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Abstract

This paper presents LU, QR and Cholesky factorization routines for dense matrices,
which are important components of the ScaLAPACK library. The ScaLAPACK routines
are implemented assuming matrices have a block cyclic data distribution, and are built
using the BLAS [12, 13, 16], the BLACS [3], and the PBLAS, which provide a simplified
interface around the PB-BLAS [7]. In implementing the ScaLAPACK routines, a ma-
jor objective was to parallelize the corresponding sequential LAPACK using the BLAS,
BLACS, and PBLAS as building blocks, leading to straightforward parallel implementa-
tions without sacrificing performance.

We present the details of the implementation of the ScaLAPACK factorization routines,
and performance and scalability results on the Intel iPSC/860, the Intel Touchstone Delta,

and the Intel Paragon systems.



1. Introduction

Current advanced architecture computers are NUMA (Non-Uniform Memory Access) machines.
They possess hierarchical memories, in which accesses to data in the upper levels of the memory
hierarchy (registers, cache, and/or local memory) are faster than those in lower levels (shared
or off-processor memory). One technique to more efficiently exploit the power of such machines
is to develop algorithms that maximize reuse of data in the upper levels of memory. This can
be done by partitioning the matrix or matrices into blocks and by performing the computation
with matrix-vector or matrix-matrix operations on the blocks. A set of BLAS (Level 2 and
3 BLAS) [12, 13] were proposed for that purpose. The Level 3 BLAS have been successfully
used as the building blocks of a number of applications, including LAPACK [1, 2], which is a
successor of LINPACK [11] and EISPACK [17]. The LAPACK is a software library that uses
block-partitioned algorithms for performing dense and banded linear algebra computations on
vector and shared memory computers.

The scalable library we are developing for distributed-memory concurrent computers will
be fully compatible with the LAPACK library for vector and shared memory computers, and is
therefore called ScaLAPACK (“Scalable LAPACK?”) [5]. ScaLAPACK also makes use of block-
partitioned algorithms. It can be used to solve the “Grand Challenge” problems on massively
parallel, distributed-memory, concurrent computers [4, 15].

The Basic Linear Algebra Communication Subprograms (BLACS) [3] comprise a package
that provides ease-of-use and portability for message-passing in parallel linear algebra applica-
tions. The Parallel BLAS (PBLAS), which provide a simplified interface around the Parallel
Block BLAS (PB-BLAS) [7], are intermediate level routines based on the sequential BLAS and
the BLACS. The PBLAS provide all the functionality supported by parallel versions of the
Level 2 and Level 3 BLAS on a restricted class of matrices having a block cyclic data distri-
bution. The ScaLAPACK routines are built using the sequential BLAS, the BLACS, and the
PBLAS modules. ScaLAPACK can be ported with minimal code modification to any machine
on which the BLAS and the BLACS are available.

This paper presents the implementation details, performance, and scalability of the ScalLA-
PACK routines for the LU, QR and Cholesky factorization of dense matrices. Throughout the
implementation of ScaLAPACK, we have tried to follow the LAPACK programming style by
hiding most of the communications inside of the PBLAS and the ScalLAPACK auxiliary rou-
tines. We want to demonstrate how to make it simple to implement the complicated parallel
routines without sacrificing performance.

Currently ScaLAPACK includes factorization routines with their solvers, routines to refine
the solution to reduce the error, and routines to estimate the reciprocal of the condition number.

ScaLAPACK also includes routines to reduce a real general matrix to Hessenberg or bidiagonal



form, and a symmetric matrix to tridiagonal form. These reduction routines are considered in
our separate paper [10].

The design philosophy of the ScaLAPACK library is addressed in Section 2. In Section 3,
we describe the ScaLAPACK factorization routines by comparing them with the correspond-
ing LAPACK routines. Section 4 presents more details of the parallel implementation of the
routines and performance results on the Intel family of computers: the iPSC/860, the Touch-
stone Delta, and the Paragon. In Section b, the scalability of the algorithms on the systems is

demonstrated, and conclusions and future work are presented.

2. Design Philosophy

In ScaLAPACK, algorithms are presented in terms of processes, rather than the processors of
the physical hardware. A process is an independent thread of control with its own nonshared,
distinct memory. Processes communicate by pairwise point-to-point communication or by col-
lective communication as necessary. In general there may be several processes on a physical
processor, in which case it is assumed that the runtime system handles the scheduling of pro-
cesses. For example, execution of a process waiting to receive a message may be suspended
and another process scheduled, thereby overlapping communication and computation. In the
absence of such a sophisticated operating system, ScaLAPACK has been developed and tested

for the case of one process per processor.

2.1. Block Cyclic Data Distribution

The way in which a matrix is distributed over the processes has a major impact on the load
balance and communication characteristics of the concurrent algorithm, and hence largely de-
termines its performance and scalability. The block cyclic distribution provides a simple, yet
general-purpose way of distributing a block-partitioned matrix on distributed memory concur-
rent computers. The block cyclic data distribution is parameterized by the four numbers P, @,
r, and ¢, where P x ) is the process template and r x ¢ is the block size. Blocks separated by
a fixed stride in the column and row directions are assigned to the same process.

Suppose we have M objects indexed by the integers 0,1,--- M — 1. In the block cyclic data
distribution the mapping of the global index, m, can be expressed as m — (p, b, ¢), where p is
the logical process number, b 1s the block number in process p, and ¢ 1s the index within block
b to which m is mapped. Thus, if the number of data objects in a block is r, the block cyclic

data distribution may be written as follows:
m—> <5modP, {%J , mmodr>

where s = |m/r| and P is the number of processes. The distribution of a block-partitioned
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(a) block distribution over 2 x 3 template (b) data distribution from processor point-of-view

Figure 1: A matrix with 12 x 12 blocks is distributed over a 2 x 3 process template. (a) The
shaded and unshaded areas represent different templates. The numbered squares represent
blocks of elements, and the number indicates at which location in the process template the
block is stored — all blocks labeled with the same number are stored in the same process. The
slanted numbers, on the left and on the top of the matrix, represent indices of a row of blocks
and of a column of blocks, respectively. (b) Tt is easier to see the distribution from the process
point-of-view in order to implement algorithms. Each process has 6 x 4 blocks.

matrix can be regarded as the tensor product of two such mappings: one that distributes the
rows of the matrix over P processes, and another that distributes the columns over @) processes.

That is, the matrix element indexed globally by (m,n) can be written as

(m’ n) — <(pa Q)a (b’ d)’ (Z,_])>

Figure 1 (a) shows an example of the block cyclic data distribution, where a matrix with
12 x 12 blocks is distributed over a 2 x 3 template. Therefore each process has 6 x 4 blocks as
in Figure 1 (b). The block cyclic data distribution is the only distribution supported by the
ScalLAPACK routines. The block cyclic data distribution can reproduce most data distributions
used in linear algebra computations. For example, one-dimensional distributions over rows or
columns are obtained by choosing P or @) to be 1.

The nonscattered decomposition (or pure block distribution) is just a special case of the
cyclic distribution in which the block size is given by » = [M/P] and ¢ = [N/Q]. That is,

(m,n) — < QﬂJ , {EJ) , (0,0), (mmodr, nmodc)> .

r c

Similarly a purely scattered decomposition (or two dimensional wrapped distribution) is another

special case in which the block size is given by r = ¢ = 1,

(m,n) — <(mmodP, nmod Q), Q%J , {%D , (0,0)>.



In factorization routines, such as the LU, QR and Cholesky factorizations, in which the
distribution of work becomes uneven as the computation progresses, a larger block size results
in greater load imbalance, but reduces the frequency of communication between processes.
There is, therefore, a tradeoff between load imbalance and communication startup cost which
can be controlled by varying the block size.

In addition to the load imbalance that arises as distributed data are eliminated from a
computation, load imbalance may also arise due to computational “hot spots” where certain
processes have more work to do between synchronization points than others. This is the case,
for example, in the LU factorization algorithm in which partial pivoting is performed over
rows, and only a single column of the process template is involved in the pivot search while the
other processes are idle. Similarly, the evaluation of each block row of the U matrix requires
the solution of a lower triangular system which involves only processes in a single row of the
process template. The details of the implementation are described in Sections 3.1 and 4.1. The

effect of this type of load imbalance can be minimized through the choice of P and Q.

2.2. Building Blocks

The ScaLAPACK routines are built out of a small number of modules. The most fundamental of
these are the sequential BLAS, in particular the Level 2 and 3 BLAS, and the BLACS, which
perform common matrix-oriented communications tasks. ScaLAPACK can be ported with
minimal code modification to any machine on which the BLAS and the BLACS are available.

The BLACS comprise a package that provides ease-of-use and portability for message-
passing in a parallel linear algebra program. The BLACS efficiently support not only point-
to-point operations between processes on a logical two-dimensional process template, but also
collective communications on such templates, or within just a template row or column.

Future software for dense linear algebra on MIMD platforms could consist of calls to the
BLAS for computation and calls to the BLACS for communication. Since both packages will
have been optimized for each particular platform, good performance should be achieved with
relatively little effort. The BLACS have been implemented for the Intel family of computers,
the TMC CM-5, the CRAY T3D, the IBM SP1 and SP2, and for PVM.

The Parallel BLAS (PBLAS) provide a simplified interface to the Parallel Block BLAS
(PB-BLAS) [7] — the PBLAS are essentially C wrappers around the PB-BLAS, which in turn
are intermediate level routines based on the BLACS and the sequential BLAS. The PBLAS
provide all the functionality supported by parallel, distributed versions of the Level 2 and
Level 3 BLAS, however, the PBLAS can only be used in operations on a restricted class of
matrices having a block cyclic data distribution. These restrictions permit certain memory

access and communication optimizations that would not be possible (or would be difficult) if
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Figure 2: Hierarchical view of ScaLAPACK.

general-purpose distributed Level 2 and Level 3 BLAS were used [6, 8].

The sequential BLAS, the BLACS, and the PBLAS are the modules from which the higher
level ScalLAPACK routines are built. The PBLAS are used as the highest level building blocks
for implementing the ScaLAPACK library and provide the same ease-of-use and portability for
ScaLAPACK that the BLAS provide for LAPACK. Most of the Level 2 and 3 BLAS routines in
LAPACK routines can be replaced with the corresponding PBLAS routines in ScaLAPACK, so
the source code of the top software layer of ScaLAPACK looks very similar to that of LAPACK.
Thus, the ScaLAPACK code is modular, clear, and easy to read.

Figure 2 shows a hierarchical view of ScaLAPACK. Main ScaLAPACK routines usually call
only the PBLAS, but the auxiliary ScaLAPACK routines may need to call the BLAS directly
for local computations and the BLACS for communication among processes. In many cases the
ScaLAPACK library will be sufficient to build applications. However, more expert users may

make use of the lower level routines to build customized routines not provided in ScaLAPACK.

2.3. Design Principles

ScalLAPACK is designed to be the message-passing version of LAPACK. By maximizing the
size of the submatrices multiplied in each process, that is, by maximizing the data reuse in the
upper level of memory, it is possible to maximize the performance of the sequential BLAS. Simi-
larly, by maximizing the size of the submatrices communicated among processes, the frequency
of communication among processes can be reduced, thereby minimizing the communication

startup cost. These two factors ensure that the ScaLAPACK routines have good performance



and scalability characteristics.

The ScaLAPACK routines perform correctly for a wide range of inputs. For example,
in the process of computing the elementary Householder vector in the QR factorization, the
Euclidean norm needs to be computed without causing overflow and underflow problems. A
PBLAS routine, PDNRM2, takes care of the problem (see Section 4.2). Similarly if the data
matrix is not positive definite in the Cholesky factorization, a process, which computes the
Cholesky factorization on a diagonal block, halts its computation, yet other processes would
keep waiting to finish their jobs. This problem can be avoided by broadcasting a flag to other

processes to abort the computation (see Section 4.3).

3. Factorization Routines

In this section, we first briefly describe sequential, block-partitioned versions of the dense LU,
QR, and Cholesky factorization routines of the LAPACK library. We use the right-looking
versions of the routines for implementing them on distributed-memory concurrent computers,
since this minimizes data communication and distributes the computation across all processes
[14]. Then the parallel versions of these routines will be described.

For the implementation of the parallel block partitioned algorithms in ScaLAPACK, we
assume that a matrix A is distributed over a P x ) process template with a block cyclic
distribution and a block size of ny x np. Thus each column (or row) panel lies in one column

(row) of the process template.

3.1. LU Factorization

The LU factorization applies a sequence of Gaussian eliminations to form A = LU, where A
and L are M x N matrices, and U is an N x N matrix. L is unit lower triangular (lower
triangular with 1’s on the main diagonal), and U is upper triangular.

At the k-th step of the computation, it is assumed that the m x n submatrix of A (m =
M —k-np,n =N —k-nyp) is to be partitioned as follows,

A A B Ly 0 Ui Uiz
Aa1 Aas Loy Lo 0 U
Li1Uy L11Us2

Lo1Ui1 LogUjiz 4 LagUss

where the block A1y is np X np, A1z is np X (0 — np), Az is (m — np) X np, and Ase is (m —
ny) X (n —np). L1y is a unit lower triangular matrix, and Uy; is an upper triangular matrix.

At first, a sequence of Gaussian eliminations is performed on the first m X n, panel of A



iiﬂ, 77777777 : ki
Lo \ Lo }
|
\
|
|

Figure 3: A snapshot of block LU factorization. It shows how the column panel, Li; and Loy,
and the row panel, U1y and Uys, are computed, and how the trailing submatrix Ass is updated.
The shaded areas represent data for which the corresponding computations are completed, that
is, no more changes for these data will occur.

(i.e., A1y and Asp). Once this is completed, the matrices L1y, La1, and Uyy are known, and we

can rearrange the block equations,

Uis <= (L11) "t A,
Agy & Agg — LoyUss = LaglUss.

The LU factorization can be done by recursively applying the steps outlined above to the
(m —np) X (n — np) matrix Ay, Figure 3 shows a snapshot of the block LU factorization. It
shows how the column panel, L1; and Lo, and the row panel, U1 and Ujs, are computed, and
how the trailing submatrix Ass is updated. In the figure, the shaded areas represent data for
which the corresponding computations are completed.

The computation of the above steps in the LAPACK routine, DGETRF, involves the following

operations:
1. DGETF2: Apply the LU factorization on an m x np column panel of A (i.e., A1; and Agq).

o [ Repeat np times (i = 1,-- -, np) ]

— IDAMAX: find the (absolute) maximum element of the ¢-th column and its location

DSWAP: interchange the ¢-th row with the row which holds the maximum
— DSCAL: scale the ¢-th column of the matrix

— DGER: update the trailing submatrix

2. DLASWP: Apply interchanges to the rest of columns.

3. DTRSM: Compute the subdiagonal block of U,



Uiz < (L11) "t Ao,
4. DGEMM: Update the rest of the matrix, Ass,

Agy <= Agy — LoyUysy = LogUss.

The corresponding parallel implementation of the ScaLAPACK routine, PDGETRF, proceeds

as follows:

1. PDGETF2: A column of processes performs the LU factorization on an m X ng panel of A

(i.e., A11 and A21)~

o [ Repeat np times (i = 1,-- -, np) ]
— PDAMAX: find the (absolute) maximum value of the é-th column and its location
(pivot information will be stored on the column of processes)
— PDLASWP: interchange the i-th row with the row which hold the maximum
— DSCAL: scale the ¢-th column of the matrix
— PDGER: broadcast the i-th row columnwise ((n — ¢) elements) and update the
trailing submatrix

e Broadcast the pivot information rowwise

2. PDLASWP: Apply interchanges to the rest of columns
3. PDTRSM: L1, is broadcast along a row of the processes, which compute the row panel Uys.

4. PDGEMM: The column panel Ly; and the row panel U;5 are broadcast rowwise and colum-

nwise, respectively. Then, processes update their local portions of the matrix, Ags.

3.2. QR Factorization

Given an M x N matrix A, we seek the factorization A = QR, where @) is an M x M orthogonal
matrix, and R is an M x N upper triangular matrix. At the k-th step of the computation, we

partition this factorization to the m x n submatrix of A as

AI(A1 A ): A Ap —0. Ry Ry
Asr Ags 0 Ro

where the block A1y is np X np, A1z is np X (0 — np), Az is (m — np) X np, and Ase is (m —
np) X (n—np). Ay is an m x np matrix, containing the first ny columns of the matrix A, and A,
A

is an m x (n — np) matrix, containing the last (n — np) columns of A (that is, A; =
Aoy

A12

and A, = ). Ri1is a np X np upper triangular matrix.
Ass
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Figure 4: A snapshot of block QR factorization. During the computation, the sequence of the
Householder vectors V' is computed, and the row panel R1; and Rj2, and the trailing submatrix
Asy are updated.

A QR factorization is performed on the first m x ny panel of A (i.e., A1). In practice, @ is
computed by applying a series of Householder transformations to A; of the form, H; = I—rv;vF
where ¢ = 1,---,np. The vector v; 1s of length m with 0’s for the first ¢ — 1 entries and 1 for
the i-th entry, and 7; = 2/(vf v;). During the QR factorization, the vector v; overwrites the
entries of A below the diagonal, and 7; is stored in a vector. Furthermore, it can be shown that
Q=HHy---Hp,=1— VTVT, where T is ny X ng, upper triangular and the ¢-th column of V'
equals v;. This is indeed a block version of the QR factorization, and is rich in matrix-matrix
operations.

The block equation can be rearranges as

A= M) e ™) 2gra,- (I—VTTVT) 4s.
Agp Ry
A snapshot of the block QR factorization is shown in Figure 4. During the computation, the
sequence of the Householder vectors V' is computed, and the row panel Ry; and Ris, and the
trailing submatrix As» are updated. The factorization can be done by recursively applying the
steps outlined above to the (m — np) x (n — np) matrix Aogs.
The computation of the above steps of the LAPACK routine, DGEQRF, involves the following

operations:
1. DGEQR2: Compute the QR factorization on an m x np panel of A (i.e., A;)

o [ Repeat np times (i = 1,-- -, np) ]

— DLARFG: generate the elementary reflector v; and 7;

— DLARF: update the trailing submatrix
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A<= HEA = (I —nvivl)A
2. DLARFT: Compute the triangular factor 7" of the block reflector @

3. DLARFB: Apply Q7 to the rest of the matrix from the left

. R
Aom | 7 ]| =QTAs = (1= VTITVT) 4y
Ry

e DGEMM: W <= VT A,

e DTRMM: W <= TTW

~ Ris
e DGEMM: A5 < - =A,— VW

Rao

The corresponding steps of the ScaLAPACK routine, PDGEQRF, are as follows:

1. PDGEQR2: A column of processes performs the QR factorization on an m x n; panel of A
(i.e., Al)

o [ Repeat np times (i = 1,-- -, np) ]

— PDLARFG: generate elementary reflector v; and 7;

— PDLARF: update the trailing submatrix

2. PDLARFT: A column of processes, which has a sequence of the Householder vectors V,

computes 7.

3. PDLARFB: Apply Q7 to the rest of the matrix from the left

e PDGEMM: The column of blocks V is broadcast rowwise and then saved in other
processes. The transpose of V is locally multiplied by As, then the products are
added to one row of processes (W < V7T A,).

e PDTRMU: T is broadcast rowwise and multiplied with the sum (W < TTW).

e PDGEMM: The row of blocks W is broadcast columnwise. Now, processes have their

own portions of V and W, then they update the local portions of the matrix A
- R
(Ay= | .2 | =4,—vW).
Ry



- 11 -

1

| — |

|
| |
|
Azf A Ly AR
\ |
\ \
| |

Figure 5: A snapshot of block Cholesky factorization shows how the column panel L (L1 and
La1) is computed and how the trailing submatrix Ass is updated.

3.3. Cholesky Factorization

Cholesky factorization factors an N x N, symmetric, positive-definite matrix A into the product
of a lower triangular matrix L and its transpose, i.e., A = LLT (or A = UTU, where U is upper
triangular). Tt is assumed that the lower triangler portion of A is stored in the lower triangle
of a two-dimensional array and that the computed elements of L overwrite the given elements

of A. At the k-th step, we partition the n x n matrices A, L, and LT, and write the system as

An AL\ Lnoo0 XA
Asr Aas Loy Lo 0 L,
L LYy L L3,

Loy LT, Loy LE + Lo LL,

where the block Ayp is ny X np, Agy is (n — np) X np, and Asz is (n — np) X (n— np). L1y and
Lo are lower triangular.

The block-partitioned form of Cholesky factorization may be inferred inductively as follows.
If we assume that L1, the lower triangular Cholesky factor of Ay1, is known, we can rearrange

the block equations,

Loy < Ay (L)1

Azz = A22 — LZngl = Lzngz.

A snapshot of the block Cholesky factorization algorithm in Figure 5 shows how the column
panel L (L1 and Lsp) is computed and how the trailing submatrix Asqs is updated. The
factorization can be done by recursively applying the steps outlined above to the (n — ny) x

(n — np) matrix Ags.
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In the right-looking version of the LAPACK routine, the computation of the above steps

involves the following operations:

1. DPOTF2: Compute the Cholesky factorization of the diagonal block, A;1.

A= LllL?l

2. DTRSM: Compute the subdiagonal block of L,

Loy <= Aar (L))}

3. DSYRK: Update the rest of the matrix,

Agy <= Agy — Loy LY, = Lo LT,

The parallel implementation of the corresponding ScaLAPACK routine, PDPOTRF, proceeds

as follows:

1. PDPOTF2: A process P;, which has the ny x np diagonal block A;;, performs the Cholesky

factorization of A;;.

e P; performs A = LllLﬂ, and sets a flag if Aj; is not positive definite.

e P; broadcasts the flag to all other processes so that the computation can be stopped

if A1y 1s not positive definite.

2. PDTRSM: Lq; 18 broadcast along a column of the processes, which compute the column of

blocks of Laj.

3. PDSYRK: the column of blocks Ly is broadcast rowwise and then transposed. Now, pro-
cesses have their own portions of Loy and LT,. They update their local portions of the

matrix Ass.

4. Results and Discussion

We have outlined the basic parallel implementation of the three factorization routines. In this
section, we describe a little more detail of the parallel implementation of the routines and
performance results on the Intel iPSC/860, Touchstone Delta, and Paragon systems. Further
we have investigated possible variations of the routines for the better performance.

The Intel iPSC/860 is a parallel architecture with up to 128 processing nodes. Each node
consists of an 1860 processor with 8 Mbytes of memory. The system is interconnected with a
hypercube structure. The Delta system contains 512 1860-based computational nodes with 16
Mbytes /node, connected with a 2-D mesh communication network. The Intel Paragon located

at Oak Ridge National Laboratory has 512 computational nodes, interconnected with a 2-D
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Figure 6: A snapshot of the block LU factorization when the matrix is a fat matrix (M < N)

mesh. Each node has 32 Mbytes of memory and two 1860XP processors, one for computation
and the other for communication. The Intel iPSC/860 and Delta machines both use the same
40MHz 1860 processor, but the Delta has a higher communication bandwidth. Significantly
higher performance can be attained on the Paragon system, since it uses the faster 50 MHz
1860X P processor and has a larger communication bandwidth.

On each node all computation was performed in double precision arithmetic, using assembly-
coded BLAS (Level 1, 2, and 3), provided by Intel. Communication was performed using
the BLACS package, customized for the Intel systems. Most computation by the BLAS and
communication by the BLACS are hidden within the PBLAS.

The optimal block size of a routine could be determined by the algorithm itself and charac-
teristics of the target computer system, such as the ratio of computation speed over communi-
cation speed and the process mesh aspect ratio of P/@. The block size, ng, of the routines was
selected to produce the best performance of the routines for the given target machines. The
numbers of floating point operations for an N x N matrix were assumed to be 2/3 N3 for the

LU factorization, 4/3 N2 for the QR factorization, and 1/3 N3 for the Cholesky factorization.

4.1. LU Factorization

In LAPACK, the block size can be arbitrarily chosen to achieve optimal performance of a
routine. But with the block cyclic data distribution in ScaLAPACK, the block size affects

how the matrix is distributed over the 2-D process grid, and hence impacts load balance and
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Figure 7: Performance of the LU factorization on the Intel iPSC/860, Delta, and Paragon

communication overhead. In this section we investigate how the block distribution affects the
implementation of the ScalLAPACK routine.

In LAPACK, the block size can be arbitrarily chosen to achieve optimal performance of a
routine. But with the block cyclic data distribution in ScaLAPACK, it has a physical meaning
how the matrix is distributed over the 2-D process grid, and it affects load balance and com-
munication overhead. In this section we investigate the effects of the physical meaning of the
block size on the implementation of the ScaLAPACK.

Figure 6 (a) shows a snapshot of the block LU factorization when the matrix is a fat matrix
(M < N). As explained in Section 3.1, DGETF2 (or PDGETF2) applies the LU factorization on
the m x n/ column panel of A, where n’ < n;. Let us consider the computation of the last row
of blocks carefully, where m < n, < n.

DGETF2 takes n’ as MIN(m, n, np), and applies the factorization on the m x m square
portion of the matrix (lightly shaded area), as shown in Figure 6 (b). The rest of the matrix
(darkly shaded area) is updated later with DTRSM. However, it is assumed that the level-3
PBLAS routine, PDTRSH, cannot deal with a matrix starting from the middle of the block
[7]. As illustrated in Figure 6 (c), PDGETF2 in ScaLAPACK takes n’ as MIN(n, np), and it
computes the factorization on m x np portion of the matrix. The rest of the matrix satisfies
the preassumption of using PDTRSM. Thus in ScalLAPACK, computations are generally aligned

with block boundaries.
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Figure 7 shows the performance of the ScaLAPACK LU factorization routine on the Intel
iPSC/860, the Delta, and the Paragon in Gflops (gigaflops per second) as a function of number
of processes. The optimal block size on the iPSC/860 and the Paragon was 8, and on the Delta
was 6, and the best performance was attained with a process aspect ratio, 1/4 < P/Q) < 1/2.
The LU routine attained 2.4 Gflops for a matrix size of N = 10000 on the iPSC/860; 12.0
Gflops for N = 26000 on the Delta; and 18.8 Gflops for N = 36000 on the Paragon.

The LU factorization routine 1s a little more complicated than the other routines because 1t
requires column pivoting. In other words, many possible different implementations exist. We
describe briefly other possible variations, which will destroy the modularity and simplicity of
the implementation, but attain a slightly better performance.

In the unblocked LU factorization routine (PDGETF2), after finding the maximum value of
the é-th column (PDAMAX), the é-th row will be exchanged with the pivot row containing the
maximum value. Then the new i-th row is broadcast columnwise ((np — ¢) elements) in PDGER.
Instead, the communications of PDLASWP and PDGER can be combined. That is, the pivot row
is directly broadcast to other processes in the column, and the pivot row is replaced with the
t-th row later.

The column of processes, which has the m x ny column panel of A (i.e., A;; and Aap),
applies interchanges twice in order not to swap the data in the column panel (PDLASWP). These
two separate communication processes also can be combined.

Finally, after completing the factorization of the column panel (PDGETF2), the column of
processes, which has the column panel, broadcasts rowwise the pivot information for PDLASWP,
Ly, for PDTRSM, and Ls; for PDGEMM. It is possible to combine the three messages to save the
number of communications (or combine L1y and Loy), and broadcast rowwise the combined
message.

It takes a non-negligible time to broadcast the column panel of L across the process template.
It is possible to increase the overlap of communication with computation by broadcasting each
column rowwise as soon as they are evaluated, rather than broadcasting all of the panel across
after factoring it. With these modified communication schemes, the performance of the routine

will be increased, but in our experiments we have found the improvement to be less than 5 %.

4.2. QR Factorization

It is required to compute an Euclidean norm of the vector, A, to get the elementary House-
holder vector v;. The sequential LAPACK routine, DLARFG, calls the Level-1 BLAS routine,
DNRM2, which computes the norm without causing underflow or overflow problems. In the cor-
responding parallel ScaLAPACK routine, PDLARFG, each process in the column of processes,
which holds the vector, A, computes the global norm safely using the PDNRM2 routine.
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Figure 8: The storage scheme of the lower trapezoidal matrix V' in ScaLAPACK QR fac-
torization. By broadcasting V', which 1s a copy of V', but with 0’s on the upper triangular
and 1’s on the main diagonal, the computation involving V' can be done in one step. (a)

vI.Cc=vl.C, (DTRMM) + Vi - C5 (DGEMM) (b) VT . C =V - C (DGEMM)

The triangular factor 7" of a block Householder reflector V' can be computed inside of
PDGEQR2, and the routine can generate 7T directly, instead of 7. But keeping T might cause
problems if the block size is subsequently changed by redistributing the matrix. However a
separate routine PDLARFT needs only one communication over a column of processes to compute
T on the fly, so we chose the LAPACK implementation style to compute 7', 1. e., we store 7
and V| and generate T" when necessary.

The m x n, lower trapezoidal part of V', which is a sequence of the n, Householder vectors,
will be accessed in the form,

Vi
Va

V =

where V7 is np X np unit lower triangular, and Vs is (m — np) X np. In the sequential routine,
the multiplication involving V is divided into two steps: DTRMM with V; and DGEMM with V5.
However, in the parallel implementation, V' will be broadcast rowwise to other processes, and
all columns of processes have their own copies of V. The upper triangular part of V' (including
the main diagonal) will not be accessed by the other columns of processes. By sending v,
which is a copy of V', but with 0’s on the upper triangle and 1’s on the main diagonal, the
multiplications involving V can be done in one step (DGEMM) as illustrated in Figure 8. This
one step multiplication not only simplifies the implementation of the routine (PDLARFB), but
also increases the overall performance of the routine (PDGEQRF).

Figure 9 shows the performance of the QR factorization routine on the Intel family of
concurrent computers. The optimal block size of n, = 6 was used on all the machines. Best
performance was attained with an aspect ratio of 1/4 < P/@Q < 1/2. The highest performances
of 3.1 Gflops for N = 10000 was obtained on the iPSC/860; 14.6 Gflops for N = 26000 on the



- 17 -

| | | | | |
[%)]
& Block size = 6 on iPSC/860, Delta, and Paragon
G 20 16 x 32: Paragon
15 X B
-—7*716 x 32: Delta
10 —
5] 8 x 16: Paragon B
%X '
/ ,_;g‘;gﬁﬁ-xﬂgs 8 x 16: Delta
7327 8 x 16: iPSC/860
0= | | | | | |

1
0 5000 10000 15000 20000 25000 30000 35000
Matrix Size, N

Figure 9: Performance of the QR factorization on the Intel iPSC/860, Delta, and Paragon

Delta; and 21.0 Gflops for N = 36000 on the Paragon.

4.3. Cholesky Factorization

The PDSYRK routine performs rank-n, updates on an (n —ny) x (n — np) symmetric matrix Aas
with an (n —np) x np column of blocks Lay. After broadcasting Loy rowwise and transposing it,
each process updates its own portion of Ass with its own portion of Ls; and LZ,. The globally
lower triangular matrix Ass is not stored in the lower triangular form in the local processes
as shown in Figure 10, thus it is complicated to update. The simplest way to do this is to
repeatedly update one column of blocks of Ass; but if the block size is small, this updating
process will not be efficient.

It is possible, and more efficient, to update several column blocks at a time. It is desirable
to compute a multiple of LOM/Q blocks simultaneously since the processes easily determine
their own physical data distribution of the lower triangular matrix of A, where LCM 1s the
least common multiple of P and @. Figures 10 (b) and (c) show how to update 2 (= LCM/Q)
and 4 (= 2- LCM/Q) columns of blocks of A at a time, respectively. In the argument list
of the PDSYRK routine, MULLEN specifies an approximate length of multiplication to update
Aag efficiently. The multiple factor is computed by & = [MULLEN/((LCM/Q) - ny)], and
k- (LCM/Q) columns of blocks are updated simultaneously inside of the routine. For details,

see [7]. The optimum number is determined by processor characteristics as well as the size of
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Figure 10: PDSYRK performs a rank-k update on a symmetric matrix. It is assumed that
24 x 24 blocks of A are distributed over a 2 x 3 process template. (a) A is a globally symmetric
lower triangular matrix. (b) It is possible to update 2 (= LC'M/Q) columns of blocks of A at a
time. (c) It is more efficient to update 4 (= 2- LOCM /@) columns of blocks of A simultaneously.
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Figure 12: Performance of the Cholesky factorization on the Intel iPSC/860, Delta, and Paragon
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the matrix and the block size. The optimum number was found to be about 40 on the Intel
iPSC/860 and Delta computers.

The effect of the block size on the performance of the Cholesky factorization is shown in
Figure 11 on 8 x 16 and 16 x 16 processors of the Intel Delta. The best performance was
obtained at the block size of ny = 24, but relatively good performance could be expected with
the block size of n, > 6, since the routine updates multiple column panels at a time. With
ny = 24, and MULLEN = 40, the routine updates 2 (= [MULLEN/ny| = [40/24], where
LCM = @) column panels simultaneously.

Figure 12 shows the performance of the Cholesky factorization routine. The best perfor-
mance was attained with the aspect ratio of 1/2 < P/ < 1. The routine ran at 1.8 Gflops
for N = 9600 on the iPSC/860; 10.5 Gflops for N = 26000 on the Delta; and 16.9 Gflops for
N = 36000 on the Paragon.

If A is not positive definite, the Cholesky factorization should be terminated in the middle
of the computation. As outlined in Section 3.3, a process P; computes the Cholesky factor L1
from Aj;. After computing Li;, P; broadcasts a flag to other processes so that all processes
stop the computation if A1y is not positive definite. If A is guaranteed to be positive definite,
the process of broadcasting the flag can be skipped, and another performance increase can be

expected.

5. Scalability and Conclusions

The performance of the three factorization routines on 128 nodes of the iPSC/860 and 512 nodes
of the Delta and the Paragon were compared in Figures 13, 14, and 15, respectively. Generally
the QR factorization routine has the best performance since the updating process of QT A =
(I — VTVT)A is rich in matrix-matrix operation, and the number of floating point operations
is the largest (4/3 N3). The Cholesky factorization involves operations on a symmetric matrix,
and the total number of floating point operations (1/3 N3) is less than the other routines, thus
its performance i1s poorer. The LU factorization routine seems to have more communication
overhead since the routine contains column pivoting and row swapping operations. On the
Delta, which has faster communication than the iPSC/860, the LU routine is slower than the
Cholesky routine for small problem size (N < 12000).

The performance results in Figures 7, 9, and 12 can be used to assess the scalability of the
factorization routines. In general, concurrent efficiency, e, is defined as the concurrent speedup
per process. That is, for the given problem size, N, on the number of processes used, N,

1w
WD) = N TV, )

where T, (N, N,) is the time for a problem of size N to run on N, processes, and T, (N) is the
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Figure 15: Performance of factorization routines on Intel Paragon (512 nodes)

time to run on one process using the best sequential algorithm. Another approach to investigate
the efficiency is to see how the performance per process degrades as the number of processes
increases for a fixed grain size, 1. e., by plotting isogranularity curves in the (N,,G) plane,

where ( is the performance. Since

Ts(N)
Gox —*2 _ = N, e(N,N,),
T,(N,Ny) !

the scalability for memory-constrained problems can readily be accessed by the extent to which
the isogranularity curves differ from linearity.

Figures 16, 17, and 18 show the isogranularity plots for the ScaLAPACK factorization
routines on the iPSC/860, the Delta, and the Paragon, respectively. The matrix size per
process is fixed at 5 Mbytes on the iPSC/860, 9 Mbytes on the Delta, and 5 and 20 Mbytes on
the Paragon. The linearity of the plots in the figures indicates that the ScaLAPACK routines
have good scalability characteristics on these systems.

We have demonstrated that the LAPACK factorization routines can be parallelized fairly
easily to the corresponding ScaLAPACK routines with a small set of low-level modules, namely
the sequential BLAS, the BLACS, and the PBLAS. The PBLAS are particularly useful for
developing and implementing a parallel dense linear algebra library relying on the block cyclic
data distribution. In general, the Level 2 and 3 BLAS routines in the LAPACK code can
be replaced on a one-for-one basis by the corresponding PBLAS routines. Parallel routines

implemented with the PBLAS have good performance, since the computation performed by
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each process within PBLAS routines can be itself performed using the assembly-coded sequential
BLAS.

There is a tradeoff between performance and software design considerations, such as modu-
larity and clarity, in designing and implementing software libraries. As described in Section 4.1,
it 1s possible to combine communications to reduce the communication costs in several places,
such as in factorizing the column panel (PDLASWP and PDGER), in swapping data in the column
panel (PDGER), and in broadcasting the column panel (PDTRSM and PDGEMM), and to replace
the high level routines, such as the PBLAS, by calls to the lower level routines, such as the
sequential BLAS and the BLACS. However, we have found that the performance gain is too
small to justify the resulting loss of software modularity.

We have shown that the ScaLAPACK factorization routines have good performance and
scalability on the Intel iPSC/860, the Delta, and the Paragon systems. Similar studies will be
performed on recent machines, including the TMC CM-5, the Cray T3D, and the IBM SP1
and SP2.

Currently the ScaLAPACK library includes not only the LU, QR and Cholesky factorization
routines, but also factorization solvers, routines to refine the solutions to reduce error, and
routines to estimate the reciprocal of the condition number. The ScaLAPACK routines are
currently available through netlib only for double precision real data, but in the near future,
we intend to release routines for other numeric data types, such as single precision real and
complex, and double precision complex. To obtain the routines, and the ScaLAPACK Reference

Manual [9], send the message “send index from scalapack” to netlibQornl.gov.
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