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THE DESIGN AND IMPLEMENTATION OFTHE SCALAPACK LU, QR, AND CHOLESKY FACTORIZATION ROUTINESJaeyoung ChoiJack J. DongarraSusan OstrouchovAntoine P. PetitetDavid W. WalkerR. Clint WhaleyAbstractThis paper presents LU, QR and Cholesky factorization routines for dense matrices,which are important components of the ScaLAPACK library. The ScaLAPACK routinesare implemented assuming matrices have a block cyclic data distribution, and are builtusing the BLAS [12, 13, 16], the BLACS [3], and the PBLAS, which provide a simpli�edinterface around the PB-BLAS [7]. In implementing the ScaLAPACK routines, a ma-jor objective was to parallelize the corresponding sequential LAPACK using the BLAS,BLACS, and PBLAS as building blocks, leading to straightforward parallel implementa-tions without sacri�cing performance.We present the details of the implementation of the ScaLAPACK factorization routines,and performance and scalability results on the Intel iPSC/860, the Intel Touchstone Delta,and the Intel Paragon systems.
- v -



1. IntroductionCurrent advanced architecture computers are NUMA (Non-UniformMemory Access) machines.They possess hierarchical memories, in which accesses to data in the upper levels of the memoryhierarchy (registers, cache, and/or local memory) are faster than those in lower levels (sharedor o�-processor memory). One technique to more e�ciently exploit the power of such machinesis to develop algorithms that maximize reuse of data in the upper levels of memory. This canbe done by partitioning the matrix or matrices into blocks and by performing the computationwith matrix-vector or matrix-matrix operations on the blocks. A set of BLAS (Level 2 and3 BLAS) [12, 13] were proposed for that purpose. The Level 3 BLAS have been successfullyused as the building blocks of a number of applications, including LAPACK [1, 2], which is asuccessor of LINPACK [11] and EISPACK [17]. The LAPACK is a software library that usesblock-partitioned algorithms for performing dense and banded linear algebra computations onvector and shared memory computers.The scalable library we are developing for distributed-memory concurrent computers willbe fully compatible with the LAPACK library for vector and shared memory computers, and istherefore called ScaLAPACK (\Scalable LAPACK") [5]. ScaLAPACK also makes use of block-partitioned algorithms. It can be used to solve the \Grand Challenge" problems on massivelyparallel, distributed-memory, concurrent computers [4, 15].The Basic Linear Algebra Communication Subprograms (BLACS) [3] comprise a packagethat provides ease-of-use and portability for message-passing in parallel linear algebra applica-tions. The Parallel BLAS (PBLAS), which provide a simpli�ed interface around the ParallelBlock BLAS (PB-BLAS) [7], are intermediate level routines based on the sequential BLAS andthe BLACS. The PBLAS provide all the functionality supported by parallel versions of theLevel 2 and Level 3 BLAS on a restricted class of matrices having a block cyclic data distri-bution. The ScaLAPACK routines are built using the sequential BLAS, the BLACS, and thePBLAS modules. ScaLAPACK can be ported with minimal code modi�cation to any machineon which the BLAS and the BLACS are available.This paper presents the implementation details, performance, and scalability of the ScaLA-PACK routines for the LU, QR and Cholesky factorization of dense matrices. Throughout theimplementation of ScaLAPACK, we have tried to follow the LAPACK programming style byhiding most of the communications inside of the PBLAS and the ScaLAPACK auxiliary rou-tines. We want to demonstrate how to make it simple to implement the complicated parallelroutines without sacri�cing performance.Currently ScaLAPACK includes factorization routines with their solvers, routines to re�nethe solution to reduce the error, and routines to estimate the reciprocal of the condition number.ScaLAPACK also includes routines to reduce a real general matrix to Hessenberg or bidiagonal



- 2 -form, and a symmetric matrix to tridiagonal form. These reduction routines are considered inour separate paper [10].The design philosophy of the ScaLAPACK library is addressed in Section 2. In Section 3,we describe the ScaLAPACK factorization routines by comparing them with the correspond-ing LAPACK routines. Section 4 presents more details of the parallel implementation of theroutines and performance results on the Intel family of computers: the iPSC/860, the Touch-stone Delta, and the Paragon. In Section 5, the scalability of the algorithms on the systems isdemonstrated, and conclusions and future work are presented.2. Design PhilosophyIn ScaLAPACK, algorithms are presented in terms of processes, rather than the processors ofthe physical hardware. A process is an independent thread of control with its own nonshared,distinct memory. Processes communicate by pairwise point-to-point communication or by col-lective communication as necessary. In general there may be several processes on a physicalprocessor, in which case it is assumed that the runtime system handles the scheduling of pro-cesses. For example, execution of a process waiting to receive a message may be suspendedand another process scheduled, thereby overlapping communication and computation. In theabsence of such a sophisticated operating system, ScaLAPACK has been developed and testedfor the case of one process per processor.2.1. Block Cyclic Data DistributionThe way in which a matrix is distributed over the processes has a major impact on the loadbalance and communication characteristics of the concurrent algorithm, and hence largely de-termines its performance and scalability. The block cyclic distribution provides a simple, yetgeneral-purpose way of distributing a block-partitioned matrix on distributed memory concur-rent computers. The block cyclic data distribution is parameterized by the four numbers P , Q,r, and c, where P �Q is the process template and r� c is the block size. Blocks separated bya �xed stride in the column and row directions are assigned to the same process.Suppose we have M objects indexed by the integers 0; 1; � � �;M �1. In the block cyclic datadistribution the mapping of the global index, m, can be expressed as m 7�! hp; b; ii, where p isthe logical process number, b is the block number in process p, and i is the index within blockb to which m is mapped. Thus, if the number of data objects in a block is r, the block cyclicdata distribution may be written as follows:m 7�! DsmodP; j sP k ; mmodrEwhere s = bm=rc and P is the number of processes. The distribution of a block-partitioned
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(a) block distribution over 2 x 3 template
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(b) data distribution from processor point-of-viewFigure 1: A matrix with 12 � 12 blocks is distributed over a 2 � 3 process template. (a) Theshaded and unshaded areas represent di�erent templates. The numbered squares representblocks of elements, and the number indicates at which location in the process template theblock is stored { all blocks labeled with the same number are stored in the same process. Theslanted numbers, on the left and on the top of the matrix, represent indices of a row of blocksand of a column of blocks, respectively. (b) It is easier to see the distribution from the processpoint-of-view in order to implement algorithms. Each process has 6� 4 blocks.matrix can be regarded as the tensor product of two such mappings: one that distributes therows of the matrix over P processes, and another that distributes the columns over Q processes.That is, the matrix element indexed globally by (m;n) can be written as(m;n) 7�! h(p; q); (b; d); (i; j)i :Figure 1 (a) shows an example of the block cyclic data distribution, where a matrix with12� 12 blocks is distributed over a 2� 3 template. Therefore each process has 6� 4 blocks asin Figure 1 (b). The block cyclic data distribution is the only distribution supported by theScaLAPACK routines. The block cyclic data distribution can reproduce most data distributionsused in linear algebra computations. For example, one-dimensional distributions over rows orcolumns are obtained by choosing P or Q to be 1.The nonscattered decomposition (or pure block distribution) is just a special case of thecyclic distribution in which the block size is given by r = dM=P e and c = dN=Qe. That is,(m;n) 7�! D�jmr k ; jnc k� ; (0; 0); (mmod r; nmodc)E :Similarly a purely scattered decomposition (or two dimensional wrapped distribution) is anotherspecial case in which the block size is given by r = c = 1,(m;n) 7�! �(mmodP; nmodQ);��mP � ;� nQ�� ; (0; 0)� :



- 4 -In factorization routines, such as the LU, QR and Cholesky factorizations, in which thedistribution of work becomes uneven as the computation progresses, a larger block size resultsin greater load imbalance, but reduces the frequency of communication between processes.There is, therefore, a tradeo� between load imbalance and communication startup cost whichcan be controlled by varying the block size.In addition to the load imbalance that arises as distributed data are eliminated from acomputation, load imbalance may also arise due to computational \hot spots" where certainprocesses have more work to do between synchronization points than others. This is the case,for example, in the LU factorization algorithm in which partial pivoting is performed overrows, and only a single column of the process template is involved in the pivot search while theother processes are idle. Similarly, the evaluation of each block row of the U matrix requiresthe solution of a lower triangular system which involves only processes in a single row of theprocess template. The details of the implementation are described in Sections 3.1 and 4.1. Thee�ect of this type of load imbalance can be minimized through the choice of P and Q.2.2. Building BlocksThe ScaLAPACK routines are built out of a small number of modules. The most fundamental ofthese are the sequential BLAS, in particular the Level 2 and 3 BLAS, and the BLACS, whichperform common matrix-oriented communications tasks. ScaLAPACK can be ported withminimal code modi�cation to any machine on which the BLAS and the BLACS are available.The BLACS comprise a package that provides ease-of-use and portability for message-passing in a parallel linear algebra program. The BLACS e�ciently support not only point-to-point operations between processes on a logical two-dimensional process template, but alsocollective communications on such templates, or within just a template row or column.Future software for dense linear algebra on MIMD platforms could consist of calls to theBLAS for computation and calls to the BLACS for communication. Since both packages willhave been optimized for each particular platform, good performance should be achieved withrelatively little e�ort. The BLACS have been implemented for the Intel family of computers,the TMC CM-5, the CRAY T3D, the IBM SP1 and SP2, and for PVM.The Parallel BLAS (PBLAS) provide a simpli�ed interface to the Parallel Block BLAS(PB-BLAS) [7] { the PBLAS are essentially C wrappers around the PB-BLAS, which in turnare intermediate level routines based on the BLACS and the sequential BLAS. The PBLASprovide all the functionality supported by parallel, distributed versions of the Level 2 andLevel 3 BLAS, however, the PBLAS can only be used in operations on a restricted class ofmatrices having a block cyclic data distribution. These restrictions permit certain memoryaccess and communication optimizations that would not be possible (or would be di�cult) if
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Figure 2: Hierarchical view of ScaLAPACK.general-purpose distributed Level 2 and Level 3 BLAS were used [6, 8].The sequential BLAS, the BLACS, and the PBLAS are the modules from which the higherlevel ScaLAPACK routines are built. The PBLAS are used as the highest level building blocksfor implementing the ScaLAPACK library and provide the same ease-of-use and portability forScaLAPACK that the BLAS provide for LAPACK. Most of the Level 2 and 3 BLAS routines inLAPACK routines can be replaced with the corresponding PBLAS routines in ScaLAPACK, sothe source code of the top software layer of ScaLAPACK looks very similar to that of LAPACK.Thus, the ScaLAPACK code is modular, clear, and easy to read.Figure 2 shows a hierarchical view of ScaLAPACK. Main ScaLAPACK routines usually callonly the PBLAS, but the auxiliary ScaLAPACK routines may need to call the BLAS directlyfor local computations and the BLACS for communication among processes. In many cases theScaLAPACK library will be su�cient to build applications. However, more expert users maymake use of the lower level routines to build customized routines not provided in ScaLAPACK.2.3. Design PrinciplesScaLAPACK is designed to be the message-passing version of LAPACK. By maximizing thesize of the submatrices multiplied in each process, that is, by maximizing the data reuse in theupper level of memory, it is possible to maximize the performance of the sequential BLAS. Simi-larly, by maximizing the size of the submatrices communicated among processes, the frequencyof communication among processes can be reduced, thereby minimizing the communicationstartup cost. These two factors ensure that the ScaLAPACK routines have good performance



- 6 -and scalability characteristics.The ScaLAPACK routines perform correctly for a wide range of inputs. For example,in the process of computing the elementary Householder vector in the QR factorization, theEuclidean norm needs to be computed without causing over
ow and under
ow problems. APBLAS routine, PDNRM2, takes care of the problem (see Section 4.2). Similarly if the datamatrix is not positive de�nite in the Cholesky factorization, a process, which computes theCholesky factorization on a diagonal block, halts its computation, yet other processes wouldkeep waiting to �nish their jobs. This problem can be avoided by broadcasting a 
ag to otherprocesses to abort the computation (see Section 4.3).3. Factorization RoutinesIn this section, we �rst brie
y describe sequential, block-partitioned versions of the dense LU,QR, and Cholesky factorization routines of the LAPACK library. We use the right-lookingversions of the routines for implementing them on distributed-memory concurrent computers,since this minimizes data communication and distributes the computation across all processes[14]. Then the parallel versions of these routines will be described.For the implementation of the parallel block partitioned algorithms in ScaLAPACK, weassume that a matrix A is distributed over a P � Q process template with a block cyclicdistribution and a block size of nb � nb. Thus each column (or row) panel lies in one column(row) of the process template.3.1. LU FactorizationThe LU factorization applies a sequence of Gaussian eliminations to form A = LU , where Aand L are M � N matrices, and U is an N � N matrix. L is unit lower triangular (lowertriangular with 1's on the main diagonal), and U is upper triangular.At the k-th step of the computation, it is assumed that the m � n submatrix of A (m =M � k � nb, n = N � k � nb) is to be partitioned as follows,0@ A11 A12A21 A22 1A = 0@ L11 0L21 L22 1A0@ U11 U120 U22 1A= 0@ L11U11 L11U12L21U11 L21U12 + L22U22 1Awhere the block A11 is nb � nb, A12 is nb � (n � nb), A21 is (m � nb) � nb, and A22 is (m �nb)� (n � nb). L11 is a unit lower triangular matrix, and U11 is an upper triangular matrix.At �rst, a sequence of Gaussian eliminations is performed on the �rst m � nb panel of A
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AFigure 3: A snapshot of block LU factorization. It shows how the column panel, L11 and L21,and the row panel, U11 and U12, are computed, and how the trailing submatrix A22 is updated.The shaded areas represent data for which the corresponding computations are completed, thatis, no more changes for these data will occur.(i.e., A11 and A21). Once this is completed, the matrices L11, L21, and U11 are known, and wecan rearrange the block equations,U12 ( (L11)�1A12;~A22 ( A22 � L21U12 = L22U22:The LU factorization can be done by recursively applying the steps outlined above to the(m � nb) � (n � nb) matrix ~A22. Figure 3 shows a snapshot of the block LU factorization. Itshows how the column panel, L11 and L21, and the row panel, U11 and U12, are computed, andhow the trailing submatrix A22 is updated. In the �gure, the shaded areas represent data forwhich the corresponding computations are completed.The computation of the above steps in the LAPACK routine, DGETRF, involves the followingoperations:1. DGETF2: Apply the LU factorization on an m� nb column panel of A (i.e., A11 and A21).� [ Repeat nb times (i = 1; � � � ; nb) ]{ IDAMAX: �nd the (absolute) maximumelement of the i-th column and its location{ DSWAP: interchange the i-th row with the row which holds the maximum{ DSCAL: scale the i-th column of the matrix{ DGER: update the trailing submatrix2. DLASWP: Apply interchanges to the rest of columns.3. DTRSM: Compute the subdiagonal block of U ,



- 8 -U12 ( (L11)�1A12:4. DGEMM: Update the rest of the matrix, A22,~A22 ( A22 � L21U12 = L22U22:The corresponding parallel implementation of the ScaLAPACK routine, PDGETRF, proceedsas follows:1. PDGETF2: A column of processes performs the LU factorization on an m� nb panel of A(i.e., A11 and A21).� [ Repeat nb times (i = 1; � � � ; nb) ]{ PDAMAX: �nd the (absolute) maximum value of the i-th column and its location(pivot information will be stored on the column of processes){ PDLASWP: interchange the i-th row with the row which hold the maximum{ DSCAL: scale the i-th column of the matrix{ PDGER: broadcast the i-th row columnwise ((n � i) elements) and update thetrailing submatrix� Broadcast the pivot information rowwise2. PDLASWP: Apply interchanges to the rest of columns3. PDTRSM: L11 is broadcast along a row of the processes, which compute the row panel U12.4. PDGEMM: The column panel L21 and the row panel U12 are broadcast rowwise and colum-nwise, respectively. Then, processes update their local portions of the matrix, A22.3.2. QR FactorizationGiven anM�N matrixA, we seek the factorization A = QR, where Q is anM�M orthogonalmatrix, and R is an M � N upper triangular matrix. At the k-th step of the computation, wepartition this factorization to the m � n submatrix of A asA = � A1 A2 � = 0@ A11 A12A21 A22 1A = Q �0@ R11 R120 R22 1Awhere the block A11 is nb � nb, A12 is nb � (n � nb), A21 is (m � nb) � nb, and A22 is (m �nb)� (n�nb). A1 is an m�nb matrix, containing the �rst nb columns of the matrix A, and A2is an m � (n � nb) matrix, containing the last (n� nb) columns of A (that is, A1 = 0@ A11A21 1Aand A2 = 0@ A12A22 1A). R11 is a nb � nb upper triangular matrix.
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- 10 -~A( HTi A = (I � �ivivTi )A2. DLARFT: Compute the triangular factor T of the block re
ector Q3. DLARFB: Apply QT to the rest of the matrix from the left~A2 ( 0@ ~R12~R22 1A = QTA2 = �I � V TTV T �A2� DGEMM: W ( V TA2� DTRMM: W ( TTW� DGEMM: ~A2 ( 0@ ~R12~R22 1A = A2 � V WThe corresponding steps of the ScaLAPACK routine, PDGEQRF, are as follows:1. PDGEQR2: A column of processes performs the QR factorization on an m� nb panel of A(i.e., A1)� [ Repeat nb times (i = 1; � � � ; nb) ]{ PDLARFG: generate elementary re
ector vi and �i{ PDLARF: update the trailing submatrix2. PDLARFT: A column of processes, which has a sequence of the Householder vectors V ,computes T .3. PDLARFB: Apply QT to the rest of the matrix from the left� PDGEMM: The column of blocks V is broadcast rowwise and then saved in otherprocesses. The transpose of V is locally multiplied by A2, then the products areadded to one row of processes (W ( V TA2).� PDTRMM: T is broadcast rowwise and multiplied with the sum (W ( TTW ).� PDGEMM: The row of blocks W is broadcast columnwise. Now, processes have theirown portions of V and W , then they update the local portions of the matrix A( ~A2 ( 0@ ~R12~R22 1A = A2 � V W ).
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- 12 -In the right-looking version of the LAPACK routine, the computation of the above stepsinvolves the following operations:1. DPOTF2: Compute the Cholesky factorization of the diagonal block, A11.A11 ) L11LT112. DTRSM: Compute the subdiagonal block of L,L21 ( A21(LT11)�13. DSYRK: Update the rest of the matrix,~A22 ( A22 � L21LT21 = L22LT22The parallel implementation of the corresponding ScaLAPACK routine, PDPOTRF, proceedsas follows:1. PDPOTF2: A process Pi, which has the nb�nb diagonal block A11, performs the Choleskyfactorization of A11.� Pi performs A11 ) L11LT11, and sets a 
ag if A11 is not positive de�nite.� Pi broadcasts the 
ag to all other processes so that the computation can be stoppedif A11 is not positive de�nite.2. PDTRSM: L11 is broadcast along a column of the processes, which compute the column ofblocks of L21.3. PDSYRK: the column of blocks L21 is broadcast rowwise and then transposed. Now, pro-cesses have their own portions of L21 and LT21. They update their local portions of thematrix A22.4. Results and DiscussionWe have outlined the basic parallel implementation of the three factorization routines. In thissection, we describe a little more detail of the parallel implementation of the routines andperformance results on the Intel iPSC/860, Touchstone Delta, and Paragon systems. Furtherwe have investigated possible variations of the routines for the better performance.The Intel iPSC/860 is a parallel architecture with up to 128 processing nodes. Each nodeconsists of an i860 processor with 8 Mbytes of memory. The system is interconnected with ahypercube structure. The Delta system contains 512 i860-based computational nodes with 16Mbytes /node, connected with a 2-D mesh communication network. The Intel Paragon locatedat Oak Ridge National Laboratory has 512 computational nodes, interconnected with a 2-D
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oating point operations for an N � N matrix were assumed to be 2=3N3 for theLU factorization, 4=3N3 for the QR factorization, and 1=3N3 for the Cholesky factorization.4.1. LU FactorizationIn LAPACK, the block size can be arbitrarily chosen to achieve optimal performance of aroutine. But with the block cyclic data distribution in ScaLAPACK, the block size a�ectshow the matrix is distributed over the 2-D process grid, and hence impacts load balance and
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Figure 7: Performance of the LU factorization on the Intel iPSC/860, Delta, and Paragoncommunication overhead. In this section we investigate how the block distribution a�ects theimplementation of the ScaLAPACK routine.In LAPACK, the block size can be arbitrarily chosen to achieve optimal performance of aroutine. But with the block cyclic data distribution in ScaLAPACK, it has a physical meaninghow the matrix is distributed over the 2-D process grid, and it a�ects load balance and com-munication overhead. In this section we investigate the e�ects of the physical meaning of theblock size on the implementation of the ScaLAPACK.Figure 6 (a) shows a snapshot of the block LU factorization when the matrix is a fat matrix(M < N ). As explained in Section 3.1, DGETF2 (or PDGETF2) applies the LU factorization onthe m� n0 column panel of A, where n0 � nb. Let us consider the computation of the last rowof blocks carefully, where m � nb � n.DGETF2 takes n0 as MIN(m, n, nb), and applies the factorization on the m � m squareportion of the matrix (lightly shaded area), as shown in Figure 6 (b). The rest of the matrix(darkly shaded area) is updated later with DTRSM. However, it is assumed that the level-3PBLAS routine, PDTRSM, cannot deal with a matrix starting from the middle of the block[7]. As illustrated in Figure 6 (c), PDGETF2 in ScaLAPACK takes n0 as MIN(n, nb), and itcomputes the factorization on m � nb portion of the matrix. The rest of the matrix satis�esthe preassumption of using PDTRSM. Thus in ScaLAPACK, computations are generally alignedwith block boundaries.



- 15 -Figure 7 shows the performance of the ScaLAPACK LU factorization routine on the InteliPSC/860, the Delta, and the Paragon in G
ops (giga
ops per second) as a function of numberof processes. The optimal block size on the iPSC/860 and the Paragon was 8, and on the Deltawas 6, and the best performance was attained with a process aspect ratio, 1=4 � P=Q � 1=2.The LU routine attained 2.4 G
ops for a matrix size of N = 10000 on the iPSC/860; 12.0G
ops for N = 26000 on the Delta; and 18.8 G
ops for N = 36000 on the Paragon.The LU factorization routine is a little more complicated than the other routines because itrequires column pivoting. In other words, many possible di�erent implementations exist. Wedescribe brie
y other possible variations, which will destroy the modularity and simplicity ofthe implementation, but attain a slightly better performance.In the unblocked LU factorization routine (PDGETF2), after �nding the maximum value ofthe i-th column (PDAMAX), the i-th row will be exchanged with the pivot row containing themaximum value. Then the new i-th row is broadcast columnwise ((nb � i) elements) in PDGER.Instead, the communications of PDLASWP and PDGER can be combined. That is, the pivot rowis directly broadcast to other processes in the column, and the pivot row is replaced with thei-th row later.The column of processes, which has the m � nb column panel of A (i.e., A11 and A21),applies interchanges twice in order not to swap the data in the column panel (PDLASWP). Thesetwo separate communication processes also can be combined.Finally, after completing the factorization of the column panel (PDGETF2), the column ofprocesses, which has the column panel, broadcasts rowwise the pivot information for PDLASWP,L11 for PDTRSM, and L21 for PDGEMM. It is possible to combine the three messages to save thenumber of communications (or combine L11 and L21), and broadcast rowwise the combinedmessage.It takes a non-negligible time to broadcast the column panel ofL across the process template.It is possible to increase the overlap of communication with computation by broadcasting eachcolumn rowwise as soon as they are evaluated, rather than broadcasting all of the panel acrossafter factoring it. With these modi�ed communication schemes, the performance of the routinewill be increased, but in our experiments we have found the improvement to be less than 5 %.4.2. QR FactorizationIt is required to compute an Euclidean norm of the vector, A:i, to get the elementary House-holder vector vi. The sequential LAPACK routine, DLARFG, calls the Level-1 BLAS routine,DNRM2, which computes the norm without causing under
ow or over
ow problems. In the cor-responding parallel ScaLAPACK routine, PDLARFG, each process in the column of processes,which holds the vector, A:i, computes the global norm safely using the PDNRM2 routine.
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(a) LAPACK style (b) ScaLAPACK storing scheme of VFigure 8: The storage scheme of the lower trapezoidal matrix V in ScaLAPACK QR fac-torization. By broadcasting �V , which is a copy of V , but with 0's on the upper triangularand 1's on the main diagonal, the computation involving V can be done in one step. (a)V T �C = V T1 �C1 (DTRMM) + V T2 �C2 (DGEMM) (b) V T �C = �V �C (DGEMM)The triangular factor T of a block Householder re
ector V can be computed inside ofPDGEQR2, and the routine can generate T directly, instead of � . But keeping T might causeproblems if the block size is subsequently changed by redistributing the matrix. However aseparate routine PDLARFT needs only one communication over a column of processes to computeT on the 
y, so we chose the LAPACK implementation style to compute T , i. e., we store �and V , and generate T when necessary.The m� nb lower trapezoidal part of V , which is a sequence of the nb Householder vectors,will be accessed in the form, V = 0@ V1V2 1Awhere V1 is nb � nb unit lower triangular, and V2 is (m � nb) � nb. In the sequential routine,the multiplication involving V is divided into two steps: DTRMM with V1 and DGEMM with V2.However, in the parallel implementation, V will be broadcast rowwise to other processes, andall columns of processes have their own copies of V . The upper triangular part of V (includingthe main diagonal) will not be accessed by the other columns of processes. By sending �V ,which is a copy of V , but with 0's on the upper triangle and 1's on the main diagonal, themultiplications involving �V can be done in one step (DGEMM) as illustrated in Figure 8. Thisone step multiplication not only simpli�es the implementation of the routine (PDLARFB), butalso increases the overall performance of the routine (PDGEQRF).Figure 9 shows the performance of the QR factorization routine on the Intel family ofconcurrent computers. The optimal block size of nb = 6 was used on all the machines. Bestperformance was attained with an aspect ratio of 1=4 � P=Q � 1=2. The highest performancesof 3.1 G
ops for N = 10000 was obtained on the iPSC/860; 14.6 G
ops for N = 26000 on the
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Figure 9: Performance of the QR factorization on the Intel iPSC/860, Delta, and ParagonDelta; and 21.0 G
ops for N = 36000 on the Paragon.4.3. Cholesky FactorizationThe PDSYRK routine performs rank-nb updates on an (n�nb)� (n�nb) symmetric matrix A22with an (n�nb)�nb column of blocks L21. After broadcasting L21 rowwise and transposing it,each process updates its own portion of A22 with its own portion of L21 and LT21. The globallylower triangular matrix A22 is not stored in the lower triangular form in the local processesas shown in Figure 10, thus it is complicated to update. The simplest way to do this is torepeatedly update one column of blocks of A22; but if the block size is small, this updatingprocess will not be e�cient.It is possible, and more e�cient, to update several column blocks at a time. It is desirableto compute a multiple of LCM=Q blocks simultaneously since the processes easily determinetheir own physical data distribution of the lower triangular matrix of A, where LCM is theleast common multiple of P and Q. Figures 10 (b) and (c) show how to update 2 (= LCM=Q)and 4 (= 2 � LCM=Q) columns of blocks of A at a time, respectively. In the argument listof the PDSYRK routine, MULLEN speci�es an approximate length of multiplication to updateA22 e�ciently. The multiple factor is computed by k = dMULLEN=((LCM=Q) � nb)e, andk � (LCM=Q) columns of blocks are updated simultaneously inside of the routine. For details,see [7]. The optimum number is determined by processor characteristics as well as the size of
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Figure 11: Performance of the Cholesky factorization as a function of the block size on theIntel Delta (N = 10000). The best performance was attained with the block size of nb = 24 on8� 16 and 16� 16 processes, but was quite insensitive to block size for nb � 8.
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Figure 12: Performance of the Cholesky factorization on the Intel iPSC/860, Delta, and Paragon



- 20 -the matrix and the block size. The optimum number was found to be about 40 on the InteliPSC/860 and Delta computers.The e�ect of the block size on the performance of the Cholesky factorization is shown inFigure 11 on 8 � 16 and 16 � 16 processors of the Intel Delta. The best performance wasobtained at the block size of nb = 24, but relatively good performance could be expected withthe block size of nb � 6, since the routine updates multiple column panels at a time. Withnb = 24, and MULLEN = 40, the routine updates 2 (= dMULLEN=nbe = d40=24e, whereLCM = Q) column panels simultaneously.Figure 12 shows the performance of the Cholesky factorization routine. The best perfor-mance was attained with the aspect ratio of 1=2 � P=Q � 1. The routine ran at 1.8 G
opsfor N = 9600 on the iPSC/860; 10.5 G
ops for N = 26000 on the Delta; and 16.9 G
ops forN = 36000 on the Paragon.If A is not positive de�nite, the Cholesky factorization should be terminated in the middleof the computation. As outlined in Section 3.3, a process Pi computes the Cholesky factor L11from A11. After computing L11, Pi broadcasts a 
ag to other processes so that all processesstop the computation if A11 is not positive de�nite. If A is guaranteed to be positive de�nite,the process of broadcasting the 
ag can be skipped, and another performance increase can beexpected.5. Scalability and ConclusionsThe performance of the three factorization routines on 128 nodes of the iPSC/860 and 512 nodesof the Delta and the Paragon were compared in Figures 13, 14, and 15, respectively. Generallythe QR factorization routine has the best performance since the updating process of QTA =(I � V TV T )A is rich in matrix-matrix operation, and the number of 
oating point operationsis the largest (4=3N3). The Cholesky factorization involves operations on a symmetric matrix,and the total number of 
oating point operations (1=3N3) is less than the other routines, thusits performance is poorer. The LU factorization routine seems to have more communicationoverhead since the routine contains column pivoting and row swapping operations. On theDelta, which has faster communication than the iPSC/860, the LU routine is slower than theCholesky routine for small problem size (N � 12000).The performance results in Figures 7, 9, and 12 can be used to assess the scalability of thefactorization routines. In general, concurrent e�ciency, �, is de�ned as the concurrent speedupper process. That is, for the given problem size, N , on the number of processes used, Np,�(N;Np) = 1Np Ts(N )Tp(N;Np)where Tp(N;Np) is the time for a problem of size N to run on Np processes, and Ts(N ) is the
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Figure 13: Performance of factorization routines on Intel iPSC/860 (128 nodes)
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Figure 14: Performance of factorization routines on Intel Delta (512 nodes)
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Figure 15: Performance of factorization routines on Intel Paragon (512 nodes)time to run on one process using the best sequential algorithm. Another approach to investigatethe e�ciency is to see how the performance per process degrades as the number of processesincreases for a �xed grain size, i. e., by plotting isogranularity curves in the (Np; G) plane,where G is the performance. SinceG / Ts(N )Tp(N;Np) = Np �(N;Np);the scalability for memory-constrained problems can readily be accessed by the extent to whichthe isogranularity curves di�er from linearity.Figures 16, 17, and 18 show the isogranularity plots for the ScaLAPACK factorizationroutines on the iPSC/860, the Delta, and the Paragon, respectively. The matrix size perprocess is �xed at 5 Mbytes on the iPSC/860, 9 Mbytes on the Delta, and 5 and 20 Mbytes onthe Paragon. The linearity of the plots in the �gures indicates that the ScaLAPACK routineshave good scalability characteristics on these systems.We have demonstrated that the LAPACK factorization routines can be parallelized fairlyeasily to the corresponding ScaLAPACK routines with a small set of low-level modules, namelythe sequential BLAS, the BLACS, and the PBLAS. The PBLAS are particularly useful fordeveloping and implementing a parallel dense linear algebra library relying on the block cyclicdata distribution. In general, the Level 2 and 3 BLAS routines in the LAPACK code canbe replaced on a one-for-one basis by the corresponding PBLAS routines. Parallel routinesimplemented with the PBLAS have good performance, since the computation performed by
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Figure 16: Scalability of factorization routines on the Intel iPSC/860 (5 Mbytes/node)
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Figure 17: Scalability of factorization routines on the Intel Delta (9 Mbytes/node)
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Figure 18: Scalability of factorization routines on the Intel Paragon (5, 20 Mbytes/node)each process within PBLAS routines can be itself performed using the assembly-coded sequentialBLAS.There is a tradeo� between performance and software design considerations, such as modu-larity and clarity, in designing and implementing software libraries. As described in Section 4.1,it is possible to combine communications to reduce the communication costs in several places,such as in factorizing the column panel (PDLASWP and PDGER), in swapping data in the columnpanel (PDGER), and in broadcasting the column panel (PDTRSM and PDGEMM), and to replacethe high level routines, such as the PBLAS, by calls to the lower level routines, such as thesequential BLAS and the BLACS. However, we have found that the performance gain is toosmall to justify the resulting loss of software modularity.We have shown that the ScaLAPACK factorization routines have good performance andscalability on the Intel iPSC/860, the Delta, and the Paragon systems. Similar studies will beperformed on recent machines, including the TMC CM-5, the Cray T3D, and the IBM SP1and SP2.Currently the ScaLAPACK library includes not only the LU, QR, and Cholesky factorizationroutines, but also factorization solvers, routines to re�ne the solutions to reduce error, androutines to estimate the reciprocal of the condition number. The ScaLAPACK routines arecurrently available through netlib only for double precision real data, but in the near future,we intend to release routines for other numeric data types, such as single precision real andcomplex, and double precision complex. To obtain the routines, and the ScaLAPACK ReferenceManual [9], send the message \send index from scalapack" to netlib@ornl.gov.
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