
Visual Programming and Parallel Computing 1

Visual Programming and Parallel Computing

James C. Browne †

Jack Dongarra ††

Syed I. Hyder †

Keith Moore ††

Peter Newton ††

Abstract

Visual programming arguably provides greater benefit in explicit parallel programming,
particularly coarse grain MIMD programming, than in sequential programming. Explicitly
parallel programs are multi-dimensional objects; the natural representations of a parallel
program are annotated directed graphs: data flow graphs, control flow graphs, etc. where
the nodes of the graphs are sequential computations. The execution of parallel programs
is a directed graph of instances of sequential computations. A visually based (directed
graph) representation of parallel programs is thus more natural than a pure text string lan-
guage where multi-dimensional structures must be implicitly defined. The naturalness of
the annotated directed graph representation of parallel programs enables methods for pro-
gramming and debugging which are qualitatively different and arguably superior to the
conventional practice based on pure text string languages. Annotation of the graphs is a
critical element of a practical visual programming system; text is still the best way to rep-
resent many aspects of programs.

This paper presents a model of parallel programming and a model of execution for parallel
programs which are the conceptual framework for a complete visual programming envi-
ronment including capture of parallel structure, compilation and behavior analysis (perfor-
mance and debugging). Two visually-oriented parallel programming systems, CODE 2.0
and HeNCE, each based on a variant of the model of programming, will be used to illus-
trate the concepts. The benefits of visually-oriented realizations of these models for pro-
gram structure capture, software component reuse, performance analysis and debugging
will be explored and hopefully demonstrated by examples in these representations. It is
only by actually implementing and using visual parallel programming languages that we
have been able to fully evaluate their merits.

1.0 Introduction

During the past 15 years microprocessor performance has improved dramatically in com-
parison to the performance of larger systems [Pat90]. From a hardware point of view, this
trend has made parallel computers increasingly attractive since high-performance
machines can be built by combining large numbers of microprocessors that have been
bought at commodity prices. The design details vary greatly from one machine to another,
but most recent machines adopt the MIMD (multiple instruction streams - multiple data
streams) model in which each processor can perform different computations on different
data. Some machines use a shared address space for memory; others require that proces-
sors communicate via explicit message sending. It is even possible, since they are often

† University of Texas at Austin.
†† University of Tennessee at Knoxville.

Visual Programming and Parallel Computing 2

available, to use a network of workstations as a parallel computer. All of these designs are
intended for coarse-grain computations in which processors execute a substantial number
of instructions between communications or other interactions with other processors. If the
computation grain becomes too small, performance suffers. This paper will focus exclu-
sively on visual programming methods for coarse-grain MIMD parallel architectures.

The primary reason that parallel computing is not more common than it is today is that,
while the machines are fairly easy to build, it is quite difficult to write programs which are
both efficient and portable across machines since the design details of parallel machines
impact both the programming model and execution performance far more significantly
than do the details of the designs of sequential machines. The difficulty of programming
parallel machines is the major bottleneck preventing their wider acceptance.

It is easy to see that parallel programming is more difficult than sequential programming
since sequential programs are simply a degenerate case of parallel programs. Coarse-
grained MIMD parallel programs consist of interacting sequential elements. The program-
mer must specify both the sequential elements and their interactions.

A model of programming in which parallel programs are created by first defining a set of
sequential units of computation and then composing them into a parallel program
addresses this complexity issue by a divide and conquer (or separation of concerns)
approach since the two steps are done separately. Directed graphs are a very natural mech-
anism for the composition step. Nodes represent atomic sequential computations, and arcs
represent dependencies between them. The nature of the dependencies can vary from
model to model as we shall see.

Parallel programs written in the directed graph model are also intrinsically more portable
across architectures since the interactions among the sequential units of computation are
expressed in the structure of the graph independently of the mechanisms in which they
will ultimately be realized. The separation of concerns which assists in reduction of com-
plexity of programming also results in reduction of the complexity of compilation of these
abstract specifications for interactions into efficient executable forms. As we shall see
later, the two systems used as examples in this paper, HeNCE [Beg91a] and CODE 2.0
[New93, New92], demonstrate that in at least some circumstances, competitively efficient
code can be generated from the abstract specifications of interactions.

This separation of concerns also leads naturally to the reuse of components since the
sequential computations from which the parallel computations are composed are defined
in a precisely specified data and control context and must have clean and precise interfaces
and well-understood semantics.

Parallel programming also differs from sequential programming in that programmers must
understand the large-scale structure of their programs in order to understand their execu-
tion performance. This is a vital issue since performance is the major reason for the exist-
ence of parallel computing. Programmers must know what elements of their parallel
program are scheduled for execution and which communicate with which, and they must
have a grasp of the granularity (or size) of the computation that takes place within a

Visual Programming and Parallel Computing 3

sequential element between communications. Furthermore, programmers often must
understand how their computations are mapped onto the processors of a parallel machine
(which can also be represented as a graph).

Graphical tools are widely used to display information about execution behavior, but
directed graph based visual parallel programming languages have a special advantage.
The execution data can be directly related to the user's original program since they share a
common graphical format. This integrates the steps of program creation and debugging,
both for performance and correctness.

1.1 Conventional Approaches in Parallel Programming Languages

Many programming language and compiler approaches have been proposed to simplify
programming parallel machines, but none have been completely successful. It is useful to
review them before moving on to the virtues of visual parallel programming.

• Augment sequential languages with architecture-specific procedural primitives.

This approach permits the creation of efficient parallel programs, but the primitives sup-
plied tend to be at such a low level of abstraction that they may be awkward to use for a
wide variety of algorithms. Program development with them tends to be slow and error
prone. In addition, parallel architectures are quite diverse, and their programming models
are equally diverse. For this reason parallel programs written using architecturally specific
extensions to sequential languages tend to be quite non-portable, although there has been
progress in defining standard libraries for some important and broad classes of machines.

• Have compilers automatically detect parallelism in sequential language programs.

The parallelism in a program is implicit and must be discovered and exploited by the com-
piler. This approach clearly provides application portability. It is the case, however, that
current parallel compilers often miss significant parallelism due to the difficulties engen-
dered by name ambiguity in programs written in today’s sequential programming lan-
guages [EIG91]. This approach also suffers from the fact that, in practice, programmers
must be aware of the parallel structures the compiler will produce from given source text
since they must program idiomatically so that the compiler will be able to produce effi-
cient code. In this sense, the parallelism is not implicit at all. It is merely expressed indi-
rectly.

• Extend sequential languages to allow data partitions to be specified.

One emerging trend is to include declarative partitioning of data structures in the sequen-
tial program formulation and to ask the compiler to utilize this parallel structure [HIR91].
This promising method is as yet immature. It is unclear how effectively complex data
structures such as unbalanced trees can be partitioned, either at compile time or at runtime.

1.2 Visual Parallel Programming Languages

Graphical displays are useful and common aspects of parallel programming environments,
but they tend to be limited to displaying the performance, behavior, or structure of parallel

Visual Programming and Parallel Computing 4

programs that are expressed conventionally, as text. This paper argues that significant ben-
efits can be obtained by going a step further and directly expressing parallel programs
visually. The concept of visual directed graph programming systems is not new. The first
significant system was probably that of Keller and Yen [Kel81] in 1981. It is, however,
only in recent years that a significant impact from visual directed graph parallel program-
ming languages has been obtained. The advantages of this approach will be discussed both
in the abstract and specifically in terms of two implemented visual parallel programming
languages, HeNCE 2.0 and CODE 2.0.

These two languages differ in many ways but both rest upon the notion that parallel pro-
grams can usefully be represented as directed graphs in which nodes with certain icons
represent sequential computations and the graph as a whole represents the parallel struc-
ture of the program. Each graph shows, in some fashion, what sequential computations in
the parallel program can be run concurrently with what other sequential computations.
There are many advantages to this view.

1. Graphs are a more natural representation for parallel programs than linear text because
parallel program behavior is inherently multi-dimensional.

2. A graph-based visual parallel programming language can separate the programming
process into two distinct concerns, creating sequential program elements and compos-
ing them into a complete parallel program thus facilitating a divide and conquer
approach to design.

3. Graphs directly display and expose large scale program structure that programmers
must understand in order to achieve good performance.

4. Visual representation promotes the exploitation of data locality, another key to parallel
program performance.

5. A graph model can permit logical and performance debugging to be carried out in the
same framework as programming. Tools to support these tasks integrate neatly into a
single visual framework.

These advantages will be elaborated in the sections that follow.

2.0 Parallel Programs Are Graphs

Representations of parallel programs and parallel program behaviors are naturally multi-
dimensional. This structure, for both the program and its executions, is effectively cap-
tured by directed graphs. This suggests directed graphs as a means of representing parallel
programs since they will better permit programmers to relate programs to their behavior.

The source of this non-linearity is that MIMD Parallel programs, regardless of how they
are expressed, consist of multiple interacting threads of control. Two examples will dem-
onstrate.

Visual Programming and Parallel Computing 5

2.1 Direct Representation of Implicit Parallelism

Consider the sequence of assignment statements shown in the program in Figure 1. They
have an obvious interpretation as a sequential program and imply the execution sequence:
1-2-3-4. This is clearly a linear representation and remains so even in the presence of mul-
tiple control flow paths since only one is taken.

Figure 1. Example Program.

This program can also be viewed as a parallel program since some of the steps are inde-
pendent since they access no common variables. For example steps 1 and 2 can be exe-
cuted in parallel or in either order. Hence, the program’s execution is now longer a simple
sequence. Computations such as the following can all be valid interpretations of the paral-
lel program, although not all exploit maximal parallelism. The notation (1,2) means that
steps 1 and 2 are performed in parallel.

1-2-3-4 2-1-3-4
1-3-2-4 (1,2)-3-4

Listing all of the possible computations is a cumbersome way of understanding this pro-
gram. For example, step 2 can also run in parallel with step 3 as long as the latter is done
after step 1.

However, notice that a computation graph such as that shown in Figure 2 neatly summa-
rizes the program’s behavior. The nodes represent steps. The arcs in this diagram show
data flow. Two nodes may be run in parallel if there is no path from either to the other.

Figure 2. Computation Graph of Example Program.

2.2 Message Passing Example

Of course, parallelism at the statement level is inappropriate for machines that support
only coarse-grain computation. For them, nodes must represent larger computations.

/* step 1 */ x = 5;
/* step 2 */ y = 3;
/* step 3 */ z = x + 2;
/* step 4 */ w = x + y + z;

1 2

3

4

x
x y

z

Visual Programming and Parallel Computing 6

The above example suggests that parallelism, implicit in conventional sequential program
representations, has a natural representation as a directed graph. This is true also of repre-
sentations that show parallelism directly. Consider programs expressed in “C” with calls
to explicit message passing libraries in the general style of the PVM system [Gei93]. An
example is shown in Figure 3.

Figure 3. Example Message-Passing Program.

Graphical display tools often represent the behavior of such programs by means of a dia-
gram that shows messages being sent from one process to another. In other words, every
interaction between processes is shown by an arc. Figure 4 shows such as diagram and
how it can be interpreted as a computation graph by identifying each segment of sequen-
tial processing between communications as a node.

Figure 4. Message-Passing Program and It’s Computation Graph.

ProcA()
{
while(!done) {
...
sendto(ProcB, data);
...
recvfrom(ProcC, data);

}
}

ProcB()
{
while(!done) {
...

sendto(ProcC, data);
...
recvfrom(ProcA, data);

}
}

ProcC()
{
while(!done) {
...

sendto(ProcA, data);
...
recvfrom(ProcB, data);

}
}

main ()
{
spawn(ProcA);
spawn(ProcB);
spawn(ProcC);

}

ProcA ProcB ProcC

Strips between
communications
are sequential.

ProcA1

ProcB1

ProcC1

ProcA2

Interpret as graph...

Visual Programming and Parallel Computing 7

3.0 Visual Parallel Programming

If directed graphs are a natural mechanism for displaying the behavior of parallel pro-
grams, then why not use them as a basis for a programming language in order to reduce
the distance between representation and behavior? There are many ways to go about this,
but we will assume that programs are represented by directed graphs in which nodes with
specific icons represent sequential computations (other icons may represent other con-
structs) and the graph in some fashion represents the overall parallel structure.

3.1 Two Steps in Programming

One immediate advantage of this view is that the process of creating a parallel program
can be divided into two distinct steps: creation of components and the composition of
these components into a graph. The primitive components can be sequential computations
but other cases are allowed. For example, a component could be a call to another graph
that specifies a parallel sub-computation. In any case, components can either be created
from scratch for a particular program or they can be obtained from libraries. The key is
that each component simply maps some inputs to some outputs with a clean and clearly
defined interface. These components can then be composed into a graph which shows
which components can run in parallel with which other components.

Component creation and component composition are distinct operations. Programmers
need not think about the details of one while performing the other (except to ensure that
the sequential routines are, in fact, defined with clean interfaces and well-specified input/
output semantics). In particular the specification of parallel structure is done without con-
cern about the inner workings of the components involved. Furthermore, the best tools
available can be used for the different tasks.

3.2 Sequential Components

Both HeNCE and CODE emphasize the use of sequential subroutines expressed in C or
Fortran for use as primitive components– in fact HeNCE requires it. There are several
benefits from this decision.

1. Implementation is facilitated since we build on the existing tool base of tested and
accepted sequential languages and compilers.

2. This approach permits subroutines from existing sequential programs to be incorpo-
rated into new parallel programs. Leveraging existing code is often vital to the accep-
tance of new tools.

3. The learning curve for users is less steep since they are not asked to relearn sequential
programming when adopting a parallel programming environment.

3.3 Parallel Composition into Directed Graphs

It is common for programmers to draw informal diagrams that show large scale parallel
structure when designing parallel programs. The purpose of these diagrams is to abstract

Visual Programming and Parallel Computing 8

away the details of the components of the system being designed and concentrate on their
interactions. A graph-based visual parallel programming language can help to formalize
this process.

Understanding the large scale structure of parallel programs tends to be of greater impor-
tance than it is in the sequential case due to the fact that large scale structure can have a
dramatic impact on the execution performance of parallel programs. In order for program-
mers to achieve and understand program performance, they must understand the structure
of the computation graph of their program– regardless of how their program is repre-
sented. Consider the computation of Section 2.2. If the execution time of the sequential
segments between communications is too short, performance will suffer since it will be
dominated by the overhead of message passing.

A direct graphical representation of parallel programs renders such concerns explicit. The
programmer knows exactly what the sequential components are precisely because they are
separate components. Especially if they are subprograms that perform some cleanly
defined function, the programmer will also have a good feel for their execution time.
Hence, he or she will be aware of the computation’s granularity.

The graph can also directly display other information that is vital to understanding the per-
formance of any parallel program. Issues such as poor load balance or inadequate degrees
of parallelism are apparent from the shape of the graph and the execution times of the
nodes, interpreted relative to communication overheads. Figure 5 shows two examples.

A graphical representation is also useful because it can promote locality in designs to the
extent to which components are in different name spaces in the language. In CODE, state
is retained from one execution of a node to another, and communications must be explic-
itly defined as part of the interface to a sequential computation node. This encourages pro-
grammers to try to package a node’s data with the node. Locality is easy to express, but
remote access requires more effort. Thus, beginning parallel programmers are guided
towards designs that exploit good data locality.

Figure 5. Graphs Showing Poor Performance. (Runtimes shown in nodes.)

1

1 11

2

2

2

1

1

1 19 9

Poor Load Balance
(Two Processors mostly idle.)

Insufficient Parallelism
(Two Processors mostly idle.)

Most of the execution
time is in this sequential
region.

The two nodes on the
left run much longer
than the others.

Visual Programming and Parallel Computing 9

4.0 Compilers and Atomic Component Graph Models

Graph based models that are based on the composition of atomic components have advan-
tages for compilation as well as for programmers. Directed graph representations
abstractly express parallel structure and so are not tied to a single machine type. Portabil-
ity is enhanced. Nodes are atomic mappings from inputs to outputs and can run on any
type of machine. In fact, there is no reason to assume that all nodes must execute on the
same type of processor. For example, HeNCE programs run on a potentially heteroge-
neous collection of UNIX workstations.

Compiling

Since the parallelism in the graph model is explicit, a compiler does not have to discover
it; it must only exploit it. Furthermore, in CODE and HeNCE the granularity of compo-
nents will likely be fairly high since they are based on calls to sequential subprograms.
This reduces the difficulty of assigning tasks of appropriate granularity to processors.

The fact that components receive input, run to completion, and then send outputs also
helps to control granularity and promotes language implementations that batch messages
that are to be sent to the same destination. For an example, consider the following code
fragment.

sendto(ProcA, data1);
some_short_computation();
sendto(ProcA, data2);

It is often better to combine the two sends into one. This is also true when sending to two
different processes that have been assigned to the same physical processor.

Scheduling

The simpler incarnations of such graph models also lend themselves to the use of
advanced scheduling techniques [Yan91] since the components are often arranged into
directed acyclic graphs (or directed acyclic subgraphs can be found) and the execution
times of components is often fixed from invocation to invocation. Furthermore execution
characteristic of sequential elements are easier to define and measure since they are encap-
sulated. This encapsulation can also simplify dynamic (runtime) scheduling for load bal-
ancing since the state of sequential elements is fixed between executions.

The graph model also lends itself to implementation in heterogeneous parallel environ-
ments in which processing elements have varying speeds and capabilities. This is a more
complex case of the scheduling problem just mentioned since characteristics of processors
vary as well as characteristics of nodes. The HeNCE system is targeted towards heteroge-
neous environments.

Fault-tolerance tends to be simpler to implement in models in which components do not
retain state from execution to execution. This factor will be most important when using a

Visual Programming and Parallel Computing 10

large network of independent workstations as the parallel machine to perform large com-
putations.

5.0 CODE and HeNCE

CODE and HeNCE are implemented visual parallel programming languages that rest
upon the ideas described above. They are very similar in purpose and general philosophy
but are significantly different in detail. This section will summarize the languages and then
provide an example of a program expressed in each.

Both languages are alike in that users create a parallel program by drawing and then anno-
tating a directed graph that shows the structure of the parallel program. Both languages
offer several different node types, each with its own icon and purpose. In both cases, the
fundamental node type is the sequential computation node which is represented by a circle
icon. The graph annotations include sequential subroutines that define the computation
that computation nodes will perform as well as specification of what data computations
will act upon.

5.1 An Introductory Example: CODE

Figure 6 shows an extremely simple CODE program that will serve as an introductory
example. It numerically integrates a function in parallel over a definite interval [a, b] by
computing the midpointm betweena andb and then having one sequential computation
node integrate the interval [a, m] while the other does [m, b] at the same time. The results
are summed to form the final result.

The nodes in the graph that do the integration are both namedInteg Half and a glance
shows that they can run in parallel since there is no path from one to the other. The arcs in
this CODE graph represent dataflow from one node to another on FIFO queues. The graph
is read from top to bottom, following the arrows on arcs. Thus, the graph shows that node
Split Interval is creating some data that are passed to the twoInteg Half nodes. This data
consists of a structure defining the integration the receiving node is to perform.

type IntegInfo is struct {
 real a; // Start of interval.
 real b; // End of interval.
 int n; // Number of points to evaluate
};

Visual Programming and Parallel Computing 11

Figure 6. CODE Integration Program

So, to create this parallel program, the programmer draws with the mouse a graph just as
shown in Figure 6 and then enters textual annotations into different pop-up windows asso-
ciated with various objects such as nodes, arcs, etc. This information includes such famil-
iar items as type definitions and sequential function prototypes (for type checking calls).
We will ignore these and focus on the annotations of computation nodes. When annotation
is complete, the user picks “translate” from a menu, and a parallel program is created,
complete with a Makefile, ready to be built and run on the selected parallel machine.

The annotation for a computation node consists mostly of a sequence of stanzas, some of
which are optional. The annotation for theInteg Half nodes follows. Both nodes are iden-
tical. We will see later how a single replicated node could have been used in place of the
two identical nodes.

input_ports { IntegInfo I; }
output_ports { real S; }
vars { IntegInfo i; real val; }
firing_rules {
 I -> i => }
comp {
 val = simp(i.a, i.b, i.n); }
routing_rules {
 TRUE => S <- val; }

The first two stanzas provide names for “ports” which are queues of data that enter and
leave the node. Each node uses its own local names for these ports so that nodes can be
reused in new contexts. This node will read data of typeIntegInfo (the structure defined
above) from a port calledI and write real data onto a port calledS.

Now briefly consider the annotation of arcs. All arc annotations are shown on Figure 6.
Their purpose is to bind an output port name to an input port name. It is apparent from the
graph that nodeSplit Interval places data onto output portsI1 andI2. PortI1 is bound to

Visual Programming and Parallel Computing 12

input portI of the leftInteg Half node. Thus dataSplit Interval places ontoI1 is sent to
the leftInteg Half node and data placed intoI2 is sent to the other.

Returning to the computation node annotation, the “vars” stanza defines variables that are
local to the node and that its computation can read and modify.

The “firing_rules” stanza is very important. It serves two purposes. First, it defines condi-
tions under which the node is permitted to execute. Second, it describes which local vari-
ables will have data placed in them that have been removed from designated ports.
CODE's notation for firing rules is quite flexible and also sometimes complicated relative
to other features of the language. The rule “I ->i =>” is simplest case. It signifies that

1. The node can fire when there is data waiting on portI .

2. When the node fires, one (structure in this case) is removed from I and placed in local
variablei.

Thus, theInteg Half nodes simply wait for an incoming value. When one appears, they
fire and produce an output.

The “comp” stanza defines what sequential computation will be performed when the node
fires. The text is expressed in a language that is a subset of “C” that includes calls to exter-
nally defined sequential functions and procedures (such assimp which does the integra-
tion in this example). It is expected, but not required, that all significant sequential
computations will be encapsulated in such external functions.

Finally, the “routing_rules” stanza determines what values will be placed onto output
ports. As with firing rules, the notation is flexible and potentially complex, but this exam-
ple is simple. The value of real variableval is placed onto queueS.

5.2 An Introductory Example: HeNCE

The equivalent HeNCE program looks exactly like the CODE graph in Figure 6, except
for three points.

1. HeNCE graphs are read from bottom to top (this will be changed in a future release).

2. HeNCE computation nodes are always named by the (exactly) one sequential proce-
dure they are required to call.

3. HeNCE arcs take no annotation.

The HeNCE graph is shown in Figure 7. All node annotations are shown. In the actual
HeNCE system, the annotations are in pop-up windows.

Visual Programming and Parallel Computing 13

Figure 7. HeNCE Integration Program.

 Although the HeNCE graph looks like the CODE graph, the meaning of HeNCE graph is
very different. Except for some features that have not been discussed, arcs in CODE repre-
sent dataflow. Arcs in HeNCE represent two different concepts at the same time: control
flow and variable name scope.

A HeNCE node is permitted to execute whenever all of its predecessors have executed.
This is the only rule that defines when a node can run, and there is no implication that pre-
decessor nodes have sent any data. There are no explicit node firing rules as in CODE.
HeNCE has special control flow nodes that can alter the succession of node executions.

HeNCE node computations read and write variables. If a node reads a variable, the system
defines that the value it will get is that set by the nearest predecessor in the graph that
exports the variable. This will require an explanation and some background. Computation
node annotations consist of three parts, two of which are optional.

1. Declaration of input and input-output variables (optional).

The values of input and input-output values are read from the nearest predecessor node
that outputs that variable. The value of the variable can be changed. New values of
input-output variables can be seen by successor nodes. New values of input variables
cannot. Input declarations contains an “<“and input-output declarations contain a “<>”
token.

2. Call to a sequential procedure (required).

The procedure may be written in either “C” or Fortran. The call’s actual parameters
may be expressions. Variables that appear in the expressions are inputs, input-outputs,
or outputs from node.

3. Declaration of output variables (optional).

Output variables can be set by the node. Values are available to successor nodes. Output
declarations contain a “>” token.

SetInputs

simpsimp

PrintAns
< double s1;
< double s2;
PrintAns(s1, s2);

SetInputs(&a, &b, &mid, &n);
> double a;
> double b;
> double mid;
> int n;

< double b;
< double mid;
< int n;
s2 = simp(mid, b, n);
> double s2;

< double a;
< double mid;
< int n;
s1 = simp(a, mid, n);
> double s1;

Visual Programming and Parallel Computing 14

Consider the annotation of nodeSetInputs in Figure 7. It calls a “C” routine calledSet-
Inputs which provides values for variablesa, b, mid, andn. The variables are made avail-
able to successor nodes because they appear in output declarations.

The twosimp nodes are very similar, but one uses input declarations to reada, mid, andn
from its nearest predecessor (SetInputs) and the other readsmid, b, andn. The leftsimp
node makess1 available to its successors in the graph, and the write makess2 available.
These variables hold the results of the integration. Subroutinesimp actually performs the
integration. It is a “C” procedure.

NodePrintAns reads s1 ands2. It calls “C” procedurePrintAns which sums them and
prints their value which appears in the HeNCE console window when the program is run.

5.3 Block Triangular Solver Example

We will use a somewhat more sophisticated example to introduce a few of the more
advanced facilities of CODE and HeNCE. The problem is to solve the systemAx = b for a
dense lower triangular matrixA. The algorithm to be used is quite simple and involves
dividing the matrix and the vector into blocks as shown in Figure 8. Each “a” in the figure
represents a sub-matrix of A and each “b” represents a sub-vector ofb. Let the number of
sub-blocks beN.

Figure 8. Blocked Matrix and Vector.

The algorithm replacesb with the solution vectorx. The case forN = 4 is shown below.

a0,0

a1,0 a1,1

a2,0

a3,0

a2,1 a2,2

a3,1 a3,2 a3,3

b0

b1

b2

b3

b0 a0 0,
1– b0=

b1 a1 1,
1– b1 a1 0, b0–()=

b2 a2 2,
1– b2 a2 0, b0– a2 1, b1–()=

b3 a3 3,
1– b3 a3 0, b0– a3 1, b1– a3 2, b2–()=

Visual Programming and Parallel Computing 15

Notice that once bj has been computed, the operations bi = bi - ai,jbj can be performed in
parallel for i = j+1 to N-1. Thus, the algorithm proceeds iteratively, working on columns of
the blocked system one at a time from left to right. LetSolve be a sequential function that
solves this problem (applied to a single block).

To process the jth column do
Solve(aj,j, bj);
for each i from j+1 to N-1 do

bi = bi - ai,j * bj;

Each of the iterations of the for loop can be done in parallel. Assuming the sub-blocks are
of adequate size, each iteration represents a fairly coarse grain computation– a multiplica-
tion of a matrix sub-block by a vector sub-block with the resulting vector subtracted from
another vector sub-block. For the remainder of this discussion assume that a procedure
calledBlkMult performs this operation.

The parallelism in this algorithm stems from the ability to perform theBlkMult opera-
tions “beneath” theSolve operation for a column in parallel. This is readily seen in a data-
flow graph for the algorithm as shown in Figure 9. The “S” nodes are calls toSolve and
the “M” nodes are calls toBlkMult . In the next few sections we will show how to express
this algorithm in CODE and in HeNCE.

Figure 9. Dataflow for Block Triangular Solver.

5.4 The CODE Language

Before presenting the CODE block triangular solver, we introduce all of the icons that
may appear in CODE graphs. They are shown in Figure 10. Many of the icons are used to
define the interface to a graph. CODE graphs can call other CODE graphs by means of the
Call icon shown. Arcs incident upon Call nodes are actual parameters of the call. These
arcs are bound to interface nodes in the called graph via a name binding that is an attribute
of the actual parameter arcs. This is similar to arcs binding port names between two nodes
as seen above. Interface nodes are required to have names that are unique within the
graph.

S
0

S

S

1

2

M S3
MM

MM

M 1,0

2,0

3,0

2,1

3,1 3,2

B

B

B

B

0

1

2

3

X

X

X

X

0

1

2

3

Visual Programming and Parallel Computing 16

Figure 10. Node Icons in CODE.

The small circle interface nodes bind incoming and outgoing parameters in a very straight-
forward way. Consider an input. As Figure 11 shows, the arc entering the Call becomes
associated with the arc leaving the interface node. In effect, the two arcs become one.

Figure 11. Formal-Actual Binding in CODE.

Creation parameters are also bound to an incoming arc. They extract exactly one value
from this arc at the time the called graph is instantiated at runtime. All nodes within the
called graph may use the creation parameter name as a constant. Its value comes from the
arc.

The shared variable icon is used to declare variables that will be shared among a set of
nodes. Each node must declare whether it requires read-only or read-write access to the
variable.

CODE Block Triangular Solver

Many of these node types may be seen at work in Figure 12, a graph that implements the
block triangular solver algorithm. Notice that the matrix (a), the size of the system (n), the
size of the block system (N), and the size of a block (blk) are all passed to the graph as
creation parameters. Their values are only read within the graph.

The known vector (b) is passed into the graph by means of a dataflow arc. It arrival causes
nodeDIST to fire. The result vector (x) is passed out of the graph on a dataflow arc.

NodeDIST sends the appropriate segments ofb to the nodes that perform theS andM
operations of Figure 9. NodeGATH collects the segments ofx from theS andM nodes
and combines them into the single vectorx.

Sequential
Computation.

Shared Variable
Declaration.

Call From One Graph
to Another.

Incoming Parameter.

Outgoing Parameter.

Creation (Read-Only)
Broadcast Parameter.

General Nodes Graph Interface Defintion

.FromPort => ..X X

Calling Graph Called Graph

Visual Programming and Parallel Computing 17

In this implementation, a single instance of nodeSolve performs, one after another, all of
the S operations shown in Figure 9, andN - 1 instances of nodeMult perform theM ’s.
The mechanism by which multiple instances of a node are created is interesting and
involves an interaction between the routing_rules ofSolve and the annotation of the arc
from Solve to Mult . Solve’s annotation is shown below. It contains a line

TRUE => { B_TO_M[i+WhichBlock] <- copy(b); : (i N-WhichBlock) };

which places a copy of the vector b onto an output port with an index. The notation

: (i N-WhichBlock)

 causes index variablei to take on values from 0 toN-WhichBlock -1. Thus, the index of
the output port takes on a range of values fromj+1 to N-1, wherej is the number of the
column being processed. The annotation of the arc fromSolve to Mult is

.B_TO_M[i] => [i].B_FROM_S

whereB_FROM_S is nodeMult ’s input port. This routing rule is binding an output port
name to an input port name as before, but now indices are involved as well. Supposei in
the arc annotation has value 7 (because the expressioni+WhichBlock in the routing rule
happens to be 7). Then, the arc specification bindsSolve’s output port with index 7 to the
input portB_FROM_S of nodeMult with an index 7. Different instances of nodes have
different indices. Thus,Solvesends data to the appropriate instance ofMult by using an
index value in its routing rule. The arc annotation completes the binding.

Any number of node instances can be created in this way at runtime. The set of instances
that can be created is dynamic in that it is determined by the runtime values of variables.
This mechanism is quite powerful. It is possible for a node with a self loop arc to
“expand” into an arbitrary graph, each node of which is a different instance.

Figure 12. CODE Graph for Block Triangular Solver (DoBTS).

Visual Programming and Parallel Computing 18

Nodes can have from 0 to 7 indices. The zero case is a default of sorts since no indices
need exist in the program. The nodes in the integration example of Section 5.1 used no
indices. That program could be improved by dynamically replicating a (now poorly
named) nodeInteg Half. The resulting program would exploit N-way parallelism where
N is chosen at runtime instead of a fixed two-way parallel structure.

The arc leavingMult implies an iteration. FirstS0 is done and thenMi,0 is performed in
parallel fori = 1..N-1. NextS1 is done followed byMi,1 in parallel fori = 2..N-1, and so
on. Since the block system size is an input to the program, the number ofMult nodes to
create is not determined until runtime. In addition,N determines the number of times each
node fires so this is also not known until runtime.

Some of the nodes in graphDoBTS have fairly sophisticated firing and routing rules. Per-
haps it is useful to examine nodeSolve’s specification. Its firing rules can be understood
by relating them to Figure 9.Solve fires the first time in order to perform computationS0.
This computation depends on receiving a block of vectorb from nodeDIST. Hence,Solve
can fire when it receives a sub-vector (piece of a vector) on the arc from nodeDIST to its
input portB_FROM_DIST. Solve fires next repeatedly to perform computationsS1 to
SN-1. For this it must receive a sub-vector from one of theMult nodes on input port
B_FROM_M . The node has a firing rule for each case. The node is permitted to fire when
it receives data from either source.

After Solve fires to performSk, it must send sub-vectors forM j,k for j taking on values
from k+1 to N-1. It’s routing rules does just this. VariableWhichBlock is a counter that
holds the valuek+1. The routing rule also sends the portion of the solution vectorx just
computed to nodeGATH . Solve’s specification follows.

input_ports { Vector B_FROM_DIST; Vector B_FROM_M; }
output_ports { Vector B_TO_GATH; Vector B_TO_M; }
vars { Vector b; int WhichBlock; }
init_comp {
 WhichBlock = 0;
}

firing_rules {
 B_FROM_M -> b => ||
 B_FROM_DIST -> b =>
}

comp {
 solveblock(WhichBlock, a, b, blk);
 WhichBlock = WhichBlock + 1;
}

routing_rules {
 TRUE => { B_TO_M[i+WhichBlock] <- copy(b); : (i N-WhichBlock) };
 B_TO_GATH <- b;
}

This CODE program has been run on a 14 processor Sequent Symmetry. With a matrix of
size 420 x 420 it shows a speedup measured relative to a straightforward sequential imple-

Visual Programming and Parallel Computing 19

mentation of 3.5 with 14 processors. A parallel program that was hand-written using low
level parallel primitives shows a speedup of 3.7, so CODE compares well with it. The the-
oretical maximum speedup of this algorithm is 4.9 with 14 processors.

5.5 The HeNCE Language

Like CODE, the HeNCE language also support additional icons other than the circle that
represents a sequential computation. These new node types represent control structures.
HeNCE has no facility for hierarchical implementation, although there are plans to add
this ability to the language. For now, HeNCE graphs cannot call other graphs so there is no
need for interface nodes. Figure 13 show all of HeNCE’s icons.

All of HeNCE's control flow icons work in pairs. One icon begins a construct and another
ends it.The subgraph that appears between the icons is acted upon. For example, the sub-
graph between a loop-begin and a loop-end node is executed repeatedly, much like the
body of a “C” for loop. The loop-begin is annotated with a statement to assign its index
variable an initial value, a termination condition expression, and a statement to give its
index variable its next value.

(variable = initial_value;
termination_condition;
variable = next_value);

Figure 13. Node Icons in HenCE.

Figure 14 shows a HeNCE loop and a static graph that its execution mimics. The loop-end
node (and all other construct-ending nodes) requires no annotation. Notice that there is no
explicit arc back to the start of the loop as flow chart would have. HeNCE graphs are acy-
clic. The subgraphs in a HeNCE control construct can contain other control constructs, but
they must be properly nested.

Conditional node pairs define an “if-then” structure. The conditional-begin node annota-
tion contains an expression. If the expression evaluates to TRUE (meaning non-zero, fol-

Sequential Computation.

Loop Begin and End - Enclosed subgraph is iterated over an
index range such as i = 0 TO N.

Conditional Begin and End - Enclosed subgraph is
executed only if an expression evalutes to TRUE.

Parallel Replication (Fan) Begin and End - Enclosed
subgraph is replicated such that all copies execute in parallel.
Copies are indexed as in i = 0 TO N.

Pipeline Begin and End - Enclosed subgraph is replicated to
form a pipeline with indexed stages.

Visual Programming and Parallel Computing 20

lowing the C language convention), the subgraph between the pairs is executed.
Otherwise, it is not. HeNCE does not contain an “if-then-else” structure.

Figure 14. HeNCE Loop and Fan Constructs.

Fan node pairs create parallel structures. They replicate the subgraph between them and
evaluate the replications in parallel. Figure 14 shows the effect of a fan. The fan-begin
node's annotation consists of an index statement.

IndexVar = StartValue TO EndValue;

IndexVar takes on a different value in each of the replicated subgraphs. In this way, each
replication has a unique index.

Pipe node pairs create a pipeline structure. The subgraph within the pipe is replicated,
somewhat like a Fan node, but the dependence structure differs in a manner that is inspired
by pipelines. Pipe constructs are rarely used.

HeNCE programs run on a collection of UNIX workstations on a common network. The
workstations need not all be of them same type or even made by the same manufacturer.
The capabilities and speeds of such a heterogeneous collection of machines can very
widely. HeNCE graphs are converted into programs which run under the PVM message
passing library [Gei93]. PVM is designed to be used directly by programmers as well.

The names of all of the workstations must be listed in the window segment labeled “Vir-
tual Machine” (see Figure 16). The programmer also lists estimates of the cost of running
each of the program’s sequential procedures on each of the machines. HeNCE uses this
information to make intelligent choices about where to run nodes.

During execution, the utilization of the hosts in the virtual machine is displayed in the host
utilization strip chart at the bottom right of the window. The horizontal axis is time, and
there is a horizontal bar for each host which is divided into segments with colors that sig-
nify the state of the host. Figure 15 shows a case in which total utilization is poor since
only one processor is running most of the time.

a

a

a

a
(i = 0;
 i < 3;
 i = i + 1);

i = 0

i = 1

i = 2

=

Loop Expansion

* * *=

Fan Expansion

i = 0 TO N

i = 0 i = N

Visual Programming and Parallel Computing 21

Figure 15. HeNCE Host Utilization Strip Chart.

HeNCE also changes the colors and shapes of the icons in the graph during execution to
animate the state of the computation as it runs. Furthermore, this information is captured
in a trace file and can be replayed after the program’s execution is complete.

HeNCE Block Triangular Solver

The block triangular solver can also be expressed in HeNCE, and in some respects it is
simpler in HenCE than it is in CODE. The program is shown in Figure 16. This figure is a
screen dump which shows the entire HeNCE window as well as the segment in which the
graph is drawn.

Figure 16. HeNCE Block Triangular Solver Program.

Execution begins with nodeGetSys running. This node declares the matrixa and vectorb
as well as other variables needed. All are made available to all successor nodes.GetSys

Host: betty
wilma

0 10 secs

Idle Running Etc....

Virtual Machine
Graph

Host Utilization

Visual Programming and Parallel Computing 22

gives them initial values. These variables are declared to be “NEW” input-output variables
in order to have HeNCE allocate storage for them. If output-only variables were used, the
sequential subroutine would have to allocate storage for them. The resulting vectorx will
be written intob.

-- annotation of node GetSys.
NEW <> int N; -- Number of blocks in system.
NEW <> double a[500][500]; -- Matrix
NEW <> double b[500]; -- Vector
NEW <> int blk; -- Number of elements in each block.
NEW <> int n; -- Number of elements in matrix b.
GetSys(a, b, &n, &N, &blk);

The annotation of the loop node is simply “(j=0; j<N; j=j+1);” which iterates the sub-
graph between the loop-begin and loop-end node for every column of the blocked system.

The annotation of nodeSolve makes use of a HeNCE default. All variables that are used
but not explicitly declared to be input, output, or input-output default to input-output sta-
tus. The call to sequential proceduresolve makes use of array index range expressions to
pass just the required blocks ofa andb to the routine.

-- annotation of node solve.
solve(a[j*blk:(j+1)*blk-1][j*blk:(j+1)*blk-1],

b[j*blk:(j+1)*blk-1], blk);

The fan-begin node has a simple annotation “i = j+1 TON-1;” that causes an instance of
the enclosed subgraph consisting only of the nodeblkmult to be created for each value of
i in the stated range. Within each instance,i takes on the appropriate value.

The instances of nodeblkmult make use of index variablei to select the blocks ofa andb
that they must process using array index range expressions as before. The portion ofb that
contains the solution of the last call tosolve is stored inb_up.

-- annotation of node blkmult.
< double b_up[blk]=b[j*blk:(j+1)*blk-1];
blkmult(a[i*blk:(i+1)*blk-1][j*blk:(j+1)*blk-1],

b[i*blk:(i+1)*blk-1], b_up, blk);

The annotation of nodePrintAns also makes use of the default that variables that are not
otherwise declared are input-output. Notice that the node automatically gathers the indi-
vidual blocks ofb thatsolve wrote into one vector of lengthn.

-- annotation of node PrintAns.
PrintAns(b, n);

5.6 CODE and HeNCE Compared

One of the challenges in research in visual programming is evaluating new ideas. We have
found that it is necessary to actually implement systems and use them in programming
projects and in university programming classes in order to thoroughly understand new
ideas’ merits and limits. Results are often subjective and context-dependent. Many ideas
have both virtues and limitations. For example, CODE’s firing rules are powerful but com-

Visual Programming and Parallel Computing 23

plicated. For some problems they are desirable and even necessary, but they increase the
training time for new CODE users, and one of our chief goals has always been ease of use.

Implementing the various versions of HeNCE and CODE has allowed us to create ever
more effective visual parallel programming environments. This section contrasts the two
languages and points out circumstances in which one model may be more effective than
the other. However, an overall conclusion regarding the two languages is probably not
possible as each has strengths which stand out in different circumstances. This conclusion
suggests that visual programming environments could benefit from supporting multiple
representations, including textual ones.

1. Node firing conditions are explicit and general in CODE.

Programmers must explicitly define the exact circumstances under which a computation
node is allowed to execute in CODE. The specification language is quite flexible and gen-
eral, and firing conditions can depend on the internal state of the node. For example, it is
easy to define a node that non-deterministically merges data from two streams in CODE.
Such a computation is impossible to state in HeNCE.

It is tempting to say that HeNCE’s firing rules are fixed. Nodes are permitted to fire when
all predecessor nodes have fired, but this is an oversimplification. Execution of a HeNCE
node is dictated also by the control flow constructs in which it is embedded just as is the
case with statements in conventional languages. Thus, HeNCE firing conditions are some-
what less explicit.

CODE’s firing rules are explicit and general, but can get complicated and wordy.
HeNCE’s firing rules are simple and concise, but are not always adequate to express algo-
rithms. They do appear to be adequate for many interesting numerical algorithms, how-
ever.

2. CODE is capable of expressing more dynamic graph topologies.

Both due to its powerful firing rules and its method of instantiating nodes, CODE is capa-
ble of expressing communications patterns that HeNCE cannot. For example, CODE can
accept an adjacency graph as input data and create a graph with the specified topology. Of
course, such arbitrary expansions limit the extent to which CODE visually displays paral-
lel structure. The static display of programs whose structure is determined at runtime is a
significant research goal.

3. Explicit dataflow increases the complexity of graphs.

CODE shows all dataflow or common shared variable access via arcs. This is desirable in
that it shows more completely the communication patterns of programs, but dataflow
graphs are often complex, and worse still they are often unstructured. Programs with com-
plex dataflow can become a rat’s nest of arcs. This can be hard to understand and is also
cumbersome since programmers must individually annotate all of the arcs.

HeNCE programs are related to flow charts of structured programs. They are concise and
orderly even when graphs become large. Dataflow is implicit so less structural information

Visual Programming and Parallel Computing 24

is presented to the programmer, but computational elements are still clear and well encap-
sulated and parallel structure is displayed. On the negative side, since dataflow is implicit
it is possible for programmers to make errors in which the “wrong” node is another node’s
nearest predecessor for some variable.

4. HeNCE lacks hierarchy.

Since HeNCE graphs cannot call other HeNCE graphs, hierarchical implementation is not
supported. Thus, the current implementation of HeNCE is ill-suited to large projects since
graph sizes become excessive. This shortcoming is not a necessary aspect of HeNCE’s
model. A future version of HeNCE will allow graph calls.

5. CODE’s basic unit of reuse is the sequential computation.

CODE is designed with the idea that the sequential computation node is the basic unit of
component reuse. The CODE model supports libraries of computation nodes. Thus,
CODE computation nodes must be completely encapsulated. They must have well defined
interfaces, and they must be completely defined in isolation from other elements of a
graph. This is the reason that CODE ports exist. They are a node’s formal parameters.

Nodes in HeNCE to not satisfy this property due to the manner of their use of variable
names. If a programmer copies a node from one HeNCE program to another, he or she will
likely have to edit the node when it is placed in its new context. For example, the new pro-
gram may name some arrayA while the old program called itB.

CODE allows name binding on arcs, thus bridging the name spaces of any two nodes. The
downside is that programmersmust specify name bindings on every arc. The CODE com-
putation node is somewhat analogous to a simple statement in a conventional program-
ming language like Fortran. It is cumbersome to be required to specify name binding
between “statements.”

Both CODE and HeNCE (with Call added to its model) support reuse on the graph level.
This is not cumbersome since graph calls are much less common– like subprogram calls in
Fortran.

6. CODE has efficient mechanisms for blocked arrays.

Both CODE and HeNCE were designed for computations involving arrays and many
modern array algorithms are based on blocking as in the block triangular solver example
above. It was not discussed, but CODE supports mechanisms for blocked arrays which are
both efficient and reasonably simple. Programmers can use a 4 dimensional array to repre-
sent a blocked two dimensional array. The array is a two dimensional array of two dimen-
sional arrays. HeNCE programmers can do this as well but for implementation reasons it
is not as efficient.

HeNCE’s mechanism for specifying blocks by index ranges (as in the HeNCE block trian-
gular solver) is also not efficient and arguably not simple. As the expressions used in the
index ranges become complex, it becomes increasingly difficult for compilers to find a
range’s “meaning” and implement a partitioning operation directly rather than by element

Visual Programming and Parallel Computing 25

by element copying at runtime. The compiler cannot statically analyze data access pat-
terns. Also the expressions can become complex for programmers. Note that the HeNCE
block triangular solver assumes that the degree of parallelism (size of the block array)
evenly divides the size of the array. If this were not the case, the necessary expressions
would be much more complex.

One can summarize the differences between CODE and HeNCE by saying that CODE is
more capable and at least as efficient (implementable) but HeNCE is more concise and
simpler for beginning programmers.

5.7 A Proposed Language

Visual programming language designers must search for a point of compromise between
the extremes of ease of use and flexibility. This point is dependent on the problem domain
of interest. We target computational science and hence have a bias towards numerical and
matrix-oriented algorithms. In this domain, the balance point probably lies between
CODE and HeNCE, especially since execution efficiency is also a major goal. Model
expressiveness and effective implementation also tend to be competing goals.

Figure 17 shows the block triangular solver expressed in a language that is to be even sim-
pler to use than HeNCE without being much less capable. The model supports graph call-
ing and so has interface nodes as in CODE. Graphs show control flow and so are closer to
the HeNCE model. Shared variables accessible within a graph are defined as separate
icons as in CODE, but arcs are not required to show that a computation node access a vari-
able. The unit of reuse is the graph since concise representations are required. As in
HeNCE, arcs require no annotation.

There are two classes of computation nodes: replicated and non-replicated. Double circle
icons represent replicated nodes. Both are annotated by the set of variables for which read
access is needed, the set for which write access is needed, and a sequential computation.

Array variable icons allow the direct definition of partitions to support blocked algorithms.
Angle brackets (as in <expression>) are used to access blocks, and square brackets (as in
[expression]) access array elements. Blocks may overlap, but only one block “owns” an
element. Writes to overlap regions in block that do not own them are local only.

Finally “:” is a size operator. For example,A:i returns the number of elements in theith
dimension ofA, counting from zero.

Visual Programming and Parallel Computing 26

Figure 17. Block Triangular Solver in Proposed Language.

We believe that a simple model such as the one outlined above would be a valuable paral-
lel programming tool. Concerns that it is not adequately flexible can be addressed by
designing environments in which many different representations (both parallel and
sequential) can co-exist. Beginning parallel programmers can begin with the most simple
representations and learn the more complex on an as needed basis. All representations
must provide a unit of reuse with a common semantics in order to interoperate. We adopt
the simple semantics of an atomic computation which accepts inputs and computes out-
puts with no inter-unit interactions in between.

6.0 Debugging in the Visual programming Environment

Both logical and performance debugging are important aspects of the parallel program-
ming processes. Performance debugging relates to understanding and improving the speed
of a program, and logical debugging relates to it correcting errors in the logic of a pro-
gram. This section focuses primarily on logical debugging.

Debugging establishes the relationship between the program (typically some small seg-
ment of a large program) and its execution. The entities involved in debugging include: (i)
the program, P, (ii) a specification of a program’s (or a program segment’s) expected exe-
cution behavior (which we call M for model of behavior), and (iii) some representation of

start

return

j = 0 to N-1;

read: A<j><j> as A;
write: b<j> as b;
compute: Solve(A, A:0, b);

replicate: i = j+1 to N-1;
read: A<i><j> as A; b<j> as b_up;
write: b<i> as b;
compute: BlkMult(A, A:0, A:1, b, b_up);

double a[][];
partition: block(N), block(N);

double b[];
partition: block(N);

int N;

Visual Programming and Parallel Computing 27

the program’s actual execution behavior, E. Debuggers for programs written in pure text
forms typically use a different representation for each of these entities, and this imposes
much additional work on the programmer. This is especially true since execution environ-
ments and representations are typically very different across parallel architectures. Ideally
each of the entities P, M, and E would be expressed in the same representation so that the
programmer would not have to understand and manipulate several different notations. One
of the major benefits of visual directed graph programming is that it supports the formula-
tion of parallel program debuggers in which all of the entities can be expressed in a single
notation. This simplifies the task of debugging not only because it allows the programmer
to think in terms of the program which is what he understands but also because it admits of
ready automation of the often tedious tasks of comparing expected and actual behaviors. It
also facilities identification of the logic faults in the program. Efforts are ongoing to
implement such a debugger in the context of the CODE system [Hyd93].

The example which follows illustrates how the visual directed graph representation of a
program supports both the problem formulation and the analysis steps of parallel debug-
ging. As before, the program is a directed graph whose nodes are sites for the execution of
atomic actions.

 Definition 1: An action is an operation for which there exists a known input/output rela-
tion for a given initial state. It is the atomic function of a node.

The execution of a program is the traversal of the graph starting with an assignment of an
initial state, until the execution of a final state. Traversal of the graph causes execution of
actions at the nodes and generates a partially ordered set of action executions or events.

 Definition 2: An Event is an execution of the action at a node of the program graph.

The partially ordered set of events of an execution defines a directed acyclic graph of
events that corresponds to instantiations of the actions defined at the nodes of the program
graph structure.

 Definition 3: Debugging is the process of identifying those actions of the program that are
responsible for the failure of the program to meet its final state specification.

Let us start with a program, P, that has been observed to produce invalid final states for
execution from one or more initial states. We use a version of the Block Triangular Solver
for CODE (Figure 12) to which we have deliberately introduced a sequencing error to
illustrate the various steps of the debugging process. We have incorrectly coded the array
index ofB_TO_M in the routing rule forSolve as

B_TO_M[i]

instead of

B_TO_M[i+WhichBlock].

The execution of this bugged version starts with an initial state where N=5, and terminates
with a segmentation fault. We now follow the different steps of the debugging process:

Visual Programming and Parallel Computing 28

1. Identify and select the portions of the program whose behavior is to be monitored.

This is a set of “suspect” nodes or subgraphs. Note that it is typically impossible to moni-
tor the entire execution behavior of large complex programs (which are actually the ones
that need debugging). The visual/graphical representation of P makes the selection of sus-
pect portions of the program easy. In our example, we click on theSolve andMult nodes
of the graph of Figure 12 to inform the debugger that they need to be monitored. The
debugger makes additional preparations to filter out event executions of other nodes like
Dist andGath. This greatly helps in later steps as much of the irrelevant information is fil-
tered out.

2. Specify the expected execution behavior of the set of nodes that are to be monitored.

The natural mode of representation of execution behavior for graphical programs is the
partially ordered set of events expected to be generated by the execution of the actions at
the nodes of the suspect subgraphs. Let us call this representation, M, for model of
expected execution behavior. M is given as a partially ordered set of events. We can either
construct this set of events directly, or construct a graph of actions whose execution will
generate the desired partially ordered sets of events. In this case, we specify M by drawing
a graph that is shown in Figure 18(a). In the data-flow description of Figure 9, we expect
that thei-th execution ofSolve will be followed by the executions ofMult instances
whose node indices would range fromj = i to N-1.

Figure 18. (a) Graph of M. (b) Partial Order graph of E. (c) Elaborated Graph of M.

3. Capture the execution behavior of the selected portions of the program.

The execution behavior is a partially ordered sequence of events that actually occurred in
the execution. Let us call this partially ordered set of events E. The user obtains E by
selecting a set of program nodes with the mouse and then running the program. The sys-
tem then automatically records all of the necessary events and orderings. The selection of
Mult andSolve nodes in step 1 produced such an annotation. As a result, the actual execu-
tion behavior observed by the debugger as shown in Figure 18(b) contains event execu-
tions of only the selected nodes. In the figure, eventsi indicates thei-th execution of
Solve, and eventmj

i indicates thei-th execution of that instance ofMult whose node
index is j.

Solve (s)

Mult (m)

(a) (b) (c)
Segmentation

fault

m2
2

s2

m1
2

s3

m3
1

m1
1m2

1

s1

s

m1m2m3

Visual Programming and Parallel Computing 29

4. Map E to M to determine the locations where the actual and expected events first
diverge.

The mapping of E to M can be done automatically since they are specified in the same rep-
resentation. The result is identification of event sequences in E that do not correspond to
the allowed set defined in M. In Figure 18(b), we note that the eventsm1

1, m2
1 andm3

1
follow events1. We, however, expected that eventsmj

i that follow eventsi, would have
node indices that range fromj = i to N-1. As N = 5 and there is no eventm4

1, this detects
the occurrence of an unexpected behavior. Moreover, the mapping of E to M gives an
elaborated graph of M as shown in Figure 18(c). This is a run-time structure that shows
dynamically created instances of nodes. The elaborated graph is obtained from the partial
order graph of E in Figure 18(b) by folding back the later executions of a node, to their
first execution. Figure 18(c) shows three dynamically created instances of nodeMult ; m1,
m2 andm3. Note that we expected four instances.

5. Map the elaborated graph of M back to P to define corrective action.

Since the elaborated graph of M contains instances of the nodes of P, the mapping is auto-
matic, and guides us towards the offending action in P. The mapping from Figure 18(c) to
Figure 12, helps in ascertaining the cause of the unexpected number of instances of Mult.
As explained in Section 5.4, the creation of multiple instances ofMult is tied to the indi-
ces of the output port specified in the routing rule ofSolve. Output portB_TO_M of Solve
connects toMult and the data placed on its indices is responsible for creating various
instances ofMult . The mapping, therefore, guides us to the incorrect coding in the routing
rule ofSolve.

There are various points that should be noted in the above process. A programmer would
often cycle through these steps a number of times before identifying the bug. In each
cycle, the programmer will progressively come closer to the offending piece of code.

The use of actions, instead of events, in the representation of M greatly helps the debugger
in filtering out of the irrelevant information. This restricts the execution history displays of
E to only the events that are of interest to the user. This filtering greatly simplifies the
checking of M that can either be done visually by the user with the help of the execution
displays provided by the debugger, or can be done automatically by the model checking
facility of the debugger.

An Animation facility provided by the debugger is simply a visualization of the mapping
of E to M. The elaborated graph acts as an underlying structure for animation and greatly
helps in animation.

Thus, a visual programming environment provides a consistent graphical representation
for all the different entities used in the debugging process and simplifies the design of a
concurrent debugger that coherently relates the various steps of the debugging process. It
also provides a unified framework for supporting different concurrent debugging facilities
like execution history displays, animation, and model checking facilities.

Visual Programming and Parallel Computing 30

7.0 Related Work

There has been much work on visual programming languages and environments for
sequential systems. Prograph [TGS92] and PICT [Gli84] are substantial examples. We
will focus on visual parallel programming languages.

7.1 Older Systems and Proposals

 CODE and HeNCE are certainly not the first systems to be designed for visual program-
ming of parallel systems via graphs that show parallel structure. This sections surveys
some of the earlier attempts.

Karp and Miller [Kar66] proposed a graph-based model of parallel computation that
includes non-fixed firing conditions. The model also permits proof of determinacy and
useful theorems on computation terminations and bounding the size of queues on arcs.
The model is capable of expressing some interesting numerical algorithms, but is not flex-
ible enough for general use.

There have been several proposals for visual dataflow oriented programming languages.
Adams’s model [Ada68] is an early example. Computations are deterministic. There are
sophisticated techniques for mapping inputs to outputs, as firing and routing rules do in
CODE. Ackerman [Ack82] provides a general discussion of early ideas in dataflow lan-
guages. Keller and Yen [Kel81] discuss directed graph programming and Davis and Keller
[Dav82] present a dataflow language with special purpose nodes for non-standard firing
rules and discuss graph composition.

• CODE 1.x

J.C. Browne has been investigating computation graph systems for many years. The gen-
eral advantages of such systems and the outline of a model of parallel computation are
presented in [Bro85], and Browne and his students also developed several earlier versions
of CODE [Bro89, Jai91]. These form the intellectual basis for the current version but are
much less capable. CODE 1.2 served as the basis for experiments in reuse within the con-
text of a graph model [Lee89, Bro90].

• Schedule

Schedule [Don86] is a visual computation graph oriented system that facilitates calling
separate sequential routines. Ideas from it influenced later systems including Phred,
HeNCE, and some versions of CODE.

• Phred

Phred [Beg91b] is a graphical system that greatly expands on the semantics of schedule. It
uses graph grammars in its language definition and special nodes for firing rules, computa-
tions, and some runtime determined computation structures. Programs consist of a combi-
nation of control flow and dataflow graphs. Phred heavily influenced HeNCE.

• Neptune

Visual Programming and Parallel Computing 31

Neptune [Tra90] is a computation graph based graphical programming environment that is
similar in most respects to older versions of CODE.

• Poker

Poker [Sny85] is noteworthy as an early graphical parallel programming environment. It
is, however, a fairly distant relative of CODE and HeNCE. It graphical displays lattices of
virtual processing elements and allows these nodes to be annotated with a sequential algo-
rithm.

• Paragraph

Paragraph [Bai91] is a very interesting model of parallel programming in which computa-
tion graphs are expressed by productions in a graph grammar, thus allowing dynamically
structured graphs.

7.2 Recent Systems

There are some more recent systems that are similar to CODE, many of which are still
under active development. Some are primarily general purpose parallel programming
environments. Other mostly serve as platforms for research in scheduling.

• Paralex

Paralex [Bab92] is a graphical programming environment with a model similar in expres-
sive power to earlier versions of CODE. However, it incorporates sophisticated facilities
for fault tolerance and dynamic load balancing on target architectures such as networks of
workstations.

• PPSE

The Parallel Programming Support Environment (PPSE) [Lew90] is an ambitious inte-
grated environment for the development of parallel programs. It consists of many tools
beginning with a dataflow computation graph based graphical programming environment
called Parallax [Lew93]. The Parallax language includes hierarchy, dataflow (with named)
ports, and variable storage nodes.

At this time, firing guards are not yet implemented. This greatly reduces the expressive-
ness of its model of computation. For now, PPSE’s primary role appears to be as a basis
for research in scheduling.

Other tools in PPSE include a graphical target machine description system, task analysis,
mapping, and scheduling tools, a code generator that targets the STRAND language, a
simulator, and various performance and schedule visualization tools.

• VERDI

VERDI is a visual language used to develop distributed programs in Raddle [Gra90]. Pro-
grams consist of a set of graphs. Control flow in a graph is represented by the flow of a
token through it. Data may be attached to the token. Communication and synchronization

Visual Programming and Parallel Computing 32

are carried out by means of an N-party interaction facility in which tokens must arrive at a
box (with a common label) in each of the interacting graphs. The language supports non-
determinism since tokens can flow to varying sets of boxes, each of which would enable a
different N-party interaction. The system non-deterministically chooses. The language
supports indexed replication, somewhat like HeNCE’s.

• D2R

D2R (Dynamic Dataflow Representation) [Ros93] is a recent model that bears much
resemblance to HeNCE. However, it appears to have an orientation towards scheduling
research. It has been implemented on a multi-transputer system called DAMP [Bau91].

As with older versions of HeNCE, the language has both a textual and a graphical repre-
sentation. There are special constructs for loops, parallel fork-join constructs, and alterna-
tives (n-way if). The model is dynamic since the width of a fork-join, and the loop count
of a loop are runtime parameters. There is no hierarchy and no concept of general firing
rule guards.

Simple dataflow nodes wait for data on all input before firing and produce data on all out-
puts when firing is complete. Functions that nodes run are stored in separate files.

• ALEX

ALEX [Koz90] is an interesting functional visual parallel programming language in
which the focus is on drawing pictures of data, typically arrays. For example, a matrix
multiply program is created by drawing two rectangles that represent input matrices and
then drawing a representative row within one and a column within another. In conjunction
with library routines for multiplication and addition, the diagram is then extended to show
how to form the resulting matrix from the rows and columns of the input matrices.

• PFG

PFG is a graphical parallel programming language whose formal operational semantics
are described by HG [Sto90]. Like HeNCE, it uses special icons to create constructs that
control node execution. It has facilities for parallel branching (generalized conditional
branching) and non-deterministic branching. PFG is billed as an “assembly language” for
higher level visual parallel programming languages.

8.0 Obtaining HeNCE and C

HeNCE and the PVM package it targets are available in source and binary form via
xnetlib or by anonymous ftp to Internet host netlib2.cs.utk.edu. Both HeNCE and PVM
run under X windows on a wide variety of UNIX workstations. Questions on HeNCE may
be emailed to hence@cs.utk.edu.

CODE is available by anonymous ftp to pompadour.csres.utexas.edu. Only binaries for
Sun 4 workstations are available. Questions may be emailed to newton@cs.utk.edu or
browne@cs.utexas.edu.

Visual Programming and Parallel Computing 33

9.0 Conclusion

Difficulty of programming is a major impediment to the wider acceptance of coarse-grain
MIMD parallel computer systems. Visual parallel programming languages based on
directed graphs have many attractive properties that can help to lessen this problem, espe-
cially in some application domains. Directed graphs naturally capture the multi-dimen-
sional structure of parallel program behaviors. If a semantics is adopted in which basic
nodes represent atomic sequential computations, this view supports a programming meth-
odology that emphasizes the creation of parallel programs by the composition of sequen-
tial elements. This separates the concerns of creating sequential sub-computations and
creating parallel structures.

A visual programming environment based on directed graphs helps programmers to
understand the large-scale structure of their programs and this is vital for performance in a
way that is not the case for sequential programs. Programmers must understand the granu-
larity of their computations as well as having a general idea of the frequency with which
different segments of there program run and interact with other segments. Furthermore,
programmers must understand data partitioning and placement since data locality is neces-
sary for speed on modern parallel architectures. Debugging of parallel programs is also
difficult due to the complexity of the interactions between program elements that can
arise. A visual directed graph framework allows all of these program aspects to be under-
stood in a common high-level representation that presents programmers with abstractions
that are well suited to the various phases of the programming process.

CODE 2.0 and HeNCE 2.0 are implemented visual programming languages that demon-
strate many of these advantages. It is only through constructing CODE and HeNCE and
using them that we have been able to evaluate these benefits and to continue the evolution
towards better visual parallel programming abstractions. Although based on the same idea,
the two languages differ significantly in detail, and their relative strengths and weaknesses
are illuminating. HeNCE’s method of defining data interrelationships among nodes and
node firing conditions is simple and concise but less expressive than CODE’s. CODE on
the other hand, tends to be more wordy and harder to learn. Also complete simultaneous
display of all dataflow relationships tends to yield complex unstructured graphs.

We believe that an environment which allows multiple graphical and textual relationships
to co-exist is most desirable. Since programmers will then be able to choose representa-
tions that are most appropriate to a given situation. Also beginning programmers will be
able to use simpler tools. The key to such an environment is the selection of Call seman-
tics that apply to all representations. The semantics of sequential subroutines serve well.
Components can be viewed as atomic in that they map inputs to outputs with no inter-
component interactions in between.

10.0 References

[Ack82] W. B. Ackerman, “Data Flow Languages”,Computer, Vol. 15. pp.15-25, Feb.,
1982.

Visual Programming and Parallel Computing 34

[Ada68] D. A. Adams, “A Model for Parallel Compilations”,Parallel Processor Sys-
tems, Technologies and Applications, pp. 311-334, Spartan/MacMillan, New
York, 1968.

[Bab92] Ö. Babaoglu, “Paralex: An Environment for Parallel Programming in Distrib-
uted Systems,” Proc. ACM Int. Conf. on Supercomputing, July, 1992.

[Bai91] D .A. Bailey, et al., “ParaGraph: Graph Editor Support for Parallel Program-
ming Environments,” International Journal of Parallel Programming, Apr.,
1991.

[Bau91] A. Bauch, R. Braam, and E. Maehle, “DAMP: A Dynamic Reconfigurable
Multiprocessor System with a Distributed Switching Network”, Distributed
Memory Computing, Lecture Notes in Computer Sciences, ed. A. Bode, Vol.
487, Springer-Verlag, pp. 495-504, 1991.

[Beg91a] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam,
“Graphical development tools for network-based concurrent supercomputing,”
Proceedings of Supercomputing 91, pages 435--444, Albuquerque, 1991.

[Beg91b] A. Beguelin and G. Nutt, “Collected Papers on Phred,” Dept. of Computer Sci-
ence, Univ. of Colorado, CU-CS-511-91, Jan., 1991.

[Bro85] J. C. Browne, “Formulation and Programming of Parallel Computers: a Uni-
fied Approach”, Proc. Intl. Conf. Par. Proc., 1985, pp. 624-631.

[Bro89] J. C. Browne, M. Azam, and S. Sobek, “CODE: A Unified Approach to Parallel
Programming,” IEEE Software, July, 1989, p. 11.

[Bro90] J. C. Browne, J. Werth, and T. J. Lee, “Experimental Evaluation of a Reusabil-
ity Oriented Parallel Programming Environment,” IEEE Trans. Soft. Engin.,
Vol. 16, No. 2, 1990.

[Dav82] A. L. Davis and R. M. Keller, “Data Flow Program Graphs”,Computer, Vol.
15., pp.26-41, Feb., 1982.

[Don86] J. J. Dongarra and D. C. Sorenson, “SCHEDULE: Tools for Developing and
Analyzing Parallel Fortran Programs,” Argonne National Laboratory MCSD
Technical Memorandum No. 86, Nov., 1986.

[Eig91] R. Eigenmann, and W. Blume, “An Effectiveness Study of Parallelizing Com-
piler Techniques,” Proc. Intl. Conf. Par. Proc., 1991, pp. II 17-25.

[Gei93] G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sun-
deram, “PVM 3 User’s Guide and Reference Manual,” Technical Report
ORNL/TM-12187, Oak Ridge National Laboratory, 1993.

Visual Programming and Parallel Computing 35

[Gli84] E. P. Glinert and S. L. Tanimoto, “PICT: An Interactive Graphical Program-
ming Environment,” IEEE Computer, Vol. 17, No. 11, Nov., 1984.

[Gra90] M. Graf, “Building a Visual Designer’s Environment”, inPrinciples of Visual
Programming Systems, S.-K. Chang, ed., Prentice Hall, Englewood Cliffs,
New Jersey, 1990.

[Hir91] S. Hiranandani, K. Kennedy, and C.-W. Tseng, “Compiler Support for
Machine-Independent Parallel Programming in Fortran D,” Rice University,
CRPC-TR91132, 1991.

[Hyd93] S. I. Hyder, J. F. Werth, and J. C. Browne, “A Unified Model for Concurrent
Debugging,” Proc. International Conference on Parallel Processing, July 1993.

[Jai91] R. Jain, J. Werth, and J. C. Browne, “An Experimental Study of the Effective-
ness of High Level Parallel Programming,” Proc. 5th SIAM Conf. Par. Pro-
cessing, 1991.

[Kar66] R .M. Karp and R. E. Miller, “Properties of a Model for Parallel Computations:
determinacy, Termination, and Queueing”, SIAM J. Appl. Math., Vol. 14, No.
6, Nov. 1966.

[Kel81] R. M. Keller, and W.-C. J. Yen, “A Graphical Approach to Software Develop-
ment using Function Graphs”, IEEE COMPCON 81, Feb. 23-26, San Fran-
cisco, 1981.

[Koz90] D. Kozen, et al., “ALEX– An Alexical Programming Language”, inVisual
Languages and Applications, T. Ichikawa, E. Jungert, and R .R. Korfhage, eds.,
Plenum Press, New York, 1990.

[Lau90] R. Lauwereins, et al., “GRAPE: A CASE Tool for Digital Signal Parallel Pro-
cessing,” IEEE ASSP Magazine, Apr. 1990.

[Lew90] T. G. Lewis and W. Rudd, “Architecture of the Parallel Programming Support
Environment,” Proc. CompCon’90, San Francisco, CA, Feb. 26 - Mar 2., 1990.

[Lew93] T. Lewis and H. El-Rewini, “Parallax: A Tool For Parallel Program Schedul-
ing”, IEEE Parallel and Distributed Technology, pp. 62-72, May 1993.

[New92] P. Newton and J.C. Browne, “The CODE 2.0 Graphical Parallel Programming
Language,” Proc. ACM Int. Conf. on Supercomputing, July, 1992.

[New93] P. Newton, “A Graphical Retargetable Parallel Programming Environment and
Its Efficient Implementation”, Technical Report TR93-28, Dept. of Computer
Sciences, Univ. of Texas at Austin, 1993.

[Pat90] David A. Patterson and John L. Hennessy,Computer Architecture: a Quantita-
tive Approach, Morgan Kaufmann, San Mateo, CA, 1990.

Visual Programming and Parallel Computing 36

[Ros93] J. Rost, “D2R: A Dynamic Dataflow Representation for Task Scheduling”,
ACM SIGPLAN Notices, Vol. 28., No. 8, August, 1993.

[Sny85] L. Synder, “Poker 3.1: A Programmer’s Reference Guide”, Dept. of Comp. Sci.
Technical Report TR-85-09-03, University of Washington, Seattle, WA.

[Sto90] P. D. Stotts, “Graphical Operational Semantics for Visual Parallel Program-
ming”, in Visual Languages and Visual Programming, S.-K. Chang, ed., Ple-
num Press, New York, 1990.

[TGS92] TGS Systems Limited,Prograph Reference, Halifax, Nova Scotia, Canada,
1992.

[Tra90] B. Traversat, “NEPTUNE: The Application of Course-Grain Data Flow Meth-
ods to Scientific Parallel Programming”, Ph.D. dissertation, The Florida State
University, 1990.

[Yan91] T. Yang and A. Gerasoulis, “A Fast Static Scheduling Algorithm for DAGs on
an Unbounded Number of Processors”, Proceedings of Supercomputing 91,
pages 633–642, Albuquerque, 1991.

