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Chebyshev tau - QZ algorithm methods Page 11. IntroductionThere has been much recent attention directed at solving equations like the Orr - Sommer-feld one, with particular interest in the removal of spurious eigenvalues or calculations inhigh Reynolds number ranges, cf. Abdullah & Lindsay [1], Davey [7], Fearn [12], Gardneret al. [13], Huang & Sloan [20], Lindsay & Ogden [21], McFadden et al. [22], Orszag[27], and Zebib [40]. Equations of Orr-Sommerfeld type govern the stability of shear andrelated 
ows which have tremendous application in many �elds. One such �eld is climatemodelling with questions like determining an explanation for the origin of the mid-latitudecyclone which in turn is responsible for producing the high and low pressure regions fromwhich variable weather patterns arise. Another application is to shear 
ows in electro-hydrodynamic (EHD) systems which have industrial relevance in the invention of devicesemploying the electroviscous e�ect or those utilizing charge entrainment, such as EHDclutch development, or EHD high voltage generators. Yet other important mundane ap-plications include the prediction of landslides, and 
ow over an aeroplane wing covered inde-icer. These topics will form part of future research.Of especial interest to the present contribution is the paper by McFadden et al. [22].These writers propose a modi�ed Chebyshev tau method which involves setting to zerotwo columns of the B matrix in the generalised eigenvalue problemAx = �Bx; (1:1)which arises from a representation of a solution to the di�erential equation by a �nite seriesof Chebyshev polynomials. At �rst sight this may seem ad hoc; however, [22] provides anelegant proof of why their technique is equivalent to a stream function - vorticity scheme, atleast for the modi�ed problem studied there. Our goal is to investigate in detail a methodwhich for many two-dimensional problems is equivalent to the stream function - vorticitymethod of McFadden et al. [22]. The technique employed here also extends to practicalthree - dimensional stability problems for which a stream function - vorticity formulationis not so clear. The motivation for requiring a technique involving only second orderderivatives is that this involves matrices whose coe�cients grow at most O(M3); M beingthe number of Chebyshev polynomials; since we study Couette / Poiseuille type problemsin high Reynolds number regimes we require many polynomials and then it is vital toavoid round o� error due to growth of terms. In fact, we highlight three types of errorone can expect to �nd in Couette / Poiseuille 
ow stability calculations and rami�cationsof these. It is shown how to modify the method to deal with these errors. We apply themethod to obtain new results for a variety of interesting shear 
ow / pressure gradientdriven hydrodynamic stability problems.



Chebyshev tau - QZ algorithm methods Page 2To begin our discussion we shall consider the Orr-Sommerfeld equation(D2 � a2)2� = iaRe(U � c)(D2 � a2)�� iaReU 00�; z 2 (�1; 1); (1:2)see Drazin & Reid [11], equation (25.12), where D = d=dz; Re; a and c are Reynoldsnumber, wavenumber, and eigenvalue (growth rate), respectively, and � is the amplitudeof the stream function. For Poiseuille 
ow U = 1 � z2; whereas for Couette 
ow U = z:Equation (1.2) is solved subject to the boundary conditions� = D� = 0; z = �1: (1:3)To motivate what follows a brief description of the 
uid dynamics behind equation(1.2) is expedient. This equation arises in a study of linear instability of the 
ow of a
uid contained between in�nite parallel plates at z = �1; which are sheared relative toone another (Couette 
ow) or the 
uid is driven by a pressure gradient in the horizontaldirection (Poiseuille 
ow). If the components of perturbation velocity and pressure are(u; v;w; p) then the di�erential equations for these variables are, cf. Drazin & Reid [11],p. 128, (ReU � c)iau+ReU 0w =� iap + �D2 � [a2 + b2]�u;(ReU � c)iav =� ibp + �D2 � [a2 + b2]�v;(ReU � c)iaw =�Dp + �D2 � [a2 + b2]�w;iau+ ibv +Dw =0; (1:4)where a and b are horizontal wavenumbers in the x and y directions and equations (1.4)arise from a representation likeui = ui(z)ei(ax+by�act); p = p(z)ei(ax+by�act); (1:5)with u1 = u; u2 = v; u3 = w: Traditional thinking has argued that the transformationsRe! ~Re ~aa ; c! ~c ~aa;reduce (1.4) to a two-dimensional form (Squire's theorem)(ReU � c)iau+ReU 0w =� iap+ (D2 � a2)u;(ReU � c)iaw =�Dp + (D2 � a2)w;iau+Dw =0: (1:6)The boundary conditions are u = w = 0 on z = �1 and then by introduction of a streamfunction  with u = @ @z ; w = �@ @x ;



Chebyshev tau - QZ algorithm methods Page 3and writing  = �(z)eia(x�ct);one derives (1.2), (1.3) for the solution to the instability problem.A recent school of thought has challenged traditional thinking and argued that sinceexperiments predict instabilities earlier than the critical value of linear theory then thetrue situation may be a three-dimensional one where resonances between individual modescan lead to very large transient growth over a small time scale, and after that presumablynonlinear e�ects become important. The early resonance investigations are by Gustavsson[14] and Gustavsson & Hultgren [15], and much activity has followed, see e.g. Butler &Farrell [3], Henningson & Reddy [17], Reddy & Henningson [28], Reddy et al. [29], Schmid& Henningson [32], Shanthini [33], and Trefethen et al. [38], and the references therein.The particular reason why we are interested in the above works is that we have inves-tigated a Chebyshev tau method which reduces the fourth order equation to two secondorder ones, as do Gardner et al. [13], and the stream function - vorticity method of Mc-Fadden et al. [22]. Our premise is that the method involving only second derivatives ismuch better for accurate results because the growth of terms in the A matrix in (1.1) isconsiderably less. Further details are provided below.The fundamental paper of Orszag [27] solves (1.2), (1.3) by a Chebyshev tau methodto high accuracy and we make comparison with his work. He splits the problem into oddand even modes which is best if one knows a priori this can be done. For the most partwe deal directly with (1.2), (1.3) since this would allow the incorporation of e�ects suchas penetrative convection into the 
uid dynamics.One method to solve (1.2), (1.3) directly is as in Gardner et al. [13] section 2, wherebyone writes � = N+4Xn=0 �nTn(z);and removes the boundary condition columns from the Chebyshev representation of D4:This we have done taking care to employ the Herbert [18] form of representation of coe�-cients in D4, cf. Canuto et al. [4] p. 196, since this leads to smaller round o� error. If weput M = N + 1; then for M large, the matrix resulting from D4 has terms growing likeO(M7) and since for high Reynolds number calculations a large number of polynomialsare required (possibly at least 200) this can be a serious problem. This is one immediatereason for preferring a method involvingD2, since then the growth is only O(M3): Gardneret al. [13] do develop a D2 method for the Orr-Sommerfeld equation; due to the way theyremove boundary condition rows, the growth problem is still present. Their technique stillhas O(M6) growth due to the B1Q term in their equation (3.9b); B1 and Q each involve



Chebyshev tau - QZ algorithm methods Page 4�2F2 (in their notation) and this term is like O(M3); and so the modi�ed tau method ofGardner et al. [13] still does not remove the growth problem.A D2 method writes (1.2) as two equations(D2 � a2)��A = 0;(D2 � a2)A � iaRe(U � c)A + iaReU 00� = 0:The di�culty with doing this, as pointed out by McFadden et al. [22], p. 232, is that theboundary conditions are all on � and none are on A: Thus, we cannot remove boundarycondition rows by the Haidvogel - Zang [16] device. (If the boundary conditions are thoseappropriate to surfaces free of tangential stress then there are two boundary conditionson � and two on A and one can remove the o�ending boundary condition rows. Thiswe have done for Orr-Sommerfeld problems, and in a practical multi-component di�usionproblem involving penetrative convection; we obtain highly accurate results and no spuri-ous eigenvalues, see Straughan & Walker [37]. Also, for porous convection problems thenatural boundary conditions allow boundary condition removal in the A matrix and verysatisfactory results are yielded, Straughan & Walker [35,36].)Instead we try the heuristic approach of simply writing in the boundary conditions asrows of the matrix, cf. McFadden et al. [22], p. 232. This is also done by Lindsay &Ogden [21] who generalized the Gardner et al. [13] method and solved (1.2), (1.3) as asystem of four �rst order equations; we refer to their technique as a D-method. As we havepointed out in Straughan & Walker [36] when we use the Lindsay & Ogden [21] techniqueon the simple harmonic motion equation with homogeneous boundary conditions we detecta spurious eigenvalue; this feature persists even if we use a symmetric form of boundaryconditions. Also, both the D2 and D methods are ad hoc in that one has some freedomas to how to insert the boundary conditions; we have found that a symmetric form ofboundary conditions is preferable for the Orr-Sommerfeld equations.A D2-method for (1.2), (1.3) appropriate to Poiseuille 
ow solves an equation like (1.1)where x = (�0; : : : ; �N ;  0; : : : ;  N )T ;with Ar =0BBBBBBB@D2 � a2I �IBC1 0 : : : 0BC2 0 : : : 00 D2 � a2IBC3 0 : : : 0BC4 0 : : : 0 1CCCCCCCA ; Ai = 0BBBBBBB@ 0 00 : : : 0 0 : : : 00 : : : 0 0 : : : 0�2aReI aRe(P � I)0 : : : 0 0 : : : 00 : : : 0 0 : : : 0 1CCCCCCCA



Chebyshev tau - QZ algorithm methods Page 5and Br = 0; Bi =0BBB@ 0 00 �aReI0 : : : 00 : : : 0 1CCCAwhere P is the Chebyshev matrix representing z2; A = Ar + iAi; and B = Br + iBi:The rows BC1; : : : ; BC4 refer to the boundary conditions on �n and for the Orr-Sommerfeld problem we �nd it preferable to use the symmetric form given by Orszag[27] i.e. BC1; BC2 are (15)1 and (15)2 of Orszag [27] while BC3; BC4 are (16)1; (16)2 ofthe same paper.In the two-dimensional case the D2 method is simply the stream function - vorticitytechnique of McFadden et al. [22]. For, in that case, the vorticity has only one component,in the y-direction, ! = !2 with ! =u;z � w;x= ;zz +  ;xx=eia(x�ct)(D2 � a2)�:Thus the functions � and A are essentially  and !: We stress though that we are usingthe McFadden et al. [22] stream function - vorticity method (called here a D2 method)because the resulting A matrix in (1.1) has better growth properties.It is noteworthy though that the D2 method is more general than the stream function- vorticity method. For example, in section 5 we consider the Butler & Farrell [3] problemwhich results in a coupled system involving a fourth order equation for w and a secondorder equation for the normal vorticity !3 = v;x � u;y: In this three-dimensional situationwe still reduce things to three second order equations and use a D2 method which is thennot equivalent to the usual stream function - vorticity method. Other areas where it di�ersare in three-dimensional convection studies in anisotropic porous media where the principalaxes of the permeability tensor are not orthogonal to the layer, or the Hadley 
ow problem,see Straughan & Walker [35,36], respectively.In the remainder of the paper we make a systematic study of Chebyshev tau methodsapplied to Poiseuille 
ow, Couette 
ow, Hagen-Poiseuille 
ow, the normal velocity - normalvorticity eigenvalue problem of Butler & Farrell [3], and �nally we show how to apply themethod to the situation where one 
uid is overlying another. We stress that we concentrateon �nding the whole of the top end of the spectrum, including eigenvalues at the \branchpoints" which are di�cult to obtain, [27], and we investigate parameter ranges which havepreviously proved di�cult. Consideration is given to loss of accuracy due to the various



Chebyshev tau - QZ algorithm methods Page 6D4;D2 orD methods, and to loss of accuracy due to insu�cient polynomials, or insu�cientresolution due to lack of precision in the representation of real numbers; each of these hasa strong e�ect on the spectrum. The calculation of the spectrum is very important whenone is interested in the question of resonances and interactions between various lower ordermodes, and it is vital when mode crossing occurs, as it does in practical problems.2. The eigenvalue problem for plane Poiseuille 
owIn this section we study (1.2), (1.3) with U = 1� z2: There have been many calculationsof the spectral behaviour for Re not too large, say Re � 104; see Butler & Farrell [3],Drazin & Reid [11], Gustavsson [14], Henningson & Reddy [17], Mack [23], Orszag [27],Reddy & Henningson [28], Shanthini [33]. Abdullah & Lindsay [1], Davey [7] and Fearn[12] report studies on particular eigenvalues for Re extending to 109: We, therefore, usethe D2 (stream function - vorticity) method and show what can go wrong in calculatingthe spectrum for large Re and how one can put things right.We have written our own codes for the D4, D2 andD methods, employing various formsof the boundary conditions in the latter two, including two forms of symmetric boundaryconditions in the D method, one using Orszag's boundary conditions on � directly, theother employing expressions like (15)1; (16)1 of Orszag [27] on both � and �0 individually.A comparison of results for these methods is now given.Undoubtedly the advantage of the D2 method is the growth rate removal, and in thisrespect the D method is even better, with terms growing only like O(M); this importantfeature does not appear to have been realised in Lindsay & Ogden [21]. Against this,the time taken by the QZ algorithm appears to scale like O(M3size) where Msize is thematrix width, i.e. Msize = M; 2M; 4M; with the D4;D2;D methods, respectively; theproblems associated with doubling the matrix size have been commented on by McFaddenet al. [22]. For example, on a SUN sparc station (ipc), with 50 polynomials, the D4;D2;Dmethods take, respectively, 4.1 seconds, 17.1 seconds, and 112.3 seconds. One test of the Dmethod with M = 150 took 2940.7 seconds, i.e. approximately 49 minutes. Clearly, whenmany computations are required this is an important factor. Additionally, the memoryrequirements of the D method are substantial, requiring approximately 16MB for the150 polynomial case (using full precision). The D2 method we have found to yield highaccuracy, although as reported below, for Re high enough extended precision arithmetic isrequired. Unless explicitly stated, our calculations are based on full precision, i.e. 64 bit,arithmetic.



Chebyshev tau - QZ algorithm methods Page 7The D2 and D methods necessarily produce a B matrix in (1.1) which has one ormore rows of blocks of 0's and so is singular. One approach to solving this problem isthe QZ algorithm of Moler & Stewart [25]. This algorithm relies on the fact that thereexist unitary matrices Q and Z such that QAZ and QBZ are both upper triangular.The algorithm then yields sets of values �i; �i which are the diagonal elements of QAZand QBZ: The eigenvalues �i of (1.1) are then obtained from the relation �i = �i=�i;provided �i 6= 0: This is very important, since the way we have constructed B means itcontains a singular band, corresponding to in�nite eigenvalues, and the �i = 0 must be�ltered out. Indeed, with the technique advocated here one ought always to consider the�i and �i; since as Moler & Stewart [25] point out, the �i and �i contain more informationthan the eigenvalues themselves. The QZ algorithm is available in the routines ZGGHRD,ZHGEQZ and ZTGEVC of the LAPACK Fortran Subroutine library, Anderson et al. [2].The coe�cients of the eigenvector x yielded by the QZ algorithm are extremely usefulconvergence indicators. In fact, they can be used to indicate the presence of spuriouseigenvalues; the \eigenvector" for such a spurious eigenvalue typically does not demonstratethe convergence evident in the eigenvector for a real eigenvalue. An alternative way is tocompute the � - coe�cients, cf. Gardner et al. [13], but as these are based on theeigenvector we �nd it simpler to just examine the eigenvectors themselves. Another possiblemethod of assessing whether an eigenvector is spurious is to compute the residuals for (1.1),i.e. compute r(i) = �iAx(i) � �iBx(i):When an eigenvalue is spurious we have found these to have all components betweenO(1022) and O(1018): For a real eigenvalue, the residuals corresponding to those �i = 0are O(1018) as are two or three corresponding to the presence of spurious eigenvalues,whereas the rest converge from O(106) down to O(10�8); which is consistent with the factthat the discretization only allows us to see the \top end" of the true spectrum. Eventhough we are using a D2 method we do �nd a spurious eigenvalue may be produced;when we apply the method to the problem of two 
uids in section 6 then we always seespurious eigenvalues. In connection with this, we have calculated the sensitivities for theeigenvector, cf. Stewart & Sun [34], and these indicate that the spurious eigenvalues areconnected with the discretization procedure rather than the QZ algorithm used to �ndthe matrix eigenvalues; details appropriate to the superposed 
uid problem are given insection 6.Orszag [27] gives for Re = 104 and a = 1;c = 0:23752649 + 0:00373967i (2:1)



Chebyshev tau - QZ algorithm methods Page 8as the exact value of the �rst eigenvalue (to 8 d.p.); he used 56 polynomials to achieve thisaccuracy (although he only uses even ones, thereby only 28 terms are in his expansion).The D4 method gives c = 0:23752708 + 0:00373980iwith M = 50: We found this to be the best approximation and thereafter on increasingM the value diverges from (2.1). The D2 and D methods, however, agree with (2.1) forM = 56 and beyond. We can also �nd the eigenfunctions very accurately; for example,the D2 method with 56 polynomials yields �r and �i as in �gure 4.20 of Drazin & Reid[11]. In the symmetric versions of the D2 and D methods we obtained only even modesfor cases when the eigenfunction is symmetric and odd modes in the skew symmetric case,and the convergence is better than that for the D4 technique. Another feature of the D4method is that even though the boundary conditions are removed we still saw two valuesin the list with � = 0; the corresponding � values were large, O(1015); and real. Thesewe believe are spurious but are easily �ltered out by examining the �i given by the QZalgorithm.Orszag [27] table 5 gives a list of the 32 least stable modes for Re = 104; a = 1: Withthe D2 method we obtained complete agreement with this list in the sense: for the �rst12 eigenvalues with 70 polynomials, for the �rst 14 eigenvalues with 80 polynomials, andcomplete agreement with all 32 eigenvalues by using 96 polynomials. We did, however,�nd an extra eigenvalue; between positions 17 and 18 of Orszag [27] table 5 we obtain thevalue c = 0:21272578� 0:19936069i: (2:2)The eigenvector coe�cients from the D2 method with 96 polynomials indicate the value(2.2) corresponds to a skew-symmetric solution and with this number of polynomials theeigenvector had converged to O(10�13); O(10�14); for the � and A (= D2� � a2�) terms.Interestingly, we �nd both symmetric and skew symmetric modes with the D (and D2)method(s); Lindsay & Ogden [21] appear to report only symmetric ones. ForRe = 104; a =1; the spectrum, in the range ci 2 (�1; 0); cr 2 (0; 1); is given in �gure 1, indicating whichare even and which are odd modes. When we refer to the spectrum in a �gure here andthroughout the paper we mean that part displayed in the relevant �gure.
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rFigure 1 The spectrum for plane Poiseuille 
ow. Re = 104; a = 1; open circle (�) =even eigenfunction, cross (�) = odd eigenfunction. The upper right branch consists of\degenerate" pairs of even and odd eigenvalues.We have produced an mpeg movie which may be accessed with a web browser, such asMosaic or Netscape, athttp://www.epm.ornl.gov/~walker/eigenproblems.htmlThis movie contains the parametric evolution of the spectrum of the plane Poiseuille
ow problem for a = 1; with Re ranging from 100 to 104 in steps of 10. This may yielduseful insight into resonance mechanisms. The evolution of the upper branches is clearlyvisible and the emanence of the eigenvalues from cr = 2=3 is evident.When Re is increased eventually mode crossing is seen, i.e. eigenvalues exchange po-sitions in the sense that the imaginary part of one eigenvalue decreases relative to thatof another eigenvalue whose imaginary part eventually becomes larger than that of theformer. Abdullah & Lindsay [1] are critical of the papers of Davey [7] and Fearn [12] intheir analysis of higher Re values. According to linear theory for (1.2) and (1.3) the mostunstable eigenvalue has largest imaginary part, i.e. ci largest. Davey [7] claims the mostunstable mode is symmetric, presumably on the basis that this is so for Re = 104; a = 1:Fearn [12] solves a symmetric problem and simply refers to the solution to (1.2), con�rmingDavey's [7] results. Abdullah & Lindsay [1] claim that these writers are using a trackingtechnique and miss the leading eigenvalue since mode crossing occurs. We have partially



Chebyshev tau - QZ algorithm methods Page 10con�rmed the �ndings of Abdullah & Lindsay [1] and Lindsay & Ogden [21] who only givethe �rst �ve eigenvalues, although it would appear they �nd only symmetric ones. This isespecially important, since for Re = 105; a = 1; we con�rm mode crossing has occurred,but we �nd the leading eigenvalue to be skew-symmetric. We present in table 1 the lead-ing eigenvalues for Re = 105 and a = 1; our calculations being made by a D2 method,but determining odd modes and even modes separately, with M = 200 in each case, i.e.equivalent to M = 400 for the full problem.Symmetry EigenvalueA :9888191058E + 00� :1116257893E � 01iA :9798738045E + 00� :2008374163E � 01iA :9709280339E + 00� :2900433538E � 01iA :1373944878E + 00� :2956356969E � 01iA :9619817790E + 00� :3792441466E � 01iA :9530350180E + 00� :4684401422E � 01iS :9888195933E + 00� :1116360699E � 01iS :1459247829E + 00� :1504203085E � 01iS :9798751271E + 00� :2008635538E � 01iS :9709305305E + 00� :2900898101E � 01iS :1982003566E + 00� :3733100660E � 01iS :9619857994E + 00� :3793148490E � 01iTable 1. The six odd and six even eigenvalues with largest imaginarypart for the Orr-Sommerfeld problem with U = 1� z2; Re = 105; a = 1:A=anti-symmetric, S=symmetric.It is seen from table 1 that the \leading" eigenvalue is a skew - symmetric one. In table2 we include components of the eigenvector for this skew mode; it is seen that machineprecision is reached with 86 odd polynomials, i.e. up to T171: (All components are notincluded, just a sample to demonstrate convergence.)
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Com. No. �r �i Ar Ai1 .208839E-03 .409542E-03 .240779E-01 .204308E-0111 .421908E-03 .289300E-03 -.167597E+00 -.125165E+0021 .889307E-04 -.897408E-04 -.147664E+00 .148864E+0031 -.123273E-04 -.114027E-05 .458675E-01 .307459E-0241 .461222E-06 .686801E-07 -.304143E-02 -.281158E-0351 -.553081E-08 .346867E-08 .525270E-04 -.400853E-0461 -.122030E-10 -.307889E-10 .231698E-06 .414265E-0671 .456178E-13 -.465328E-13 -.665353E-09 .937961E-0981 -.147851E-14 -.190889E-14 -.960477E-12 .301479E-1286 .153318E-14 .354368E-14 -.262614E-14 .292893E-14

Table 2. Some of the components of the eigenvectorcorresponding to �(1) = 0:9888191058� 0:01116257893i;Re = 105; a = 1: Com. No. refers to the component ofthe eigenvector, � = �r + i�i; A = Ar + iAi:We have used the separate \odd" and \even" codes with M = 200 to compute theeigenvalues in the transistion region. For a = 1; in table 3 it is seen that the structureat Re = 104 is maintained at Re = 80; 822 but by Re = 80; 828 the �rst two eigenvaluesexchange positions, then by Re = 80; 830 the eigenvalue which is second at Re = 80; 828exchanges with the one occupying third position for the same Re value. The position ofthese three is maintained in table 1.



Chebyshev tau - QZ algorithm methods Page 12Symmetry Eigenvalue ReA :9875629891E + 00� :1241421339E � 01i 80822A :9776125822E + 00� :2233449266E � 01i 80822A :1470238117E + 00� :3124631640E � 01i 80822A 9676615245E + 00� :3225401228E � 01i 80822S :1555554132E + 00� :1241409956E � 01i 80822S :9875636361E + 00� :1241555934E � 01i 80822S :9776143504E + 00� :2233791980E � 01i 80822S :9676648840E + 00� :3226011142E � 01i 80822A :9875634508E + 00� :1241375347E � 01i 80828A :9776134133E + 00� :2233366562E � 01i 80828A :1470203436E + 00� :3124575284E � 01i 80828A :9676627251E + 00� :3225281822E � 01i 80828S :1555521082E + 00� :1241509695E � 01i 80828S :9875640977E + 00� :1241509935E � 01i 80828S :9776151812E + 00� :2233709233E � 01i 80828S :9676660845E + 00� :3225891687E � 01i 80828A :9875636047E + 00� :1241360017E � 01i 80830A :9776136903E + 00� :2233338998E � 01i 80830A :1470191935E + 00� :3124557862E � 01i 80830A :9676631252E + 00� :3225242025E � 01i 80830S :9875642516E + 00� :1241494596E � 01i 80830S :1555510002E + 00� :1241538251E � 01i 80830S :9776154583E + 00� :2233681675E � 01i 80830S :9676664843E + 00� :3225851880E � 01i 80830Table 3. The four leading odd and even eigenvalues in thetransistion region, M = 200; a = 1:Abdullah & Lindsay [1] report further mode crossings for higher Re values. However,much care must be taken when Re increases. We now report �ndings for the spectrumand in particular in the region near the joining of the so called A, P and S branches -



Chebyshev tau - QZ algorithm methods Page 13the three groups of branches in �gure 1. The A branches are the upper left ones, the Pbranch is the upper right one composed of degenerate pairs, and the S branch is the lowerone emanating from cr = 2=3; this notation is standard in the 
uid dynamics literature,see Drazin & Reid [11], Mack [23]. The eigenvalues near the branch point are particularlysensitive to change, Orszag [27], and we �nd great care must be taken even with Re around2:3� 104:We have computed many cases and �gures 2-5 below are just a sample. Even thoughthey are only for even modes they illustrate the important points regarding round o� error;the same �ndings are true for odd mode cases, and for the full code which �nds odd andeven modes together.Figures 2 to 5 are obtained with the D2 method solving (1.2), (1.3) for even modesonly, i.e. employing only even polynomials, using full precision arithmetic (64 bit) in�gures 2 to 4, whereas extended precision (128 bit) is employed in �gure 5. Figure 2demonstrates inaccuracy caused by having insu�cient polynomials, even though M = 85;(equivalent to 170 in the odd and even code); this splitting in the tail is symptomatic ofinsu�cient polynomials and has been seen in pipe 
ow by Davey & Drazin [8] and Schmid& Henningson [32]. By increasing the number of polynomials we are able to overcome thesplitting of the tail problem as in �gure 3 where M = 200: Nevertheless, the eigenvaluesat the intersection are not accurate. Increasing the number of polynomials compounds theproblem and we �nd a \triangle of numerical instability" begins to form, �gure 4, whereM = 500: We have found that this behaviour is due to the precision to which we areworking. By increasing from 64 to 128 bit arithmetic this e�ect is removed (in this case),see �gure 5. We have not seen the latter e�ect reported before.
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rFigure 2 The even modes for plane Poiseuille 
ow. E�ect of too few polynomials. Re =2:7� 104; a = 1;M = 85; 64 bit arithmetic.
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rFigure 3 The even modes for plane Poiseuille 
ow. E�ect of �nite precision. Re =2:7� 104; a = 1;M = 200; 64 bit arithmetic.
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rFigure 4 The even modes for plane Poiseuille 
ow. E�ect of �nite precision. Re =2:7� 104; a = 1;M = 500; 64 bit arithmetic.
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rFigure 5 The even modes for plane Poiseuille 
ow. Re = 2:7� 104; a = 1;M = 200; 128bit arithmetic.



Chebyshev tau - QZ algorithm methods Page 16Remarks. 1. We have drawn attention to three important types of error which are presentin solving di�cult eigenvalue problems. The �rst is round o� error due to growth of matrixcoe�cients; in this respect a D2 method is preferable to one using D4: Secondly, too fewpolynomials causes the \tail", i.e. the S branch, to split. Thirdly, increasing the number ofpolynomials in a cavalier fashion to compute sensitive eigenvalues can lead to inaccuracydue to ill conditioning and insu�cient precision in real number representation.2. Pseudospectral methods may present an alternative for many of the calculations givenhere. They allow variable coe�cient representation; however, so do the Chebyshev taumethods, and in our opinion, in a very easy manner. The accuracy obtained by Huang& Sloan [20], table IV p. 406, for the Orr-Sommerfeld problem with Re = 104; a = 1; iscertainly no better than what we �nd with the D2 and D methods. They do not detectspurious eigenvalues (for the problems treated there), but McFadden et al. [22] claim thestream function - vorticity method does not either; this we have veri�ed forRe = 104; a = 1:Huang & Sloan [20] treat standard test problems in reasonable parameter ranges and donot apply their method to high Reynolds number 
ow for either the Couette or Poiseuilleproblems, or to the two 
uid situation of section 6; these are more severe tests of a method.3. The eigenvalue problem for plane Couette 
owThe problem of this subsection is (1.2) and (1.3) when U = z: Physically it corresponds tothe lower plate �xed while the upper plate is moved with constant velocity, generating alinear shear. This problem is always stable according to linear theory, cf. Rionero &Mulone[26]. Nevertheless, it is not a trivial eigenvalue problem from a numerical standpoint.With 150 polynomials in theD2 method we obtain excellent accuracy for Re = 3000; a =1; in 64 bit arithmetic. Breakdown at the intersection of the branch points is evident aroundRe = 3500: However, the same code operating at 128 bit arithmetic yields an accuratespectrum. Figures 6 and 7 show this e�ect for a = 1; Re = 3800: There is agreement in theconjugate pairs in these �gures, to at least 10 digits, even in full precision on the upperbranches.
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rFigure 6 Numerical instability in the spectrum for plane Couette 
ow. Re = 3800; a =1;M = 150; 64 bit arithmetic.
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rFigure 7 E�ect of �nite precision in the spectrum for plane Couette 
ow. Re = 3800; a =1;M = 150; 128 bit arithmetic.



Chebyshev tau - QZ algorithm methods Page 18In 128 bit arithmetic we are able to extend the calculation well beyond Re = 3800:With150 polynomials no di�culty is experienced at Re = 8000; but at Re = 104 a split in thetail is observed. By using 200 polynomials and 128 bit arithmetic we have been able toproceed to Re = 13; 000, and the spectrum for this case is shown in �gure 11, with actualnumerical values tabulated in table 4.
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rFigure 8 The spectrum for plane Couette 
ow, using 200 polynomials. Re = 13; 000; a =1; 128 bit arithmetic.



Chebyshev tau - QZ algorithm methods Page 19Mode number Eigenvalue c1 �:8276152337E + 00 � :4751548439E � 01i2 �:7318167785E + 00 � :1091860424E + 00i3 �:8694486153E + 00 � :1279149536E + 00i4 �:6516804277E + 00 � :1594003003E + 00i5 �:7671186628E + 00 � :1805164930E + 00i6 �:5801567166E + 00 � :2035572830E + 00i7 �:6828371673E + 00 � :2251746419E + 00i8 �:5143995235E + 00 � :2437675825E + 00i9 �:6082408213E + 00 � :2653481107E + 00i10 �:4528935800E + 00 � :2811241939E + 00i11 �:5400219613E + 00 � :3024678732E + 00i12 �:3947096982E + 00 � :3162828159E + 00i13 �:4764491821E + 00 � :3373108149E + 00i14 �:3392256967E + 00 � :3496747907E + 00i15 �:4164746866E + 00 � :3703603829E + 00i16 �:2859989475E + 00 � :3816025000E + 00i17 �:3594042660E + 00 � :4019439818E + 00i18 �:2347002407E + 00 � :4122880439E + 00i19 �:3047483827E + 00 � :4322966352E + 00i20 �:1850762211E + 00 � :4419004929E + 00i21 �:2521456926E + 00 � :4615944208E + 00i22 �:1369265577E + 00 � :4705722463E + 00i23 �:2013199914E + 00 � :4899736516E + 00i24 �:9008929422E � 01 � :4984093248E + 00i25 �:1520542459E + 00 � :5175426311E + 00i26 �:4444142747E � 01 � :5255273887E + 00i27 �:1041741466E + 00 � :5443892453E + 00i28 :0000000000E + 00 � :5459244238E + 00i29 �:5753309952E � 01 � :5705930815E + 00i30 :0000000000E + 00 � :5782633202E + 00i31 �:9937461129E � 02 � :5982573646E + 00i32 :0000000000E + 00 � :6268958614E + 00i33 :0000000000E + 00 � :6550042769E + 00i34 :0000000000E + 00 � :6809093456E + 00i35 :0000000000E + 00 � :7081327166E + 00i36 :0000000000E + 00 � :7352566431E + 00i37 :0000000000E + 00 � :7628468874E + 00i38 :0000000000E + 00 � :7906653030E + 00i39 :0000000000E + 00 � :8188353645E + 00i40 :0000000000E + 00 � :8472841070E + 00i41 :0000000000E + 00 � :8760700653E + 00i42 :0000000000E + 00 � :9051510243E + 00i43 :0000000000E + 00 � :9345643207E + 00i44 :0000000000E + 00 � :9642865284E + 00i45 :0000000000E + 00 � :9943359829E + 00iTable 4. The �rst 45 eigenvalues graphed in �gure 11. Conjugate pairs are presented asone mode.



Chebyshev tau - QZ algorithm methods Page 204. The eigenvalue problem for circular pipe 
owSymmetric disturbances for the linear instability problem for 
ow in a circular pipe drivenby a constant pressure gradient (Hagen - Poiseuille 
ow) are governed by the equationL2� = iaRe(U � c)L�; (4:1)where a;Re; c are wavenumber, Reynolds number, and growth rate, respectively, the basevelocity U = 1� r2; r being the radial coordinate, the di�erential operator L is de�ned byL = d2dr2 � 1r ddr � a2; (4:2)and (4.1) holds on the domain r 2 (0; 1): The disturbance � is subject to the boundaryconditions � = �0 = 0; r = 0; 1; (4:3)cf. Davey & Drazin [8], Drazin & Reid [11]. Symmetric disturbances governed by (4.1)-(4.3) are believed always stable, Davey & Drazin [8].The boundary value problem (4.1)-(4.3) is easily solved by a D2 method by writingL� = ;L =iaRe(U � c) ; (4:4)subject to (4.3). To use the Chebyshev tau method on this system we transform to z =2r � 1 and then use the relation, Orszag [27],Tm+1(z) + Tm�1(z) = 2zTm(z); m � 1: (4:5)System (4.4) is discretized by multiplying each equation by (z + 1)Tm; to remove thesingularity, and integrating in the weighted L2(�1; 1) space with weight (1� z2)�1=2:After employing (4.5) we arrive at an equation of form (1.1) whereAr = 0BBBBB@ 4ZD2 + 4D2 � 4D � a2(Z + I) �(Z + I)BC1 0 : : : 0BC2 0 : : : 00 4ZD2 + 4D2 � 4D � a2(Z + I)BC3 0 : : : 0BC4 0 : : : 0 1CCCCCAAi =0BBBBB@ 0 00 : : : 0 0 : : : 00 : : : 0 0 : : : 00 aRe(14Z3 + 34Z2 � 14Z � 34I)0 : : : 0 0 : : : 00 : : : 0 0 : : : 0 1CCCCCA



Chebyshev tau - QZ algorithm methods Page 21and Br = 0; Bi =0B@ 0 00 �aReI0 : : : 00 : : : 0 1CAwhere x = (�0; : : : ; �N ;  0; : : : ;  N )T ;Zn denotes the matrix arising from the Chebyshev representation of the function zn; ZD2being the Chebyshev representation of zD2. The boundary conditions BC1�BC4 are asymmetric form of (4.3).The �gures below were all obtained in full precision arithmetic (64 bits). Figure 9 isthe analogue of �gure 1. Figure 10 shows the \splitting" of the spectrum due to insu�-cient polynomials, this having been seen previously by Davey & Drazin [8] and Schmid &Henningson [32]. Figure 11 shows the correct spectrum for the parameters of �gure 10,and �nally �gures 12, 13 demonstrate what happens if too many polynomials are presentwithout su�cient precision in the arithmetic.
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rFigure 9 The spectrum for symmetric disturbances in Hagen - Poiseuille 
ow. Re =104; a = 1;M = 100:
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rFigure 10 E�ect of too few polynomials on the spectrum for symmetric disturbances inHagen - Poiseuille 
ow. Re = 5000; a = 1;M = 50:
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rFigure 11 The spectrum for symmetric disturbances in Hagen - Poiseuille 
ow. Re =5000; a = 1;M = 100:
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rFigure 12 E�ect of lack of precision and round o� error on the spectrum for symmetricdisturbances in Hagen - Poiseuille 
ow. Re = 5000; a = 1;M = 250:
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rFigure 13 E�ect of lack of precision and round o� error on the spectrum for symmetricdisturbances in Hagen - Poiseuille 
ow. Re = 5000; a = 1;M = 400:



Chebyshev tau - QZ algorithm methods Page 245. Normal velocity - normal vorticity interactionsButler & Farrell [3] is a very interesting paper studying transient growth between thecomponent of normal velocity v and the component of normal vorticity ! = u;z �w;x; i.e.in the y-direction; observe that this is not the vorticity in the stream function - vorticitymethod which would be !3 = v;x � u;y: Note that we are following the convention of [3]that 
ow is in the x-direction and the plates are at y = �1; this avoids confusion in w and! later. Butler & Farrell [3] argue that the search for transient growth perturbations canbe rationalised by determining the initial conditions which gain the most energy over achosen time period. The technique they employ to �nd three-dimensional disturbances overa certain time interval is a variational one based on the kinetic energy. They point out thatthe di�erential equations describing shear like 
ows in a viscous 
uid are not self-adjoint inthe spaces of physical interest and thus a perturbation may consist of modes which initiallydestructively interfere, after which they separate in time revealing considerable growth inthe mean kinetic energy of the perturbation. The local growth analysis of [3] is based onthe eigenvalue problem for interaction of the normal velocity, v; and normal vorticity, !:This eigenvalue problem is�2v � iaReU�v + iaReU 00v =Re��v;�! � iaReU! � ibReU 0v =Re�!; (5:1)where U = y; for Couette 
ow, U = 1 � y2; for Poiseuille 
ow, a and b are the x and zwave numbers and � is the three-dimensional Laplacian. The growth rate here is �; wedo make a comparison with the growth rate as de�ned in earlier sections which may beformally taken as � = �iac; although this is only suggestive due to the presence of b: Thefunctions v; ! satisfy the boundary conditionsv = @v@y = ! = 0; y = �1: (5:2)In their numerical calculations Butler & Farrell [3] employ a �nite di�erence methodtogether with the QR algorithm for �nding the eigenvalues.In this paper we only treat Poiseuille 
ow so henceforth U = 1�y2: To solve (5.1), (5.2)by a D2 Chebyshev tau - QZ algorithm method we write (5.1) as a system of three secondorder equations (D2 � k2)v � � = 0;(D2 � k2)�� iaReU� � 2iaRe v = Re��;(D2 � k2)! � iaReU! + 2ibyRe v = Re�!; (5:3)



Chebyshev tau - QZ algorithm methods Page 25where k2 = a2 + b2 and D = d=dy: These equations are discretized by writing v; �; ! asa series in N + 1 Chebyshev polynomials and taking inner products with Tm to yield anequation of form (1.1) where A and B are 3M � 3M complex matrices with B singular,given by Ar =0BBBBBBBBBBB@D2 � k2I �I 0BC1 0 : : : 0 0 : : : 0BC2 0 : : : 0 0 : : : 00 D2 � k2I 0BC3 0 : : : 0 0 : : : 0BC4 0 : : : 0 0 : : : 00 0 D2 � k2I0 : : : 0 0 : : : 0 BC50 : : : 0 0 : : : 0 BC6 1CCCCCCCCCCCAAi =0BBBBBBB@ 0 0 0�2aReI �aReU 00 : : : 0 0 : : : 0 0 : : : 00 : : : 0 0 : : : 0 0 : : : 02bReY 0 �aReU0 : : : 0 0 : : : 0 0 : : : 00 : : : 0 0 : : : 0 0 : : : 0 1CCCCCCCAand Bi = 0; Br =0BBBBBBB@ 0 0 00 ReI 00 : : : 0 0 : : : 0 0 : : : 00 : : : 0 0 : : : 0 0 : : : 00 0 ReI0 : : : 0 0 : : : 0 0 : : : 00 : : : 0 0 : : : 0 0 : : : 01CCCCCCCAwhere U = I � Y 2 is the matrix representation of U(y) arising from the Chebyshev repre-sentation of y; and x = (v0; : : : ; vN ; �0; : : : ; �N ; !0; : : : ; !N )T :The boundary condition rows BC1�BC6 are simply the discrete versions of (5.2), whichwe write in a symmetric way.In the formal limit b ! 0 the �rst two equations of (5.3) reduce to the standard Orr-Sommerfeld equation for plane Poiseuille 
ow while the third equation in (5.3) gives Squiremodes, [3]. We include some output from solving our (1.1) version of (5.3). In the �guresbelow we graph c = i�=a to obtain a direct comparison with the usual formulation of planePoiseuille 
ow as in section 2. Figure 14 shows the spectrum for Re = 5000; a = 1; b = 0:The Orr-Sommerfeld modes are seen together with the Squire modes. Figures 15, 16 showthe e�ect of increasing the coupling term b; interestingly the eigenvalue which is dominant


