dense matrices with random eigenvalues logarith-mically distributed (slatms, MODE=5) using the DEC Alpha with DXML BLASThis is very similar to the MODE=3 plot. Both types of matrices have many clusteredeigenvalues.

47
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Dense(mode 5) matrices, norm(AQ-QD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.4.17: kAQ̂�Q̂�̂kkAk on dense matrices with random eigenvalues logarithmicallydistributed (slatms, MODE=5) using the DEC Alpha with DXML BLAS
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

10
4

10
5

matrix size

*
m

ac
he

ps

Dense(mode 5) matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI, *=TRD

Figure 5.4.18: kQ̂T Q̂�Ik on dense matrices with random eigenvalues logarithmicallydistributed (slatms, MODE=5) using the DEC Alpha with DXML BLAS

48 5.5. RESULTS FOR TRIDIAGONAL MATRICES5.5. Results for Tridiagonal Matrices

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

matrix size

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 E
D

C

Random Tridiag matrices, . = EDC, x = EQR, + = EBZ, o = ERI

Figure 5.5.1: Relative times on random tridiagonal matrices using the DEC Alphawith DXML BLASSee 5.2.1 for details on the formulation of these tridiagonal matrices. For the tridiag-onal eigenproblem, QR is simply not competitive.The error residuals are about what we expect.

49
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Random Tridiag matrices, norm(AQ-XD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.2: kAQ̂�Q̂�̂kkAk on random tridiagonal matrices using the DEC Alpha withDXML BLAS
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

10
4

matrix size

*
m

ac
he

ps

Random Tridiag matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.3: kQ̂T Q̂�Ik on random tridiagonal matrices using the DEC Alpha withDXML BLAS

50 5.5. RESULTS FOR TRIDIAGONAL MATRICES

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

matrix size

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 E
D

C

Tridiag(mode 3) matrices, . = EDC, x = EQR, + = EBZ, o = ERI

Figure 5.5.4: Relative times on tridiagonal matrices with geometrically distributedeigenvalues (slatms, MODE=3) using the DEC Alpha with DXML BLASThere is a trememdous amount of de
ation in this matrix|probably due to acombination of the clustered eigenvalues and the way in which the matrices are con-structed (a sequence of Givens rotations applied to a diagonal matrix).This is a good example of inverse iteration failing to produce orthogonal vectorswithout adversely a�ecting the overall eigensystem residual. It is also an excellentexample of the exceptional accuracy achieved by divide and conquer when a greatdeal of de
ation occurs.

51
0 100 200 300 400 500 600 700 800 900 1000

10
-1

10
0

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Tridiag(mode 3) matrices, norm(AQ-XD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.5: kAQ̂�Q̂�̂kkAk on tridiagonal matrices with geometrically distributed eigen-values (slatms, MODE=3) using the DEC Alpha with DXML BLAS
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

10
4

10
5

10
6

matrix size

*
m

ac
he

ps

Tridiag(mode 3) matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.6: kQ̂T Q̂ � Ik on tridiagonal matrices with geometrically distributedeigenvalues (slatms, MODE=3) using the DEC Alpha with DXML BLAS

52 5.5. RESULTS FOR TRIDIAGONAL MATRICES

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

matrix size

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 E
D

C

Tridiag(mode 4) matrices, . = EDC, x = EQR, + = EBZ, o = ERI

Figure 5.5.7: Relative times on tridiagonal matrices with arithmetically distributedeigenvalues (slatms, MODE=4) using the DEC Alpha with DXML BLAS

53
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Tridiag(mode 4) matrices, norm(AQ-XD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.8: kAQ̂�Q̂�̂kkAk on tridiagonal matrices with arithmetically distributed eigen-values (slatms, MODE=4) using the DEC Alpha with DXML BLAS
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

10
4

matrix size

*
m

ac
he

ps

Tridiag(mode 4) matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.9: kQ̂T Q̂ � Ik on tridiagonal matrices with arithmetically distributedeigenvalues (slatms, MODE=4) using the DEC Alpha with DXML BLAS

54 5.5. RESULTS FOR TRIDIAGONAL MATRICES

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

matrix size

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 E
D

C

Tridiag(mode 5) matrices, . = EDC, x = EQR, + = EBZ, o = ERI

Figure 5.5.10: Relative times on tridiagonal matrices with random eigenvalues loga-rithmically distributed (slatms, MODE=5) using the DEC Alpha with DXML BLAS

55
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Dense(mode 5) matrices, norm(AQ-QD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.11: kAQ̂�Q̂�̂kkAk on tridiagonal matrices with random eigenvalues logarith-mically distributed (slatms, MODE=5) using the DEC Alpha with DXML BLAS
0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

10
2

10
3

10
4

10
5

matrix size

*
m

ac
he

ps

Dense(mode 5) matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI, *=TRD

Figure 5.5.12: kQ̂T Q̂�Ik on tridiagonal matrices with random eigenvalues logarith-mically distributed (slatms, MODE=5) using the DEC Alpha with DXML BLAS

56 5.5. RESULTS FOR TRIDIAGONAL MATRICES

100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

matrix size

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 E
D

C

Tridiag([121]) matrices, . = EDC, x = EQR, + = EBZ, o = ERI

Figure 5.5.13: Relative times on tridiagonal matrices with 2's on the diagonal and1's on the o�-diagonal using the DEC Alpha with DXML BLAS

57
100 150 200 250 300 350 400 450 500

10
0

10
1

10
2

matrix size

*
m

ac
he

ps

Tridiag([121]) matrices, norm(AQ-XD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.14: kAQ̂�Q̂�̂kkAk on tridiagonal matrices with 2's on the diagonal and 1's onthe o�-diagonal using the DEC Alpha with DXML BLAS
100 150 200 250 300 350 400 450 500

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Tridiag([121]) matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.15: kQ̂T Q̂� Ik on tridiagonal matrices with 2's on the diagonal and 1'son the o�-diagonal using the DEC Alpha with DXML BLAS

58 5.5. RESULTS FOR TRIDIAGONAL MATRICES

200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

matrix size

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 E
D

C

Composite Single matrices, . = EDC, x = EQR, + = EBZ, o = ERI

Figure 5.5.16: A composite of relative times on the DEC 5000 with Fortran BLASThe left-most matrix size is at 147|this is the LUND matrix. Proceeding left toright, the next size is 210|this is for the glued Wilkinson matrices. The �nal size isfor BCSST08 at 1074.The large BCSST08 matrix has many small eigenvalues. We suspect that root-free QR does not �nd these values accurately enough for inverse iteration to functionquickly. The root-free QR/inverse iteration execution time relative to divide andconquer is far o� the scale here, taking close to 700 times longer.For its additional e�ort, the eigensystem that root-free QR/inverse iteration com-putes yields a residual much lower than any other, although all of the algorithms yieldresiduals very close to machine precision.The eigenvectors computed by inverse iteration yield errors which are calculatedto be zero. That is why those errors do not appear on the semilog plot.

59
100 200 300 400 500 600 700 800 900 1000 1100

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

matrix size

*
m

ac
he

ps

Composite Single matrices, norm(AQ-QD)/norm(A), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.17: A composite of kAQ̂�Q̂�̂kkAk on the DEC 5000 with Fortran BLAS
100 200 300 400 500 600 700 800 900 1000 1100

10
1

10
2

10
3

10
4

matrix size

*
m

ac
he

ps

Composite Single matrices, norm(I-QQ^T), .=EDC, x=EQR, +=EBZ, o=ERI

Figure 5.5.18: A composite of kQ̂T Q̂� Ik on the DEC 5000 with Fortran BLAS

60 5.6. THEORETICAL PERFORMANCE ANALYSIS5.6. Theoretical Performance Analysis for Dense MatricesThere are two possibilities for computing the full eigensystem of a dense matrixusing the divide and conquer code. Both begin by �nding a tridiagonal factorization:A = UTUT . The subsequent call to sstedc could use either option COMPQ = \V" oroption COMPQ = \I". If option \V" is chosen, then the algorithm directly computesA = Z�ZT from the input of T and U . If option \I" is chosen, then the algorithmcomputes T = Q�QT from the input of T . From this it is easy to compute theeigenvectors of A: A = UTUT = UQ�QTUT = Z�ZTSo the eigenvectors of A are the columns of Z = UQ; a single large matrix-matrixmultiply is needed in addition to the computation of the eigensystem of the tridiagonalmatrix. In this section, we will give a theoretical analysis of which algorithm is faster.The di�erences in the two methods are in the calculation of z, the nature ofthe matrix-matrix multiplies into U , and the amount of workspace required. In thefollowing summaries, � will represent the fraction of eigenvalues on a level which werede
ated. For simplicity, I assume here that the overall matrix size n = 2t+1, thatthe matrix will be split in the divide step until the subproblems are of size 2, thatthe percentage of de
ation is the same for each problem on each level, and that thisde
ation is all of the sort in which the value in z is small. � = 1 � � will be thefraction of non-de
ated values in each problem.� Using option \I", no computation is needed to form z, for problem j on level iit is simply read from 24 i+1Q2j�1 i+1Q2j 35. Keeping iQ up to date, however,is non-trivial.Let TLVLS = t = lgn� 1, this means that the levels are numbered from 0 to t.On the ith level, 0 � i � t, there are 2i intermediate iQj matrices of size�2t�i+1.For problem j on level i, 0 � i � t�1; 1 � j � 2i, there will be 2 matrix-matrixmultiplies of the form �Q[2t�i��2t�i] ~Q[�2t�i��2t+1�i]

5.6. THEORETICAL PERFORMANCE ANALYSIS 61requiring 2(2t�i � �2t�i � �2t+1�i) = 2�223(t+1)�3i�2 = 12 �2n323i
oating point multiplies and the same number of
oating point adds. For sim-plicity, whenever we refer to a number of \
oating point multiplies and adds"we mean \
oating point multiplies and the same number of
oating point adds."All of the matrix-matrix multiplies on level i will cost2i 12 �2n323i = 12 �2n322i
oating point multiplies and adds:The entire algorithm will require matrix-matrix multiplies for 0 � i � t� 1:t�1Xi=0 12 �2n322i = 12�2n3 1Xi=0 122i � 1Xi=t 122i= 12�2n3 11� 14 �1 � 14t�= 23�2n3 �1� 14t�
oating point multiplies and adds:One �nal full-size matrix-matrix multiply will be required to form Z = UQ.This will cost n3 multiplies and adds for a total of [1 + 23�2 �1 � 14t�]n3
oatingpoint multiplies and adds which are not also performed by using option \V".� Using the \V" option, there is some work to be done in calculating z. This isdone by a series of matrix-vector multiplies. Also, U must be updated by eachintermediate eigenvector matrix.{ For a problem on level i computation of z involves a pair of matrix-vectormultiplies for each level below i, not including level t. This costs2 t�1Xk=i+1 ��2t+1�k�2 = 2�2n2 t�1Xk=i+1 122k= 23�2n2 122i+2 11� 14 �1� 14t�= 23 �2n222i �1 � 14t� (5.6.1)

62 5.6. THEORETICAL PERFORMANCE ANALYSIS
oating point multiplies and adds.For every problem on level i, that comes to a total of2iXj=1 23 �2n222i �1� 14t� = 23 �2n22i �1 � 14t�
oating point multiplies and adds:For the entire algorithm, we calculate z's on levels i = t� 1; : : : ; 0:t�1Xi=0 23 �2n22i = 43�2n2 �1 � 14t�
oating point multiplies and adds:{ Each intermediate eigenvector matrix must be multiplied into U . For prob-lem j on level i, this means one matrix-matrix multiply:U[n��2t+1�i]Q[�2t+1�i��2t+1�i]yielding n�222(t+1)�2i = �2n322i
oating point multiplies and adds:Across level i:2i�2n322i = �2n32i
oating point multiplies and adds:The entire algorithm requirestXi=0 �2n32i < �n3 11 � 12 �1 � 12t+1�= 2�2n3 �1 � 12t+1�
oating point multiplies and adds:So the entire algorithm requires2�2n3 �1� 12t+1�+ 43�2n2 �1� 14t�which are not also performed by using option \I".If we compare the two costs to determine when option \V" is more cost-e�ectivethan option \I", we see that \V" has a lower cost when2�2n3 �1� 12t+1�+ 43�2n2 �1� 14t� < [1 + 23�2 �1 � 14t�]n3

5.6. THEORETICAL PERFORMANCE ANALYSIS 63for large n the n2 term and the terms involving 12t+1 or 14t are negligible, so we compareonly the following terms resulting from the use of BLAS3:�2�2 � 23�2�n3 < n343�2 < 1�2 < 34� < s34 � 0:866We conclude that unless there is substantial de
ation (� > :14) there is no appre-ciable gain in using option \V". There are problems which routinely get de
ations ashigh as this (some as high as 90%!) and others which have a much lower de
ationrate.A sequence of examples follows which show the percentage of de
ation occurringin each problem of a sequence of matrices whose eigensystems were solved using divideand conquer. Note every problem of a given matrix type and all of its subproblems areincluded in these graphs. In each case, the plot which follows will show the executiontime of the divide and conquer code with COMPQ = \V" relative to the execution timeof the divide and conquer code with COMPQ = \I".The results are approximately as we predicted. However, it is clear from the plotsthat the assumptions of the model are not borne out|the fraction of values de
atedin a subproblem is not constant throughout the whole problem, but seems to varydepending on how high up in the divide and conquer tree the subproblem occurs.We never seem to save more than 10% of total execution timewhen using COMPQ = \V"and we lose up to 20% (depending on the matrix type). We would therefore recom-mend using COMPQ = \I" unless you are aware that your matrices have large clustersof eigenvalues.

64 5.6. THEORETICAL PERFORMANCE ANALYSIS
0 100 200 300 400 500 600 700 800 900 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

matrix or submatrix size

fr
ac

tio
n

de
fla

te
d

Random Dense matrices

Figure 5.6.1: De
ation on random dense matrices
100 200 300 400 500 600 700 800 900 1000

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

matrix size

ex
ec

ut
io

n
tim

e
(in

cl
ud

in
g

re
du

ct
io

n)
 r

el
at

iv
e

to
 C

O
M

P
Q

=
"I

"

Random Dense matrices, x: COMPQ="I", o: COMPQ="V"

Figure 5.6.2: Option \V" relative to option \I" on random dense matrices using theDEC Alpha with Fortran BLAS

5.6. THEORETICAL PERFORMANCE ANALYSIS 65
0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

matrix or submatrix size

fr
ac

tio
n

de
fla

te
d

Dense (mode 3) matrices

Figure 5.6.3: De
ation on dense matrices with geometrically distributed eigenvalues(slatms, MODE=3)
100 200 300 400 500 600 700 800 900 1000

0.75

0.8

0.85

0.9

0.95

1

1.05

matrix size

ex
ec

ut
io

n
tim

e
(in

cl
ud

in
g

re
du

ct
io

n)
 r

el
at

iv
e

to
 C

O
M

P
Q

=
"I

"

Dense(mode 3) matrices, x: COMPQ="I", o: COMPQ="V"

Figure 5.6.4: Option \V" relative to option \I" on dense matrices with geometricallydistributed eigenvalues (slatms, MODE=3) using the DEC Alpha with Fortran BLAS

66 5.6. THEORETICAL PERFORMANCE ANALYSIS
0 100 200 300 400 500 600 700 800 900 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

matrix or submatrix size

fr
ac

tio
n

de
fla

te
d

Dense (mode 4) matrices

Figure 5.6.5: De
ation on dense matrices with arithmetically distributed eigenvalues(slatms, MODE=4)
100 200 300 400 500 600 700 800 900 1000

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

matrix size

ex
ec

ut
io

n
tim

e
(in

cl
ud

in
g

re
du

ct
io

n)
 r

el
at

iv
e

to
 C

O
M

P
Q

=
"I

"

Dense(mode 4) matrices, x: COMPQ="I", o: COMPQ="V"

Figure 5.6.6: Option \V" relative to option \I" on dense matrices with arithmeticallydistributed eigenvalues (slatms, MODE=4) using the DEC Alpha with Fortran BLAS

5.6. THEORETICAL PERFORMANCE ANALYSIS 67
0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

matrix or submatrix size

fr
ac

tio
n

de
fla

te
d

Dense (mode 5) matrices

Figure 5.6.7: De
ation on dense matrices with random eigenvalues logarithmicallydistributed (slatms, MODE=5)
100 200 300 400 500 600 700 800 900 1000

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

matrix size

ex
ec

ut
io

n
tim

e
(in

cl
ud

in
g

re
du

ct
io

n)
 r

el
at

iv
e

to
 C

O
M

P
Q

=
"I

"

Dense(mode 5) matrices, x: COMPQ="I", o: COMPQ="V"

Figure 5.6.8: Option \V" relative to option \I" on dense matrices with randomeigenvalues logarithmically distributed (slatms, MODE=5) using the DEC Alpha withFortran BLAS

Chapter 6Future WorkIdeas for extending the usefulness of the divide and conquer code include:� Computing a Subset of the Eigenvectors A recent idea of Gu [9] suggestsit is possible to compute some subset of the eigenvectors rather than all of them,by a modi�ed version of the divide and conquer path which currently computeseigenvalues only. Brie
y, we would save the intermediate orthogonal matrices,permutations, and Givens rotations, and then multiply them into k columns ofthe identity matrix, corresponding to the k eigenvectors we want. This wouldrequire O(kn2)
oating point operations, with the constant heavily dependenton the amount of de
ation. The main competing algorithm for this task isbisection/inverse iteration which uses O(kn)
ops if no reorthogonalization isrequired or O(k2n) if maximal reorthogonaliztion is required. We expect thatthis algorithm would only be faster than bisection/inverse iteration for certainkinds of matrices with a great deal of de
ation, or when k is not much smallerthan n.� Bidiagonal Singular Value Decomposition An obvious algorithm for thebidiagonal SVD is to �nd the eigendecomposition of a symmetric tridiagonalmatrix with zero diagonal and the bidiagonal matrix entries strung along thesub- and superdiagonals [8]. But this may fail to compute orthogonal singularvectors if the matrix is ill-conditioned. There is an alternative formulation ofdivide-and-conquer specialized to bidiagonal matrices which is discussed in [11]| one could adapt the the methods in the report to the basic algorithm in [11].68

5.6. THEORETICAL PERFORMANCE ANALYSIS 69� Parallelizing Divide and Conquer There are several challenges to overcometo fully exploit the available parallelism in this algorithm. First, di�erent nodesin the divide and conquer tree in Figure 3.0.1 may all be done independently.But assigning an equal number of processors to each node may lead to poorload balance if there are di�ering amounts of de
ation in each node (it is easyto construct examples where this would happen). Second, as we move up thetree, there are fewer such independent nodes at each level, but there is still agreat deal of independent work to do, say in solving for di�erent roots of thesecular equation. So a good implemenation would have to gradually shift par-allel resources from working on independent nodes, to cooperating to solvingthe secular equations. Third, much of the time is spent in the data paralleloperation of matrix-matrix multiplication, especially near the top of the tree.In the serial code, this is done by reorganizing data structure to permit callsto the the BLAS (see section 4.1, slaed3). On a parallel machine, this mightrequire a great deal of expensive communication, which could overwhelm the
oating point costs. Also, it require a gradual shifting of resources away fromtask parallelism near the bottom of the tree (independent nodes) to data par-allelism (matrix multiplication). All these are challenging issues in parallelprogramming.� Updating and Downdating the Symmetric Eigenproblem and SVD Ifone knows the eigendecomposition of a matrix A = Q�QT , then one sometimeswants to know the eigendecomposition of the rank-one perturbed matrix A +�vvT, where � is a scalar and v is a vector. Similarly, one would like to update(or downdate) the SVD of a general matrix G = U�V T when it is modi�ed toG + uvT . Both problem involve solving a single secular equation, and so thetechniques of this report are applicable.

Bibliography[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACKUsers' Guide, Release 1.0. SIAM, Philadelphia, 1992. 235 pages.[2] ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arithmetic,Std 754-1985 edition, 1985.[3] C. F. Borges and W. B. Gragg. A parallel divide and conquer algorithm for thegeneralized real symmetric de�nite tridiagonal eigenproblem. Working Paper,1992.[4] J.J.M. Cuppen. A divide and conquer method for the symmetric tridiagonaleigenproblem. Numer. Math., 36:177{195, 1981.[5] P. Deift, T. Nanda, and C. Tomei. ODEs and the symmetric eigenvalue problem.SIAM J. Num. Anal., 20(1), 1983.[6] J. Demmel, M. Heath, and H. van der Vorst. Parallel numerical linear algebra. InA. Iserles, editor, Acta Numerica, volume 2. Cambridge University Press, 1993.[7] J. Dongarra and D. Sorensen. A fully parallel algorithm for the symmetriceigenproblem. SIAM J. Sci. Stat. Comput., 8(2):139{154, March 1987.[8] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins UniversityPress, Baltimore, MD, 2nd edition, 1989.[9] M. Gu. personal communication, 1994.[10] M. Gu and S. Eisenstat. A stable algorithm for the rank-1 modi�cation of thesymmetric eigenproblem. Computer Science Dept. Report YALEU/DCS/RR-916, Yale University, September 1992.70

BIBLIOGRAPHY 71[11] E. Jessup and D. Sorensen. A divide and conquer algorithm for computing thesingular value decomposition of a matrix. In Proceedings of the Third SIAM Con-ference on Parallel Processing for Scienti�c Computing, pages 61{66, Philadel-phia, PA, 1989. SIAM.[12] W. Kahan. personal communication, 1993.[13] K. Li and T.-Y. Li. An algorithm for symmetric tridiagonal eigenproblems |divide and conquer with homotopy continuation. SIAM J. Sci. Comp., 14(3),May 1993.[14] R.-C. Li. Solving the secular equation stably and e�ciently. UC Berkeley MathDept. Report, in preparation, 1992.[15] T.-Y. Li and N. H. Rhee. Homotopy algorithm for symmetric eigenvalue prob-lems. Num. Math., 55:265{280, 1989.[16] T.-Y. Li and Z. Zeng. Laguerre's iteration in solving the symmetric tridiagonaleigenproblem - a revisit. Michigan State University preprint, 1992.[17] T.-Y. Li, H. Zhang, and X.-H. Sun. Parallel homotopy algorithm for symmetrictridiagonal eigenvalue problem. SIAM J. Sci. Stat. Comput., 12(3):469{487,1991.[18] B. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cli�s,NJ, 1980.[19] D. Sorensen and P. Tang. On the orthogonality of eigenvectors computed bydivide-and-conquer techniques. SIAM J. Num. Anal., 28(6):1752{1775, 1991.[20] H. Trotter. Eigenvalue distributions of large hermitian matrices: Wigner's semi-circle law and a theorem of Kac, Murdock, Szeg�o. Advances in Mathematics,54:67{82, 1984.

Appendix ACalling Sequence for sstedcSUBROUTINE SSTEDC(COMPQ, N, D, E, Q, LDQ, IWORK, WORK, INFO)** Purpose* =======** SSTEDC computes all eigenvalues and, optionally, eigenvectors of a* symmetric tridiagonal matrix using the divide and conquer method.* The eigenvectors of a full or band symmetric matrix can also be found* if SSYTRD or SSPTRD or SSBTRD has been used to reduce this matrix to* tridiagonal form.** This code makes very mild assumptions about floating point* arithmetic. It will work on machines with a guard digit in* add/subtract, or on those binary machines without guard digits* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.* It could conceivably fail on hexadecimal or decimal machines* without guard digits, but we know of none. See SLAED3 for details.** The code currently calls SSTERF if eigenvalues only are desired, since* this is faster, but it can be easily modified to use divide and conquer* (see the comments below).* 72

A. CALLING SEQUENCE FOR sstedc 73* Arguments* =========** COMPQ (input) CHARACTER*1* Specifies whether eigenvectors are to be computed* as follows** COMPQ = 'N' or 'n' Compute eigenvalues only.** COMPQ = 'I' or 'i' Compute eigenvectors of* tridiagonal matrix also.** COMPQ = 'V' or 'v' Compute eigenvectors of original* dense symmetric matrix also.* On input, Q contains the orthogonal* matrix used to reduce the original* matrix to tridiagonal form.** N (input) INTEGER* The dimension of the symmetric tridiagonal matrix. N >= 0.** D (input/output) REAL array, dimension(N)* On entry D contains the main diagonal of the tridiagonal* matrix.* On exit D, if INFO = 0, contains its eigenvalues.** E (input) REAL array, dimension(N-1)* Contains the subdiagonal entries of the tridiagonal matrix.* On exit, E has been destroyed.** Q (input/output) REAL array, dimension(LDQ,N)* If COMPQ = 'V' or 'v', then:* On entry, Q contains the orthogonal matrix used in the* reduction to tridiagonal form.

74 A. CALLING SEQUENCE FOR sstedc* If COMPQ = 'V' or 'v' or 'I' or 'i', then:* On exit, if INFO = 0, Q contains the orthonormal* eigenvectors of the symmetric tridiagonal (or full) matrix.* If COMPQ = 'N' or 'n', then Q is not referenced.** LDQ (input) INTEGER* The leading dimension of the array Q. If eigenvectors are* desired, then LDQ >= max(1, N). In any case, LDQ >= 1.** IWORK (workspace) INTEGER array* If COMPQ = 'N' then no integer workspace is required.* If COMPQ = 'V' then the dimension of IWORK must be at least* (6 + 6*N + 5 * N * lg N)* (lg(N) = ceiling(log-base-2 (N)))* If COMPQ = 'I' then the dimension of IWORK must be at least* (2 + 5 * N).** WORK (workspace) REAL array,* If COMPQ = 'N' then no workspace is required.* If COMPQ = 'V' then the dimension of WORK must be at least* (1 + 3 * N + 2 * N * lg N + 3 * N**2).* If COMPQ = 'I' then the dimension of WORK must be at least* (1 + 3 * N + 2 * N * lg N + 2 * N**2).** INFO (output) INTEGER* = 0: successful exit.* < 0: if INFO = -i, the i-th argument had an illegal value.* > 0: The algorithm failed to compute an eigenvalue while* working on the submatrix lying in rows and columns* INFO/(N+1) through MOD(INFO,N+1).** ===** .. Parameters ..

A. CALLING SEQUENCE FOR sstedc 75INTEGER SMLSIZPARAMETER (SMLSIZ = 25)

Appendix BHistory of the CodeThe code began as a set of four routines from Tang and Sorenson (dlasud, dlaevd,dlaevu, and dlaacc) taken from a larger package meant to implement divide andconquer in a way suitable for multi-processor machines. These routines were cleanedup, debugged, and made into a part of a fully working code.This is a basic description of the changes which have taken place since the incor-poration of the Tang & Sorenson code into this working code.� Version 2 incorporated changes in the routine which solves for the roots ofthe secular equation [14]. Instead of always using the left-hand assymptoteas the origin in the frame of reference used to solve for a particular root, theright-hand assymptote is used when appropriate. It is appropriate to use theright-hand assymptote as the origin if the value of the secular function at themid-point of the interval formed by the two assymptotes is negative. Since� > 0, then this selection of origins assures that the covengence of the iterativesolution will be monotonic. Li also removed several instructions which, afteranalysis, had been determined to serve no useful purpose. The initial guess wasalso modi�ed to be in the proper sub-interval of (d(i); (d(i) + d(i + 1))=2) and((d(i) + d(i+ 1))=2; d(i + 1)).� Version 3 Convergence is slow when a root is near the left pole. A slight changeto the secular equation root-�nder was made to speed convergence in this case.� Version 4 This is the �rst version to make use of the trick developed in [10]which enables us to solve this problem without the use of extended precision.76

B. HISTORY OF THE CODE 77� Version 5 A minor modi�cation is made to the previous routines to optimizefor storage space required. More meaningfully, the matrix multiply at the endof each step was optimized to take advantage of the structure of the matricesinvolved:24 1 3 42 3 4 35 � [Q]This means that a permutation is applied to the columns of the previous eigen-vector matrix (as modi�ed by de
ation) and the same permutation to the rowsof the new eigenvector matrix.� Version 6 Purposeful conversion to single precision. Other changes are largelycosmetic: loops for copying vectors or matrices were replaced by calls to existingroutines, loops for assigning values to matrices were replaced by calls to existingroutines, the implementation from [10] was altered slightly to make it moreeasily vectorized.� Version 7 The method of division into subproblems was altered. Previouslya rather ad-hoc method was used which divided the problem into as manyequal-sized pieces as possible, the remainder separated as \extra". The recom-binations required were less than optimal. The new method requires storage ofan additional dlg(n)e integer values to save the sizes of the submatrices on thelowest level.The new sorting method divides all of the existing subproblems into problemsof size bm2 c and dm2 e until the largest existing subproblem is of size SMLSIZ orless. SMLSIZ is a parameter within the program routines sstedc and slaed0.� Version 8 Since the integer workspace is not fully used until the top level ofrecombinations is reached, part of it can be used to store the dlg(n)e submatrixsizes. In this fashion we need only two integer storage spaces in addition to theinteger storage required normally.Also in this version, the sorting of values from the diagonals of two previoussubmatrices is done by a simple merge rather than the bubble sort previouslyimplemented. Since the diagonal elements are sorted at every step, this is avery rapid way to sort.

78 B. HISTORY OF THE CODE� Version 9 This version has the argument orders in several levels cleaned upconsiderably. It also sorts the eigenvalues after the �nal step so that they comeout in sorted order at the very end { provided that there was no splitting withinsstedc.� Version 10 This version incorporates some revisions to the secular equationsolver (�rst introduction of the routine slaed6).� Version 11 This version incorporates the eigenvalues only routine. It stores allof the smaller sub-matrices in a large workspace and recalls them for a series ofBLAS2 operations to calculate the z-vector needed at the current level.The storage scheme uses ndlg(nSMLSIZ)e additional integer storage for the per-mutations associated with each subproblem in the divide and conquer tree. Anarray of n integers is used to keep track of where the permutations assciatedwith a subproblem are located within this storage space.Similarly, a maximum of 2ndlg(nSMLSIZ)e integer and real storage is required tokeep track of the Givens rotations used to de
ate a subproblem. Note that thisde
ation will reduce the size of the subproblem's eigenvector matrix; if donecleverly, the storage saved from storing the eigenvectors could be used to storethe real values involved in the Givens rotations. An array of n integers is usedto keep track of where the rotations assciated with a subproblem are locatedwithin this storage space.Finally, n2 real storage space is required for the eigenvector submatrices foundfor each subproblem. Since no more z-vectors will be computed, the �nal n� neigenvectormatrix is written over the previously computed eigenvectormatrices.As above, n integers are used to keep track of where the eigenvectors assciatedwith a subproblem are located within this storage space.In the case of computing the eigensystem of a dense symmetric matrix, therotations, permutations, and multiplication by a subproblem's eigenvectors areall incorporated directly into the orthogonal matrix used to reduce the densematrix into a tridiagonal one.

