
Basic Concepts for
Distributed Sparse Linear Algebra Operations �

Victor Eijkhout and Roldan Pozo

University of Tennessee
Department of Computer Science

107 Ayres Hall, Knoxville, TN 37996-1301
eijkhout@cs.utk.edu, pozo@cs.utk.edu

August 4, 1994

1 Introduction

We introduce basic concepts for describing the communication patterns in common
operations such as the matrix times vector and matrix transpose times vector product,
where the matrix is sparse and stored on distributed processors. At first we will describe
a simple one-dimensional partitioning of the matrix, then we will describe the more
general case where arbitrary elements are assigned to processors.

2 One-dimensional matrix partitioning

We start by describing a one-dimensional partitioning of the matrix, that is, a distribution
of the matrix rows or columns to the processors. The discussion will describe only the
distribution by rows, but the translation to a column partitioning is easily made.

We assume that there exists a map

map : N = f1; : : : ; Ng ! P = f1; : : : ; Pg
where N is the number of problem variables, and P is the number of processors. From
this map we construct the sets Vp of the ‘owned variables’ of the processors:Vp = fi: map(i) = pg: (1)

It is clear thatVp �N; [p Vp =N; Vp \ Vq = ; if p 6= q:�. This work was supported by DARPA under contract number DAAL03-91-C-0047

1



We denote the number of owned variables of a processor byNp = f1; : : : ; Npg; Np = jVpj:
The focus of the discussion here is on operations such as the matrix vector

product y = Ax. Suppose that initially the matrix and vectors are distributed along the
map() function, then for i 2 Vpyi =Xj Aijxj = Xj2VpAijxj + Xj 62VpAijxj:
Clearly, some communication between processor p and other processors will be needed.
We will give some definitions to make the communication pattern more precise.

For this we define two other types of sets of variables. First of all, the ‘border
variables’ of a processor are those variables owned by other processors that border on
this processor:Bqp = fj 2 Vq: 9i2Vp Aij 6= 0g (2)

Next, the ‘edge variables’ of a processor are those variables owned by that processor
that border on other processors:Eqp = fj 2 Vp: 9i2Vq Aij 6= 0g (3)

Occasionally we will refer toBp =[q Bqp ; Ep =[q Eqp :
From the definitions it is clear that Bpq = Eqp.

3 Matrix vector product under one-dimensional decomposition

The usefulness of the concepts of border and edge variables becomes apparent when we
consider the matrix and matrix transpose times vector products y = Ax and y = Atx
with matrices partitioned over the processors by rows or columns.

For i 2 Vpyi =Xj Aijxj = Xj2VpAijxj +Xq 6=p Xj2Bqp Aijxj: (4)

With a block partitioning along processor variables, e.g., y(p) is the subvector of y con-
taining only the values in Vp, and a corresponding two-dimensional block partitioning
of the matrix, we can write this shorter asy(p) = A(pp)x(p) +Xq 6=pA(pq)x(q):
Note that A(pq) is non-null iff Bqp is non-empty.

Now, for a practical implementation of the above formula we consider a matrix
data distribution where processor p has the matrix block row A(p�). If additionally it
has the input vector x, it can compute the values y(p) in its owned variables. In practice,
the matrix will be sparse, and a processor need not have the whole vector x, merely
those blocks x(q) for which Bqp 6= ;.

2



We will call Vp [Sq Bqp the ‘local variables’ of a processor. A processor then
needs the values of x exactly in its local variables in order to compute the values of y
in its owned variables. Under the assumption that initially the values of x reside only
in the owned variables, some amount of communication is needed.

In terms of the border and edge sets, computing a matrix vector product as in
formula (4) entails the following actions for a processor p, though not necessarily in
this sequence:� for each q such that Eqp 6= ;, send x(q) to processor q.� for each q such that Bqp 6= ;, receive x(q) from processor q.� compute the partial result A(pp)x(p) acting on x in the owned variables.� compute the partial results A(pq)x(q) acting on x in border variables.� sum all partial results to form y(p) in the owned variables.

For a matrix partitioned by block rows, the transpose matrix vector product is
somewhat more tricky. For y = Atx we find for i 2 Vpyi =Xj (At)ijxj =Xj Ajixj = Xj2VpAjixj +Xq 6=p Xj2Eqp Ajixj; (5)

or again shorter:y(p) = At(pp)x(p) +Xq 6=pAt(qp)x(q):
Under the above assumption that processor p is in possession of the full block rowA(p�),
this expression is no longer computable, since it involves the block columnA(�p). Hence

we arrive at a scheme where processor q computes the partial results y(q)(p) = At(qp)x(q)
(for all p 6= q for which A(qp) 6= 0), and sends it to processor p. Processor p then
constructsy(p) = At(pp)x(p) +Xq y(q)(p):

In terms of the border and edge sets, computing the matrix transpose vector
product as in formula (5) then entails the following actions for a processor p:� compute the partial result y(p)(p) in the owned variables as At(pp)x(p).� for each q such that Bqp 6= ;, compute the partial results y(p)(q) in the border

variables as At(pq)x(p).� for each q such that Bqp 6= ;, send y(p)(q) to processor q.� receive y(q)(p) from processor q.� sum all partial results to form y(p) in the owned variables.
In the case of a matrix partitioned into block columns the above transpose product

algorithm is used for the regular product and vice versa. A symmetrically stored matrix
can be considered the sum of an upper triangular matrix stored by rows plus a lower
triangular matrix stored by columns, so a hybrid of the above algorithms applies. Below
we will describe a further partitioningof the block rows or columns, that is, an arbitrary
assignment of matrix elements to processors.

3



4 Arbitrary partitioning

In certain applications it may make sense to partition sparse matrix elements in an ar-
bitrary manner over the processors. This generalizes the above partitioning by allowing
for instance matrix blocks to be assigned to a processor. In particular, in this manner a
processor need not posess any diagonal elements of the matrix. We will describe a fully
general assignment of matrix elements to processors, extend the definitions of border
and edge sets to this case, and outline the matrix times vector product under such an
assignment scheme.

We formulate this case for a general rectangular matrix of size N1 �N2. We will
assume a set of processors, and a mapping of coordinates (i; j) in the matrix to the
processor set:

map : N1 �N2 = f1; : : : ; N1g � f1; : : : ; N2g ! P = f1; : : : ; Pg:
The partitioning sets induced by this mappingV1(p) = fi: 9j map(i; j) = pg; V2(p) = fj: 9i map(i; j) = pg
form, not necessarily disjoint, splittings ofN1 and N2.

The case of one-dimensional partitioning by rows is obtained by choosing a
mapping function such thatV2 � N2

and such that the V1 sets be a disjoint splitting of N1.
Corresponding to the V1 and V2 sets we have two block partitionings of vectors,

and one of the matrix. If x 2 IRN1 , x(p;1) is the vector defined by�x(p;1)�i = nxi if i 2 V1(p)
0 otherwise

and similarly we define x(p;2) using the V2(p) sets. The matrix is partitioned along the
processor map: A(p) is the matrix for which�A(p)�ij = nAij if map(i; j) = p

0 otherwise
:

The practical interpretation of all this is that processor p owns the matrix sub-
block A(p). In the context of computing y = Ax, processor p then needs x(p;2) with
which it can compute A(p)x(p;2), which is part of y(p;1).

Next we have to determine where processors get their input for the matrix vector
product, and where they deposit their output. This is described by two ownership
functions, c1 and c2, the first describing ownership of the input, the second of the
output. Formally, they are functionsc1:N1 ! P; c2:N2 ! P;
inducing disjoint partitionings ofN1 andN2.

In the case of a one-dimensional partitioning of a square matrix, we havec1 � c2; c1(i) = p if map(i; i) = p;
that is, a variable is owned by a processor if the diagonal element in that row is owned
by that processor.

4



The ownership functions are now used to define B and E subsets of both N1

andN2. The subsets ofN2 will be the familiar border and edge sets, that is, the sets of
variables touched but not owned, and owned and exported respectively. Additionally,
we will now have subsets ofN1 corresponding to computed but not owned, and owned
but not computed variables.

Formally,B(2)p = fj 2 V2(p): c2(j) 6= pg;
and, split by surrounding processors,Bq(2)p = fj 2 V2(p): c2(j) = qg:
With these definitions we have[q 6=pBq(2)p = B(2)p ; B(2)p [Bp(2)p = V2(p):
We defineEq(2)p = Bp(2)q = fj 2 V2(q): c2(j) = pg:

These definitions coincide with the definitions for Bp, Bqp , Ep, and Eqp, in the
one-dimensional case, with the reduction described as above.

Similarly, we defineB(1)p = fj 2 V1(p): c1(j) 6= pg;
and, split by surrounding processors,Bq(1)p = fj 2 V1(p): c1(j) = qg:
With these definitions we have[q 6=pBq(1)p = B(1)p ; B(1)p [Bp(1)p = V1(p):
Also, we defineEq(1)p = Bp(1)q = fj 2 V1(q): c1(j) = pg:
5 Matrix vector product under arbitrary decomposition

The above definitions are now employed to describe the matrix vector product for a
matrix with arbitrary assignment of elements to processors.

1. Every processor p has to gather the elements of x(p;2), and help other processors
in constructing their parts of x:� for each q for which Eq(2)p is not empty, send the components of x in this

set;� for each q for which Bq(2)p is not empty, receive the components of x in this
set.

2. Compute y(p)(p;1) := A(p)x(p;2).
3. Every processor p now has a part of y(p;1), and it has to distribute components of

that to whoever owns those:

5



� for each q for which Bq(1)p is not empty, send the components of y(p)(p;1) in
this set;� for each q for which Eq(1)p is not empty, receive the components of x in this
set, and add them to what is already stored in this component.

Note that this algorithm generalizes the matrix and transpose matrix vector prod-
uct algorithms of section 3: for the regular product only steps 1 and 2 are needed then,
while the transpose product uses steps 2 and 3.

6 Conclusion

We have introduced basic concepts for describing communication in common linear
algebra operations on matrices stored on distributed processors. For the case of a one-
dimensional decomposition of the matrix the concepts of owned, local, border, and edge
variables have, although defined strictly in terms of the matrix sparsity pattern, an easy
physical interpretation in terms of proximity of problem variables. The generalization
of these concepts to arbitrary matrix partitionings has no such interpretation. In fact, we
need to define the concepts of border and edge for both input and output in the matrix
vector product.

In a companion paper, [1], we will discuss data structures and algorithms for
specific realizations of the theoretical concepts introduced here.

References

[1] Victor Eijkhout and Roldan Pozo. Data structures and algorithms for distributed
sparse matrix operations. Technical Report in preparation, Computer Science
Department, University of Tennessee, Knoxville, 1994.

6


