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1. Introduction

There has been much recent attention directed at solving equations like the Orr - Sommer-
feld one, with particular interest in the removal of spurious eigenvalues or calculations in
high Reynolds number ranges, cf. Abdullah & Lindsay [1], Davey [7], Fearn [12], Gardner
et al. [13], Huang & Sloan [20], Lindsay & Ogden [21], McFadden et al. [22], Orszag
[27], and Zebib [40]. Equations of Orr-Sommerfeld type govern the stability of shear and
related flows which have tremendous application in many fields. One such field is climate
modelling with questions like determining an explanation for the origin of the mid-latitude
cyclone which in turn is responsible for producing the high and low pressure regions from
which variable weather patterns arise. Another application is to shear flows in electro-
hydrodynamic (EHD) systems which have industrial relevance in the invention of devices
employing the electroviscous effect or those utilizing charge entrainment, such as EHD
clutch development, or EHD high voltage generators. Yet other important mundane ap-
plications include the prediction of landslides, and flow over an aeroplane wing covered in
de-icer. These topics will form part of future research.

Of especial interest to the present contribution is the paper by McFadden et al. [22].
These writers propose a modified Chebyshev tau method which involves setting to zero

two columns of the B matrix in the generalised eigenvalue problem
Ax = 0 Bx, (1.1)

which arises from a representation of a solution to the differential equation by a finite series
of Chebyshev polynomials. At first sight this may seem ad hoc; however, [22] provides an
elegant proof of why their technique is equivalent to a stream function - vorticity scheme, at
least for the modified problem studied there. Our goal is to investigate in detail a method
which for many two-dimensional problems is equivalent to the stream function - vorticity
method of McFadden et al. [22]. The technique employed here also extends to practical
three - dimensional stability problems for which a stream function - vorticity formulation
is not so clear. The motivation for requiring a technique involving only second order
derivatives is that this involves matrices whose coefficients grow at most O(M?), M being
the number of Chebyshev polynomials; since we study Couette / Poiseuille type problems
in high Reynolds number regimes we require many polynomials and then it is vital to
avoid round off error due to growth of terms. In fact, we highlight three types of error
one can expect to find in Couette / Poiseuille flow stability calculations and ramifications
of these. It is shown how to modify the method to deal with these errors. We apply the
method to obtain new results for a variety of interesting shear flow / pressure gradient

driven hydrodynamic stability problems.
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To begin our discussion we shall consider the Orr-Sommerfeld equation
(D* — a*)*¢ = iaRe(U — ¢)(D?* — a*)¢ — iaReU" ¢, z € (—1,1), (1.2)

see Drazin & Reid [11], equation (25.12), where D = d/dz, Re, a and ¢ are Reynolds
number, wavenumber, and eigenvalue (growth rate), respectively, and ¢ is the amplitude
of the stream function. For Poiseuille flow U = 1 — 2%, whereas for Couette flow U = z.

Equation (1.2) is solved subject to the boundary conditions
¢o=Do=0, z==l1. (1.3)

To motivate what follows a brief description of the fluid dynamics behind equation
(1.2) is expedient. This equation arises in a study of linear instability of the flow of a
fluid contained between infinite parallel plates at = = +1, which are sheared relative to
one another (Couette flow) or the fluid is driven by a pressure gradient in the horizontal
direction (Poiseuille flow). If the components of perturbation velocity and pressure are
(u,v,w,p) then the differential equations for these variables are, ¢f. Drazin & Reid [11],
p- 128,

(ReU — c)iau + ReU'w = — iap + <D2 — [a2 + bz]>u,
(ReU — ¢)iav = —ibp + <D2 — [a2 + bZDU,
(ReU — ¢)iaw = — Dp + (D* — [a® + b*])w,

1au + 1bv + Dw =0,

(1.4)

where a and b are horizontal wavenumbers in the @ and y directions and equations (1.4)

arise from a representation like

i(laz+by—act)
€ )

ui = ui(2) p = p(z)eettvmact, (1.5)

with uy = u,uy = v,u3 = w. Traditional thinking has argued that the transformations

~ qa N
Re — Re —, c— ¢
a

Q| Qe

reduce (1.4) to a two-dimensional form (Squire’s theorem)
(ReU — ¢)iau + ReU'w = — iap + (D? — a*)u,
(ReU — ¢)iaw = — Dp + (D2 — az)w, (1.6)
rau + Dw =0.

The boundary conditions are u = w = 0 on z = £1 and then by introduction of a stream

function @ with
_% __®
0z YT T

[
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and writing
b= gl2)e e,
one derives (1.2), (1.3) for the solution to the instability problem.

A recent school of thought has challenged traditional thinking and argued that since
experiments predict instabilities earlier than the critical value of linear theory then the
true situation may be a three-dimensional one where resonances between individual modes
can lead to very large transient growth over a small time scale, and after that presumably
nonlinear effects become important. The early resonance investigations are by Gustavsson
[14] and Gustavsson & Hultgren [15], and much activity has followed, see e.g. Butler &
Farrell [3], Henningson & Reddy [17], Reddy & Henningson [28], Reddy et al. [29], Schmid
& Henningson [32], Shanthini [33], and Trefethen et al. [38], and the references therein.

The particular reason why we are interested in the above works is that we have inves-
tigated a Chebyshev tau method which reduces the fourth order equation to two second
order ones, as do Gardner et al. [13], and the stream function - vorticity method of Mec-
Fadden et al. [22]. Our premise is that the method involving only second derivatives is
much better for accurate results because the growth of terms in the A matrix in (1.1) is
considerably less. Further details are provided below.

The fundamental paper of Orszag [27] solves (1.2), (1.3) by a Chebyshev tau method
to high accuracy and we make comparison with his work. He splits the problem into odd
and even modes which is best if one knows a priori this can be done. For the most part
we deal directly with (1.2), (1.3) since this would allow the incorporation of effects such
as penetrative convection into the fluid dynamics.

One method to solve (1.2), (1.3) directly is as in Gardner et al. [13] section 2, whereby

one writes
N+4

¢ = Z anTn(Z)v

and removes the boundary condition columns from the Chebyshev representation of D*.
This we have done taking care to employ the Herbert [18] form of representation of coeffi-
cients in D*, ¢f. Canuto et al. [4] p. 196, since this leads to smaller round off error. If we
put M = N + 1, then for M large, the matrix resulting from D* has terms growing like
O(M7) and since for high Reynolds number calculations a large number of polynomials
are required (possibly at least 200) this can be a serious problem. This is one immediate
reason for preferring a method involving D?, since then the growth is only O(M?). Gardner
et al. [13] do develop a D? method for the Orr-Sommerfeld equation; due to the way they
remove boundary condition rows, the growth problem is still present. Their technique still
has O(M?®) growth due to the B;Q term in their equation (3.9b); By and Q each involve
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Y2 F% (in their notation) and this term is like O(M?), and so the modified tau method of
Gardner et al. [13] still does not remove the growth problem.

A D? method writes (1.2) as two equations

(D* —a*)p— A =0,
(D? —a*)A —iaRe(U — ¢)A +iaReU" ¢ = 0.

The difficulty with doing this, as pointed out by McFadden et al. [22], p. 232, is that the
boundary conditions are all on ¢ and none are on A. Thus, we cannot remove boundary
condition rows by the Haidvogel - Zang [16] device. (If the boundary conditions are those
appropriate to surfaces free of tangential stress then there are two boundary conditions
on ¢ and two on A and one can remove the offending boundary condition rows. This
we have done for Orr-Sommerfeld problems, and in a practical multi-component diffusion
problem involving penetrative convection; we obtain highly accurate results and no spuri-
ous eigenvalues, see Straughan & Walker [37]. Also, for porous convection problems the
natural boundary conditions allow boundary condition removal in the A matrix and very
satisfactory results are yielded, Straughan & Walker [35,36].)

Instead we try the heuristic approach of simply writing in the boundary conditions as
rows of the matrix, c¢f. McFadden et al. [22], p. 232. This is also done by Lindsay &
Ogden [21] who generalized the Gardner et al. [13] method and solved (1.2), (1.3) as a
system of four first order equations; we refer to their technique as a D-method. As we have
pointed out in Straughan & Walker [36] when we use the Lindsay & Ogden [21] technique
on the simple harmonic motion equation with homogeneous boundary conditions we detect
a spurious eigenvalue; this feature persists even if we use a symmetric form of boundary
conditions. Also, both the D? and D methods are ad hoc in that one has some freedom
as to how to insert the boundary conditions; we have found that a symmetric form of
boundary conditions is preferable for the Orr-Sommerfeld equations.

A D?-method for (1.2), (1.3) appropriate to Poiseuille flow solves an equation like (1.1)

where
X:(¢07"'7¢N7¢07"'7¢N)T7
with
D? — %1 -7 0 0
BC1 0...0 0...0 0...0
BC?2 0...0 0...0 0...0
A, = , A, =
0 D? — %1 —2aRel aRe(P —1I)
BC3 0...0 0...0 0...0

BC4 0...0 0...0 0...0
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and
0 0
B, =0, B,=10 —aRel
0...0
0...0

where P is the Chebyshev matrix representing 2%, A = A, +iA4;, and B = B, +1B;.

The rows BC1,...,BC4 refer to the boundary conditions on ¢, and for the Orr-
Sommerfeld problem we find it preferable to use the symmetric form given by Orszag
[27] i.e. BC1, BC?2 are (15); and (15); of Orszag [27] while BC3, BC4 are (16)1, (16)3 of
the same paper.

In the two-dimensional case the D? method is simply the stream function - vorticity
technique of McFadden et al. [22]. For, in that case, the vorticity has only one component,

in the y-direction, w = ws with

W=U_,— Wy

) )

:¢,zz + ¢,1:1:
:eia(x—ct)(DZ _ a2)¢‘

Thus the functions ¢ and A are essentially b and w. We stress though that we are using
the McFadden et al. [22] stream function - vorticity method (called here a D?* method)
because the resulting A matrix in (1.1) has better growth properties.

It is noteworthy though that the D? method is more general than the stream function
- vorticity method. For example, in section 5 we consider the Butler & Farrell [3] problem
which results in a coupled system involving a fourth order equation for w and a second
order equation for the normal vorticity w3 = v, — u . In this three-dimensional situation
we still reduce things to three second order equations and use a D? method which is then
not equivalent to the usual stream function - vorticity method. Other areas where 1t differs
are in three-dimensional convection studies in anisotropic porous media where the principal
axes of the permeability tensor are not orthogonal to the layer, or the Hadley flow problem,
see Straughan & Walker [35,36], respectively.

In the remainder of the paper we make a systematic study of Chebyshev tau methods
applied to Poiseuille flow, Couette flow, Hagen-Poiseuille flow, the normal velocity - normal
vorticity eigenvalue problem of Butler & Farrell [3], and finally we show how to apply the
method to the situation where one fluid is overlying another. We stress that we concentrate
on finding the whole of the top end of the spectrum, including eigenvalues at the “branch
points” which are difficult to obtain, [27], and we investigate parameter ranges which have

previously proved difficult. Consideration is given to loss of accuracy due to the various
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D*, D? or D methods, and to loss of accuracy due to insufficient polynomials, or insufficient
resolution due to lack of precision in the representation of real numbers; each of these has
a strong effect on the spectrum. The calculation of the spectrum is very important when
one is interested in the question of resonances and interactions between various lower order

modes, and it is vital when mode crossing occurs, as it does in practical problems.

2. The eigenvalue problem for plane Poiseuille flow

In this section we study (1.2), (1.3) with U = 1 — z2. There have been many calculations
of the spectral behaviour for Re not too large, say Re < 10*, see Butler & Farrell [3],
Drazin & Reid [11], Gustavsson [14], Henningson & Reddy [17], Mack [23], Orszag [27],
Reddy & Henningson [28], Shanthini [33]. Abdullah & Lindsay [1], Davey [7] and Fearn
[12] report studies on particular eigenvalues for Re extending to 10°. We, therefore, use
the D? (stream function - vorticity) method and show what can go wrong in calculating

the spectrum for large Re and how one can put things right.

We have written our own codes for the D*, D? and D methods, employing various forms
of the boundary conditions in the latter two, including two forms of symmetric boundary
conditions in the D method, one using Orszag’s boundary conditions on ¢ directly, the
other employing expressions like (15)1,(16); of Orszag [27] on both ¢ and ¢’ individually.

A comparison of results for these methods is now given.

Undoubtedly the advantage of the D? method is the growth rate removal, and in this
respect the D method is even better, with terms growing only like O(M); this important
feature does not appear to have been realised in Lindsay & Ogden [21]. Against this,
the time taken by the QZ algorithm appears to scale like O(M2, ) where My,e is the
matrix width, i.e. Mg,e = M,2M,4M, with the D* D? D methods, respectively; the
problems associated with doubling the matrix size have been commented on by McFadden
et al. [22]. For example, on a SUN sparc station (ipc), with 50 polynomials, the D* D* D
methods take, respectively, 4.1 seconds, 17.1 seconds, and 112.3 seconds. One test of the D
method with M = 150 took 2940.7 seconds, i.e. approximately 49 minutes. Clearly, when
many computations are required this is an important factor. Additionally, the memory
requirements of the D method are substantial, requiring approximately 16MB for the
150 polynomial case (using full precision). The D* method we have found to yield high
accuracy, although as reported below, for Re high enough extended precision arithmetic is
required. Unless explicitly stated, our calculations are based on full precision, i.e. 64 bit,

arithmetic.
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The D? and D methods necessarily produce a B matrix in (1.1) which has one or
more rows of blocks of 0’s and so is singular. One approach to solving this problem is
the QZ algorithm of Moler & Stewart [25]. This algorithm relies on the fact that there
exist unitary matrices ) and Z such that QAZ and QQBZ are both upper triangular.
The algorithm then yields sets of values «;, 3; which are the diagonal elements of QAZ
and QBZ. The eigenvalues o; of (1.1) are then obtained from the relation o; = «;/3;,
provided [3; # 0. This is very important, since the way we have constructed B means it
contains a singular band, corresponding to infinite eigenvalues, and the 3; = 0 must be
filtered out. Indeed, with the technique advocated here one ought always to consider the
a; and f3;, since as Moler & Stewart [25] point out, the «; and 3; contain more information
than the eigenvalues themselves. The QZ algorithm is available in the routines ZGGHRD,
ZHGEQZ and ZTGEVC of the LAPACK Fortran Subroutine library, Anderson et al. [2].
The coefficients of the eigenvector x yielded by the QZ algorithm are extremely useful
convergence indicators. In fact, they can be used to indicate the presence of spurious
eigenvalues; the “eigenvector” for such a spurious eigenvalue typically does not demonstrate
the convergence evident in the eigenvector for a real eigenvalue. An alternative way is to
compute the 7 - coefficients, c¢f. Gardner et al. [13], but as these are based on the
eigenvector we find it simpler to just examine the eigenvectors themselves. Another possible
method of assessing whether an eigenvector is spurious is to compute the residuals for (1.1),
l.e. compute

rl) = @Ax(i) — OziBX(i).

When an eigenvalue is spurious we have found these to have all components between
0(10%?) and O(10'®). For a real eigenvalue, the residuals corresponding to those 3; = 0
are O(10'®) as are two or three corresponding to the presence of spurious eigenvalues,
whereas the rest converge from O(10°) down to O(107%), which is consistent with the fact
that the discretization only allows us to see the “top end” of the true spectrum. Even
though we are using a D? method we do find a spurious eigenvalue may be produced;
when we apply the method to the problem of two fluids in section 6 then we always see
spurious eigenvalues. In connection with this, we have calculated the sensitivities for the
eigenvector, cf. Stewart & Sun [34], and these indicate that the spurious eigenvalues are
connected with the discretization procedure rather than the QZ algorithm used to find
the matrix eigenvalues; details appropriate to the superposed fluid problem are given in
section 6.
Orszag [27] gives for Re = 10* and a = 1,

¢ = 0.23752649 + 0.00373967: (2.1)
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as the exact value of the first eigenvalue (to 8 d.p.); he used 56 polynomials to achieve this
accuracy (although he only uses even ones, thereby only 28 terms are in his expansion).
The D* method gives

c = 0.23752708 + 0.00373980:

with M = 50. We found this to be the best approximation and thereafter on increasing
M the value diverges from (2.1). The D? and D methods, however, agree with (2.1) for
M = 56 and beyond. We can also find the eigenfunctions very accurately; for example,
the D? method with 56 polynomials yields ¢, and ¢; as in figure 4.20 of Drazin & Reid
[11]. In the symmetric versions of the D? and D methods we obtained only even modes
for cases when the eigenfunction is symmetric and odd modes in the skew symmetric case,
and the convergence is better than that for the D* technique. Another feature of the D*
method is that even though the boundary conditions are removed we still saw two values
in the list with 3 = 0; the corresponding o values were large, O(10'®), and real. These
we believe are spurious but are easily filtered out by examining the 3; given by the QQZ
algorithm.

Orszag [27] table 5 gives a list of the 32 least stable modes for Re = 10*, a = 1. With
the D? method we obtained complete agreement with this list in the sense: for the first
12 eigenvalues with 70 polynomials, for the first 14 eigenvalues with 80 polynomials, and
complete agreement with all 32 eigenvalues by using 96 polynomials. We did, however,
find an extra eigenvalue; between positions 17 and 18 of Orszag [27] table 5 we obtain the

value

¢ = 0.21272578 — 0.19936069;. (2.2)

The eigenvector coefficients from the D? method with 96 polynomials indicate the value
(2.2) corresponds to a skew-symmetric solution and with this number of polynomials the
eigenvector had converged to O(10713), O(10714), for the ¢ and A (= D?*¢ — a?¢) terms.
Interestingly, we find both symmetric and skew symmetric modes with the D (and D?)
method(s); Lindsay & Ogden [21] appear to report only symmetric ones. For Re = 10*,a =
1, the spectrum, in the range ¢; € (—1,0), ¢, € (0,1), is given in figure 1, indicating which
are even and which are odd modes. When we refer to the spectrum in a figure here and

throughout the paper we mean that part displayed in the relevant figure.
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Figure 1 The spectrum for plane Poiseuille flow. Re = 10*,a = 1, open circle (o) =
even eigenfunction, cross (x) = odd eigenfunction. The upper right branch consists of

“degenerate” pairs of even and odd eigenvalues.

We have produced an mpeg movie which may be accessed with a web browser, such as

Mosaic or Netscape, at
http://www.epm.ornl.gov/" walker/eigenproblems.html

This movie contains the parametric evolution of the spectrum of the plane Poiseuille
flow problem for a = 1, with Re ranging from 100 to 10* in steps of 10. This may yield
useful insight into resonance mechanisms. The evolution of the upper branches is clearly
visible and the emanence of the eigenvalues from ¢, = 2/3 is evident.

When Re is increased eventually mode crossing is seen, i.e. eigenvalues exchange po-
sitions in the sense that the imaginary part of one eigenvalue decreases relative to that
of another eigenvalue whose imaginary part eventually becomes larger than that of the
former. Abdullah & Lindsay [1] are critical of the papers of Davey [7] and Fearn [12] in
their analysis of higher Re values. According to linear theory for (1.2) and (1.3) the most
unstable eigenvalue has largest imaginary part, i.e. ¢; largest. Davey [7] claims the most
unstable mode is symmetric, presumably on the basis that this is so for Re = 10, a = 1.
Fearn [12] solves a symmetric problem and simply refers to the solution to (1.2), confirming
Davey’s [7] results. Abdullah & Lindsay [1] claim that these writers are using a tracking

technique and miss the leading eigenvalue since mode crossing occurs. We have partially
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confirmed the findings of Abdullah & Lindsay [1] and Lindsay & Ogden [21] who only give
the first five eigenvalues, although it would appear they find only symmetric ones. This is
especially important, since for Re = 10°,a = 1, we confirm mode crossing has occurred,
but we find the leading eigenvalue to be skew-symmetric. We present in table 1 the lead-
ing eigenvalues for Re = 10° and a = 1, our calculations being made by a D? method,

but determining odd modes and even modes separately, with M = 200 in each case, i.e.

equivalent to M = 400 for the full problem.

Symmetry Eigenvalue
A 9888191058E + 00 — .1116257893F — 01¢
A 9798738045 E + 00 — .2008374163E — 01¢
A .9709280339E + 00 — .2900433538E — 01¢
A 1373944878 E + 00 — .2956356969E — 01¢
A 9619817790E + 00 — .3792441466FE — 01¢
A .9530350180F + 00 — .4684401422F — 01¢
S 9888195933 E + 00 — .1116360699E — 01¢
S 1459247829 EF + 00 — .1504203085E — 01¢
S 9798751271 E + 00 — .2008635538E — 01¢
S .9709305305E + 00 — .2900898101F — 01¢
S 1982003566 F + 00 — .3733100660EF — 01¢
S 9619857994 F + 00 — .3793148490F — 01¢

Table 1. The six odd and six even eigenvalues with largest imaginary
part for the Orr-Sommerfeld problem with U = 1 — 22, Re = 10°, a = 1.

A=anti-symmetric, S=symmetric.

It is seen from table 1 that the “leading” eigenvalue is a skew - symmetric one. In table
2 we include components of the eigenvector for this skew mode; it is seen that machine

precision is reached with 86 odd polynomials, i.e. up to Ty71. (All components are not

included, just a sample to demonstrate convergence.)
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Com. No. Oy b A, A;
1 .208839E-03 .409542E-03 240779E-01 .204308E-01
11 .421908E-03 .289300E-03 -.167597E+00 -.125165E4-00
21 .889307E-04 -.897408E-04 -.147664E4-00 .148864E+00
31 -.123273E-04 -.114027E-05 458675E-01 .307459E-02
41 461222E-06 .686801E-07 -.304143E-02 -.281158E-03
51 -.553081E-08 .346867E-08 .525270E-04 -.400853E-04
61 -.122030E-10 -.307889E-10 .231698E-06 414265E-06
71 456178E-13 -.465328E-13 -.665353E-09 937961E-09
81 -.147851E-14 -.190889E-14 -.960477E-12 .301479E-12
86 .153318E-14 .354368E-14 -.262614E-14 .292893E-14

Table 2. Some of the components of the eigenvector
corresponding to o(!) = 0.9888191058 — 0.011162578934,
Re = 10°, a = 1. Com. No. refers to the component of

the eigenvector, ¢ = ¢, + 1¢;, A = A, +14;.

We have used the separate “odd” and “even” codes with M = 200 to compute the
eigenvalues in the transistion region. For ¢ = 1, in table 3 it is seen that the structure
at Re = 10* is maintained at Re = 80,822 but by Re = 80,828 the first two eigenvalues
exchange positions, then by Re = 80,830 the eigenvalue which is second at Re = 80,828
exchanges with the one occupying third position for the same Re value. The position of

these three is maintained in table 1.
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Symmetry Eigenvalue Re
A 9875629891 F + 00 — .1241421339E — 01« 80822
A 9776125822F + 00 — .2233449266E — 01¢ 80822
A .1470238117E + 00 — .3124631640E — 01¢ 80822
A 9676615245F + 00 — .3225401228F — 01: 80822
S .1555554132F + 00 — .1241409956E — 01¢ 80822
S 9875636361 F + 00 — .1241555934F — 01« 80822
S 9776143504 F + 00 — .2233791980FE — 01¢ 80822
S 9676648840F + 00 — .3226011142F — 01¢ 80822
A 9875634508 E + 00 — .1241375347E — 014 80828
A 9776134133 E + 00 — .2233366562E — 01¢ 80828
A 1470203436 E + 00 — .3124575284F — 01« 80828
A 9676627251 F + 00 — .3225281822F — 01¢ 80828
S .1555521082E + 00 — .1241509695E — 01¢ 80828
S 9875640977E + 00 — .1241509935E — 01¢ 80828
S 9776151812FE + 00 — .2233709233E — 01¢ 80828
S 9676660845 FE + 00 — .3225891687E — 01« 80828
A 9875636047E + 00 — .1241360017E — 01¢ 80830
A 9776136903 E + 00 — .2233338998E — 01¢ 80830
A .1470191935E + 00 — .3124557862E — 01¢ 80830
A 9676631252E + 00 — .3225242025E — 01¢ 80830
S 9875642516 + 00 — 1241494596 F — 01¢ 80830
S .1555510002E + 00 — .1241538251F — 01¢ 80830
S 9776154583 E + 00 — .2233681675E — 01¢ 80830
S 9676664843 + 00 — .3225851880F — 01¢ 80830

Table 3. The four leading odd and even eigenvalues in the

transistion region, M

=200, a = 1.
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Abdullah & Lindsay [1] report further mode crossings for higher Re values. However,

much care must be taken when Re increases. We now report findings for the spectrum

and in particular in the region near the joining of the so called A, P and S branches -
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the three groups of branches in figure 1. The A branches are the upper left ones, the P
branch is the upper right one composed of degenerate pairs, and the S branch is the lower
one emanating from ¢, = 2/3; this notation is standard in the fluid dynamics literature,
see Drazin & Reid [11], Mack [23]. The eigenvalues near the branch point are particularly
sensitive to change, Orszag [27], and we find great care must be taken even with Re around
2.3 x 10%.

We have computed many cases and figures 2-5 below are just a sample. Even though
they are only for even modes they illustrate the important points regarding round off error;
the same findings are true for odd mode cases, and for the full code which finds odd and
even modes together.

Figures 2 to 5 are obtained with the D? method solving (1.2), (1.3) for even modes
only, i.e. employing only even polynomials, using full precision arithmetic (64 bit) in
figures 2 to 4, whereas extended precision (128 bit) is employed in figure 5. Figure 2
demonstrates inaccuracy caused by having insufficient polynomials, even though M = 85,
(equivalent to 170 in the odd and even code); this splitting in the tail is symptomatic of
insufficient polynomials and has been seen in pipe flow by Davey & Drazin [8] and Schmid
& Henningson [32]. By increasing the number of polynomials we are able to overcome the
splitting of the tail problem as in figure 3 where M = 200. Nevertheless, the eigenvalues
at the intersection are not accurate. Increasing the number of polynomials compounds the
problem and we find a “triangle of numerical instability” begins to form, figure 4, where
M = 500. We have found that this behaviour is due to the precision to which we are
working. By increasing from 64 to 128 bit arithmetic this effect is removed (in this case),

see figure 5. We have not seen the latter effect reported before.
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Figure 2 The even modes for plane Poiseuille flow. Effect of too few polynomials. Re =

2.7 x 10%,a = 1, M = 85, 64 bit arithmetic.
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Figure 3 The even modes for plane Poiseuille flow.
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Figure 5 The even modes for plane Poiseuille flow. Re = 2.7 x 10*,a = 1, M = 200, 128

bit arithmetic.
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Remarks. 1. We have drawn attention to three important types of error which are present
in solving difficult eigenvalue problems. The first is round off error due to growth of matrix
coefficients; in this respect a D? method is preferable to one using D*. Secondly, too few
polynomials causes the “tail”, i.e. the S branch, to split. Thirdly, increasing the number of
polynomials in a cavalier fashion to compute sensitive eigenvalues can lead to inaccuracy
due to ill conditioning and insufficient precision in real number representation.

2. Pseudospectral methods may present an alternative for many of the calculations given
here. They allow variable coefficient representation; however, so do the Chebyshev tau
methods, and in our opinion, in a very easy manner. The accuracy obtained by Huang
& Sloan [20], table IV p. 406, for the Orr-Sommerfeld problem with Re = 10%, a = 1, is
certainly no better than what we find with the D? and D methods. They do not detect
spurious eigenvalues (for the problems treated there), but McFadden et al. [22] claim the
stream function - vorticity method does not either; this we have verified for Re = 10%,a = 1.
Huang & Sloan [20] treat standard test problems in reasonable parameter ranges and do
not apply their method to high Reynolds number flow for either the Couette or Poiseuille

problems. or to the two fluid situation of section 6; these are more severe tests of a method.

3. The eigenvalue problem for plane Couette flow

The problem of this subsection is (1.2) and (1.3) when U = z. Physically it corresponds to
the lower plate fixed while the upper plate is moved with constant velocity, generating a
linear shear. This problem is always stable according to linear theory, cf. Rionero & Mulone
[26]. Nevertheless, it is not a trivial eigenvalue problem from a numerical standpoint.
With 150 polynomials in the D? method we obtain excellent accuracy for Re = 3000, a =
1, in 64 bit arithmetic. Breakdown at the intersection of the branch points is evident around
Re = 3500. However, the same code operating at 128 bit arithmetic yields an accurate
spectrum. Figures 6 and 7 show this effect for @ = 1, Re = 3800. There is agreement in the
conjugate pairs in these figures, to at least 10 digits, even in full precision on the upper

branches.
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. Re = 3800,a =
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Figure 7 Effect of finite precision in the spectrum for plane Couette flow. Re = 3800,a =

1, M = 150, 128 bit arithmetic.
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In 128 bit arithmetic we are able to extend the calculation well beyond Re = 3800. With
150 polynomials no difficulty is experienced at Re = 8000, but at Re = 10* a split in the
tail is observed. By using 200 polynomials and 128 bit arithmetic we have been able to
proceed to Re = 13,000, and the spectrum for this case is shown in figure 11, with actual

numerical values tabulated in table 4.
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Figure 8 The spectrum for plane Couette flow, using 200 polynomials. Re = 13,000,a =
1, 128 bit arithmetic.
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Mode number

Eigenvalue ¢

+.8276152337F + 00 — .

4751548439F — 014

2 +.7318167785F + 00 — .1091860424 F + 00z
3 +.8694486153F + 00 — .1279149536 F + 00z
4 +.6516804277FE + 00 — .1594003003 F + 00z
5 +.7671186628 F + 00 — .1805164930F + 00z
6 +.5801567166F + 00 — .2035572830F + 00z
7 +.6828371673F + 00 — .2251746419F + 00z
8 +.5143995235F + 00 — .2437675825F + 00z
9 +.6082408213F + 00 — .2653481107FE + 00z
10 +.4528935800F + 00 — .2811241939F + 00z
11 +.5400219613F + 00 — .3024678732F + 00z
12 +.3947096982F + 00 — .3162828159F + 00z
13 +.4764491821F + 00 — .3373108149F + 00z
14 +.3392256967F + 00 — .3496747907FE + 00z
15 +.4164746866F + 00 — .3703603829F + 00z
16 +.2859989475F + 00 — .3816025000F + 00z
17 +.3594042660F + 00 — 4019439818 F + 00z
18 +.2347002407F + 00 — 4122880439 F + 00z
19 +.3047483827F + 00 — 4322966352 F + 00z
20 +.1850762211F + 00 — 4419004929 F + 00z
21 +.2521456926 F + 00 — 4615944208 F' + 00z
22 +.1369265577FE + 00 — 4705722463 F + 00z
23 +.2013199914F + 00 — 4899736516 K + 00z
24 +.9008929422F — 01 — 4984093248 F + 00z
25 +.1520542459F + 00 — .5175426311F + 00z
26 +.4444142747F — 01 — .5255273887TFE + 00z
27 +.1041741466 F + 00 — .5443892453 F + 00z
28 .0000000000F 4+ 00 — .5459244238 F + 00
29 +.5753309952F — 01 — .5705930815F + 00z
30 .0000000000F 4+ 00 — .5782633202F + 00
31 +.9937461129F — 02 — 5982573646 F + 00z
32 .0000000000F 4 00 — .6268958614.F + 00¢
33 .0000000000F 4+ 00 — .6550042769F + 00¢
34 .0000000000F 4+ 00 — .6809093456 F + 00¢
35 .0000000000F 4+ 00 — .7081327166F + 00¢
36 .0000000000F 4+ 00 — .7352566431F + 00¢
37 .0000000000F 4+ 00 — .7628468874F + 00¢
38 .0000000000F 4+ 00 — .7906653030F + 00¢
39 .0000000000F 4+ 00 — .8188353645F + 00¢
40 .0000000000F 4+ 00 — .8472841070F + 00¢
41 .0000000000F 4+ 00 — .8760700653 " + 00¢
42 .0000000000F 4+ 00 — .9051510243 F + 00¢
43 .0000000000F 4+ 00 — .9345643207F + 00¢
44 .0000000000F 4+ 00 — .9642865284F + 00
45 .0000000000F + 00 — .9943359829F + 00

Page 19

Table 4. The first 45 eigenvalues graphed in figure 11. Conjugate pairs are presented as

one mode.
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4. The eigenvalue problem for circular pipe flow

Symmetric disturbances for the linear instability problem for flow in a circular pipe driven

by a constant pressure gradient (Hagen - Poiseuille flow) are governed by the equation
L*¢ = iaRe(U — ¢)Lo, (4.1)

where a, Re, ¢ are wavenumber, Reynolds number, and growth rate, respectively, the base
velocity U = 1 — 72, r being the radial coordinate, the differential operator L is defined by
G 1 d 9
dr2 oy odr ’
and (4.1) holds on the domain r € (0,1). The disturbance ¢ is subject to the boundary

conditions

(4.2)

6=¢'=0, r=0,1, (4.3)

cf. Davey & Drazin [8], Drazin & Reid [11]. Symmetric disturbances governed by (4.1)-
(4.3) are believed always stable, Davey & Drazin [8].
The boundary value problem (4.1)-(4.3) is easily solved by a D? method by writing
Lo =y,
(4.4)
Ly =iaRe(U — ¢),

subject to (4.3). To use the Chebyshev tau method on this system we transform to z =
2r — 1 and then use the relation, Orszag [27],
Tomt1(2) + Tea(2) = 22T, (2), m > 1. (4.5)

System (4.4) is discretized by multiplying each equation by (z + 1)T),, to remove the

singularity, and integrating in the weighted L?(—1,1) space with weight (1 — z2)~!/2,
After employing (4.5) we arrive at an equation of form (1.1) where
AZD* 44D — 4D — a*(Z + I) —(Z+1)
BC1 0...0
BC?2 0...0
A, =
0 4ZD? 4 4D* — 4D — a*(Z + 1)
BC3 0...0
BC4 0...0
0 0
0...0 0...0
0...0 0...0
A= Re(Lz3 4322 -1z 2]
, e(1 +Oz —31Z-31)

0... 0
0...0 0...0
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and

where

x = (o,

7¢N777Z)07"'

—aRel

.0
.0

s 77Z)N)Tv
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Z™ denotes the matrix arising from the Chebyshev representation of the function 2", Z D?

being the Chebyshev representation of zD?. The boundary conditions BC'1 — BC4 are a

symmetric form of (4.3).

The figures below were all obtained in full precision arithmetic (64 bits). Figure 9 is

the analogue of figure 1. Figure 10 shows the “splitting” of the spectrum due to insuffi-

cient polynomials, this having been seen previously by Davey & Drazin [8] and Schmid &

Henningson [32]. Figure 11 shows the correct spectrum for the parameters of figure 10,

and finally figures 12, 13 demonstrate what happens if too many polynomials are present

without sufficient precision in the arithmetic.

0.0

-0.14
.02

-0.3 4

-0.4 4

Ci -054
-0.6
0.7

-0.8

-0.9 4

-1.0

o
O O O 0 o0 o o 0 o

(o]

o

0.0

Figure 9 The spectrum for symmetric disturbances in Hagen - Poiseuille flow. Re

104, a = 1, M = 100.

0.1

0.2

0.3

0.4

T
05
Cr

0.6

0.7

0.8

0.9

1.0



Chebyshev tau - QZ algorithm methods

C .

0.0
-0.1 4
-0.2 4
-0.3 4
-0.4 -
-0.54
-0.6
-0.7 1
-0.8 1
-0.9 4
-1.04
-1.14
-1.24
-1.34
-1.4-
-1.54
-1.6
-1.7 1
-1.8 4
-1.94

(o}

0o?©

-2.0
0.0

0.1

0.2

0.3

0.4

T
05
Cr

0.6

0.7

0.8

0.9

1.0

Page 22

Figure 10 Effect of too few polynomials on the spectrum for symmetric disturbances in

Hagen - Poiseuille flow. Re = 5000,a = 1, M = 50.
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Figure 11 The spectrum for symmetric disturbances in Hagen - Poiseuille flow. Re =

5000,a = 1, M = 100.
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Figure 12 Effect of lack of precision and round off error on the spectrum for

disturbances in Hagen - Poiseuille flow. Re = 5000,a = 1, M = 250.

0.0

-0.1 4
-0.2 4
-0.3 4
-0.4 -
-0.54
-0.6
-0.7
-0.8 1
-0.9 4
i -1.04
-1.14
_12 -
-1.34
-1.4-
-1.54
-16 1
1.7
-1.8 1
-1.94
-20

Cc

0.0

0.1

0.2

0.3

0.4

T
05
Cr

0.6

0.7

0.8

0.9

1.0

Figure 13 Effect of lack of precision and round off error on the spectrum for

disturbances in Hagen - Poiseuille flow. Re = 5000,a = 1, M = 400.
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5. Normal velocity - normal vorticity interactions

Butler & Farrell [3] is a very interesting paper studying transient growth between the
component of normal velocity v and the component of normal vorticity w = u . — w ., i.e.
in the y-direction; observe that this is not the vorticity in the stream function - vorticity
method which would be w3 = v, — u . Note that we are following the convention of [3]
that flow is in the z-direction and the plates are at y = +1; this avoids confusion in w and
w later. Butler & Farrell [3] argue that the search for transient growth perturbations can
be rationalised by determining the initial conditions which gain the most energy over a
chosen time period. The technique they employ to find three-dimensional disturbances over
a certain time interval is a variational one based on the kinetic energy. They point out that
the differential equations describing shear like flows in a viscous fluid are not self-adjoint in
the spaces of physical interest and thus a perturbation may consist of modes which initially
destructively interfere, after which they separate in time revealing considerable growth in
the mean kinetic energy of the perturbation. The local growth analysis of [3] is based on
the eigenvalue problem for interaction of the normal velocity, v, and normal vorticity, w.

This eigenvalue problem is

A%y — iaReUAv + iaReU" v =Re ocAv,

5.1
Aw —taReUw — ibReU'v =Re ow, 5.1)

where U = y, for Couette flow, U = 1 — y?, for Poiseuille flow, a and b are the z and =
wave numbers and A is the three-dimensional Laplacian. The growth rate here is o; we
do make a comparison with the growth rate as defined in earlier sections which may be
formally taken as o = —iac, although this is only suggestive due to the presence of b. The

functions v, w satisfy the boundary conditions

:a—vzw:(), y = *1. (5.2)
0y

v

In their numerical calculations Butler & Farrell [3] employ a finite difference method
together with the QR algorithm for finding the eigenvalues.

In this paper we only treat Poiseuille flow so henceforth U = 1 —y?. To solve (5.1), (5.2)
by a D? Chebyshev tau - QZ algorithm method we write (5.1) as a system of three second
order equations

(D? — kv —x =0,
(D? — k*)x —iaReUy — 2iaRev = Reoy, (5.3)
(D? — k*)w — iaReUw + 2ibyRev = Re ow,
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where k% = a? + b* and D = d/dy. These equations are discretized by writing v, y,w as
a series in N + 1 Chebyshev polynomials and taking inner products with T}, to yield an
equation of form (1.1) where A and B are 3M x 3M complex matrices with B singular,

given by
D? — k?T -7 0
BC1 0...0 0...0
BC?2 0...0 0...0
0 D? — k?T 0
A, = BC3 0...0 0...0
BC4 0...0 0...0
0 0 D? — k?T
0...0 0...0 BCb5
0...0 0...0 BC6
0 0 0
—2aRel —aRelU 0
0...0 0...0 0...0
A, = 0...0 0...0 0...0
20ReY 0 —aReU
0...0 0...0 0...0
0...0 0...0 0...0
and
0 0 0

where U = I — Y? is the matrix representation of U(y) arising from the Chebyshev repre-

sentation of y, and

_ A
X = (V0y ey UNy XOyeevs XNsW0yeney WN) .

The boundary condition rows BC'1 — BC6 are simply the discrete versions of (5.2), which
we write In a symmetric way.

In the formal limit b — 0 the first two equations of (5.3) reduce to the standard Orr-
Sommerfeld equation for plane Poiseuille flow while the third equation in (5.3) gives Squire
modes, [3]. We include some output from solving our (1.1) version of (5.3). In the figures
below we graph ¢ = i /a to obtain a direct comparison with the usual formulation of plane
Poiseuille flow as in section 2. Figure 14 shows the spectrum for Re = 5000,a = 1,b = 0.
The Orr-Sommerfeld modes are seen together with the Squire modes. Figures 15, 16 show

the effect of increasing the coupling term b; interestingly the eigenvalue which is dominant



