
A Parallel Performance Study of Jacobi-likeEigenvalue SolutionMakan Pourzandi �Laboratoire de l'Informatique du Parall�elisme,Unit�e de Recherche Associ�ee 1398 du CNRSEcole Normale Sup�erieure de Lyon,69364 Lyon Cedex 07, FranceTel. (+33) 72 72 85 03 Fax (+33) 72 72 80 80e-mail: mpourzan@lip.ens-lyon.frBernard Tourancheau yzThe University of TennesseeComputer Science Department,Knoxville, TN 37996-1301, USATel (1) 615 974 8295, Fax (1) 615 974 8296,e-mail: btouranc@cs.utk.eduMarch 24, 1994AbstractIn this report we focus on Jacobi like resolution of the eigen-problemfor a real symmetric matrix from a parallel performance point of view:we try to optimize the algorithm working on the communication inten-sive part of the code. We discuss several parallel implementations andpropose an implementation which overlaps the communications by thecomputations to reach a better e�ciency. We show that the overlappingimplementation can lead to signi�cant improvements. We conclude bypresenting our future work.�This work was supported by MRE grant No. 974, the CNRS-NSF grant No. 950.22/ 07and the research program C3.yOn leave from LIP, CNRS URA 1398, ENS Lyon, 4 all�ee d'Italie, 69364 Lyon Cedex 07,France.zThis work was supported in part by the National Science Foundation under grant ASC-871728, the National Science Foundation Science and Technology Center Cooperative Agree-ment CCR-8809615, the DARPA and ARO under contract DAAL03-91-C-0047, PRC C3 ,CNRS-NSF grant 950.223/07, Archipel SA and MRE under grant 974, and DRET.1

1 IntroductionAs quantitative analysis becomes increasingly important in sciences and engi-neering, the need grows for faster methods to solve large eigenvalue problems.Large eigenvalue problems occur in a wide variety of applications, including thedynamic analysis of large-scale structures such as aircraft and spacecraft, theprediction of structural responses in solid and soil mechanics, the study of solarconvection, the modal analysis of electronic circuits, and the statistical analysisof data [TMLZ93]. Thus the need for faster methods to solve these large eigen-value problems becomes very important.The problem of �nding the eigenvalues of a matrix can be stated as follows:Find the values � that satisfy the equation: Ax = �x for a vector x, which iscalled an eigenvector and � an eigenvalue.In this report we focus on Jacobi like resolution of the eigen-problem for a realsymmetric matrix from a parallel performance point of view: we try to opti-mize the algorithm working on the communication intensive part of the code.We discuss several parallel implementations [Ebe87, EP90, Fou89, LP89a] andpropose an implementation which overlaps the communications by the compu-tations to reach a better e�ciency. We �rst present briey our target machineand our analysis model in the sections 2 and 3. In Chapter 4, we present thesequential Jacobi like resolution [Jac46, Mod88, Wil65]. Afterwards, we discussthe parallel implementations (section 5). We discuss our implementation on theIntel machine iPSC/860 hypercube, using the Intel gossiping procedure. Then,we discuss the same implementation but using our hand coded gossiping algo-rithm, following the works of [Fra90, JH89] leading to a very e�cient solution.Afterwards, we present the same algorithm with overlapping of the communica-tions by the computations. We use for that, a general methodology, developedin [DT92, PT93] and a tuned implementation. In the next section, we comparethe experimental results of all algorithms. We show that the overlapping im-plementation can lead to a 6% improvement of the execution timings and thatrepresents a decrease of 35% of the total communication time. This is achievedon our target hardware which has only one asynchronous communication port.Regarding the communication strategy employed, we surely guess on even moreimprovement if the hardware is able to handle multi-ports asynchronous com-munications. We conclude by presenting our future work.2 Target machineThe experiences were done on a 32 nodes iPSC/860 with a hypercube topology.Each node of the iPSC provides an i860 processor, a Direct Connect Module and16 Megabytes of memory. The Direct Connect Module (DCM) does the inter-nodes communications. Using the DCM, the communications are independentfrom the i860 and are routed in circuit switched mode [Int90, MMM91, SB77].2

There are several technical reports concerning the iPSC/860 architecture andcommunication performances [Dun90, MM91]. One can easily refer to them tohave more details.The i860 is a 40 MHz RISC type processor with 8k bytes of cache memory.It uses two arithmetic units (adder and multiplier) and a graphic unit. Theseunits could be used in pipelined and chained modes. It allows i860 to havepeak performances of 80 Mops (32 bits) or 60 Mops (64 bits). Actuallythe performances are 11.5 Mops with our present compilers (64 bits) for theaverage vector length of our experiments (512 words). The gap between thepeak and sustain performance is principally due to memory delays (cache miss,page-translation-miss, DRAM access delays : : :) [Dun90].3 Analysis ModelLet �a be the time to perform a oating point operation (double precision,addition or multiplication). The time to communicate between 2 neighbor nodesis modelized by �+L�� where � is the startup time and � is the time to transmita word. For the iPSC/860 � is 136 �s for long messages (larger than 100 bytes)and 75 �s for short ones. � is 3,2 �s for a word of 4 bytes [DS86, Dun90].We de�ne the speedup as sp = T1Tp and the e�ciency as e = T1pTp , where Ti isthe execution time for the algorithm using i processors and T1 is the executiontime for the best sequential algorithm.4 Jacobi AlgorithmIn this subsection we de�ne our notation for the Jacobi method for symmetricmatrix diagonalization. For an n�n real symmetric matrixA with elements apqthe Jacobi method [GL90] systematically reduces the norm of the non-diagonalelements: off(A) =Xp Xq 6=p a2pq (1)by a sequence of plane (Jacobi) rotations. We call a Jacobi sweep, every n(n�1)2plane rotations reducing all non diagonal elements.A(1) = A; A(k+1) = J (k)A(k)J (k)T ; k = 1; 2; 3 : : :Where the matrix J (k) is block-diagonal such thatJ (k)(i;j) = �ij (i; j 6= p; q); with �ij = 1 if i = j; = 0 otherwiseJ (k)(p;q) = �J (k)(q;p) = s J (k)(p;p) = J (k)(q;q) = c3

where s = sin(�(k)pq) and c = cos(�(k)pq). The angle �(k)pq is chosen such thatak+1pq is annihilated.The Forbenius norm, i.e. the sum of the squares of the matrix elements, isinvariant under orthogonal transformations, hence, we have:off(A(k+1)) = off(A(k))� 2�a(k)pq �2 :Thus a sequence of matrices A(k) is produced such that limk!1A(k) = D, adiagonal matrix consisting of the eigenvalues of A, andlimk!1J (1)TJ (2)TJ (3)T : : :J (k)T = V;is a matrix consisting of the eigenvectors of A [GL90, TY91]. We skip the anni-hilation of a(k)pq when a(k)pq < ", because the reduction in o�(A) is not worth thecost. This leads to the algorithm which is called the Jacobi threshold method.To save computing time, one chooses a de�nite order for the rotations. One canuse for instance the raw- (or column-) cyclic method [Mod88, Wil65]. In theraw-cyclic scheme, we simply pick (p; q) in raw-by-raw fashion. For instance inthe case n = 4 the following rotations(1; 2); (1; 3); (1;4); (2;3); (2; 4); (3; 4)are made in a complete sweep [GL90, TY91]. We present the correspondingsequential algorithm on Figure 1.While Iterations < NBMAXITER and o�(A) > " doChoose indices p and q with 1 � p < q � nif (apq > ") then Execute Jacobi rotation(p; q)Update columns p and qCopy columns p and q on rows p and qIterations = Iterations + 1endwhileFigure 1: General form of a sequential Jacobi algorithm for a n� n matrix5 Parallel Jacobi Algorithm5.1 Parallel Jacobi rotationsFrom the previous subsection we note that a Jacobi rotation a�ects only theelements in the p; q columns and rows for annihilating the element (p; q) of4

A. Furthermore one can easily prove that JpqJp0q0 = Jp0q0Jpq if p; q; p0; q0 are alldistinct. These features of the Jacobi methodmake it possible to annihilate morethan one element at a time. Since each rotation a�ects two columns and rows,the maximum number of the rotations which can be performed simultaneouslyis n2 . Our parallel Jacobi method consists in doing concurrent Jacobi rotationsat each of the processors of our computing system.We resume our parallel Jacobi algorithm for each processor in Figure 2.As noted in [Sam71], all the processors in a parallel machine can and shoulddo their own Jacobi rotations at the same time. In concurrent rotations thetransformations are done on the original columns. Each rotation (p; q) a�ects thecolumns and rows p; q. One must therefore correct for the elements in the rowsp; q on the other processors. Because of the commutativity of Jacobi rotationsmentioned above, the corrections may be done after each set of concurrentrotations. We just have to store the parameters and the indices of the rotationsdone to update the data located in the other processors at the end of a sweep.In our parallel implementation, we store the matrix by entire columns dis-tributed in each processors. It is obvious that we can gain half of the memoryspace by storing only half of the symmetric matrix. But this would cause an ex-tra amount of communications at each column update to �nd out the necessaryelements distributed in other processors. With our parallel implementation,there is two times more update computations and memory use compared to thesequential implementation. But we do not have any constraints for memory sizewith the range of matrix treated. Furthermore, as a computation operation isfar more cheaper than a communication operation, we prefer the increase in thecomputation operations than an increase in communication operations. Thischoice is valid for small size problems (N < 512) where the �(N2) communica-tions cost the same as the �(N3) computations.While Iterations < NBMAXITER and o�(A) > " dofor stage = 1 to n dofor i = 1 to n2P doif (apiqi > ") then Execute Jacobi rotation(i)endforCommunicate the n2P rotation parametersUpdate columnsShu�e columnsendforIterations = Iterations + 1endwhileFigure 2: Parallel Jacobi algorithm for each processor.5

5.2 Shu�ing of matrix columnsIn this subsection, we show how to shu�e the matrix columns during eachsweep in order to complete it. We have seen in the previous subsection that it isnecessary to annihilate every o� diagonal element of the matrix. This requiresto do the rotations between all possible pairs of columns in the matrix. Thuswe have to permute the various columns so that with a complete sequence ofshu�ing of columns and concurrent rotations, we complete a full Jacobi sweep.We give a de�nition of the parallel ordering:(i1; j1); (i2; j2); : : : ; (iq; jq) with q = n(n� 1)2is a parallel ordering of the set f(i; j)j1 � i � j � ng if for s = 1 : n � 1 therotation set Rot(s) = f(ir ; jr)jr = 1 + n(s � 1)=2 : ns=2gconsists of non conicting rotations [GL90].
1

2

3

4

5

6

7

8

1

2

3 5

4 6 8
7

I) II) Figure 3: Communication schema for caterpillar-track parallel orderingMost of the empirical results for parallel Jacobi-type algorithms that arefound in the literature use odd-even ordering. Convergence has been proved onsome cases, but, only for odd-even orderings or the orderings equivalent to odd-even one. The use of various orderings does make a di�erence in convergencerates, which in some instances is quite striking [ME93]. But, quadric conver-gence is always observed in real symmetric cases. Convergence for symmetricmatrices has been proven by Forsythe and Henrici [FH60] for column-cyclingordering. Luk and Park [LP89b] proved the convergence for odd-even Jacobisets by proving it is equivalent to column-cycling orderings. The odd-even or-dering, however, is not optimal for parallel computation in that it completes asweep in n sweeps instead of (n� 1).We use the caterpillar-track ordering [Ebe86, EP90] which which is identicalto the odd-even ordering [LP89a]. In Figure 4, we show this parallel orderingfor n = 8. We embed a ring in the hypercube and do the communicationsthrough this ring. At each stage k of the ordering, a processor p, accordingto k, sends a column to a neighbor (p + 1 or p � 1 whether k is even or odd)and receives a column from the another neighbor [EP90]. The communicationschema is shown in Figure 3. Each block represents a processor. The numbersin each block are the column numbers housing in this processor and the arrowsindicate the communication at each stage. We only consider the case with an6

even number of matrix columns. The case with odd number of columns followstrivially by adding a dummy column to obtain the even case. Thus we need nstages to complete the sweep because half of the stages are performing p � 1rotations.
stage 1 (1,2)(3,4)(5,6)(7,8)
stage 2 2(1,4)(3,6)(5,8)7
stage 3 (2,4)(1,6)(3,8)(5,7)
stage 4 4(2,6)(1,8)(3,7)5
stage 5 (4,6)(2,8)(1,7)(3,5)
stage 6 6(4,8)(2,7)(1,5)3
stage 7 (6,8)(4,7)(2,5)(1,3)
stage 8 8(6,7)(4,5)(2,3)1Figure 4: One sweep of caterpillar-track ordering for n = 8.5.3 GossipingWe de�ne the gossiping1 as the communication procedure which sends from eachprocessor a distinct message of length L to every other processor and receivesmessages of length L respectively from all the other processors.At each sweep we execute at most n2 rotations. Each processor executes n2Por n2P � 1 rotations at every stage (each processor owns nP or nP � 1 columnsand there are two columns necessary to execute a rotation). Before beginningthe following sweep, we have to update the matrix with the n2 � n2P rotationsexecuted in the other processors.Each processor sends the informations about its rotations to all other pro-cessors, receives the informations about other rotations from all the other pro-cessors and updates its columns. Hence, at each sweep we have to do a all-to-all communication procedure. This is the communication procedure with thebiggest cost in our algorithm. In the next subsections, we show how we de-crease this communication cost by overlapping the gossiping communicationswith computations.5.4 Parallel version using Intel gossiping procedureFigure 2 shows the algorithm on a hypercube network. This schema is the samefor all the studied versions. The di�erence between these versions is essentiallythe gossiping communication procedure. Henceforth, we will discuss only thesedi�erences in the following subsections.1The gossiping communication procedure is also referred as all to all or total exchange.7

In the �rst version we use the Intel gossiping procedure (gcolx) for gossiping2.We obtain very good performances. We believe that it is due to the e�cient useof machine low level characteristics.Hereafter, we use this version as a reference to show the gain provided bythe overlapped communication procedures.5.5 Parallel version with hand coded gossiping procedureOur motivation was a hand coded gossiping procedure which would be moree�cient than the vendor gossiping procedure and that could be overlapped withcomputation. We follow the works of [Fra90, JH89] for the implementation ofour gossiping procedure on a hypercube network.me = mynode()for i = 0 to d doDestination = me xor 2iExchange message of length L � 2i with the Destination processorendforFigure 5: Gossiping algorithm for a message of length L on a hypercube networkof dimension d.The gossiping procedure for hypercubes is described in Figure 5. Its cost formessages of length L through a d = log2(P) dimension hypercube, takes intoaccount that the length of the messages exchanged double at each step:Tcomm = d�+ d�1Xi=0 2iL� = d�+ (2d � 1)L� = log2(P)�+ (P � 1)L�5.6 Parallel version with overlapped gossiping procedureIn this subsection we describe how the execution time decreases while we overlapthe communications by the computations.In Figure 6, we show the principles of our overlapped gossiping communica-tion procedure. We remark that this procedure can be used for other applica-tions requiring a gossiping as a communication procedure during their execution.The user just has to change the Update procedure by any computation procedureto take advantage of the pipeline overlap e�ect.This procedure does not have any consequences on the convergence speed ofour parallel algorithm, because, there is no change on the computation sequence2We use the name gossiping for the Intel procedure (gcolx) because it has the same func-tionality. This name is not used in the Intel documentations.8

me = mynode()Destination = me xor 20Exchange message of length L with the Destination processorfor i = 1 to d� 1 doDestination = me xor 2iDo ParallelExchange asynchronously a message of length L � 2iwith processor DestinationUpdate columns for the message received at step i� 1enddoendforUpdate columns for the message received at step d� 1Figure 6: Gossiping procedure with overlapping of some Jacobi update compu-tations.nor on the ordering but only a decrease of the communication overhead at eachsweep.6 Theoretical study of the complexitiesIn this subsection we study the complexity of our algorithm. Remark that ifwe use the Intel gossiping procedure for reference version in our experiments,we do not know the algorithm that is used by Intel in its gcolx communicationprocedure, hence, it is impossible for us to give its communication complexity.Notice also, that the computation part is the same for all the parallel versionsimplemented, so the computation complexity study is valid for all the parallelversions described.6.1 Serial algorithmThere is a part of computation independent from n concerning the computationof rotation angle �pq and the update of the elements apq, app and aqq at eachrotation. As in [GL90], we assume this amount of computation is constant, letit be Cte ops (for our implementation Cte � 53 ops). As we mentioned insubsection 4, when executing the rotation (p; q), only rows and columns p and qare altered. Then the update A = J(p;q)AJT(p;q) can be implemented in 6n ops ifthe symmetry is exploited for every rotation. There are Pni=1Pnj�i j = n(n�1)2rotations in each sweep to annihilate all non-diagonal elements. In our algorithm(see Figure 2), we de�ne the off(A) to �nd out the convergence of the algorithm.9

It costs about 2n ops. As we see on Figure 2, we execute the rotation onlywhen apq is greater than ". This is not always the case, specially for the lastsweeps. Therefore the maximum computation complexity for each sweep k is:max(T kcomp) = n(n� 1)2 (6n+ Cte) + 2n= 3n3 + n2(Cte2 � 3) + n(2� Cte2)There is no rigorous theory that enables one to predict the number of sweeps[GL90]. But Brent and Luk have argued heuristically that the number ofsweeps is proportional to log2(n). Therefore the total computation complex-ity is O(log2(n)n3) ops.6.2 Parallel algorithm6.2.1 Computation ComplexityWe remind that the computation complexity for the sequential version is the halfof the parallel version (see subsection 5.1), because the sequential version pro�tsof the matrix symmetry which is not the case for the parallel versions. Thecomputation load is the same for each processor because at the end each one willhave done the same number of updates. Therefore the maximum computationcomplexity, for each sweep k and for each one of the p processors is:max(T kcomp) = 6n3P + n2P (Cte � 6) + nP (4� Cte)Hence the total execution time for parallel algorithm is O(log2 (n)n3P) ops.6.2.2 Communication ComplexityAs one can see in Figure 2, there are two main parts needing communicationswith other processors at each step. First, when we shu�e columns across theprocessors and second when we gossip the informations concerning the rotationsthrough all processors. Then the communication time is Tcomm = Tshuffle +Tgossip. In the shu�e case, each processor communicates only with its neighbors(see subsection 5.2). It sends a column to the next neighbor on the ring andreceives asynchronously another column from the preceding neighbor on thering. So the communication time tshuffle for each step is the time to send acolumn to the next neighbor (the overcost of the asynchronous receive duringthe send is neglected). Then, for each step, tshuffle = � + n� (see subsection3). There are n steps at each sweep k, so T kshuffle = �n+ n2�. The other part10

requiring communication is the gossiping of the rotation parameters throughthe hypercube.With our hand coded algorithm for gossiping on a hypercube, the cost fora message of length L is log2(P)� + (p � 1)L� (see subsection 5.5). In ourJacobi algorithm, the length of the message to gossip is 2np which leads totgossip = log2(P)�+ 2nP�1P � for each step. There are n steps at each sweep k,so T kgossip = log2(P)n�+ 2n2P�1P �.Then the total communication time for each sweep k is:T kcomm = n�+ n2� + log2(p)n�+ 2n2p � 1p �which leads to:T kcomm = n�(1 + log2(p)) + n2�1 + 2p� 1p � �As we have seen in subsection 6.1, there are heuristically log2(n) sweepsbefore convergence. So the total communication complexity for the parallelversion without overlapping is Tcomm = O(3n2log2(n)�+nlog2(n)(1+log2(p))�).The shu�e time Tshuffle stays the same in both versions, overlapped and nooverlapped. But the gossiping time Tgossip decreases dramatically in the over-lapped version. Roughly, we have T overcomm = Tshuffle and Tnoovercomm = Tshuffle +Tgossip.7 Experimental resultsIn this subsection, we comment our experimental results that have been doneon an iPSC/860 hypercube. We use the level 1 BLAS subroutines [DCHH88]to update the columns on sequential and parallel versions. In general, theperformances of these subroutines increase with the size of the data treated.This implies some performance gain for longer vectors.In Figure 7, we present the speedup for all versions. Remark the the com-putation time for the sequential version is the half of the parallel version but asthe computation routines perform better on longer vectors, the computation e�-ciency is better in the parallel case where the vector are two times longer. Thus,speedup results better than P=2 are obtained before the full speed is attainedby the sequential version and then they decrease to the P=2 asymptote.As we see in Figure 9, the e�ciency is always better for the overlap ver-sion. Since the computation complexity is the same in all cases, the explanationis the gain on the communication time, realized by the overlapping the com-munications by the computations. The e�ciency is a decreasing function ofthe number of processors because the gossiping communication time increases11

0

5

10

15

20

50 100 150 200 250 300 350 400 450 500 550

S
p
e
e
d

U
p

Matrix Size

Overlap
No Overlap
Intel Proc

Figure 7: Speed up for the overlap, the no overlap and the Intel versions of theJacobi procedure according to the matrix size, using 32 processors.when the number of processors grows (see subsection 5.5). Notice that the dif-ference between overlapped and the non-overlapped version also increases withthe number of processor.In Figure 10, we present the percentage of the gain for the overlap versioncompared to the no overlap version. We obtain this percentage with the ratioTNoover�TOverTNoover , where TOver and TNoover are respectively the total executiontime on the overlap and the no overlap versions. When the size of the matrixis small (< 120) the number of columns per processor is too small to allowthe overlapping of the communications by the computations. In this case, theoverhead that the overlapping induces results in a longer execution time for theoverlap version compare to the no overlap version.The percentage of the gain increases with the matrix size. There are severalreasons for this. The �rst one is that the performances of the level 1 BLASsubroutines increase with the matrix size. As Tcomp is decreasing, the ratioTcommTcomp augments. This leads to a relative greater importance of the overlappedpart of Tcomm versus the total execution time. The second one is explained insubsection 6.1. After several sweeps the number of non diagonal elements greaterthan the threshold decreases and becomes very small when the convergenceapproaches. Thus the computation time diminishes while the communicationtime remain the same, so this results in another increase of the ratio TcommTcomp .12

0

20

40

60

80

100

120

140

160

50 100 150 200 250 300 350 400 450 500 550

T
i
m
e

o
n

s
e
c
o
n
d
s

Matrix Size

Overlap
No Overlap
Intel Proc

Figure 8: Execution times in seconds for the overlap, the no overlap and theIntel versions of the Jacobi procedure according to the matrix size, using 32processors.8 Conclusion and future worksWe presented the overlap of the gossiping communications by the computationsin the Jacobi algorithm. The cost of this type of global communication schemeincreases with the matrix size and the number of processors and is thus veryimportant to overlap from the scalability point of view.We showed that the overlapping implementation can lead to non-negligibleimprovements. Moreover, this is achieved on our target hardware which has onlyone asynchronous communication port. Regarding the communication strategyemployed, we guess on better improvements if the hardware were able to handlemulti-ports asynchronous communications.We intend to overlap the shu�e communications and try to take advantageof the matrix symmetry to reduce the computation time. Finally, we are workingon a more general version of our gossiping procedure to include it in the LOCCSlibrary [DT92].We run several tests on the Paragon machine. These �rst experiments areencouraging but we will have to redesign our hand coded gossiping procedureto squeeze the most out of the grid topology.13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35

E
f
f
i
c
i
e
n
c
y

o
n

%

Number of processors

Overlap
No Overlap
Intel Proc

Figure 9: E�ciency for the overlap, the no overlap and the Intel versions of theJacobi procedure according to the number of processors on a 512� 512 matrix.
-4

-2

0

2

4

6

8

50 100 150 200 250 300 350 400 450 500 550

%

o
f

g
a
i
n

o
n

t
h
e

O
v
e
r
l
a
p

v
e
r
s
i
o
n

Size of the matrix A

Gain on % of the total time

Figure 10: Percentage of the gain on the Overlap version compared to the Nooverlap version of the Jacobi procedure, using p = 32 and according to thematrix size. 14

References[DCHH88] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. AnExtended Set of Fortran Basic Linear Algebra Subroutines. ACMTransaction on Mathematical Software, 1(14):1{17, March 1988.[DS86] J. Dongarra and DC. Sorensen. Linear algebra on high performancecomputers. Parallel Computing, 85:221{236, 1986.[DT92] F. Desprez and B. Tourancheau. LOCCS: Low Overhead Commu-nication and Computation Subroutines. Technical Report 92-44,Laboratoire d'Informatique du Parall�elisme-ENSL, December 1992.[Dun90] T.H Dunigan. Performance of the intel iPSC/860. Technical ReportTM-11491, Oak Ridge National Laboratory, June 90.[Ebe86] P. J. Eberlein. Comments on some parallel Jacobi orderings. Tech-nical Report 86-16, Dept. Comp. Sci., State University of New Yorkat Bu�alo, 1986.[Ebe87] P. J. Eberlein. On one-sided Jacobi methods for parallel computa-tion. SIAM J. ALG. DISC. METH., 8(4):790{796, October 1987.[EP90] P. J. Eberlein and H. Park. E�cient implementation of Jacobi algo-rithms and Jacobi sets on distributed memory arrchitectures. Jour-nal of Parallel and Distributed Computing, (8):358{366, 1990.[FH60] G. E. Forsythe and P. Henrici. The cyclic Jacobi method for com-puting the principal values of a complex matrix. Trans. Amer. Math.Soc., 94:1{23, 1960.[Fou89] David E. Foulser. A blocked Jacobi method for the symmetric eigen-problem. Technical Report RR-680, Dept. of Computer Science, YaleUniversity, February 1989.[Fra90] P. Fraigniaud. Communications intensives dans les architectures �am�emoires distribu�ees et Algorithme parall�ele pour la recherche deracines de pôlynomes. PhD thesis, Ecole Normale Superieure deLyon, December 1990.[GL90] G. H. Golub and C. F. V. Loan. Matrix Computations. JohnsHopkins University Press, 1990. 2nd edition.[Int90] Intel Corporation. iPSC/860 User's Guide, June 1990.[Jac46] C.G.J. Jacobi. Uber ein leichtes Verfahren. 1846.15

[JH89] S. Johnsson and C. T. Ho. Optimum broadcasting and personalizedcommunication in hypercubes. IEEE Trans. Comp., 38(9):1249{1268, 1989.[LP89a] F. T. Luk and H. Park. On parallel Jacobi orderings. SIAM J. SCI.STAT. COMPUT., 10(1):18{26, January 1989.[LP89b] F. T. Luk and H. Park. A proof of convergence for two parallel JacobiSVD algorithms. IEEE Trans. Comput., 38(6):806{811, June 1989.[ME93] M. Mantharam and P. J. Eberlein. New Jacobi-sets for parallelcomputations. Parallel Computing, 19:437{454, 1993.[MM91] C.L. McCreary and M.E Mcradle. Modeling communication delayon the iPSC/2 and iPSC/860 hypercubes. Technical Report CSE-91-12, Aubran University, September 1991.[MMM91] C.L. McCreary, M.E. Mcardle, and J.D. McCreary. Broadcast com-munication delay metric for iPSC/2 and iPSC/860 hypercubes. July1991.[Mod88] J. J. Modi. Parallel Algorithms and Matrix Computation. OXFORD:CLARENDON Press, 1988.[PT93] M. Pourzandi and B. Tourancheau. Overlapping in Gaussian elimi-nation on iPSC/860. In M. A. Yaghoubi, editor, Proceeding of Inter-national Congress on Computational Methods in Engineering, vol-ume 4, pages 183{193, University of Shiraz, Iran, May 1993.[Sam71] A. Sameh. On Jacobi and Jacobi-like algorithms for a parallel com-puter. Math. Comp., (25):579{590, 1971.[SB77] H. Sulivan and T.R. Bashkow. A large scale, homogeneous, fullydistributed parallel machine. In Proceeding of the fourth Symposiumon computer architectures, pages 105{117, 1977.[TMLZ93] C. Tre�tz, P. K. McKinley, T. Y. Li, and Z. Zeng. A scalable eigen-value solver for symmetric tridiagonal matrices. In R. Sincovec, D. E.Keyes, M. R. Leuze, L. R. Petzold, and D. A. Reed, editors, Proceed-ings of the sixth SIAM Conference on Parallel Processing, volume 2,pages 602{609, 1993.[TY91] P. Tervola and W. Yeung. Parallel Jacobi algorithm for matrix diag-onalization on transputer networks. Parallel Computing, (17):155{163, 1991.[Wil65] J. H. Wilkinson. The Algebric Eigenvalue Problem. OXFORD:CLARENDON Press, 1965.16

9 Appendix : Impact of the thresholdIn this appendix, we discuss the decrease in the number of rotations computedduring each iteration of the Jacobi method. Notice that there are little theo-retical results concerning the number of rotations at each iteration before con-vergence with the threshold Jacobi method. We try to give some hints to gaintime on the gossip procedure.We treat only the dense matrices which elements are randomly chosed andso they have not any particular structure. Hence, our experiences are not repre-sentative of the class of dense matrices. However, we found out that the numberof rotations decrease dramatically in the last iterations before convergence.The data gossiped at each step concern only the rotations angles. One canuse the decrease on the number of rotations to diminish the amount of datagossiped. Remark this is very di�cult to predicate the number of elementssuperior than the threshold which will be rotated and the processors holdingthem. This implies practically a stage of pre-treatment in the beginning ofthe gossip procedure to inform each processor about the amount of data to bereceived (it consists mainly of a gossip-type communication procedure). Theproblem now is to know if the gain on the gossip procedure justify the cost ofthe pre-treatment ?In Figure 11, we show the number of rotations per iteration on a 256� 256test matrix. As one can remark the number of rotations decreases dramaticallyonly in the last iterations. We conclude that it is not necessary to pre-treat thegossip procedure in the �rst iterations. Unfortunatly, in our knowledge, thereis no theoretical results to indicate exactly how many iterations have to becomputed before convergence. Therefore, it is very di�cult to determine whichiterations have to be pre-treated. Empirically, with our test matrices (random,of order 64 � n � 512), the pre-treatment of the gossip procedure is worthwhileafter the (log2(n)� 2)th iteration.
0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9

r
o
t
a
t
i
o
n
s

number of iterations

number of rotations

Figure 11: Number of rotations according to the number of iterations.17

