Relative Perturbation Bounds for
the Unitary Polar Factor

Ren-Cang Li *
July 25, 1994

Abstract

Let B be an m xn (m > n) complex matrix. It is known that there is
a unique polar decomposition B = QH, where Q*Q = I, the n x n identity
matrix, and H is positive definite, provided B has full column rank. This
paper addresses the following question: how much may @ change if B is
perturbed to B = DY BD2? Here D; and D, are two nonsingular matrices
and close to the identities of suitable dimensions.

Known perturbation bounds for complex matrices indicate that in the
worst case, the change in @ is proportional to the reciprocal of the small-
est singular value of B. In this paper, we will prove that for the above
mentioned perturbations to B, the change in @ is bounded only by the
distances from 7 and D> to identities!

As an application, we will consider perturbations for one-side scaling,
i.e., the case when G = D* B is perturbed to G = D* B, where D is usually
a nonsingular diagonal scaling matrix but for our purpose we do not have
to assume this;, and B and B are nonsingular.

Let B be an mxn (m > n) complex matrix. It is known that there are @ with
orthonormal column vectors, 1.e., @*Q) = I, and a unique positive semidefinite
H such that

B=QH. (1)

Hereafter I denotes an identity matrix with appropriate dimensions which should
be clear from the context or specified. The decomposition (1) is called the polar
decomposition of B. If, in addition, B has full column rank then ¢ is uniquely
determined also. In fact,

H=(B*B)'?, Q= B(B*B)"'/?, (2)
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where superscript “*” denotes conjugate transpose. The decomposition (1) can
also be computed from the singular value decomposition (SVD) B = UXZV™* by

H=VXV* Q=UV", (3)

where U = (Uy,Us) and V are unitary, Uy is m x n, X = ( X ) and Xy =

0
diag(oy,...,0p) is nonnegative.

There are many published bounds upon how much the two factor matrices
() and H may change if entries of B are perturbed in arbitrary manner [1, 2,
3,4,6,5,7, 8 9]. In these papers, no assumption was made on how B was
perturbed unlike what we are going to do here.

In this paper, we obtain some bounds for the perturbations of @, assuming
B is complex and is perturbed to B = D} BDs, where Dy and Dy are two
nonsingular matrices and close to the identities of suitable dimensions. Assume
also B has full column rank and so do B = D} BD>. Let

B=QH, B=QH (4)

be the polar decompositions of B and B respectively, and let
B=UXV*, B=UZV* (5)
be the SVDs of B and B, respectively, where U = ([71, [72), Uy is m x n, and

Y= ( X(:)l ) and il = diag(cy,...,d,). Assume as usual that

o1 >-->0,>0, and 71> - >0, >0. (6)
It follows from (2) and (5) that
Q=UV*, Q=UV"

In what follows, || X||p denotes the Frobenius norm which is the square root
of the trace of X*X. Then

U(B-B)YV = V'V -UUY,

U*(B—B)V = U*(D;BDy— D;B+D;B—B)V
= U*|B(I-D;Y)Y+(Di—D)B|V
= SV*(I-DyYHV 4+ U*(D; —DUY,

and similarly

U(B—B)YWV = U*US—-XV*V,

U*(B—B)V = U*(D‘BDy— BDy+ BDy— B)V
= U |(I-D7")B4+B(Dy—D|V

= U(I—DI)US+ XV (Dy— V.



Therefore, we obtained two perturbation equations.
SVV - U*US = SV*(I—D; )WV +U(D: — U, (7)
UUS—XV*V = U(I-D*US+SV*(Dy— 1)V, (8)
The first n rows of the equation (7) yields
SV = UL S, = 5V = D7YV + U (D = DU Y. (9)
The first n rows of the equation (8) yields
UrUh Sy — S VAV = U (I — DT L5 + SV (Dy — DV,
on taking conjugate transpose of which, one has
S, UFUL — VAVE = S.UF (I — DYYHUL + VH(Ds — VY. (10)
Now subtracting (10) from (9) leads to
S (U0, = V*V)+ (U U, = VIV, (11)
= S [0r =y = V(1 - DYy

+[74(Ds = v = T (D} = DUy | =1,

Set
X = Uy —V*V = (2), (12)
E = Uy(I-DiYU = V(I = D7" )V = (e), (13)
E = VD3 -1V =UD; — DUy = (&5). (14)

Then the equation (11) reads X + X3 =S F + EEl, or componentwisely,
524‘2']' + x50 = 52'62']' + a]'Uj. Thus

(@i + oj)wij| < \/52'2 + 0]2\/|€z'j|2 + [€5;1?

72402

= |zy* < mﬂezﬂz + (€35 1%) < lei; I” + [€5517
Summing on ¢ and j for ¢, j = 1,2,---,n produces
IXIE = D leal” <IEIF + 1ENE- (15)
i,j=1
Notice that
X = U0 —VV=V"VUUV =DV =V QQ -1V,

= |Xllr =1Q°Q@ - llr,



and

1ElF
1ElE

11 = DY e + (11 = D3 e,
105 = 1llg + |17 = I]]p-

IN A

Lemma 1
10°Q - Illy
_ _ 2 . i 2
< VU= D Mlr+ 11 = DM IR)* + (105 — Illp + 105 — Te)”.

When m = n, both @ and @ are unitary. Thus ||©*Q —Ilr =@ - é||p, and

Lemma 1 yields

Theorem 1 Let B and B = DTBDs be two n xn nonsingular complex matrices
whose polar decompositions are given by ({). Then

~ _ _ 2 2
1Q-Qllr < \/(III—D11IIF+|II—D21IIF) +1D2 = Ilr + [| D1 = 1[[F)
(16)

ﬁ\/llf— DY IR+ I = D3 lg + D2 = 1| + 1Dy = Il

IN

If, however, m > n, then it follows from the last m — n rows of the equations

(7) and (8) that
Uihy, = U3(D:=D0hY,  and
UsUh Y = Us(I— D713,

Since we assume that both B and B have full column rank, both ¥; and f]l are
nonsingular diagonal matrices. So

UiUy = U (D = DUy and UZUy = U3 (I — D7*)Uy.
Therefore, we have
105U |lg < 1D} = Ille and  |[UsTh[|p = ([T = D" |- (17)
Notice that (~U1y*, Us) = (@, Us) and ([71(7*, [72) = (é, [72) are unitary. Hence
Us@Q =0=Us@Q and
~ . ~ I —O*
12— Gl = Q. 72)"(@ ~ @)l = H ( e )

F

< M- @G+ - 0TV,
< M- @Gl + 10T
— - 2 * * —*
< (1= D7 e + 1 = D5 p)” + (105 — Lllp + 1107 — 11l )’ + 12 - D

(18)



Similarly, we have
~ ~ = I
12~ Qllr = 1@, 72)"(Q - H( ¢ To )
F

< \/(III DM lp + T = D7 lE)" + (D5 = Tl + 1105 = Tllg)* + 1105 = 11
(19)

Theorem 2 below follows from (18) and (19).

Theorem 2 Let A and A be two m x n (m > n) compler matrices having full
column rank and with the polar decompositions (4). Then

1@ = Qlle < [(11 = DT le + 1 = D5 [lg)”

2 : _ 3
+ (I = Dallp + 17 = Dilp)” + min {||1 — DT {|f, (|11 - D1||12?}]

< VB = Dl +117 = D5 I3 + 1 = a2 + |1 - Dy '3

Now we are in the position to apply Theorem 1 to perturbations for one-
side scaling (from the left). Here we consider two n x n nonsingular matrices
G = D*B and G = D* B, where D is a scaling matrix and usually diagonal (but
this is not necessary to the theorem that follows). B is nonsingular and usually
better conditioned than G itself. Set

ABY B B.
B is also nonsingular by the condition ||AB||2||B~!||2 < 1 which will be assumed
henceforth. Notice that

G'=D*B=D*(B+AB)=D*B(I + B"Y(AB)) = G(I + B"'(AB)).
So applying Theorem 1 with D; = 0 and Dy = I + B~*(AB) leads to

Theorem 3 Let G = D*B and G = D*B be two n x n nonsingular matrices,
and let L
G=QH and G=QH

be their polar decompositions. Set AB “E_B If |AB||2|B7Y|2 < 1 then

1Q - Qllr

IN

JIBaBE + 1 - 1+ 5 am)

1
1+ = 1B 12| ABllg-
¢ (L= [1B=2llAB2)?

One can deal with one-side scaling from the right in the similar way.

IN
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