Basic Concepts for
Distributed Sparse Linear Algebra Operations *

Victor Eijkhout and Roldan Pozo

Univerdsity of Tennessee
Department of Computer Science
107 Ayres Hall, Knoxville, TN 37996-1301
ei j khout @s. ut k. edu, pozo@s. ut k. edu

August 4, 1994

1 Introduction

We introduce basic concepts for describing the communication patterns in common
operations such as the matrix times vector and matrix transpose times vector product,
wherethe matrix is sparse and stored on distributed processors. At first wewill describe
a simple one-dimensional partitioning of the matrix, then we will describe the more
genera case where arbitrary elements are assigned to processors.

2 One-dimensional matrix partitioning

Westart by describing aone-dimensional partitioning of thematrix, that is, adistribution
of the matrix rows or columnsto the processors. The discussion will describe only the
distribution by rows, but the trandation to a column partitioning is easily made.

We assume that there exists a map

mep: N={1,... N}->P={1...,P}
where N isthe number of problem variables, and P isthe number of processors. From
this map we construct the sets V, of the *owned variables' of the processors:

Vp = {i:map(i) = p}. @
Itisclear that

V,CN, |V =N, V,nv,=0ifp#q.

P

*. Thiswork was supported by DARPA under contract number DAAL03-91-C-0047

We denote the number of owned variables of a processor by
N,={1,....N,}, N, = |V,
The focus of the discussion here is on operations such as the matrix vector

product y = Ax. Supposethat initially the matrix and vectors are distributed along the
map() function, thenfor i € V,,

Y = ZAijl‘j = Z Aijl‘j + Z Aijl‘j.
J JEVD JEVp
Clearly, some communi cation between processor p and other processorswill be needed.
We will give some definitions to make the communication pattern more precise.
For this we define two other types of sets of variables. First of all, the *border
variables' of a processor are those variables owned by other processors that border on
this processor:

Bl ={j € Vi Jiev, Aij # 0} 2
Next, the ‘edge variables of a processor are those variables owned by that processor
that border on other processors:

Bl ={j € Vp: Jiev, Aij # O} ©)
Occasionally we will refer to

Bp:UBg’ EP:UEg'
q q

From the definitionsit is clear that BL = EJ.

3 Matrix vector product under one-dimensional decomposition

The useful ness of the concepts of border and edge variabl es becomes apparent when we
consider the matrix and matrix transpose times vector productsy = Az and y = Az
with matrices partitioned over the processors by rows or columns.

ForiecV,

yi=y Ay =y Agepy Y Ay (4)
J JEVy q#p jEB]

Withablock partitioning along processor variables, eg., y(,) isthe subvector of y con-

taining only the valuesin V},, and a corresponding two-dimensional block partitioning

of the matrix, we can write this shorter as

Ue) = Ay o) T) Apa) T(a)-
q7p
Notethat A,,) isnon-null iff B isnon-empty.

Now, for a practical implementation of the above formula we consider a matrix
data distribution where processor p has the matrix block row A,,. If additionaly it
hastheinput vector =, it can computethevalues y,y initsowned variables. In practice,
the matrix will be sparse, and a processor need not have the whole vector z, merely
those blocks 2 4 for which BY # 0.

We will call V, U Uq B the ‘local variables of a processor. A processor then
needs the values of » exactly initsloca variables in order to compute the values of y
in its owned variables. Under the assumption that initially the values of = reside only
in the owned variables, some amount of communication is needed.

In terms of the border and edge sets, computing a matrix vector product as in
formula (4) entails the following actions for a processor p, though not necessarily in
this sequence:
for each ¢ such that £7 # (3, send x(, to processor q.
for each ¢ such that BY # 0, receive x4 from processor g.
compute the partial result A,,)z,y acting on x in the owned variables.
compute the partia results A, x4 acting on z in border variables.
sum al partia resultsto form y,,) in the owned variables.

For a matrix partitioned by block rows, the transpose matrix vector product is
somewhat more tricky. For y = A*z wefindfori € V,

v = ANy =Y Ajieg = Y Ajirg+) Y Ajir, ®)
j

i J€EVy 9#p jEE]

or again shorter:

U = Al o) T D AlanTia)-
q#P
Under the above assumption that processor p isin possession of thefull block row A,.),
thisexpressionisnolonger computable, sinceitinvolvestheblock column A, . Hence

we arrive at a scheme where processor ¢ computes the partial results yEZ; = qup)x(q)
(for dl p # ¢ for which A,y # 0), and sends it to processor p. Processor p then
constructs

Yip) = Ay + 3 UH.
q

In terms of the border and edge sets, computing the matrix transpose vector
product as in formula (5) then entails the following actions for a processor p:

e compute the partial r%ultyg; in the owned variablesasAfpp)x()-

P
o for each ¢ such that BY # (3, compute the partia results yg)) in the border

varisblesas Af, 1z ().

o foreach ¢ such that B¢ # 0, send yEfI’)) to processor q.

o receive y'?) from processor ¢.
o sumall partial resultsto form y,, in the owned variables.

Inthecase of amatrix partitionedinto block columnstheabove transpose product
algorithmisused for the regular product and vice versa. A symmetrically stored matrix
can be considered the sum of an upper triangular matrix stored by rows plus a lower
triangular matrix stored by columns, so ahybrid of the above algorithmsapplies. Below
we will describe afurther partitioning of the block rowsor columns, that is, an arbitrary
gnment of matrix elements to processors.

4 Arbitrary partitioning

In certain applications it may make sense to partition sparse matrix elementsin an ar-
bitrary manner over the processors. This generalizesthe above partitioning by allowing
for instance matrix blocksto be assigned to a processor. In particular, in this manner a
processor need not posess any diagonal e ements of the matrix. We will describeafully
genera assignment of matrix elements to processors, extend the definitions of border
and edge sets to this case, and outline the matrix times vector product under such an
assignment scheme.

We formulatethiscase for agenera rectangular matrix of size N1 x No. Wewill
assume a set of processors, and a mapping of coordinates (¢, j) in the matrix to the
processor set:

map : N]_XNZI{].,...,N]_} X {1,...,N2}—>PI{1,...,P}.
The partitioning sets induced by this mapping

Vi(p) = {ix3;map(i, j) = p}, Valp) = {j:3imap(s, j) = p}
form, not necessarily digoint, splittingsof N1 and N».

The case of one-dimensional partitioning by rows is obtained by choosing a
mapping function such that

Vz = Nz
and such that the V1 sets be adigoint splitting of V.

Corresponding to the 4 and 1, sets we have two block partitionings of vectors,
and one of the matrix. If z € R™, (.1 isthe vector defined by

S ifieVi(p

(), = 0 otherwis(e)
and similarly we define z,,.2) using the V(p) sets. The matrix is partitioned along the
processor map: A, isthe matrix for which

_ [A ifmap(i,j) =p

<A(p))ll7' B {O ’ otherw(ise) '

The practical interpretation of al thisis that processor p owns the matrix sub-
block A(,). In the context of computing y = Az, processor p then needs z(,.2) with
which it can compute A,z (,:2), whichis part of y ;1) .

Next we have to determine where processors get their input for the matrix vector
product, and where they deposit their output. This is described by two ownership
functions, ¢; and ¢y, the first describing ownership of the input, the second of the
output. Formally, they are functions

C]_ZN]_—)P, CziNz—)P,
inducing digoint partitioningsof IN; and N».

In the case of a one-dimensional partitioning of a square matrix, we have

c1= ez, c1(i) = pif map(i, i) = p,
that is, avariableis owned by a processor if the diagona element in that row is owned
by that processor.

The ownership functions are now used to define B and £ subsets of both N
and N ;. The subsets of N, will be thefamiliar border and edge sets, that is, the sets of
variables touched but not owned, and owned and exported respectively. Additionaly,
we will now have subsets of N1 corresponding to computed but not owned, and owned
but not computed variables.

Formally,

B = {j € Va(p): calj) # p},
and, split by surrounding processors,

Bi" = {j € Va(p): eal) = g}
With these definitions we have

UB® =B, BRUB® =)
q#P
We define

g = By = {j € Valg): eali) = p}.

These definitions coincide with the definitions for B, B, E,, and E{, in the
one-dimensional case, with the reduction described as above.

Similarly, we define

B = {j € i(p):eali) # p),
and, split by surrounding processors,

® . .
Bl ={j € Valp)iei(y) = ¢}

With these definitionswe have
UBY =Y, BYUBY =)
qZp

Also, we define

&) 1) . ;
B =B = {j € Vi(q9): eaj) = p}-

5 Matrix vector product under arbitrary decomposition

The above definitions are now employed to describe the matrix vector product for a
matrix with arbitrary assignment of elements to processors.
1. Every processor p hasto gather the elements of z(,,.»), and help other processors
in constructing their parts of «:
e for each ¢ for which Eg(z) is not empty, send the components of « in this
Set;
e for each ¢ for which Bg(z) is not empty, receive the components of = in this
et
2. Compute yg;)l) = AT (p2)- _ o
3. Every processor p now has apart of y,.1), and it has to distribute components of
that to whoever owns those:

e for each ¢ for which Bg(l) is not empty, send the components of yg ;)1) in
this set;
e for each ¢ for which Eg(l) is not empty, receive the components of « in this
set, and add them to what is already stored in this component.
Notethat thisa gorithm generalizes the matrix and transpose matrix vector prod-
uct algorithms of section 3: for the regular product only steps 1 and 2 are needed then,

while the transpose product uses steps 2 and 3.

6 Conclusion

We have introduced basic concepts for describing communication in common linear
algebra operations on matrices stored on distributed processors. For the case of a one-
dimensional decomposition of the matrix the concepts of owned, local, border, and edge
variables have, athough defined strictly in terms of the matrix sparsity pattern, an easy
physica interpretation in terms of proximity of problem variables. The generalization
of these conceptsto arbitrary matrix partitioningshas no such interpretation. In fact, we
need to define the concepts of border and edge for both input and output in the matrix
vector product.

In a companion paper, [1], we will discuss data structures and agorithms for
specific realizations of the theoretical concepts introduced here.

References

[1] Victor Eijkhout and Roldan Pozo. Data structures and algorithms for distributed
sparse matrix operations. Technical Report in preparation, Computer Science
Department, University of Tennessee, Knoxville, 1994.

