
On the Correctness of Parallel Bisection in Floating PointJames W. Demmel �Computer Science Division and Department of MathematicsUniversity of CaliforniaBerkeley, California 94720Inderjit DhillonyComputer Science DivisionUniversity of CaliforniaBerkeley, California 94720Huan RenzDepartment of MathematicsUniversity of CaliforniaBerkeley, California 94720Computer Science Division Technical Report UCB//CSD-94-805. University of California,Berkeley, CA 94720. March 30, 1994. AbstractBisection is an easily parallelizable method for �nding the eigenvalues of real sym-metric tridiagonal matrices, or more generally symmetric acyclic matrices. It requires afunction Count(x) which counts the number of eigenvalues less than x. In exact arith-metic Count(x) is an increasing function of x, but this is not necessarily the case withroundo�. Our �rst result is that as long as the oating point arithmetic is monotonic,the computed function Count(x) implemented appropriately will also be monotonic; thisextends an unpublished 1966 result of Kahan to the larger class of symmetric acyclicmatrices. Second, we analyze the impact of nonmonotonicity of Count(x) on the serialand parallel implementations of bisection. We present simple and natural implemen-tations which can fail because of nonmonotonicity; this includes the routine bisect inEISPACK. We also show how to implement bisection correctly despite nonmonotonic-ity; this is important because the fastest known parallel implementation of Count(x) isnonmonotonic even if the oating point is not.�The author was supported by NSF grants ASC-9005933 and CCR-9196022, and DARPA grant DAAL03-91-C-0047 via a subcontract from the University of Tennessee.yThe author was supported by DARPA grant DAAL03-91-C-0047 via a subcontract from the Universityof Tennessee.zThe author was supported by DARPA grant DAAL03-91-C-0047 via a subcontract from the Universityof Tennessee. 1

1 IntroductionLet T by an n-by-n real symmetric tridiagonal matrix with diagonals a1; :::; an and o� di-agonals b1; :::; bn�1; we let b0 � 0. Let �1 � � � � � �n be T 's eigenvalues. It is well known[20] that the function Count(x) de�ned below returns the number of eigenvalues of T thatare less than x (for all but the �nite number of x resulting in a divide by zero) :Algorithm 1: Count(x) returns the number of eigenvalues of a real symmetrictridiagonal matrix T that are less than x.Count = 0;d = 1;for i = 1 to nd = ai � x� b2i�1=dif d < 0 then Count = Count + 1endfor(If we wish to emphasize that T is the argument, we will write Count(x; T) instead.)It is easy to see that the number of eigenvalues in the half-open interval [�1; �2) isCount(�2)� Count(�1). This observation may be used as the basis for a \bisection" algo-rithm to �nd all the eigenvalues of T , or just those in an interval [�1; �2) or [�j; �k). Herewe interpret bisection very broadly, referring to any algorithm which involves dividing aninterval containing at least one eigenvalue into smaller subintervals of any size, and recom-puting the numbers of eigenvalues in the subintervals. The algorithm terminates when theintervals are narrow enough.The logic of such a bisection algorithm would seem to depend on the simple factthe Count(x) is a monotonic increasing step function of x. If its computer implementa-tion, call it FloatingCount(x), were not also monotonic, so that one could �nd �1 < �2with FloatingCount(�1) > FloatingCount(�2), then the computer implementation mightwell report that the interval [�1; �2) contains a negative number of eigenvalues, namelyFloatingCount(�2)�FloatingCount(�1). This result is clearly incorrect. In section 4 below,we will see that this can indeed occur using the the Eispack routine bisect (using IEEEoating point standard arithmetic [2, 3], and without over/underows or other exceptions).The goal of this paper is to explore the impact of nonmonotonicity on the bisectionalgorithm. There are at least three reasons why FloatingCount(x) might not be monotonic:1. the oating point arithmetic is too inaccurate,2. over/underow occurs, or is avoided improperly, and3. FloatingCount(x) is implemented using a fast parallel algorithm called parallel pre�x.Our �rst result is to give examples showing monotonicity failures for all three reasons; seesections 4 and 6.Our second result is to show that as long as the oating point arithmetic is monotonic(we de�ne this in section 2.1), and FloatingCount(x) is implemented in a reasonable (butserial) way, then FloatingCount(x) is monotonic. A su�cient condition for oating point tobe monotonic is that it be correctly rounded or correctly chopped; thus IEEE oating point2

arithmetic is monotonic. This result was �rst proven but not published by Kahan in 1966 forsymmetric tridiagonal matrices [16]; in this paper we extend this result to symmetric acyclicmatrices, a larger class including tridiagonal matrices, arrow matrices, and exponentiallymany others [8]; see section 6.Our third result is to formalize the notion of a correct implementation of bisection, anduse this characterization to identify correct and incorrect serial and parallel implementa-tions of bisection. We illustrate with several simple, natural but wrong implementations ofparallel bisection, and show how to implement it correctly in the absence of monotonicity;See sections 4 and 7. Nonmonotonic implementations of FloatingCount(x) remain of inter-est, even though nonmonotonic arithmetics are a dying breed, because the fastest knownparallel pre�x implementations of FloatingCount(x) appear unavoidably nonmonotonic.We feel this paper is also of interest because it is an example of a rigorous correct-ness proof of an algorithm using oating point arithmetic. We make clear exactly whichproperties of oating point are necessary to prove correctness.The rest of this paper is organized as follows. Section 2 gives the de�nitions and as-sumptions. Section 3 gives tables to illustrate the results of this paper and the assumptionsneeded to prove the results. Section 4 gives some examples of incorrect bisection algorithms,and also gives some serial and parallel algorithms that are provably correct subject to someassumptions about the computer arithmetic and FloatingCount(x). Section 5 reviews theroundo� error analysis of FloatingCount(x), and how to account for over/underow; thismaterial may also be found in [16, 8]. Section 6 illustrates how monotonicity can fail, andproves that a natural serial implementation of FloatingCount(x) must be monotonic if thearithmetic is. Section 7 gives formal proofs for the correctness of the bisection algorithmsgiven in section 4. Section 8 discusses some practical implementation issues and Section 9concludes the paper.2 De�nitions and AssumptionsSection 2.1 de�nes the kinds of matrices whose eigenvalue problems we will be consider-ing, what monotonic arithmetic is, and what \jump points" of the functions Count() andFloatingCount() are. Section 2.2 presents our (mild) assumptions about oating pointarithmetic, the input matrices our algorithms will accept, the way the bisection point of aninterval may be chosen. Section 2.3 list the criteria a bisection algorithm must satisfy to becorrect.2.1 Preliminary De�nitionsAlgorithm 1 was recently extended to the larger class of symmetric acyclic matrices [8], i.e.those matrices whose graphs are acyclic (trees). The undirected graph G(T) of a symmetricn-by-n matrix T is de�ned to have n nodes and an edge (i; j), i < j, if and only if Tij 6= 0.A symmetric tridiagonal matrix is one example of a symmetric acyclic matrix; its graph isa chain. An \arrow matrix" which is nonzero only on the diagonal, in the last row and inthe last column, is another example; its graph is a star. From now on, we will assume T isa symmetric acyclic matrix unless we state explicitly otherwise. Also we will number therows and columns of T in preorder such that node 1 is the root of the tree and so accessed3

�rst; node j is called a child of node i if Tij 6= 0 and node j has not yet been visited bythe algorithm(See Algorithm 6 in section 6 for details). We let C denote the maximumnumber of children of any node in the acyclic graph G(T)(C is never larger than the degreeof G(T)).To describe the monotonicity of FloatingCount(x), we need to de�ne monotonic arith-metic: An implementation of oating point arithmetic is monotonic if, whenever a, b, cand d are oating point numbers,
 is any binary operation, and the oating point resultsfl(a
 b) and fl(c
 d) do not overow, then a
 b � c
 d implies fl(a
 b) � fl(c
 d).This is satis�ed by any arithmetic that rounds or truncates correctly. In Section 6, we willprove that the FloatingCount function (Floating TreeCount) for a symmetric acyclic matrixis monotonic if the oating point arithmetic is monotonic.We now de�ne a jump-point of the function Count(x). �i is the ith jump-point of thefunction Count(x) if limx!��i Count(x) � i < limx!�+i Count(x)Note that if �i = �j , then �i is simultaneously the ith and jth jump point. Analogousto the above de�nition, we de�ne an ith jump-point of a possibly nonmonotonic functionFloatingCount(x) as a oating point number �00i such thatFloatingCount(nextbefore(�00i)) � i < FloatingCount(�00i)where nextbefore(�00i) is the largest oating point number smaller than �00i . For a nonmono-tonic FloatingCount(x) function, there may be more than one such jump-point.2.2 AssumptionsIn order to prove correctness of our algorithms, we need to make some assumptions about thecomputer arithmetic, the inputs, the bisection algorithm and the function FloatingCount().The following is a list of all the assumptions we will make; not all our results require all theassumptions, so we must be explicit about which assumptions we need.The �rst set of assumptions, Assumption 1, concerns the oating point arithmetic. Notall parts of Assumption 1 are necessary for all later results, so we will later refer to As-sumptions 1A, 1B, etc. Assumption 2 is about the input matrix, and includes a mildrestriction on its size, and an easily enforceable assumption on its scaling. Assumption3 is about the method used to chose the \bisection" point of an interval; it is also eas-ily enforced. Assumption 4 consists of two statements about the implementation of thefunction FloatingCount(), which can be proven for most current implementations providedappropriate parts of Assumption 1, about the arithmetic, are true. We still call these twostatements an assumption, rather than a theorem, because they are the most convenientbuilding blocks for the ultimate correctness proofs.Assumption 11A. Assumptions about Floating Point Arithmetic ModelsBarring overow, the usual expression for roundo� is extended to include underowas follows [7]: fl(a
 b) = (a
 b)(1+ �) + � (2.1)4

where
 is a binary arithmetic operation, j�j is bounded by machine precision ", j�jis bounded by a tiny number �!, typically the underow threshold ! (the smallestnormalized number which can safely participate in, or be a result of, any oatingpoint operation)1, and at most one of � and � can be nonzero. In IEEE arithmetic,gradual underow lets us further assert that �! = "!, and that if
 is addition orsubtraction, then � must be zero. We denote the overow threshold of the computer(the largest number which can safely participate in, or be a result of, any oatingpoint operation) by
.In this paper, we will consider the following three variations on this basic oatingpoint arithmetic model:i. Model 1. fl(a
 b) = (a
 b)(1+ �) + � as above, and overows terminate.ii. Model 2. IEEE arithmetic with 1 and NaN arithmetic, and with gradualunderow.iii. Model 3. IEEE arithmetic with 1 and NaN arithmetic, but with underowushing to zero.1B. p! � " � 1 � 1=" � p
. This mild assumption is satis�ed by all commercial oatingpoint arithmetics.1C. Floating point arithmetic is monotonic. This is true of IEEE arithmetic (Models 2and 3) but may not be true of Model 1.1D. When we talk of parallel implementations, we will assume that all the processorshave identical oating point arithmetic so that the result of the same oating pointoperation is bitwise identical on all processors.Assumption 22A. Assumption on the problem size n. n" � :1.2B. Assumptions on the scaling of the input matrix. Let �B � mini 6=j T 2ij and �M �maxi;j jTijj.i. �B � !.ii. �M � p
.These assumptions may be achieved by explicitly scaling the input matrix (multiplyingit by an appropriate scalar), and by ignoring small o�-diagonal elements T 2ij < ! andso splitting the matrix into unreduced blocks [4]; see section 5.8 for details. By Weyl'sTheorem [20], this may introduce a tiny error of amount no more than p! in thecomputed eigenvalues.2C. More assumptions on the scaling of the input matrix. These are used to get re�nederror bounds in Section 5.1These caveats about \safe participation in any oating point operation" take machines like the Crayinto account, since they have \partial overow". 5

i. �M � !=".ii. �M � 1=("
).Assumption 3All the algorithms we will consider try to bound an eigenvalue within an interval. Afundamental operation in these algorithms is to compute a point which lies in an interval(�; �) | we denote this point by inside(�; �). This point may be computed by simplybisecting the interval (binary chop) or by applying Newton's or Laguerre's iteration. Weassume that fl(inside(�; �)) 2 (�; �), for all attainable values of � and �. For example, ifwe use binary chop, inside(�; �) = �+�2 and we will assume that fl(�+�2) 2 (�; �), for all� < � such that � � � > 2max(�; �)� (i.e., there is at least one oating point number in(�; �)), where � is the machine precision. This assumption always holds in IEEE arithmetic,and for any model of arithmetic which rounds correctly, i.e., rounds a result to the nearestoating point number. For a detailed treatment of how to compute �+�2 correctly on variousmachines, see [17].An easy way to enforce this assumption given an arbitrary inside(�; �) is to replace itby min(max(inside(�; �); nextafter(�)); nextbefore(�)));where nextafter(�) is the next oating point number greater than �, and nextbefore(�) isthe next oating point number less than �.Assumption 44A. FloatingCount(x) does not abort.4B. Let �(1)00i ; �(2)00i ; : : : ; �(k)00i be the ith jump-points of FloatingCount(x). We assume thatFloatingCount(x) satis�es the error bound,j�(j)00i � �ij � �i; 8j = 1; : : : ; kfor some �i � 0. We have assumed that FloatingCount(x) has a bounded region ofpossible nonmonotonicity, and �i is the width of possible nonmonotonicity aroundeigenvalue �i. Di�erent implementations of Count(x) result in di�erent values of �i(see Section 5).For some of the practical FloatingCount functions in use, we will prove Assumption 4 inSection 5.2.3 When is a Bisection Algorithm Correct?We now describe the functional behaviour required of any correct implementation of bi-section. Let �i be a user-supplied upper bound on the desired error in the ith computedeigenvalue; this means the user wants the computed eigenvalue �0i to di�er from the trueeigenvalue �i by no more than �i. Note that not all values of �i are attainable, and theattainable values of �i depend on the FloatingCount function, the underlying computerarithmetic and the input matrix T . For example, when using Algorithm 1, �i can range6

from maxi j�ij down to O(")maxi j�ij, or perhaps smaller for special matrices [5]. Let Ube a non-empty set of indices that correspond to the eigenvalues that the user wants tocompute, e.g., U = f1; : : : ; ng if the user wants to compute all the eigenvalues of a matrixof dimension n. The output of the algorithm should be a sorted list of the computed eigen-values, i.e. a list (i; �0i) where each i 2 U occurs exactly once, and �0i � �0j , when i � j.In a parallel implementation, this list may be distributed over the processors in any wayat the end of the computation. Thus, the algorithm must compute the eigenvalues andalso present the output in sorted order. Beyond neatness, the reason that we require theeigenvalues to be returned in sorted order is that it facilitates subsequent uses that requirescanning through the eigenvalues in order, such as reorthogonalization of eigenvectors ininverse iteration.In summary, when we say that an implementation of the bisection algorithm is correct ,we assert that it terminates and all of the following hold:� Every desired eigenvalue is computed exactly once.� The computed eigenvalues are correct to within the user speci�ed error tolerance, i.e.for all desired i > 0, j�i� �0ij � �i + �i (in case �i > �i, the implementation can easilyguarantee that j�i � �0ij � �i). See section 2.2, Assumption 4B for a de�nition of �i.� The computed eigenvalues are in sorted order.We say that an implementation of the bisection algorithm is incorrect when any of theabove fails to hold.3 Outline of the PaperIn this section, we outline our results in four tables. Table 1 lists all the implementationsof FloatingCount() we consider, and says where they are discussed in the paper. Table 2lists all the implementations of bisection we consider, and says where they are discussedin the paper. These bisection algorithms all use an implementation of FloatingCount()internally. Table 3 summarizes the error analyses of the FloatingCount() implementations inTable 1. It reports which parts of Assumption 1, about arithmetic, and Assumption 2, aboutthe input matrix, are necessary to prove whether FloatingCount() satis�es Assumption4, and whether or not FloatingCount() is monotonic. Detailed numerical error boundsfor each implementation of FloatingCount() are reported in section 5, especially Tables 5through 9. Table 4 says which assumptions are needed to guarantee the correctness ofthe overall bisection algorithms in Table 2. Basically, all algorithms require Assumption3, about choosing the bisection point, Assumption 4, which depends on FloatingCount assummarized in Table 3, and all parallel bisection algorithms require Assumption 1D aboutparallel processors having identical arithmetic.So, for example, Table 4 says that Algorithms Ser Bisec, Ser AllEig, Par AllEig2and Par AllEig3 will be correct when used with any of the implementations of Floating-7

Algorithms Description Wherebisect algorithm used in the Eispack routine; See section 5.2most oating point exceptions avoided by tests and branches and [21]IEEE IEEE standard oating point arithmetic used to accommodate See section 5.3possible exceptions; tridiagonals only and [4, 16]sstebz algorithm used in the Lapack routine See section 5.4oating point exceptions avoided by tests and branches and [1]Best Scaling like sstebz, but prescales for optimal error bounds See section 5.5Routine and [4, 16]Table 1: Di�erent implementations of FloatingCount()Algorithms Description WhereSer Bisec Serial bisection algorithm that �nds all the eigenvalues See section 4.4of T in a user-speci�ed intervalSer AllEig Serial bisection algorithm that �nds all the eigenvalues of T See section 4.4Par AllEig1 Parallel bisection algorithm that �nds all the eigenvalues See section 4.5of T , load balancing by equally dividing the Gerschgorininterval into p equal subintervals; needs monotonic arithmeticPar AllEig2 Similar to Par AllEig1, but monotonic arithmetic unneeded See section 4.5Par AllEig3 Parallel bisection algorithm that �nds all the eigenvalues See section 4.5of T , load balancing by making each processor �nd anequal number of eigenvalues; monotonic arithmetic unneededTable 2: Di�erent implementations of BisectionAssumptions about Results ProofsArithmetic and Input MatrixT is symmetric tridiagonal ^ For bisect's FloatingCount(x), See section 4.2(1A(ii) _ 1A(iii)) ^ 1B ^ Assumption 4 holds but and section 5.22A ^ 2B(ii) FloatingCount(x) can be nonmonotonicT is symmetric tridiagonal ^ For IEEE routine's FloatingCount(x), See section 5.3(1A(ii) _ 1A(iii)) ^ 1B ^ Assumption 4 holds and and section 62A ^ 2B FloatingCount(x) is monotonicT is symmetric acyclic ^ For sstebz's FloatingCount(x), See section 5.41A ^ 1B ^ 1C ^ Assumption 4 holds and and section 62A ^ 2B(ii) FloatingCount(x) is monotonicT is symmetric acyclic ^ For Best Scaling's FloatingCount(x), See section 5.51A ^ 1B ^ 1C ^ Assumption 4 holds and and section 62A FloatingCount(x) is monotonicTable 3: Results of Roundo� Error Analysis and Monotonicity8

Assumptions Results Proofs3, 4 Algorithm Ser Bisec is correct See section 73, 4 Algorithm Ser AllEig is correct See section 41D, 3, 4, and Algorithm Par AllEig1 is correct See section 7.2FloatingCount(x) is monotonic1D, 3, 4 Algorithm Par AllEig2 is correct See section 7.21D, 3, 4 Algorithm Par AllEig3 is correct See section 7.2Table 4: Correctness ResultsCount in Table 1, provided the corresponding conditions in Table 3 are met. On the otherhand, Algorithm Par AllEig1 cannot be used correctly with bisect's FloatingCount,since that FloatingCount is not monotonic.4 Correctness of Bisection AlgorithmsWe now investigate the correctness of bisection algorithms and exhibit some existing \natu-ral" implementations of bisection that are incorrect. Table 4 summarizes all the correctnessresults that we prove in this paper.4.1 An Incorrect Serial Implementation of BisectionWe give an example of the failure of Eispack's bisect routine in the face of a nonmonotonicFloatingCount(x). Suppose we use IEEE standard double precision oating point arithmeticwith " = 2�52 � 2:2 �10�16 and we want to �nd the eigenvalues of the following 2�2 matrix:A = 0 "" 1 !In exact arithmetic, A has eigenvalues near 1 and �"2 � �4:93 � 10�32. But bisectreports that the interval [�10�32; 0) contains �1 eigenvalues. The reason for this is bisect'sincorrect provision against division by zero (See Algorithm 3 in Section 5). In Section 6,by the proof of Theorem 6.1, we will show that this cannot happen for the Lapack routinedstebz(sstebz) even for general symmetric acyclic matrices.4.2 Nonmonotonicity of Parallel Pre�x AlgorithmWe now give another example of a nonmonotonic FloatingCount(x) when Count(x) is im-plemented using a fast parallel algorithm called parallel pre�x [9]. Figure 1 shows theFloatingCount(x) of a 64 � 64 matrix of norm near 1 with 32 eigenvalues very close to5 � 10�8 computed both by the conventional bisection algorithm and the parallel pre�xalgorithm in the neighborhood of the eigenvalues; see [19, 12] for details.4.3 A Correct Serial Implementation of the Bisection AlgorithmAs we saw in Section 4.1, the Eispack implementation of the bisection algorithm fails inthe face of nonmonotonicity of the function FloatingCount(x). We now present an imple-9

-3 -2 -1 0 1 2 3 4 5

x 10
-7

0

5

10

15

20

25

30

35
Number of eigenvalues less than x

Parallel Preix --- Dotted

Conventional Bisect --- Solid

Figure 1: Parallel Pre�x vs Conventional Bisectionmentation which works correctly irrespective of whether FloatingCount(x) is monotonic ornot.All the intervals referred to in the following discussion will be half-open intervals ofthe form [�; �). We de�ne a task to be a 5-tuple T = (�; �; n�; n�; O), where [�; �) is anon-empty interval, n� and n� are the counts associated with � and � respectively, andO is the set of indices corresponding to the eigenvalues being searched for in this interval.We obviously require O � In�n� , where In�n� = fn� + 1; : : : ; n�g (In�n� = ; when n� � n�).We do not insist that n� = FloatingCount(�), and n� = FloatingCount(�), only thatn� � FloatingCount(�) and n� � FloatingCount(�). In most implementations O = In�n�and the index set O is not explicitly maintained by the implementation.Algorithm Ser Bisec (see Figure 2) is a correct serial implementation of bisection, that�nds all the eigenvalues speci�ed by the given initial task (left; right; nleft; nright; Inrightnleft),the ith eigenvalue being found to the desired accuracy �i (note that we allow di�erent tol-erances to be speci�ed for di�erent eigenvalues, �i being the ith component of the inputtolerance vector �). The di�erence between this implementation and the Eispack imple-mentation is the initial check to see if nleft � nright, and the forcing of monotonicity onFloatingCount(x) by executing statement 10 at each iteration. Statement 10 has no ef-fect if FloatingCount(x) is monotonic, whereas it forces nmid to lie between n� and n� ifFloatingCount(x) is nonmonotonic.Theorem 4.1 Algorithm Ser Bisec is correct if Assumptions 3 and 4 hold.Proof. The theorem is proved in Section 7. tu10

subroutine Ser Bisec(n,T ,left,right,nleft,nright,�) /* computes the eigenvalues of Tin the interval [left; right] to the desired accuracy � */1: if (nleft � nright or left > right) return;2: if (FloatingCount(left) > nleft or FloatingCount(right) < nright) return;3: enqueue (left; right; nleft; nright; Inrightnleft) to Worklist;4: while (Worklist is not empty)5: dequeue (�; �; n�; n�; In�n�) from Worklist;6: mid = inside(�; �);7: if (� � � < minn�i=n�+1 �i) then8: print \Eigenvalue min(max((�+ �)=2; �); �) has multiplicity n� � n�";9: else10: nmid = min(max(FloatingCount(mid); n�); n�);11: if (nmid > n�) then12: enqueue (�;mid; n�; nmid; Inmidn�) to Worklist;13: end if14: if (nmid < n�) then15: enqueue (mid; �; nmid; n�; In�nmid) to Worklist;end ifend ifend whileend subroutine Figure 2: Algorithm Ser Bisec
11

subroutine Ser Alleig(n,T ,�) /* computes all the eigenvalues of T */(gl; gu) = Compute Gerschgorin(n,T);call Ser Bisec(n,T ,gl,gu,0,n,�);end subroutinefunction Compute Gerschgorin(n,T) /* returns the Gerschgorin Interval (gl; gu) */1: gl = minni=1(Tii �Pj 6=i jTij j); /* Gerschgorin left bound */2: gu = maxni=1(Tii +Pj 6=i jTij j); /* Gerschgorin right bound */3: bnorm = max(jglj; jguj);4: gl = gl� bnorm � 2n"� �0; gu = gu+ bnorm � 2n" + �n; /* see Table 9 */5: return(gl,gu);end functionFigure 3: Algorithm Ser Alleig computes all the eigenvalues of TNote that in all our theorems about the correctness of various bisection algorithms,unless stated otherwise, we do not require FloatingCount(x) to be monotonic.Algorithm Ser Alleig (see �gure 3) is designed to compute all the eigenvalues ofT to the desired accuracy. Compute Gerschgorin is a subroutine that computes theGerschgorin interval of the symmetric acyclic matrix T . Note that in line 4 of the pseu-docode, the Gerschgorin interval is widened to ensure that FloatingCount(gl) = 0 andFloatingCount(gu) = n and hence is guaranteed to contain all the eigenvalues (this isproved in Section 4). Due to the correctness of Algorithm Ser Bisec, we have the followingcorollary :Corollary 4.1 Algorithm Ser Alleig is correct if Assumptions 3 and 4 hold.4.4 Parallel Implementation of the Bisection AlgorithmWe now discuss parallel implementations of the bisection algorithm. The bisection algorithmo�ers ample opportunities for parallelism, and many parallel implementations exist [6, 13,18, 14]. We �rst discuss a natural parallel implementation which gives the false appearanceof being correct . Then, we give a correct parallel implementation that has been testedextensively on the Connection Machine CM-5 supercomputer.4.4.1 A Simple, Natural and Incorrect Parallel ImplementationA natural way to divide the work arising in the bisection algorithm among p processors is topartition the initial Gerschgorin interval into p equal subintervals, and assign to processor ithe task of �nding all the eigenvalues in the ith subinterval. Algorithm Par Alleig0 (see�gure 4) is a simple and natural parallel implementation based on this idea that attempts to�nd all the eigenvalues of T (the p processors are assumed to be numbered 0; 1; 2; : : : ; p�1).However, algorithm Par Alleig0 fails to �nd the eigenvalue of a 1�1 identity matrix when12

subroutine Par Alleig0(n,T ,�) /* computes all the eigenvalues of T in parallel */i = My Processor Number();(gl,gu) = Compute Gerschgorin(n,T);average width = (gr� gl)=p;�(i) = gl+ i � average width;�(i) = �(i) + average width;n�(i) = FloatingCount(�(i));n�(i) = FloatingCount(�(i));call Ser Bisec(n,T ,�(i),�(i),n�(i),n�(i),�);end subroutineFigure 4: Algorithm Par Alleig0 executed by processor i | An Incorrect Parallel Im-plementationimplemented on a 32 processor CM-5! The reason is that when p = 32, average width isso small that �(i) = �(i) for i = 0; : : : ; p� 1. Thus, none of the processors are able to �ndthe only eigenvalue. (This would happen on any machine with IEEE arithmetic, not justthe CM-5.)The error in algorithm Par Alleig0 is in the way �(i) is computed. Algorithm Par Alleig1(see �gure 5) �xes the problem by computing �(i) as gl + (i + 1) � average width. Thisresults in the following theorem, which we prove in Section 7.Theorem 4.2 Algorithm Par Alleig1 is correct if Assumptions 1D, 3 and 4 hold andFloatingCount(x) is monotonic.However, when FloatingCount(x) is nonmonotonic, Algorithm Par Alleig1 is stillincorrect ! The error in the algorithm is that when FloatingCount(x) is nonmonotonic, adesired eigenvalue may be computed more than once. For example, suppose n = p = 3,n�(0) = 0, n�(0) = n�(1) = 2, n�(1) = n�(2) = 1, and n�(2) = 3. In this case, the secondeigenvalue will be computed both by processors 0 and 2.Algorithm Par Alleig2 (see �gure 6) corrects this problem by making processor 0�nd all the initial tasks that are input to algorithm Ser Alleig. These initial tasks areformed such that n�(i) � n�(i), for i = 0; : : : ; p � 1, and are then communicated to theother processors. Note that these initial tasks may also be formed by computing n�(i) andn�(i) in parallel on each processor, making sure n�(i) � n�(i), and then doing two maxscans replacing n�(i) by maxj�i n�(j) and n�(i) by maxj�i n�(j). This would take log(p)steps on p processors. The function send(i,n) sends the number n to processor i, whilereceive(0,n�(i)) results in n�(i) being set to the number sent by processor 0. Thus, we havethe following theorem:Theorem 4.3 Algorithm Par Alleig2 is correct if Assumptions 1D, 3 and 4 hold.Proof. The theorem is proved in Section 7. tu13

subroutine Par Alleig1(n,T ,�) /* computes all the eigenvalues of T in parallel */i = My Processor Number();(gl,gu) = Compute Gerschgorin(n,T);average width = (gr� gl)=p;�(i) = gl+ i � average width;�(i) = max(gl+ (i+ 1) � average width; �(i));if (i = p� 1) �(i) = gu;n�(i) = FloatingCount(�(i));n�(i) = FloatingCount(�(i));call Ser Bisec(n,T ,�(i),�(i),n�(i),n�(i),�);end subroutineFigure 5: Algorithm Par Alleig1 executed by processor i | Correct whenFloatingCount(x) is monotonic4.4.2 A Practical Correct Parallel ImplementationAlthough correct, Algorithm Par Alleig2 is very sensitive to the eigenvalue distributionin the Gerschgorin interval, and does not result in high speedups on massively parallelmachines when the eigenvalues are not distributed uniformly. We now give a more practicalparallel implementation, and prove its correctness. Algorithm Par Alleig3 (see �gure 7)partitions the work among the p processors by making each processor �nd an almost equalnumber of eigenvalues (for ease of presentation, we assume that p divides n). This staticpartitioning of work has been observed to give good performance on parallel machines likethe CM-5 [13], for almost all eigenvalue distributions.In algorithm Par Alleig3, processor i attempts to �nd eigenvalues i(n=p)+1 through(i + 1)n=p. The function Find Init Task invoked on processor i �nds a oating pointnumber �(i) such that FloatingCount(�(i)) = (i+ 1)n=p, unless �(i+1)n=p is part of a clus-ter of eigenvalues. In the latter case, Find Init Task �nds a oating point number �(i)such that FloatingCount(�(i)) is bigger than (i+1)n=p and �(i+1)n=p; : : : ; �FloatingCount(�(i))form a cluster relative to the user speci�ed error tolerance, � . If the cluster is so big thatFloatingCount(�(i)) is larger than (i+2)n=p, processor i sets n�(i) to (i+1)n=p in order toensure that each desired eigenvalue is computed just once. Each processor i computes �(i),and communicates with processor i� 1 to receive �(i), and then calls algorithm Ser Bisecwith the initial task (�(i), �(i),n�(i),n�(i),I�(i)�(i)) returned by the function Find Init Task.When the eigenvalues are well separated, each processor �nds an equal number of eigenval-ues.Theorem 4.4 Algorithm Par Alleig3 is correct if Assumptions 1D, 3 and 4 hold.Proof. The theorem is proved in Section 7. tuNote that we used some communication between processors to guarantee correctness of14

subroutine Par Alleig2(n,T ,�) /* computes all the eigenvalues of T in parallel */i = My Processor Number();(gl,gu) = Compute Gerschgorin(n,T);average width = (gr� gl)=p;�(i) = gl+ i � average width;�(i) = gl+ (i+ 1) � average width;if (i = p� 1) �(i) = gu;if (i = 0) thenn = 0;for (i = 1; i < p; i = i+ 1) do /* does a max scan */ = gl+ i � average width;n = max(FloatingCount(); n);send(i,n);end forelse receive(0,n�(i));end ifif (i 6= 0) thensend(i� 1,n�(i));end ifif (i 6= p� 1) thenreceive(i+ 1,n�(i));end ifcall Ser Bisec(n,T ,�(i),�(i),n�(i),n�(i),�);end subroutineFigure 6: Algorithm Par Alleig2 executed by processor i | A Correct Parallel Imple-mentation
15

subroutine Par Alleig3(n,T ,�) /* computes all the eigenvalues of T in parallel */i = My Processor Number();(gl,gu) = Compute Gerschgorin(n,T);(�(i),�(i),n�(i),n�(i)) = Find Init Task(n,T ,gl,gu,0,n,�);call Ser Bisec(n,T ,�(i),�(i),n�(i),n�(i),�);end subroutinefunction Find Init Task(n,T ,�(i),�(i),n�(i),n�(i),�) /* returns initial task */save = �(i); nsave = n�(i);while ((n�(i) 6= (i+ 1)n=p) and (�(i)� �(i) > minn�(i)i=n�(i)+1 �i))mid = inside(�(i); �(i)); nmid = min(max(FloatingCount(mid); n�(i)); n�(i));if (nmid � (i+ 1)n=p) then�(i) = mid; n�(i) = nmid;else �(i) = mid; n�(i) = nmid;end ifend while(i) = �(i);if (n�(i) > (i+ 2)n=p) thenn�(i) = (i+ 1)n=p;(i) = �(i);end ifif (i 6= p� 1) thensend(i + 1,(i));send(i + 1,n�(i));end ifif (i 6= 0) thenreceive(i � 1,�(i));receive(i � 1,n�(i));else �(i) = save; n�(i) = nsave ;end ifreturn(�(i),�(i),n�(i),n�(i));end functionFigure 7: Algorithm Par Alleig3 executed by processor i when each processor �nds an(almost) equal number of eigenvalues 16

the parallel algorithms. It is much harder (and less elegant) to construct and prove correct-ness of similar correct and e�cient parallel algorithms that do not use any communication.5 Roundo� Error AnalysisAs we mentioned before, Algorithm 1 was recently extended to the symmetric acyclic ma-trices. In [8] the following implementation of Count(x) for acyclic matrices was given. Thealgorithm refers to the tree G(T), where node 1 is chosen (arbitrarily) as the root of thetree, and node j is called a child of node i if Tij 6= 0 and node j has not yet been visited bythe algorithm.Algorithm 2: Count(x) returns the number of eigenvalues of the symmetricacyclic matrix T that are less than x.call TreeCount(1; x; d; s)Count = sprocedure TreeCount(i; x; d; s) /* i and x are inputs, d and s are outputs */s = 0sum = 0for all children j of i docall TreeCount(j; x; d0; s0)sum = sum+ T 2ij=d0s = s+ s0endford = (Tii � x)� sumif d < 0 then s = s+ 1end TreeCountIn [8] it is also shown that barring over/underow, the oating point version of Algorithm2 has the same attractive backward error analysis as the oating point version of Algorithm1: Let FloatingCount(x; T) denote the value of Count(x; T) computed in oating pointarithmetic. Then FloatingCount(x; T) = Count(x; T 0), where T 0 di�ers from T only slightly:jTij � T 0ij j � f(C=2 + 2; ")jTijj if i 6= j and Tii = T 0ii; (5.2)where " is the machine precision, C is the maximum number of children of any node in thegraph G(T) and f(n; ") is de�ned byf(n; ") = (1 + ")n � 1:By Assumption 2A (n" � :1), we have [22]:f(n; ") � 1:06n":(Strictly speaking, the proof of this bound is a slight modi�cation of the one in [8], andrequires that d be computed exactly as shown in TreeCount. The analysis in [8] makes no17

assumption about the order in which the sum for d is evaluated, whereas the bound (5.2)for TreeCount assumes the parentheses in the sum for d are respected. Not respecting theparentheses weakens the bounds just slightly, and complicates the discussion below, butdoes not change the overall conclusion.)This tiny componentwise backward error permits us to compute the eigenvalues quiteaccurately, as we now discuss. Suppose the backward error in (5.2) can change eigenvalue�k by at most �k. For example, Weyl's Theorem [20] implies that �k � kT � T 0k2 �2f(C=2 + 2; ")kTk2, i.e. that each eigenvalue is changed by an amount small compared tothe largest eigenvalue. If Tii = 0 for all i, then �k � (1�(C+4)")1�nj�kj, i.e. each eigenvalueis changed by an amount small relative to itself. See [16, 5, 10] for more such bounds.Now suppose that at some point in the algorithm we have an interval [x; y), x < y,where i = FloatingCount(x; T) < FloatingCount(y; T) = j : (5.3)Let T 0x be the equivalent matrix for which FloatingCount(x; T) = Count(x; T 0x), and T 0y bethe equivalent matrix for which FloatingCount(y; T) = Count(y; T 0y), Thus x � �i+1(T 0x) ��i+1(T)+�i+1, or x��i+1 � �i+1(T). Similarly, y > �j(T 0y) � �j(T)��j , or �j(T) < y+�j .Altogether, x� �i+1 � �i+1(T) � �j(T) < y + �j : (5.4)If j = i+ 1, we get the simpler resultx� �j � �j(T) < y + �j : (5.5)This means that by making x and y closer together, we can compute �j(T) with an accuracyof at best about ��j ; this is when x and y are adjacent oating point numbers and j = i+1in (5.3). Thus, in principle �j(T) can be computed nearly as accurately as the inherentuncertainty �j permits.Accounting for over/underow is done as follows. We �rst discuss the way it is donein Eispack's bisect routine [21], then the superior method in Lapack's sstebz routine[1, 16]. The di�culty arises because if d0 is tiny or zero, the division T 2ij=d0 can overow. Inaddition, T 2ij can itself over/underow. We would like to account for this by modifying thealgorithm to avoid over/underow (not necessary if we have IEEE arithmetic), and slightlyincreasing the backward error bound (5.2).We denote the pivot d computed when visiting node i by di. The oating point operationsperformed while visiting node i are thendi = fl((Tii � x)� (Xall childrenj of i T 2ijdj)): (5.6)To analyze this formula, we will let subscripted "'s and �'s denote independent quantitiesbounded in absolute value by " and �!. We will also make standard substitutions likeQni=1(1 + "i) = (1 + ~")n where j~"j � ", and (1 + "i)�1�j = �j .18

5.1 Model 1: Barring Overow, Acyclic MatrixBarring overow, (5.6) and Assumption 2B(i) leads todi = f(Tii � x)(1 + "ia) + �1i � Xall childrenj of i T 2ijdj (1 + ~"ij)C+1 � (2C � 1)�2ig(1 + "ib) + �3i:or di1 + "ib = (Tii � x)(1 + "ia)� Xall childrenj of i T 2ijdj (1 + ~"ij)C+1 + 2C � �02i + �03i:or di(1 + "ic)2 = Tii � x� Xall childrenj of i T 2ijdj (1 + "̂ij)C+2 + (2C + 1)�i:Let ~di = di=(1 + "ic)2, �nally,~di = Tii + (2C + 1)�i � x � Xall childrenj of i T 2ij~dj (1 + "ij)C+4: (5.7)Remark 5.1 Under Model 2, IEEE arithmetic with gradual underow, the underow error(2C + 1)�i of the above equation can be replaced by C�i because addition and subtractionnever underow.If there is no underow during the computations of di either, then (5.7) simpli�es to:~di = Tii � x� Xall childrenj of i T 2ij~dj (1 + "ij)C+4:This proves (5.2), since the ~di are the exact pivots correspond to T 0 where T 0 satis�es (5.2)and sign(~di) = sign(di).Remark 5.2 We need to bar overow in principle for symmetric acyclic matrix with IEEEarithmetic, because if in (5.6), there are two children j1 and j2 of i such that T 2ij1=dj1overows to 1 and T 2ij2=dj2 overows to �1; then di will be NaN, not even well-de�ned.19

5.2 Models 2 and 3: Eispack's bisect routine, Tridiagonal MatrixEispack's bisect can overow for symmetric tridiagonal or acyclic matrices with Model1 arithmetic, and return NaN's for symmetric acyclic matrices and IEEE arithmetic sinceit makes no provision against overow (see Remark 5.2). In this subsection, we assume Tis a symmetric tridiagonal matrix whose graph is just a chain, i.e. C = 1. Therefore, todescribe the error analysis for bisect, we need the following assumptions:Assumption 1A(ii): Model 2. Full IEEE arithmetic with 1 and NaN arithmetic, andwith gradual underow.Assumption 1A(iii): Model 3. Full IEEE arithmetic with 1 and NaN arithmetic, butwith underow ushing to zero.Assumption 2B(ii): �M � maxi;j jTijj � p
.Algorithm 3: Eispack bisect. Count(x) returns the number of eigenvalues of areal symmetric tridiagonal matrix T that are less than x.Count = 0;d0 = 1;for i = 1 to nif (di = 0) thenv = jbi�1j="else v = b2i�1=diendifdi = ai � x� vif di < 0 then Count = Count + 1endforUnder Models 2 and 3, our error expression (5.7) simpli�es to~di = ai + 3�i � x� b2i�1(1 + "ij)5~di�1 :where ai = Tii and bi�1 = Ti�1;i.However, bisect's provision against division by zero can drastically increase the back-ward error bound (5.2). When dj = 0 for some j in (5.6), it is easy to see that what bisectdoes is equivalent to perturbing aj by "jbj j. This backward error is clearly small in norm,i.e. at most "kTk2, and so by Weyl's Theorem, can perturb computed eigenvalue by nomore than "kTk2. If one is satis�ed with absolute accuracy, this is su�cient. However, itcan clearly destroy any componentwise relative error, because "jbjj maybe much larger thanjaj j.Furthermore, suppose there is some k such that dk overows, i.e. jdkj �
. Since�M � p
, it must be b2k�1=dk�1 that overows. So ~dk is �sign(b2k�1=dk�1) �1 which has thesame sign as the exact pivot corresponds to T 0. But this will contribute an extra uncertaintyto ak+1 of at most �M2=
, since jb2k=dkj � �M2=
.20

Therefore we get the following backward error for bisect:jTij � T 0ij j � f(2:5; ")jTijj if i 6= j:and jTii � T 0iij � "kTk2 + �M2
 + ("! Model 23! Model 3 :5.3 Models 2 and 3: IEEE routine, Tridiagonal MatrixThe following code can work only for symmetric tridiagonal matrices under Models 2 and 3for the same reason as bisect: otherwise we could get T 2ij1=dj1+T 2ij2=dj2 =1�1 = NaN .So in this subsection, we again assume T is a symmetric tridiagonal matrix. By using IEEEarithmetic, we can eliminate all tests in the inner loop, and so make it faster on manyarchitectures [11]. To describe the error analysis, we again make Assumptions 1A(ii), 1A(iii)and 2B(ii) as in Section 5.2, and Assumption 2B(i), which is �B � mini 6=j T 2ij � !.Algorithm 4: IEEE routine. Count(x) returns the number of eigenvalues of areal symmetric tridiagonal matrix T that are less than x.Count = 0;d0 = 1;for i = 1 to n/* note that there is no provision against overow and division by zero */di = (ai � x)� b2i�1=di�1Count = Count + SignBit (di)endforBy Assumption 2B(i), b2i never underows. Therefore when some di underows, we donot have the headache of dealing with 0=0 which is NaN.Algorithm 4 is quite similar to bisect except there is no provision against division byzero, and the SignBit(�0) function (= 0 or 1) is used to count eigenvalues. More precisely,if di = 0, di+1 would be �1, so after two steps, Count will increase by 1. On the otherhand, if di = �0, di+1 would be 1, therefore Count also increases by 1 after two steps,which is correct. Using an analysis analogous to the last section, if we use Model 2 (gradualunderow), T 0 di�ers from T byjTij � T 0ij j � f(2:5; ")jTijj if i 6= j and jTii � T 0iij � �M2
 + "!:Using Model 3 (ush to zero), we have the slightly weaker results thatjTij � T 0ij j � f(2:5; ")jTijj if i 6= j and jTii � T 0iij � �M2
 + 3!:Since �M � p
, so �M2=
�M � 1p
 � ":which tells us that �M � p
 is a good scaling choice.21

5.4 Models 1, 2 and 3: Lapack's sstebz routine, Acyclic MatrixIn contrast to Eispack's bisect and IEEE routines, Lapack's sstebz can work in prin-ciple for general symmetric acyclic matrices under all three models (although its currentimplementation only works for tridiagonal matrices). So in this subsection, T is a symmet-ric acyclic matrix. Let B = maxi 6=j(1; T 2ij) �
, and p̂ = 2C � B=
 (p̂ is called pivmin insstebz). In this subsection, we need the Assumptions 1A (model i, ii or iii) and 2B(ii).Because of the Gerschgorin Disk Theorem, we can restrict our attention to those shifts xsuch that jxj � (n+ 1)p
.Algorithm 5: Count(x) returns the number of eigenvalues of the symmetricacyclic matrix T that are less than x.call TreeCount(1; x; d1; s1)Count = s1procedure TreeCount(i; x; di; si) /* i and x are inputs, di and si are outputs */di = fl(Tii � x)si = 0for all children j of i docall TreeCount(j; x; dj; sj)sum = sum+ T 2ij=djsi = si + sjendfordi = (Tii � x)� sumif (jdij � p̂) di = �p̂if di < 0 then si = si + 1end TreeCountIt is clear that jdij � p̂ for each node i, sojTiij+ jxj+ Xall childrenj of i jT 2ijdj j � (n+ 2)p
+ C � B̂p �
2 + C B2C �B=
 =
:This tells us that sstebz never overows and it works under all three models. For all thesemodels, the assignment di = �p̂ when jdij is small can contribute an extra uncertainty toTii of no more than 2 � p̂. Thus we have the following backward error:jTij � T 0ijj � f(C=2 + 2; ")jTijj if i 6= j:and jTii � T 0iij � 2 � p̂+8><>: (2C + 1)�! Model 1C"! Model 2(2C + 1)! Model 3 :22

5.5 Models 1,2 and 3: Best Prescaling Algorithm, Acyclic MatrixFollowing Kahan[16], let � = !1=4
�1=2 and M = � �
 = !1=4
1=2. The following codeassumes that the initial data has been scaled so that�M � Mp2C and �M � Mp2C :This code can be used to compute the eigenvalues of general symmetric acyclic matrix, soin this subsection, T is a symmetric acyclic matrix. To describe the error analysis, we onlyneed Assumption 1A (i, ii or iii). Again because of the Gerschgorin Disk Theorem, theshifts are restricted to those x such that jxj � (n + 1)M . The Best Scaling Algorithm isalmost the same as the sstebz except p̂ = �p!, so we do not repeat the code here.Similar to sstebz, jdij � p! for any node i, sojTiij+ jxj+ Xall childrenj of i jT 2ijdj j � (n+1)M + Mp2C +C �M2=2C!1=2 �
=2+C � !1=2
=2C!1=2 =
which tells us overow never happens and the code can work �ne under all the models wementioned. For all the models, The backward error bound becomes,jTij � T 0ij j � f(C=2 + 2; ")jTijj if i 6= j:and jTii � T 0iij � 2p! +8><>: (2C + 1)�! Model 1C"! Model 2(2C + 1)! Model 3 :5.6 Error Bounds For EigenvaluesWe need the following lemma to give error bounds for the computed eigenvalues.Lemma 5.1 Assume T is an acyclic matrix and FloatingCount(x; T) = Count(x; T 0),where T 0 di�ers from T only slightly:jTij � T 0ij j � �(")jTijj if i 6= j and jTii � T 0iij � �:where �(") � 0 is a function of " and � � 0. Then this backward error can change theeigenvalues �k by at most �k where�k � 2�(") k T k2 +�: (5.8)Proof. By Weyl's Theorem [20],�k � kT � T 0k2 � kjT � T 0jk2 � k�(")jT � �j+ �Ik2 � �(")kjT � �jk2+ �:and kjT � �jk2 = kT � �k2 � kTk2 + k�k2 � 2kTk2:23

Algorithms Model 1 Model 2 Model 3�(") � �(") � �(") �bisect | | f(2:5; ") "kTk2+ �M2
 +"! f(2:5; ") "kTk2+ �M2
 +3!sstebz f(2:5; ") 2p̂+3�! f(2:5; ") 2p̂+"! f(2:5; ") 2p̂+3!best scaling f(2:5; ") 2p!+3�! f(2:5; ") 2p!+"! f(2:5; ") 2p!+3!IEEE | | f(2:5; ") �M2
 +"! f(2:5; ") �M2
 +3!Table 5: Backward Error Bounds for Symmetric Tridiagonal MatricesAlgorithms Model 1 Model 2 Model 3bisect | [2f(2:5; ")+"]kTk2+ �M2
 +"! [2f(2:5;")+"]kTk2+ �M2
 +3!sstebz 2f(2:5; ")kTk2+2p̂+3�! 2f(2:5; ")kTk2+2p̂+"! 2f(2:5; ")kTk2+2p̂+3!best scaling 2f(2:5; ")kTk2+2pw+3�! 2f(2:5; ")kTk2+2pw+"! 2f(2:5; ")kTk2+2pw+3!IEEE | 2f(2:5; ")kTk2+ �M2
 +"! 2f(2:5; ")kTk2+ �M2
 +3!Table 6: Error Bounds �k of Eigenvalues for Symmetric Tridiagonal Matriceswhere � = diag(di) which is the diagonal part of T . Therefore,�k � 2�(")kTk2 + �:tu According to this lemma, we present the tables of backward errors �(") and �, and thecorresponding error bounds �k of the eigenvalues, for di�erent algorithms under di�erentmodels (Tables 5 through 8)5.7 Correctness of the Gerschgorin BoundIn this subsection, we will prove the correctness of the Gerschgorin bound computed by theroutine Compute Gerschgorin (see Figure 3).Since gl = mini (Tii �Xj 6=i jTijj); gu = maxi (Tii +Xj 6=i jTij j):So, bnorm = max(jglj; jguj) = kTk1. Notice thatfl((Tii �Xj 6=i jTijj)) = (Tii(1 + �i)ki �Xj 6=i jTijj(1 + �j)kj):Therefore, jfl(gl)� glj � f(C; ")kTk1 � 2n"kTk1 = 2n" � bnorm:Algorithms Model 1 Model 2 Model 3�(") � �(") � �(") �bisect | | | | | |sstebz f(C=2+2; ") 2p̂+(2C+1)�! f(C=2+2; ") 2p̂+C"! f(C=2+2; ") 2p̂+(2C+1)!best scaling f(C=2+2; ") 2p!+(2C+1)�! f(C=2+2; ") 2p!+C"! f(C=2+2; ") 2p!+(2C+1)!IEEE | | | | | |Table 7: Backward Error Bounds for Symmetric Acyclic Matrices24

Algorithms Model 1 Model 2 Model 3bisect | |sstebz 2f(C=2+2; ")kTk2+2p̂+(2C+1)�! 2f(C=2+2; ")kTk2+2p̂+C"! 2f(C=2+2; ")kTk2+2p̂+(2C+1)!best scaling 2f(C=2+2; ")kTk2+2pw+(2C+1)�! 2f(C=2+2; ")kTk2+2pw+C"! 2f(C=2+2; ")kTk2+2pw+(2C+1)!IEEE | |Table 8: Error Bounds �k of Eigenvalues for Symmetric Acyclic MatricesAlgorithms Matrix Additional Assumptions Bounds of �kbisect Tridiagonal Assumption 2C(i) 11" � bnormsstebz Acyclic Assumptions 2C(i), 2C(ii) (8n+ 6)" � bnormbest scaling Acyclic | (4n+ 8)" � bnormIEEE Tridiagonal Assumption 2C(i) 10" � bnormTable 9: Upper Bounds for �k for Di�erent Algorithms under Di�erent ModelsSimilarly, jfl(gu)� guj � 2n" � bnorm. This proves that if we letgl = gl� 2n" � bnorm� �0; gu = gu+ 2n" � bnorm+ �n:then we can claim FloatingCount(gl) = 0; FloatingCount(gu) = n:For the algorithms we mentioned in the previous subsections, we can obtain the upperbounds for �k under certain additional appropriate assumptions, which enable us to givemore speci�c and explicit Gerschgorin bounds computed by the routine Compute Gerschgorin(See Table 9). For instance, the error bound of bisect for symmetric tridiagonal matricesis at most [2f(2:5; ")+ "]kTk2+ �M2=
+ 3!, with Assumption 2C(i): �M � !=", we have[2f(2:5; ")+ "]kTk2 + �M2=
+ 3! � (2 � 2:5 � 1:06"+ ")kTk2 + �M
 �M + 3" �M� 7" � bnorm+ " � bnorm+ 3" � bnorm = 11" � bnorm:According to Table 9, if we letgl = gl� (10n+ 6)" � bnorm; gu = gu+ (10n+ 6)" � bnorm: (5.9)Then we have FloatingCount(gl) = 0; FloatingCount(gu) = n:in all situations, which shows the Gerschgorin Bound (5.9) is correct for Eispack's bisect,Lapack's sstebz, IEEE routine and Best Prescaling Algorithm.5.8 The Splitting CriterionThe splitting criterion asks if an o�diagonal entry bi is small enough in magnitude to set tozero without making unacceptable perturbations in the eigenvalues. This is useful becausesetting bi to zero splits T into two independent subproblems which can be solved faster25

(serially or in parallel). If we are only interested in absolute accuracy, then Weyl's Theorem[20] guarantees that the test if jbij � tol then bi = 0 (5.10)will not change any eigenvalue by more than tol. An alternative test for setting bi to zero is� = (ai+1 � ai)2=4� = (1� 2�1=2)(b2i�1 + b2i+1)� = b2i� + �(2�+ �b2i� + �)if � < tol2 then bi = 0This also guarantees that no eigenvalue will change by more than tol (in fact it guaranteesthat the square root of the sum of the squares of the changes in all the eigenvalues isbounded by tol) [15, 20]. Although it sets bi to zero more often than the simpler test (5.10),it is much more expensive.To guarantee relative accuracy, we need the following new result:Lemma 5.2 Let T be a tridiagonal matrix where for a �xed ijbij � tol � (jaiai+1j)1=2Let T 0 = T except for setting b0i = 0. Then there exist other tridiagonal matrices T1 and T2with the following properties:i. �1i � �0i � �2i, where Tj has eigenvalues �j1 � � � � � �jn.ii. �1i � �i � �2i,iii. T1 = T2 = T except for entries (i; i) and (i+ 1; i+ 1) which di�er from those of T byfactors 1� tol.In other words, the eigenvalues of T 0 and T lie between the eigenvalues of matrices T1and T2, where the entries of Tj approximate those of T with relative accuracy tol. This isa nearly unimprovable backward error bound. Combined with [5, Theorem 4], this easilyyieldsCorollary 5.1 Let T be -s.d.d., and suppose tol < (1�)=(1+) (see [5] for de�nitions).Suppose jbij � tol � (jaiai+1j)1=2, and let T 0 = T except for b0i = 0. Thenexp(�tol1� 1+tol1�tol) � �0i�i � exp(tol1� 1+tol1�tol)When tol � 1� then 1� tol1� � �0i�i � 1 + tol1� 26

Proof of Lemma 5.2. By the Courant Minimax Theorem [20] it su�ces to constructT1 and T2 satisfying condition iii in the Lemma such that for all vectors xxTT1x � xTT 0x � xTT2x and xTT1x � xTTx � xTT2x (5.11)Since all the matrices di�er only in the i-th and i + 1-st rows and columns, it su�ces toconsider two by two matrices only:T = " ai bibi ai+1 # ; T 0 = " ai 00 ai+1 # ;We claim that the following matrices satisfy condition (5.11):T1 = " ai � toljaij bibi ai+1 � toljai+1j # ; T2 = " ai + toljaij bibi ai+1 + toljai+1j #To prove this requires us to verify that" �toljaij 00 �toljai+1j # and " �toljaij bibi �toljai+1j #are positive (negative) semide�nite, which is immediately implied by the assumption of thelemma. tuThis leads us to recommend the splitting criterionif jbij � toljaiai+1j1=2 then bi = 0 (5.12)since this does not change the eigenvalues any more than relative perturbations of size tolin the matrix entries. Note that it will never be applied to tridiagonals with zero diagonalunless bi is exactly zero.This criterion is more stringent than the criterion in the Eispack code bisect [21], whichessentially is if jbij � tol(jaij+ jai+1j) then bi = 0: (5.13)Note that this is at least about as stringent as the absolute accuracy criterion (5.10) butless stringent than the relative accuracy criterion (5.12). To see that it can fail to deliverhigh relative accuracy when (5.12) will succeed, consider the example" 1020 5 � 1095 � 109 1 #which is -s.d.d. with = :5. Let tol = 10�10. Then Eispack would set the o�diagonals tozero, returning eigenvalues 1020 and 1. The true eigenvalues (to about 20 digits) are 1020and .75.Note that criterion (5.12) could possibly be used as the stopping criterion in a QRalgorithm [5] in the hopes of attaing high relative accuracy. However, the rounding errors inany existing QR algorithm generally cause far more inaccuracy in the computed eigenvaluesthan the currently used stopping criteria (which are generally identical to (5.13)).27

6 Proof of Monotonicity of Count(x)In 1966 Kahan proved but did not publish the following result [16]: if the oating pointarithmetic is monotonic, then FloatingCount(x) is a monotonically increasing function of xfor symmetric tridiagonal matrices. That monotonic oating point arithmetic is necessaryfor FloatingCount(x) to be monotonic is easily seen by considering 1-by-1 matrices: ifaddition fails to be monotonic so that x < x0 but fl(a1 � x) < 0 < fl(a1 � x0), thenFloatingCount(x) = 1 > 0 = FloatingCount(x0). In this section, we will extend this proofof monotonicity of FloatingCount(x) to symmetric acyclic matrices.In section 2.1, we mentioned that we will number the rows and columns of T in pre-order, as they are accessed by Algorithm 2 (see section 5). This means node 1 is the rootof the tree, since it is accessed �rst, and children are numbered higher than their parents.This lets us relabel the variables in Algorithm 2 as follows, where we also introduce roundo�:Algorithm 6: Count(x) returns the number of eigenvalues of the symmetricacyclic matrix T that are less than x.call TreeCount(1; x; d1; s1)Count = s1procedure TreeCount(i; x; di; si)/* i and x are inputs, di and si are outputs */di = fl(Tii � x)si = 0for all children j of i docall TreeCount(j; x; dj; sj)di = fl(di � fl(T 2ij=dj))si = si + sjendforif di < 0 then si = si + 1end TreeCount(Without loss of generality we ignore roundo� in computing T 2ij .) Thus si is the to-tal number of negative dj in the subtree rooted at i (including di). We may summarizeAlgorithm 6 more briey bydi = fl(fl(Tii� x)� fl(Xj2C(i)fl(T 2ijdj))) (6.14)si = Xj2C(i) sj + (0 if di � 01 if di < 0 (6.15)where the sums are over the set C(i) of all children of i.Let x be a oating point number, and let x0 denote the next oating point number largerthan x. To distinguish the results of Algorithm 6 for di�erent x we will write si(x) anddi(x). The theorem we wish to prove is: 28

Theorem 6.1 If the oating point arithmetic used to implement Algorithm 6 is monotonic,then si(x) � si(x0).We introduce some more de�nitions. In these de�nitions, y is always a oating pointnumber. The number y is a zero of di if di(y) � 0 > di(y0). The number y is a pole of diif di(y) < di(y0). It is called a positive pole if in addition to being a pole di(y)di(y0) > 0or di(y) = 0. It is called a negative pole if in addition to being a pole di(y)di(y0) < 0 ordi(y0) = 0.Suppose that some si is decreasing; we want to �nd a contradiction.Lemma 6.1 Let m be the largest m such that sm is decreasing. This means that for somey, sm(y) > sm(y0). Then in fact dm(y) < 0 � dm(y0), i.e. y is a negative pole of dm.Proof. Since m is the largest integer for which sm is decreasing, we must have sk(y) �sk(y0) for all children k of m. Now write0 > sm(y0)� sm(y)= fsm(y0)� Xk2C(m) sk(y0)g+ f Xk2C(m) sk(y0)� Xk2C(m) sk(y)g+ f Xk2C(m) sk(y)� sm(y)g� t1 + t2 + t3 :From (6.15) we we conclude t1 � 0 and t3 � �1. From the de�nition of m we concludet2 � 0. These inequalities have one solution, namely t1 = t2 = 0 and t3 = �1. From t1 = 0we conclude that dm(y0) � 0, and from t3 = �1 we conclude dm(y) < 0. In particular, thismeans y is a negative pole of dm. tuLemma 6.2 If y is a pole of di, then i must have a child j for which y is either a positivepole or a zero.Proof. If y is a pole of di, then for some child j of i we must havefl(T 2ijdj(y)) > fl(T 2ijdj(y0)) (6.16)Otherwise all children would satisfyfl(T 2ijdj(y)) � fl(T 2ijdj(y0))and so by the monotonicity of arithmeticfl(Xj2C(i)fl(T 2ijdj(y))) � fl(Xj2C(i) fl(T 2ijdj(y0)))Arithmetic monotonicity further impliesfl(Tii � y) � fl(Tii � y0)29

and �nallyfl(fl(Tii� y)� fl(Xj2C(i) fl(T 2ijdj(y)))) � fl(fl(Tii� y0)� fl(Xj2C(i) fl(T 2ijdj(y0))))or di(y) � di(y0), contradicting the assumption that y is a pole. Applying arithmeticmonotonicity to (6.16) we conclude T 2ijdj(y) > T 2ijdj(y0) :This means either dj(y) � 0 > dj(y0) (i.e. y is a zero of dj) or dj(y) < dj(y0) and dj(y) �dj(y0) > 0 (y is a positive pole of dj) or 0 = dj(y) < dj(y0) (y is a positive pole of dj). tuRemark 6.1 The proof of the last lemma does not depend on the order in which theadditions and subtractions of Tii, y, and T 2ij=dj are carried out. It is also not damaged byinserting the line \if jdij < tol then di = �tol" just before \if di < 0 then si = si + 1" inAlgorithm 6; this is done in practice to avoid overow and division by zero; see Algorithm5 and [1, 16]. However, the proof does not work for the algorithm used to avoid overowin the subroutine bisect [21]. This is because bisect tests if a computed di is exactlyzero, and increases if it is; this can increase di(y0) past di(y) even if inequalities (6.16) aresatis�ed. The example in section 4.2 shows that monotonicity can indeed fail in practice.Lemma 6.3 If y is a pole of di, then there must be a l in the subtree rooted at i such thaty is a zero of dl and for all dj on the path from i to l, y is a positive pole of dj.Proof. We can apply Lemma 6.2 to i to �nd a child l which is either a zero or apositive pole. If it is a zero we are done, and otherwise we apply Lemma 6.2 again to l.This process must end in a zero since the leaves are of the form dl(x) = fl(Tll � x) and socan only be zeros by arithmetic monotonicity. tuNow use Lemma 6.1 to conclude that there is an m such that y is a negative pole of dm,and Xk2C(m) sk(y) = Xk2C(m) sk(y0) : (6.17)Use Lemma 6.3 to conclude that there is some l in the tree rooted at m for which y is azero. This means dl(y) � 0 > dl(y0), so that dl contributes one more to the right hand sideof (6.17) than to the left hand side. So to maintain (6.17) there must be another p in thetree rooted at m with dp(y) < 0 � dp(y0), i.e. y is a negative pole of dp. By Lemma 6.3,p cannot lie on the path from m to l, since only positive poles lie on this path. Therefore,again by Lemma 6.3, there must be a q 6= l in the tree rooted at p such that y is a zeroof dq. But this means dp and dq together contribute equally to both sides of (6.17), and socannot balance dl. By the same argument, any other negative pole which would balancedl has a counterbalancing zero. Therefore (6.17) cannot be satis�ed. This contradictionproves Theorem 6.1. 30

7 Proofs of CorrectnessWe now present the proofs of the various theorems stated in Section 4.Proof of Theorem 4.1 To prove the theorem, we �rst prove the inductive assertionthat for every task (�; �; n�; n�; In�n�) in the Worklist, FloatingCount(�) � n� < n� �FloatingCount(�). The inductive assertion is clearly true for the initial task in theWorklistfor which FloatingCount(�) � n� < n� � FloatingCount(�). Suppose that the inductiveassertion holds for some task. We prove that the assertion holds for the subtasks createdby this task. Statement 10 in Figure 2 ensures that n� � nmid � n� . A new subtask isadded to the Worklist ifi. n� < nmid. Statement 10 implies that nmid = min(FloatingCount(mid); n�) andtherefore, nmid � FloatingCount(mid). Thus, FloatingCount(�) � n� < nmid �FloatingCount(mid), and the inductive assertion holds for the new subtask (�,mid,n�,nmid,Inmidn�).ii. nmid < n� , which implies that nmid � FloatingCount(mid). Thus, FloatingCount(mid)� nmid < n� � FloatingCount(�), and the inductive assertion holds for the new sub-task (mid,�,nmid,n� ,In�nmid).Hence our inductive assertion holds for any task in theWorklist. Let �0 = min(max(fl(�+�2); �); �)be an eigenvalue output by Algorithm Ser Bisec. For simplicity, we assume that the eigen-value is of multiplicity 1, i.e., n� = n�+1. The inductive assertion implies that there existsat least one nth� jump-point of FloatingCount(x), �00n� , in (�; �]. By the working of the algo-rithm, j�0��00n� j � �n� , and by the assumption about FloatingCount(x), j�00n� ��n� j � �n� .By the triangle inequality, j�0 � �n� j � �n� + �n� , and hence the computed eigenvalues arecorrect to within the user speci�ed error tolerance. The proof when n� > n� + 1 is similar.By Assumption 1, (inside(�; �)) 2 (�; �) for all �; � that arise (note that � � � for alltasks in theWorklist). Thus, all subtasks have strictly smaller intervals, and the algorithmmust terminate. At any stage of the algorithm, the index sets corresponding to all the tasksin the Worklist form a partition of the initial index set, Inrightnleft . Each index i is containedin exactly one index set and hence, each desired eigenvalue is computed exactly once. It isalso clear that the computed eigenvalues are in sorted order. tu7.1 A Necessary and Su�cient Condition for CorrectnessHaving found a rather simple �x to the problem of nonmonotonicity in serial bisection, wenow prove a necessary and su�cient condition for the correctness of any serial or parallelimplementation of the bisection algorithm. First, we de�ne a few terms to help us in theensuing discussion. Consider a task T = (�; �; n�; n�; O). We say that this task covers theindex set O. If tasks T1; : : : ; Tk cover the index sets O1; : : : ; Ok respectively, then the set oftasks fT1; : : : ; Tkg is said to cover the index set O1[O2 � � �[Ok . We de�ne an Index Coverto be a set of tasks which covers the user index set U . A Disjoint Index Cover is an indexcover such that the index sets covered by any pair of tasks in the index cover are disjoint.We assume that all the bisection algorithms discussed below maintain a set of tasks(either explicitly or implicitly). Each task in this set, (�; �; n�; n�; O), is assumed to be31

such that � � � and FloatingCount(�) � n� < n� � FloatingCount(�). When the widthof an interval corresponding to some task becomes smaller than minn�i=n�+1 �i, this task ismarked as a �nal task, and is not further re�ned. We will refer to an interval correspondingto a �nal task as a �nal interval. At the end of the algorithm, the midpoints of the�nal intervals are output as the eigenvalues corresponding to the index sets covered by therespective �nal tasks.Consider the two tasks T1 = (�1; �1; n�1 ; n�1 ; O1), and T2 = (�2; �2; n�2; n�2 ; O2). Sup-pose that min(max(fl((�1 + �1)=2); �1); �1) � min(max(fl((�2 + �2)=2); �2); �2). We saythat the pair T1 and T2 is ordered if 8i 2 O1; 8j 2 O2; i � j. A set of tasks is said to beordered if every pair of tasks in this set is ordered.Theorem 7.1 A bisection algorithm is correct i� its �nal tasks form an ordered disjointindex cover.Proof. Suppose the �nal tasks form an ordered disjoint index cover. Consider a �naltask (�; �; n�; n�; O) where O � In�n� . Then 8i 2 O, the eigenvalues output from this task are�0i = min(max(fl((�+ �)=2); �); �). Since i 2 In�n� , the interval (�; �) contains an ith jump-point,�00i , of FloatingCount(x). Hence the reported eigenvalue �0i is such that j�0i��00i j � �i.By our assumptions about FloatingCount(x), j�i � �00i j � �i. Thus j�i � �0ij � �i + �i, andevery eigenvalue output is computed correctly. Since the �nal tasks form a disjoint indexcover, every desired eigenvalue is output exactly once. All �nal tasks are ordered, hencethe desired eigenvalues are output in sorted order.If the �nal tasks do not form an index cover then at least one of the desired eigenvalueswill not be output. If any two �nal tasks cover intersecting index sets, then some eigenvaluewill be output more than once, and if some pair of �nal tasks is not ordered, then theeigenvalues output will not be in sorted order. Hence, it is necessary for the �nal tasks toform an ordered disjoint index cover. tuIt is easy to verify that Algorithm Ser Bisec satis�es the su�cient conditions of The-orem 7.1. Note that the eigenvalues output will be correct if the �nal tasks form an indexcover.7.2 Further ProofsWe now use the above characterization of correct bisection algorithms to prove the correct-ness of the parallel algorithms given in Section 4.4Proof of Theorems 4.2 and 4.3 The initial interval (�(i); �(i)] computed by each pro-cessor is such that �(i) � �(i). Also �(i) = �(i + 1), n�(i) = n�(i+1) for i = 0; : : : ; p � 2,�(0) = gl, n�(0) = 0, �(p� 1) = gu and n�(p�1) = n. Thus, the initial tasks that are inputto Algorithm Ser Bisec on all p processors, (�(i),�(i),n�(i),n�(i),I�(i)�(i)), form an orderedindex cover.In algorithm Par AllEig1, �(i) � �(i) implies that n�(i) � n�(i) if FloatingCount(x)is monotonic. By the way in which processor 0 computes these quantities, n�(i) � n�(i) inalgorithm Par AllEig2. Thus, the index cover produced by both the above algorithms isdisjoint. 32

The correctness of algorithm Ser Bisec implies that all the �nal tasks form an ordereddisjoint index cover, and hence proves the correctness of algorithms Par AllEig1 andPar AllEig2 (by theorem 7.1). tuProof of Theorem 4.4 We consider the initial tasks input to Algorithm Ser Bisec oneach processor. We �rst observe that �(0) = gl, n�(0) = 0, and �(p� 1) = gu, n�(p�1) = n.For i = 0; : : : ; p � 2, it can be seen that n�(i) = n�(i+1). Also, �(i) = (i � 1) � �(i),and n�(i) � n�(i) for i = 0; : : : ; p � 1. This is because FloatingCount(x) is forced tobe monotonic in function Find Init Task. Thus �(i) is no smaller than �(i), which iscommunicated by processor i� 1. Thus, all the initial tasks input to Algorithm Ser Bisecform a disjoint index cover. It can also be checked that this index cover is ordered. Theabove statements rely on the assumption that identical oating point operations on di�erentprocessors yield bitwise identical results (see Assumption 1). Hence by the correctness ofAlgorithm Ser Bisec, Algorithm Par AllEig3 is correct. tu7.3 A Family of Correct Parallel Bisection ImplementationsWe now prove the correctness of a family of bisection algorithms F . Every algorithm in thisfamily starts out with one task which covers the user index set U . All tasks are obtained byre�ning existing tasks in the task set. A task T = (�; �; n�; n�; O) with � � � is removedfrom the task set and is re�ned to form the k subtasks (�1; �2; n�1 ; n�2; O1); : : : ;(�k,�k+1,n�k , n�k+1 ,Ok), where �0 = �, �k+1 = �, �i � �i+1 and n�i � n�i+1 , for i = 1; : : : ; k.Furthermore, [ki=1Oi = O, and Oi = In�i+1n�i \ O, for i = 1; : : : ; k. Note that a task maybe re�ned by doing k-way multisection or by a single iteration of a fast root �nder, suchas Newton's or Laguerre's iteration. These subtasks are now added to the task set(someof them being marked �nal and not further re�ned). The tasks in the task set may beprocessed by one or more processors. By the manner in which the tasks are re�ned, it iseasy to see that at each step of the algorithm, the tasks in the task set form an ordereddisjoint index cover. In particular, the �nal tasks form an ordered disjoint index cover.Hence, using Theorem 7.1 we get :Theorem 7.2 Every bisection algorithm from the family F is correct if Assumption 1 holds.Algorithms Ser Bisec and Par AllEig1 are easily seen to belong to the above family.Algorithm Ser Bisec may be modi�ed simply to yield a parallel algorithm, where all theenqueuing and dequeing of tasks is done from a global Worklist that is distributed acrossall the processors. Such an algorithm has been implemented on the CM-5 [13] | thework is initially partitioned among the processors (as in algorithms Par AllEig1 andPar AllEig3), and load imbalance is reduced by enqueuing and dequeing tasks fromother processors. This algorithm has been observed to give good performance even whenthe initial partitioning of work is not good. Such an algorithm also belongs to the familyF , and hence is correct . 33

8 Practical Implementation IssuesIn section 5.3, we introduced the IEEE routine (Algorithm 4) which has no explicit testsand branches in the inner loop. However, there are some practical issues we need to con-sider. In this section, we will briey discuss three topics: SignBit, division by zero andover/underow.� SignBit.An acceptable way to compute SignBit(d) in Fortran would beSignBit(d) = 0:5� SIGN(0:5; d)except that we need not a REAL number but an INTEGER to add to Count, so extratime would have to be spent upon REAL-to-INTEGER conversion. In the languageC, the expression \(d < 0:0)" could be used in place of \SignBit(d)". However, bothof these expedients produce SignBit(�0:0) = 0, and that can cause function Count(x)to malfunction on a few aberrant computer designs.However, if we do some preprocessing work, like ai = ai + 0, before entering thefunction Count(x), then all the di's will never become �0 no matter whether byexact cancellation or underow, on any commercially signi�cant computer regardlessof whether it conforms to IEEE standard 754 or 854 for Floating-PointArithmetic.But on machines that almost conform to such a standard, departing from it onlyin that they may force underowed subtractions to �0:0, function Count requiresthat SignBit(�0:0) = 1 in order to account properly for the sign of �1 producedsubsequently by division by �0:0. On such computers SignBit must be implementedin one of the following ways, which are optional for other computers.IEEE Standards 754 & 854 recommend that conforming computers provide a functionCopySign which we may use safely in place of Fortran's SIGN function to implementSignBit(d) = 0:5� CopySign(0:5; d):Through an unfortunate accident, the arguments of CopySign have been reversed onApple computers, which otherwise conform conscientiously to IEEE 754; they requireSignBit(d) = 0:5� CopySign(d; 0:5).Hardly any other computer's compilers' libraries o�er CopySign.All computers can compute SignBit(d) quickly by shifting the sign bit of d logicallyinto the rightmost bit position of an integer register leaving zeros in all the other bits.Equally good is a twos-complement arithmetic right shift that �lls the register withcopies of the sign bit, thereby producing �SignBit(d). Can either of these shifts beexpressed in a higher-level language in such a way as will achieve the desired e�ect onevery computer? Two obstacles get in the way.The �rst obstacle is a disparity of widths. The INTEGER variables Count and n arelikely to be 2 or 4 bytes wide. (The algorithm for Count(x) can cope with matrices Tof as big a dimension n as memory capacity allows.) The REAL variable d may be 4bytes wide but is most likely 8. INTEGERs 8 bytes wide are not in common use, so d34

of Bytes Fortran declarations C declaration24 REAL, SINGLE PRECISION, REAL*4 oat8 DOUBLE PRECISON, REAL*8 double10 EXTENDED, TEMPREAL, REAL*10 long doubleTable 10: Width of real variableis probably wider than the widest INTEGERs supported by the compiler. Thereforethe leading(leftmost) 2 or 4 bytes of d must be �rst located and then extracted as aninteger before the shift. Most computers, with separate registers for INTEGERs andREALs, must �rst store d in memory and then reload it into an integer register.Unfortunately, di�erent computers order the bytes of d di�erently. Motorola 68040sgive d and the byte with its sign the same address. Intel 486s must add ((width of d) �1) to the address of d to �nd the byte with d's sign; the width of d in bytes canbe found in table 9.MIPS microprocessors can match either of the �rst two above. (Who gets to choose?)DEC VAXs do something a little bit di�erent again. These diverse byte orderings con-stitute a second obstacle impeding e�cient and portable programming of the SignBitfunction.Both obstacles can be overcome to a degree by Conditional Compilation in C using#de�ne and #ifdef commands in its preprocessor to �nd out whether the computerto which the program is being compiled belongs to a previously recognized familyfor which an e�cient sequence of instructions has been prepared. This expedientfails to cope with new computers whose C compilers proclaim conformity with allapplicable standards but whose arithmetic properties and memory-register mappingswere unknown at the time the program for Count(x) was promulgated. A bettersolution to this problem is to include appropriately de�ned CopySign functions inlanguage standards; CopySign should reveal the sign of �0:0 on a computer whosearithmetic respects it, and hide that sign on a computer whose arithmetic ignoresit, and return both REAL and INTEGER values according to the type of its �rstargument.� Division by ZeroIEEE 754 & 854 require by default (unless the programmer explicitly requests other-wise) that \nonzero/zero" quotients be computed as appropriately signed in�nities.Of course, \�nite/in�nite" quotients must produce appropriately signed zeros. Func-tion IEEE Count(x) works perfectly under these conventions; that is why its programcontains no test to avert division by zero. A test like that is necessary on computersthat can not tolerate division by zero, but wastes time because division by zero isunlikely to occur by accident as often as once in a million passes around the innerloop, and is certain to be noticed by the computer if it does occur.A little known alternative has long existed for users of proprietary Fortran compilers onIBM /370s and DECVAXs; their programsmay request that \nonzero/zero" quotients35

deliver the computer's biggest oating-point magnitude with the numerator's sign.This works almost as well as 1 would in the program above for Count(x).Unfortunately, most computers that do conform to IEEE 754/854 treat division byzero no better than nonconforming computers. The trouble is linguistic; language de-signers and compiler writers have yet to agree upon standard ways for programmers torequest IEEE standards' default in�nities or IBM's ot DEC's biggest magnitude. In-stead, division by zero is left unde�ned or de�ned as an error; either way, computationstops.� Over/UnderowComputers that abort computation when overow occurs present the same problemsas those that stop on division by zero. Once again, ways exist to tell any commerciallysigni�cant computer to replace every overow by either1 or the biggest �nite oating-point number with an appropriate sign, but no higher level programming languageprovides a single way that works for every computer.Inattention to troublesome details by designers and implementors of programming lan-guages creates headaches for programmers would-be portable (reusable) programs. Thedetails in question here are the CopySign function and humane exception-handling. Toget around the lack of adequate language standards, programmers must avoid those de-tails by inserting extra tests and branches into their programs. The annoyance at havingto complicate so simple a program is compounded by the performance penalty incurredby data-dependent branches taken rarely, especially on massively parallel and vectorizedcomputers.9 ConclusionsWe have proved necessary and su�cient conditions for a bisection algorithm to be correct .We have also seen examples of natural serial and parallel implementations that are incorrect ,the errors arising from a nonmonotonic FloatingCount(x) and/or roundo�. Thus everybisection implementation must be carefully analyzed and proven to satisfy the su�cientconditions for correctness.AcknowledgementsThe authors acknowledge the many contributions of W. Kahan, especially to section 8.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users'Guide, Release 1.0. SIAM, Philadelphia, 1992. 235 pages.[2] ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arithmetic, Std754-1985 edition, 1985. 36

[3] ANSI/IEEE, NewYork. IEEE Standard for Radix Independent Floating Point Arithmetic, Std 854-1987edition, 1987.[4] M. Assadullah, J. Demmel, S. Figueroa, A. Greenbaum, and A. McKenney. On �ndingeigenvalues and singular values by bisection. LAPACK Working Note. in preparation.[5] J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonallydominant matrices. SIAM J. Num. Anal., 27(3):762{791, June 1990.[6] H. Bernstein and M. Goldstein. Parallel implementation of bisection for the calculationof eigenvalues of a tridiagonal symmetric matrices. Technical report, Courant Institute,New York, NY, 1985.[7] J. Demmel. Underow and the reliability of numerical software. SIAM J. Sci. Stat.Comput., 5(4):887{919, Dec 1984.[8] J. Demmel and W. Gragg. On computing accurate singular values and eigenvalues ofacyclic matrices. Lin. Alg. Appl., 185:203{218, 1993.[9] J. Demmel, M. Heath, and H. van der Vorst. Parallel numerical linear algebra. InA. Iserles, editor, Acta Numerica, volume 2. Cambridge University Press, 1993.[10] J. Demmel and W. Kahan. Accurate singular values of bidiagonal matrices. SIAM J.Sci. Stat. Comput., 11(5):873{912, September 1990.[11] J. Demmel and X. Li. Faster numerical algorithms via exception handling. In M. J. Ir-win E. Swartzlander and G. Jullien, editors, Proceedings of the 11th Symposium onComputer Arithmetic, Windsor, Ontario, June 29 { July 2 1993. IEEE Computer So-ciety Press. to appear in IEEE Trans. Comp.; available as all.ps.Z via anonymousftp from tr-ftp.cs.berkeley.edu, in directory pub/tech-reports/cs/csd-93-728; softwareis csd-93-728.shar.Z.[12] J. Demmel and H. Ren. The instability and nonmonotonicity of the parallel pre�xalgorithm. in preparation, 1994.[13] I. S. Dhillon and J. W. Demmel. A parallel algorithm for the symmetric tridiagonaleigenproblem and its implementation on the CM-5. In progress, 1993.[14] Y. Huo and R. Schreiber. E�cient, massively parallel eigenvalue computations.preprint, 1993.[15] W. Kahan. When to neglect o�diagonal elements of symmetric tridiagonal matrices.Computer Science Dept. Technical Report CS42, Stanford University, Stanford, CA,July 1966.[16] W. Kahan. Accurate eigenvalues of a symmetric tridiagonal matrix. Computer ScienceDept. Technical Report CS41, Stanford University, Stanford, CA, July 1966 (revisedJune 1968). 37

[17] W. Kahan. Analysis and refutation of the International Standard ISO/IEC for Lan-guage Compatible Arithmetic. SIGNUM Newsletter and SIGPLAN Notices, 1991.[18] S.-S. Lo, B. Phillipe, and A. Sameh. A multiprocessor algorithm for the symmetriceigenproblem. SIAM J. Sci. Stat. Comput., 8(2):155{165, March 1987.[19] R. Mathias. The stability of parallel pre�x matrix multiplication with applications totridiagonal matrices. SIAM J. Sci. Stat. Comput., 1993. submitted.[20] B. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cli�s, NJ,1980.[21] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, andC. B. Moler. Matrix Eigensystem Routines { EISPACK Guide, volume 6 of LectureNotes in Computer Science. Springer-Verlag, Berlin, 1976.[22] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford,1965.

38

