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Abstract

Non-numeric algorithms have been largely ignored in parallel benchmarking
suites. Prior studies have concentrated mainly on the computational speed of
processors within very regular and structured numeric codes. In this paper,
we survey the current state of non-numeric benchmark algorithms and investi-
gate the use of in-place merging as a suitable candidate for this role. In-place
merging enjoys several important advantages, including the scalability of efficient
memory utilization, the generality of comparison-based computing and the rep-
resentativeness of near-random data access patterns. Experimental results over
several families of parallel architectures are presented.
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1 Introduction

Only in recent years have non-numeric algorithms been considered for inclusion in parallel
and supercomputer benchmarks [2, 8, 22]. Past benchmarking suites have been primarily
concerned with a parallel system’s aggregate speed of performing floating-point operations.
As the field of parallel computation matures, however, the range of codes executed on parallel
machines will likely include a wide assortment of non-numeric routines.

Counting sort and radix sort have been proposed as non-numeric benchmark candidates
[2, 22]. Unfortunately, these simple algorithms are not very representative of operations
carried out in wide assortments of non-numeric applications. Both of these sorts exhibit
completely predictable data access patterns and, even worse, squander an unbounded amount
of unnecessary memory. Thus, in order to predict more accurately the performance of
non-numeric algorithms, a comparison-based, in-place benchmark may be more telling. In
the sequel, we examine the effectiveness of the parallel merge (and hence sort-by-merging)
approach first devised in [13]. We report the results of large collections of experiments
conducted on a wide range of parallel machines, including both SIMD versus MIMD and
shared versus distributed memory designs. We also compare these results to those obtained
for numeric codes.

In the next section, we survey several known benchmarking efforts, including those for
sequential and parallel computational models. In Section 3, we focus on the needs of a
suitable non-numeric parallel benchmark. We consider previously-proposed alternatives in
this light, and discuss the relative merits of in-place merging. In Section 4, we address
implementation details and present timing results, with which we compare different machines.
Comparisons are also made to numeric benchmark results. A final section contains a few

closing observations and related remarks.



2 Previous Efforts

2.1 Sequential Benchmarks

We first briefly examine some of the better-known sequential non-numeric benchmarking
algorithms that are available. We know of no parallel implementations or performance

results for any of the codes described within this section.

2.1.1 Dhrystone

The Dhrystone benchmark [26] is a synthetic collection of operations based upon a litera-
ture survey of the distribution of language features most used in non-numeric, system-type
programming. The major computational concentration is on string functions. Originally
implemented in Ada, more recent versions have been coded and distributed in C [27]. The
Dhrystone benchmark is intended to measure integer performance on small machines with

simple architectures.

2.1.2 Stanford Small Programs Benchmark Set

Weicker [28] makes mention of the Stanford Small Programs Benchmark Set. Used for the
first comparisons between RISC and CISC processors, this benchmark is a collection of
small programs brought together at Stanford University by John Hennessy and Peter Nye.
In addition to two floating-point routines, there are eight integer codes including quicksort,
bubble sort and tree sort. These units have been collected into a single C program and made

available through informal channels.



2.1.3 Aburto’s Collection

Alfred Aburto at the Naval Ocean Systems Center, San Diego, maintains, collects and pub-
lishes results for a number of separate non-numeric codes that continue to be used for bench-
marking systems. These include Heapsort, Hanoi (solves the Towers of Hanoi puzzle), NSieve
(finds prime numbers), and Sim (locates similarities between DNA sequences). Also available
is Fhourstone, a program to solve positions from the game Connect-4 that tests hashing and
random access performance, recursive alpha beta searching and other scalar operations in-
volving array and table computations. These benchmarking results and routines are available

through several on-line sources.

2.1.4 EDN Benchmarks

This collection of programs was developed at Carnegie Mellon University and published by
EDN in 1981 [11]. The intent of the benchmarks was to measure the computational speed of
microprocessors without measuring the quality of the compiler. For that reason, the original
codes were written directly in assembly languages of various microprocessors, though a subset
of the original benchmarks are now available in C. This subset includes routines for string

search, linked list insertion and quicksort. There is no formal mechanism for distribution.

2.2 Parallel Benchmarks

In testing their Threaded Abstract Parallel Machine model of computation on the Thinking
Machines CM-5 and the MIT J-machine, Spertus et al [21] make use of a simple quicksort.
This algorithm, along with others used for comparison, were written in the parallel language
[d90. Francis and Mathieson [10] put forth a parallel sort algorithm for benchmarking

shared memory machines. There are more individual benchmarking examples used to rate



the performance of specific hardware systems or architectures in the literature. Bhuyan and
Zhang bring several of these examples together in [5].

Attempts to develop and make available a standardized parallel benchmarking suite are
in their infancy. These attempts include the EuroBEN Group [25], the GENESIS Project [1],
PERFECT Club Benchmarks [4], NAS Parallel Benchmarks [2] and the vendor-supported
SPEC Benchmarks [8]. Recently, a number of researchers interested in benchmarking met
and formed the PARKBENCH Committee [14]. The goal of this group is to make available
codes that test the capabilities of scalable massively-parallel computers while maintaining
strict guidelines on an acceptable benchmarking methodology to ensure that performance
evaluations are meaningful across a variety of machines. A majority of the routines within the
current PARKBENCH collection come from the NAS Parallel Benchmark and the GENESIS
Benchmark suites.

All of these benchmarking programs and suites are geared toward scientific computations.
This, in turn, translates to codes devoted to computations involving single and multiple pre-
cision floating-point operations. There are, however, some non-numeric exceptions included
within two of the suites.

The NAS Parallel Benchmarks [2] is a collection of different algorithms found in actual
computational fluid dynamics calculations. The entire suite includes five parallel kernels and
three complete applications. One kernel is a sort, needed as part of certain particle codes,
whose data set is made up of eight million nineteen-bit numbers, each generated by taking
the average of four random numbers ranging between 0 and 2'. This benchmark is intended
to measure integer computation and communication performance.

In [22], Thearling and Smith note that the NAS sorting benchmark does not go far
enough with either the size of the data file to be sorted or the characterization of the data

set used. They observe that the sorting of a billion or more keys has been achieved on at



least two parallel systems. Thus, the data set size of the NAS benchmarks is already dwarfed
by the memory capacity of certain parallel machines. They propose instead a radix sort,
and present performance results using a Connection Machine CM-5 with varying numbers
of processors and several data distributions.

Within the integer computation suite, CINT92, of the SPEC Benchmarks [8] are routines
for generating and optimizing Programmable Logic Arrays, solving a nine queens’ problem
with a Lisp interpreter and compressing input files with the Lempel-Ziv encoding. Another
code, eqntott [23], that translates logical Boolean expressions into truth table equivalents,

makes use of a sorting procedure.

2.3 Database Benchmarking

In contrast to benchmarks targeted at specific types of computations or performance of par-
ticular hardware subsystems (e.g., I/O latency, cache access, page swapping), benchmarks
for database management systems use higher level measures such as tuple retrieval time or
the number of queries satisfiable within a given amount of time. Integer or character compu-
tations are used for evaluation and often involve comparisons of quantities or movement of
data. Such computations may be repeated in the processing of a single transaction or query.

Two of the better-known database benchmarks are the Wisconsin benchmark [7] and the
TPC benchmark [20]. The former uses a synthetic database with a set of queries designed to
measure performance of decision support systems; the latter measures transaction processing
using a large number of small transactions. Both benchmarks were originally designed for
serial systems, but are adaptable for use on parallel ones. The performance evaluation of the
Gamma parallel database machine under the Wisconsin benchmark is included in [7]. TPC
comes in three versions: one for online transaction processing with a LAN or WAN one

for online transaction processing with no network, and one for online business transaction



processing (which includes batch transactions, data entry errors that cause some transactions
to abort, and several other features not found in the other two suites).

Citing the need for a finer level of granularity than is generally available from serial
benchmarks, McCann and Bell [19] have developed a hybrid benchmarking model. There
are two stages to the model: serial and parallel. The serial stage measures resource con-
sumption by modeling the system in terms of input, output, comparison and other low level
operations. Queries in this model are analyzed in terms of CPU time to complete a set of
elementary operations including fetching a page from disk to memory, comparing either a
single integer or character and outputting a tuple that satisfies conditions set with a given
query. The parallel stage models database operations as a network of communicating se-
quential processes. This model uses CPU times for serial elementary operations and is able
to represent the traffic congestion of real parallel systems under a real workload. McCann
and Bell present sample simulation results run on a two transputer system. Implementation
of the model was made possible through the high-level queuing network package Network

I1.5 (CACI Products Company).

2.4 In Summary

None of the non-numeric exceptions within scientific benchmarks adequately deals with the
measurement of non-numeric computations. Database benchmarks are a little better, but
are too specialized for use in benchmarking generic non-numeric performance on parallel
machines. Thus, we will employ instead a “bell weather” non-numeric operation: merging.
We have selected a parallel, in-place method as our algorithm of choice. An explanation
of this selection follows in the next section. Details on the inner-workings of the algorithm

itself are contained in an appendix.



3 Defining a Suitable Benchmark Algorithm

Gray [12], lists four criteria for domain-specific benchmarks. Though this list was aimed
at database systems, we argue that it can easily be extended to more general non-numeric
parallel environments. We list Gray’s criteria below, and describe how each can be applied

to parallel benchmarks in general, and to non-numeric processing in particular.

Relevance. The purpose of benchmarking is to measure the performance of machines
over computations that are typical of the work expected to be routinely performed.
For parallel machines, this applies not only to the processing of data, but also to
the patterns of data movement that are anticipated in the execution of production

applications.

Portability. Parallel benchmark algorithms should not rely on the particular features
of any single machine. Implementations should be independent of the number of pro-
cessors, network topology and available programming language features (up to those
machine-dependent functions necessary for proper execution). Thus a benchmark
should provide a “level playing field” for comparing different machines. Because a
wide range of execution modes are available across different architectures, benchmark-
ing algorithms should also be implementable on both shared versus distributed memory
and SIMD versus MIMD systems. When implementing an algorithm across architec-
tural paradigms, care must be taken to keep computations as equivalent as possible

within given machine constraints.

Scalability. An algorithm should be scalable to differing numbers of processors and
memory sizes. As computer architectures continue to evolve, the longevity and use-
fulness of benchmarking codes will lie in large part in their adaptability to new and

larger systems as they become available.



Simplicity. Benchmarking routines must be understandable, else they lack credibility
and are not readily accepted by large numbers of potential users. Portability and
scalability may be hindered if an implementation is too complicated. Not to put too
fine a point on it, the goal is to select algorithms that are complex enough to tickle a

wide range of architectural features, but not so intricate that the code is indecipherable.

3.1 Non-Numeric Operations

We have identified the following operations as being desirable within a non-numeric bench-

mark:

e comparison of data within local memory,
e movement of data within local memory,
e comparison of data across processors,

e movement of data across processors, and

global scan/reduction operations.

Parallel merge or sort algorithms probably best fit this bill. It is important, however, that
the movement of data across processors be rather unpredictable and driven by the data values
themselves. This is in marked contrast with numeric benchmarks, which generally have inter-
processor data movement schemes built into the algorithms. Unpredictable data movement
is typical of non-numeric applications, and is much more apt to create network congestion in
parallel systems. Determining just how effectively such movement is automatically handled
is another benefit derivable from non-numeric benchmarks.

There are several benchmarking kernels and proposed kernels that do sorting or merging.
We look at these algorithms in turn, plus Valiant’s parallel merge, with an eye toward how

well each measures up to our expectations. In all cases, we consider implementations of the



selected algorithms that are designed for a fixed, finite number of processors. Algorithms
designed with only the PRAM model in mind often ignore this real-life restriction, and
describe idealized computations done with a number of processors related to the size of the
input data set. Implementation of such algorithms can often be accomplished directly by
using each physical processor to emulate a number of virtual processors required by the
PRAM algorithm. Unfortunately, this simple-minded approach does not scale with limited

memory.

3.2 The NAS Parallel Sort

The NAS Parallel Integer Sort benchmark is based on the serial code of the benchmark kernel
and is available in HPF and Fortran 90 as well as specialized Intel iPSC/860 and Thinking
Machines CM-2 versions. For the latter two, both C and FORTRAN versions are available.

This benchmark measures the time needed to rank randomly generated keys and perform
a partial check for correctness. The two step process of ranking and checking is repeated sev-
eral times. After the timing is done, the data is moved to its sorted position and completely
verified for accuracy. This data movement is not part of the benchmark timing.

While such a counting sort algorithm is a part of larger scientific codes, and thus a valu-
able kernel within the NAS benchmarking suite, its suitability as a non-numeric performance
measure is very much in doubt. There is no direct comparison of keys (ranking is accom-
plished by counting); data movement is not even timed; no global scan/reduction operations

are involved.

3.3 Radix Sort

Parallel radix sort [18] implemented on a finite number of processors first evenly divides the

records to be sorted among the processors. Each processor ranks the given keys based on
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successive non-overlapping segments of bits within each key starting at the least significant
portion of the key and working up to the most significant. For each segment, this ranking
is done by generating all the possible bit patterns of the specified size in numerical order.
For each pattern, the number of keys that match the pattern within the target segment
are counted and given a rank index based on the key’s position in the list, the number of
previously ranked keys and the number of keys whose segment matches the current pattern.
Parallel scan operations are used to compute the ranks of keys across processors. Once the
rank of all keys is known, the records are permuted based on this rank. The ranking and
data movement is repeated for the next bit segment until the entire key has been processed
in this way.

In principle, radix sort is perfectly data balanced. That is, the amount of records and
workspace initially allocated to each processor is unchanged throughout the execution of
the algorithm. Under a shared memory paradigm, the movement of data is easily done by
moving records into temporary array elements indexed by each key’s rank. After all records
are moved, the algorithm can either move data to the corresponding elements of the original
array before proceeding to the next bit segment or merely swap roles between the temporary
holding array and the original data array for each bit segment used. The former method
would require both global and local data movement while the latter only global movement.

Unless programmed carefully, movement of records between distributed memory proces-
sors can end up in deadlock. Even with a careful implementation the data movement can
degenerate into a token ring wherein only a single record is in transit between processors and
the receiving processor. Upon receipt and local storage of the record, the receiving processor
is then able to send out a single record to another processor, and so on, until all records
have been moved. This adverse scenario depends upon how message passing routines are

implemented, key values and their distribution among the processors.
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A much more fundamental problem with radix sort is that it can only deal with keys
whose bit patterns directly determine their lexicographic ordering. Records whose keys
contain non-standard characters or formats cannot be easily handled. Records whose keys
are determined from a combination of two or more data fields may not be handled at all.
Furthermore, global data movement is really nothing more than the permutation of data
through a network. More effective algorithms [29] are available if one wishes to measure this

very limited type of data movement.

3.4 Valiant’s Parallel Merge

Converting the algorithm of Valiant [24] to a computational model with a fixed number, &,
of processors is fairly simple. Instead of being able to distribute |\/nm] processors to merge
/n smaller sublists, we merge O(k) lists on the k processors by dividing the first list into &
blocks and locating the points within the second list where the last element of each sublist
would be placed if these elements alone were merged into the second list. These points are
the endpoints of the sublists within the second list that are merged with the original sublists
from the first list.

This parallel merge performs comparisons across sublists (blocks), local key comparisons
for the final merges, and movement of data on distributed machines to locate elements from
the second list within the proper processor memory for the final merge. Shared memory
implementations need only update pointers to locate the second list blocks that are to be
merged with the first list blocks. The local merge moves data between the input array and
an additional auxiliary array.

In general, this merge is not well load or data balanced. One can easily construct data
sets that will restrict the entire final local merge to be executed on a single processor. On

distributed memory machines with the two original lists spread throughout the local memory
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of the processors, if the data capacity of each processor is initially at or near capacity, the
data redistribution of the second list blocks may not have the required space available on
some of the processors. Data sets can of course be contrived to ensure that a machine is load
balanced and that the data capacity of distributed processors will not be exceeded. In this
case, however, memory access and communication patterns are predictable and unlikely to

be representative of arbitrary computations.

3.5 In-Place Merging

The algorithm of [13] covers the five desired operations very well, and is easily scalable to any
number of processors or memory size. During the course of execution, keys are compared
and records moved between processors, global scan and reduce operations broadcast the
positions of certain keys, and data is compared and moved within a processor’s memory.
Two very different kinds of data movement are carried out between processors. The first
involves moving an entire block of data initially assigned to a processor into another block.
The destination block is based on the sorted position of the last key within each block. Since
such a large amount of data is being transported to a single destination and all processors
are participating, this operation can be done by moving large portions of the block in a single
message with distributed memory or synchronous copying with shared memory. The second
type of global movement shifts records within small subsets of processors in preparation for
a local merge. The number of records between subsets and between processors within the
same subset varies greatly, making for unpredictable, data-driven communication patterns

between processors and differing message sizes on distributed memory machines.
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4 Implementation and Timing Results

Table 1 contains hardware, operating systems, and compiler details on each of the machines

we have used within our study.

Connection Machine CM-5 (SIMD) MasPar MP-2
Operating System: Operating System:

SunOS Release 4.1.2; CMOST Version 7.2 ULTRIX V4.3 (Rev. MP-3.22)
Compiler: Compiler:

Cx Driver Version 7.1 Final Rev 2000 MPL Version 3.2.14
Processors: Processors:

SunSPARCI (plus 4 vector units per node) proprietary RISC
Memory per Node: Memory per Node:

32 Mbytes 64 Kbytes
Connection Machine CM-5 (MIMD) Intel iPSC/860
Operating System: Operating System:

SunOS Release 4.1.2; CMOST Version 7.2 iPSC/860 UNIX Sys V 3.2, NX 3.3.2
Compiler: Compiler:

SunOS C Compiler with CMMD Extensions icc/NX Sun4 Rel 4.0
Processors: Processors:

SunSPARC1 Intel 1860
Memory per Node: Memory per Node:

32 Mbytes 8 Mbytes
IBM SP2 Intel Paragon
Operating System: Operating System:

AIX 6000 Paragon OSF/1 Release 1.0.4 Server 1.3 R1.3
Compiler: Compiler:

AIX C Compiler with MPL Extensions icc/Paragon Version R5.0.1
Processors: Processors:

RS/6000 (POWER2 architecture) Intel 860 XP
Memory per Node: Memory per Node:

128 Mbytes 16 Mbytes

Table 1: MACHINES USED IN THIS STUDY

4.1 Methodology

All programs were written in C to promote portability. Accordingly, no low-level or machine-

specific optimizations were used. In general, no specialized communication routines other
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than send, receive and broadcast were employed. On distributed memory architectures,
only global synchronization, send, receive, one-to-all broadcast and a limited number of
informational functions were allowed since all target machines support these operations.
Thus, no reliance was placed on any one architecture, memory hierarchy, or connection
topology.

Keys are thirty-two-bit integers. Two sorted lists are created by dividing the data and
processor sets in half and assigning an equal portion of the data to each processor. Each
data set is divided into several (typically fifty) segments and the data generated within each
segment has a different, random density of duplicate key values. By varying the density
of duplicates we are attempting to model real-world data sets that would likely be merged
or sorted and whose key values aren’t all equally probable. Compilations were done with

maximum optimization available through compiler flags.

4.2 Machine Comparisons

Numeric benchmarks measure the number of floating-point operations executed per second.
For non-numeric computations such a measure is meaningless. Also, exact counts for numbers
of statements executed are not easily calculated a priori and rely entirely on the initial
distribution of data. Based on the performance metrics outlined in [15], a more useful
measure for non-numeric algorithms such as ours is the number of records handled per
second.

Thus we use the average number of records merged per second (rec/s). This value is
computed by dividing the total number of records by the total time taken by the merge.
Unlike flop/s, rec/s is an amortized metric in that after one second of execution of the merge
it is not the case that the given number of records will be in their final merged position.

However, such a metric directly relates the number of records within the data set to the
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execution time of the code. Not only does this give a standard measure by which we can
compare different machines with different numbers of processors, but we can also compare
different amounts of data on the same machine to determine how variations in load affect
performance.

Table 2 lists the average Mrec/s (millions of records per second) performance we observed
for each machine over a range of data set sizes. The file sizes used in our tests are the
exact powers of two contained within the ranges shown plus those file sizes midway between
successive powers of two. Timings on each machine are taken from the average of five

different, random test runs for each file size.

Number of Range of File | Average
Machine Processors Sizes Merged | Mrec/s
IBM SP2 16 32768 — 268435456 4.621
Intel Paragon 32 131072 - 33554432 3.650
IBM SP2 8 32768 — 134217728 2.174
Intel Paragon 16 65536 — 16777216 1.984
Thinking Machines CM-5 (MIMD) 32 32768 — 50331648 1.664
Intel iPSC/860 32 131072 - 50331648 1.515
Intel Paragon 8 32768 — 12582912 1.092
Intel iPSC/860 16 32768 — 25165824 0.832
Intel iPSC/860 8 32768 — 12582912 0.489
MasPar MP-2 4096 32768 — 50331648 0.474
Thinking Machines CM-5 (SIMD) 32 (128) 32768 — 3145728 0.002

Table 2: Average Performance of Each Machine

The graph in Figure 1 depicts the entire set of run times we observed over the course of
our experiments. Note that the z axis uses a logarithmic scale.

Memory capacity is another critical measure. We have observed before [6] that memory
management schemes can exhibit unexpected behavior at or near capacity. Table 3 lists

maximum data memory capacity and corresponding machine performance for three sample
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Figure 1: Detailed Performance of Each Machine

configurations: MasPar MP-2 with 4096 processors; Thinking Machines CM-5 (MIMD) with

32 processors; Intel iPSC/860 32 processors.

Maximum Memory
Machine file size | Mrec/s | Utilization
MP-2 65404928 0.236 97.5%
CM-5 (MIMD) | 243760960 0.312 93.0%
iPSC/860 59959808 1.428 91.5%

Table 3: MEMORY CAPACITY MEASURE AND PERFORMANCE

We note a vast difference between the relative rankings of machines in our study and
their rankings under the LINPACK Benchmarks. Using the notation of [9], we let R,
denote billions of floating-point operations per second (Gflop/s) measured for the largest

problem run on each machine. For comparison, we use Mrec/s values. The results from
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both benchmarks are shown in Table 4. Numbers in brackets represent relative rankings.
Among other things, Tables 2 and 4 both illustrate that SIMD architectures can be extremely

unfriendly to non-numeric algorithms.

Number of LINPACK Merge
Machine processors | Rpyq. (Gflop/s) | (Mrec/s)
Intel 1PSC /860 32 64 2] 1.428 [1]
MasPar MP-2 1096 374 3] | 0.236 2]
Thinking Machines CM-5 (SIMD) 32 1.9 [1] | 0.001 [3]

Table 4: CoMPARISON OF LINPACK AND IN-PLACE MERGE BENCHMARKS

We also note differences between our results and those of the NAS Parallel Benchmark
Integer Sort kernel. We have taken from [3] the raw execution times for 2% keys and converted

them to Mrec/s. See Table 5.

Number of | NAS IS Merge
Machine processors | (Mrec/s) | (Mrec/s)
TBM SP2 16 | 3.077 [1] | 4.877 [1]
TBM SP2 ST 1.678 [2] | 2.956 3]
Tntel iPSC/360 32 [ 0.326 [4] | 1.630 [4]
Intel Paragon (OSF1.2) 32 | 1.074 [3] | 4.039 [2]

Table 5: COMPARISON OF NAS INTEGER SORT AND IN-PLACE MERGE BENCHMARKS

In addition to the differences between our rankings and those of LINPACK and NAS, we
observe a quantitative difference between relative machine performances. As an example,
consider that the Intel iPSC/860 outperforms the MasPar MP-2 by a factor of less than two

under LINPACK, but by a factor of over six in our study.

TThe selection of these particular machines was based solely on the fact that each had an entry in the
LINPACK report for the same numbers of processors on which our in-place merge algorithm was run.
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5 Discussion

By implementing a single algorithm across a variety of parallel platforms, we have investi-
gated the behavior of these machines in supporting representative non-numeric codes. We
resist the temptation to conjecture about detailed explanations for each of the specific num-
bers we have obtained; a variety of intricate architectural features can come into play. We
have in fact aimed instead to eschew optimizations that favor any one particular cache
coherence scheme, network topology, memory hierarchy or other possible machine-specific
performance factor. We recognize that such factors are important, and that they can directly
affect how well a given system will perform. We are much more concerned, however, with
issues of portability, scalability and fairness.

Based on the results we have depicted, we would not propose a wholesale replacement of
other merge and sort kernels in parallel and supercomputing benchmark suites. Rather, we
would argue for the addition of representative comparison-based algorithms, such as the one

we have employed, to cover a much wider range of applications.
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6 Appendix: A Brief Overview of In-Place Merging

Fast in-place merging inherently relies on the notions of internal buffering and block rear-
ranging, ideas that can be traced back to the seminal work of Kronrod [17]. Assuming there
are k processors available, the data to be merged is viewed as k blocks, each block of size n/k,
and each block managed by a distinct processor. The parallel method we have employed is
from [13]. It will merge two sorted lists of total length n in O(n/k 4 logn) time and O(k)
extra space on the EREW PRAM model of computation, and is thus time-space optimal for
any value of £ < n/(logn). It has five main steps.

In the first step, processors sort blocks by their tails (largest-keyed records), then move
them accordingly. In the second step, the data is divided into pairs of series. When a
processor determines that a series ends in its block, it broadcasts its index to the left using
a segmented parallel scan operation. Thus each processor can determine the boundaries of
the series around it. In the third step, a special data structure and a phased merge are used
so that processors can efficiently determine how many records need to be displaced to their
right. In the fourth step, records are distributed as necessary. In the fifth step, a sequential
in-place merge [16] is performed on local data.

The algorithm also contains a few subtle special cases. The interested reader is referred

to [13] for complete details.
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