
SNARL v1.0 Reference ManualSimon D. LevyDepartment of Computer ScienceUniversity of TennesseeKnoxville, TN 37996-1301levy@cs.utk.eduJanuary 19961 SummaryThis document describes the data types and routines available in SNARL, aSimple Neural ARchitecture Library for C programmers. This document, alongwith SNARL source code and examples, is available by anonymous ftp fromcs.utk.edu in the directory pub/levy/SNARL, and over the World Wide Web athttp://www.cs.utk.edu/~levy.I wrote SNARL because of the need on my part and others' for a smalllibrary of neural network routines providing sigma-pi units [2, 3] recurrence [1],and back-propagation in time [1]. SNARL is not a library for simple neuralnets, but rather a simple library for a wide variety of neural nets: it allows youto ignore the computational support required to train test and such networks;instead, you can focus on the details of your particular application. I wroteSNARL from a dynamical-systems perspective [4], making it especially suitablefor those wishing to explore the relationship between neural nets and dynamicalsystems.The best way to get started with SNARL would be to download all of thematerial in the ftp directories, and experiment with the sample programs in theexamples directory. I assume that the reader has some familiarity with neuralnetworks and C programming.I have tested most of the routines in SNARL; however, I make no claimsor promises about their reliability, and I encourage users to send bug reportsto levy@cs.utk.edu. I also welcome suggestions for improving or expanding thelibrary. I have compiled and run the library on a SPARC10 running SunOS, aSilicon Graphics Inidigo running Solaris, and a VAX running VMS; it shouldbe portable to most systems with no modi�cation. Please send me e-mail if youencounter portability problems. 1



SNARL currently supports state- and parameter-dynamics; future verions ofthe library may support graph-dynamics as well [4]. Preliminary work has beencompleted on a compiler (SNARC) based on the library routines. By eliminatingpointers and optimizing-out certain redundant features of the networks, thecompiled version has achieved up to six-fold speedups over the equivalent librarycode at run-time.2 Data typesSNARL provides four new data types, which can be used to declare variablesin the same way that int, char, and other declarators are used in C. Thesenew types are Network, Node, Link, and Layer. A program using SNARL maycontain any number of networks, each of which may contain any number ofnodes and links between nodes. The Layer type provides additional support forthose wishing to bypass the Node level and implement the layer-based networkscommonly described in the literature [2].2.1 NetworkAt least one variable of type Network must be declared for each program usingSNARL. By allowing any number of networks to co-exist in a given program,SNARL supports multi-network programs of the sort used in A-Life simulations.Networks are created using the SnCreateNetwork routine described in section4.1 below.2.2 NodeThe Node type is the basic computational unit in SNARL. Nodes are createdby one of the SnCreateNode functions.Each node (a.k.a. unit, a.k.a. neuron) computes an activation function ofits input. There are three pre-de�ned activation functions: Logistic, Identity,and Bias. The Logistic function is the logistic-sigmoid, or \squashing" functionfamiliar from the neural network literature [3]:f(x) = 11 + e�x (1)A node having this function can be created by the SnCreateLogisticNoderoutine. The function is typically used as the activation function for hidden andoutput units. 2



In the Identity function, the output is equal to the input; i.e., f(x) = x.This function is typically used for input units. An identity node can be createdusing the SnCreateIdentityNode routine.In the bias function, the output is always equal to one; i.e., f(x) = 1. As itsname implies, this function is used for bias units: Instead of having a bias aspart of the activation function of a unit, you create a bias unit and connect itto that unit; the bias value is changed by modifying the weight between the twounits. Nodes of this type can be created by the SnCreateBiasNode routine.SNARL also allows you to create nodes with customized activation functions,using the SnCreateNode routine. This routine takes as arguments the name ofa C routine computing the function, and the name of a C routine computingthe function's �rst derivative (e.g., sin and cos).2.3 LinkLinks are the means by which nodes are connected in SNARL. Having createdtwo nodes, you can link them via the SnCreateLink routine, which takes thetwo nodes as arguments, creates a link from the �rst node to the second, andreturns a new identi�er of type Link.Each link has a weight, which expresses the strength of the link. Theseweights can be �xed at the time the link is created, or modi�ed later by one ofthe routines described below.2.3.1 InputsWith a mechanism for linking two nodes, we are in a position to compute theinput value to the second node, which we de�ne as the sum of the weightedactivations of the nodes linked to the node:inputi =Xj wi;jaj (2)where wi;j is the weight on the link from node j to node i, and aj is the activationof node j.2.3.2 ErrorsWe can also de�ne the error on a node, which expresses the di�erence betweenthe node's actual activation and a target value based on external data. Foroutput nodes (i.e., nodes having incoming links and bound to target values viaone of the SnBind routines), the error is equal to the di�erence between thetarget value and the actual value: 3



errori = targeti � activationi (3)For hidden nodes (i.e., nodes having incoming and outgoing links), the errorcomputation is more complicated. The error at such a node is equal to the sumof the weighted deltas of the nodes to which the node connects:errori =Xj wj;i�j (4)In this equation, j indexes the nodes to which node i connects; wj;i is the weighton the link connecting the two nodes, and �j is node j's error mutliplied by the�rst derivative of its activation:�j = (errorj)(f 0(aj)) (5)It is possible for a node to have its error computed both from a target andfrom its outgoing connections; for example, we might wish to train hidden unitsbased on targets placed on output units and targets placed on the hidden unitsthemselves. In this case, SNARL adds the errors computed by both methods,and this sum becomes the error for the node.2.3.3 Delay linksSNARL supports both delay and non-delay links: In a delay link, the link'sweight is multiplied by the incoming node's previous activation; in a non-delaylink, the weight is multiplied by that node's current activation. Delay links areuseful in the creation of recurrent nets; i.e., nets in which activation from a nodeis fed back into the node itself or into some other node(s). Recurrent nets oftenexhibit interesting state dynamics, meaning that the activations of nodes changeover time for a given input or initial condition [4]. Because of this capability,such nets are often trained and tested on sequences of input and target values,instead of single static values. SNARL supports sequences via the many bindingroutines described in section 4 below. Non-sequential values, such as the inputsand targets of the famed exclusive-or problem [3], are supported as special-casesequences of length one.2.3.4 ConjunctsIn addition to the additive connections provided by links, SNARL supportsmultiplicative connections via the conjunct mechanism. Having created a link4



between two nodes, we can connect other nodes into this link via the SnCojoinroutine, which takes the name of a node and the name of a link as arguments,and cojoins the node to the link.Any number of nodes can be cojoined to alink in this way; as a result, each term of the summation in equation 6 will becomputed as the product of the link weight, the activation of the linked-fromnode, and the activations of all cojoined nodes:inputi =Xj wi;jajYk ci;j;k (6)where cj;i;k is the activation of the kth node cojoined to the link from node jand node i.In a similar way, we can rewrite equation 4 to express the e�ect of conjuncts:errori =Xj wj;i�jYk cj;i;k (7)3 Training networks in SNARLSNARL also supports parameter dynamics, in which the link weights themselveschange according to some algorithm [4]. In SNARL, the algorithm used tochange the link weights is back-propagation-through-time [1], an extension of theusual back-propagation algorithm found in the literature [3]. This algorithmworks as follows:(1) For a given pattern (pairing of input and target sequences), com-pute and store all node activations over the length of the sequences(often referred to as the activation history), by running the sequencesthrough the net beginning-to-end. This computation is often re-ferred to as the forward pass.(2) Starting at the end of each sequence and progressing toward thebeginning, perform a backward pass, doing the following compua-tions at each step:(a) Compute the node errors and deltas at that step (seesection 2.3.2 above).(b) For each link into a node, accumulate the link's weightchange as the product of the node's delta, the activation ofthe node at the other end of the link, and the activationsof the other nodes cojoined to the link; i.e.,5



�wi;j = �iajYk ci;j;k (8)Weights are modi�ed according to the following formula:wt+1i;j = wti;j + ��wti;j + ��wt�1i;j (9)In this equation, �, the \learning-rate", determines how much of the weightchange at the current training iteration t is added to the weight, and �, the\momentum", determines how much of the weight change at the previous train-ing iteration is added to the weight. [3]. (Note that training iterations are notthe same as time steps.) Obviously, at least one of these coe�cients must benon-zero in order for learning to take place.In epoch training (also known as batch training), the weight change is summedover all training patterns, and then added to the weight; in pattern training(also known as on-line training), the weight change is added to the weight af-ter each pattern is presented. SNARL supports epoch training through theSnpStepEpoch routine, and pattern training through the SnpStepPattern rou-tine.3.1 LayerThe Layer type provides a convenient way of implementing layer-based net-works in which the \pi" part of equation 6 is not needed; that is, where thereare no conjuncts. As with the Node-based routines, the Layer-based routinesprovide you with default activation functions (Logistic and Identity), via theSnlCreateLogisticLayer and SnlCreateIdentityLayer routines, and customfunctions via the SnlCreateLayer routine. For further convenience, the Logis-tic layer has an automatic bias, so that it is not necessary to create a separatebias for the nodes in such a layer.4 RoutinesThe names of SNARL routines all begin with Sn, so that they can be easilyidenti�ed in your code. The routines fall into six categories, each with its ownpre�x: basic network creation routines (Sn), node-based state-dynamics routines(Sns), node-based parameter-dynamics routines (Snp), layer-based network cre-ation routines (Snl), layer-based state-dynamics routines (Snls, and layer-basedparameter-dynamics routines (Snlp). The remainder of this document describeseach SNARL routine in detail. Routines are listed alphabetically within eachcategory. 6



SnCojoin4.1 Basic network-creation routinesSnCojoin - cojoin a node to a linkSynopsisvoid SnCojoin(node, link)Node node;Link link;Argumentsnode Speci�es the nodelink Speci�es the linkDescriptionSnCojoin cojoins a node to a link, adding the node to the link's listof conjuncts.

7



SnCreateBiasNodeSnCreateBiasNode - create a new bias nodeSynopsisNode SnCreateBiasNode(network)Network network;Argumentsnetwork Speci�es the network in which to create the nodeDescriptionSnCreateBiasNode adds a new bias node to an existing network, re-turning a new identi�er of type Node. A bias node has the activationfunction f(x) = 1.

8



SnCreateIdentityNodeSnCreateIdentityNode - create a new identity nodeSynopsisNode SnCreateIdentityNode(network)Network network;Argumentsnetwork Speci�es the network in which to create the nodeDescriptionSnCreateIdentityNode adds a new identity node to an existing net-work, returning a new identi�er of type Node. An identity node hasthe activation function f(x) = x.

9



SnCreateLinkSnCreateLink - create a new link between two nodesSynopsisLink SnCreateLink(node from, node to, is delay)Node node from;Node node to;int is delay;Argumentsnode from Speci�es the node to connect fromnode to Speci�es the node to connect tois delay Non-zero for delay link; zero for non-delayDescriptionSnCreateLink links node from to node to, returning an identi�er oftype Link. If is delay is non-zero, the activation of node from at theprevious time step is used to compute the input to node to; other-wise, the current activation of node from is used.

10



SnCreateLogisticNodeSnCreateLogisticNode - create a new logistic-sigmoid nodeSynopsisNode SnCreateLogisticNode(network)Network network;Argumentsnetwork Speci�es the network in which to create the nodeDescriptionSnCreateLogisticNode adds a new logistic-sigmoid node to an ex-isting network, returning an identi�er of type Node. A logistic-sigmoid node has the activation function f(x) = 1=(1 + e�x).

11



SnCreateNetworkSnCreateNetwork - create a new networkSynopsisNetwork SnCreateNetwork(void)DescriptionSnCreateNetwork creates a new network and returns it in an iden-ti�er of type Network.

12



SnCreateNodeSnCreateNode - create a new node with an arbitrary activation functionSynopsisNode SnCreateNode(network, func, dfunc)Network network;double (*func)(double);double (*dfunc)(double);Argumentsnetwork Speci�es the network in which to create the nodefunc Speci�es the routine that computes the activationfunctiondfunc Speci�es the routine that computes the �rstderivative of the activation functionDescriptionSnCreateNode adds a new customized node to an existing network,returning an identi�er of type Node. The func and dfunc argumentsrefer to C routines declared earlier in the code (via a header �le,e.g.). The user is responsible for making sure that dfunc accuratelycomputes the �rst derivative of func.
13



SnsBindScalar4.2 Node-based state-dymamics routinesSnsBindScalar - bind a scalar to a node as a sequenceSynopsisvoid SnsBindScalar(node, scalar, slen)Node node;double scalar;int slen;Argumentsnode Speci�es the nodescalar Speci�es the scalar valueslen Speci�es the length of the vector created by repeating the scalarDescriptionSnsBindScalar converts the argument in scalar to a vector of lengthslen and \binds" this vector to the node speci�ed by node. This isthe same as calling SnsBindVector (q.v.) with all the values inthe vector being equal. SnsBindScalar is useful when you want theacviation of a node to remain constant over all time steps in a testingsequence, as with the input node(s) of a recurrent net that outputsa time-varying sequence for a �xed input. Say, for example, thatyou had a network with one input node, and you wanted to test itsbehavior on the inputf.1, .1, .1, .1, .1, .1, .1, .1, .1, .1g.Instead of setting up a vector of ten .1's, you could writeSnsBindScalar(input node, .1, 10);
14



SnsBindVectorSnsBindVector - bind a vector to a node as a sequenceSynopsisvoid SnsBindVector(node, vector, slen)Node node;double *vector;int slen;Argumentsnode Speci�es the nodevector Speci�es the vectorslen Speci�es the length of the vectorDescriptionSnsBindVector \binds" the oating-point vector in vector to thenode speci�ed by node. In subsequent calls to SnsStep (q.v.), thesuccessive values in the vector will be used as the activations of thenode speci�ed by node. SnsBindVectorwould be called on the inputnodes of a net that maps one time sequence to another, when youwish to test the performance of the net.

15



SnsGetActivationSnsGetActivation - get the current activation of a nodeSynopsisdouble SnsGetActivation(node)Node node;Argumentsnode Speci�es the nodeDescriptionSnsGetActivation returns a double-precision oating-point valueequal to the activation of the node node at the current time step.

16



SnsInitSnsInit - initialize a network for testingSynopsisvoid SnsInit(network)Network network;Argumentsnetwork Speci�es the networkDescriptionSnsInit should be called on a network each time the set of inputbindings on the network changes; i.e., after calling the SnBind rou-tines and before calling the SnsStep routine.

17



SnsRandomizeSnsRandomize - randomize node activations in a networkSynopsisvoid SnsRandomize(network, amin, amax, seed)Network network;double amin;double amax;int seed;Argumentsnetwork Speci�es the networkamin Speci�es the minimum random activation valueamax Speci�es the maximum random activation valueseed Speci�es the seed for the random-number generatorDescriptionSnsRandomize is useful for setting up arbitrary intitial conditionswhen testing a network whose connection weights are known before-hand. Setting the random seed allows you to �x the quasi-randomsequence used to create activations; a value of -1 for this argumentcauses SNARL to use the current time in seconds, since 00:00:00GMT, January 1, 1970.
18



SnsSetActivationSnsSetActivation - set the current activation of a nodeSynopsisvoid SnsSetActivation(node, aval)Node node;double aval;Argumentsnode Speci�es the nodeaval Speci�es the activation valueDescriptionUse SnsSetActivation to set the current activation of a node.This routine is useful for setting up initial conditions in a networkwhose connection weights are known beforehand, and for \perturb-ing" node activations to investigate the behavior of oscillatory net-works.

19



SnsStepSnsStep - step a network through one iteration of testingSynopsisvoid SnsStep(network)Network network;Argumentsnetwork Speci�es the networkDescriptionSnsStep computes the activations of all nodes in the network net-work whose activation is de�ned at the current testing iteration (timestep, "tick"). Node activations are computed according to the fol-lowing scheme: if a node has incoming links from other nodes, theactivation function is computed from those links using equation 6.Otherwise, if a time-sequence of values was bound to the node viaone of the SnsBind routines, the current value in the sequence isused. Finally, if no activation can be computed by either of thesemechanisms, the algorithm checks whether an activation has beenset by an earlier call to the SnsSetActivation routine (q.v.). Itis unusual that more than one of these conditions would hold for agiven node; however, the hierarchy is provided for those rare casesin which the activaiton could be computed in more than one way.SnsStep also advances the index for sequences bound to the net-work's nodes via one of the SnsBind routines. If this index excedesthe network's sequence length, a non-fatal error is reported, and nocomputation takes place.
20



SnpBindScalar4.3 Node-based parameter-dymamics routinesSnpBindScalar - bind a vector of scalars to a node as a training listSynopsisvoid SnpBindScalar(node, svector, nseq, slen)Node node;double *svector;int nseq;int slen;Argumentsnode Speci�es the nodesvector Speci�es the vectornseq Speci�es the number of sequences implicit in the vectorslen Speci�es the number of time steps in each sequenceDescriptionSnpBindScalar converts each of the nseq elements of the vector svec-tor to a vector of length slen and uses the resultant vector of vectorsas a \training list" for the node node. This is the same as callingSnpBindVector (q.v.) with all the values in each nseq sub-vectorbeing equal. Sub-vectors correspond to a set of training sequencesthat will be used to set the activation or target of the node duringtraining. SnpBindScalar is useful when you want the acviation ortarget to remain constant over all time steps in a training sequence,as with the input node(s) of a recurrent net that outputs a time-varying sequence for a �xed input Say, for example, that you had anetwork with one input node and one output node, and you wantedto train the network to map from the sequence f.1, .1, .1, .1g tosome other sequence, and from the sequence f.9, .9, .9, .9g to someother sequence. Instead of setting up a vector of four .1's followedby for .9's, you could writedouble input vector[] = f.1, .9g;/* set up the network here */SnpBindScalar(input node, input vector, 2, 4);21



SnpBindVectorSnpBindVector - bind a vector of sequences to a node as a training listSynopsisvoid SnpBindVector(node, vvector, dcvector, nseq, slen)Node node;double *vvector;int *dcvector;int nseq;int slen;Argumentsnode Speci�es the nodevvector Speci�es the vector of sequencesdcvector Speci�es a vector of don't-care ag sequences (or NULL)nseq Speci�es the number of sequences in the vectorslen Speci�es the number of time steps in each sequenceDescriptionSnpBindVector \binds" the double-precision oating-point vectorsin vvector to the node speci�ed by node. Sub-vectors are assumed tobe of equal length and correspond to a set of training sequences thatwill be used to set the activation or target sequences of the node dur-ing training. In subsequent calls to SnpStepEpoch or SnpStepEpoch(q.v.), the successive sub-vectors will be used to set the time-varyingactivations or targets of the node. SnpBindVector would be calledon the input nodes of a net that maps one time sequence to another,when you wish to train the net on one or more input sequences.Don't-care ags are useful when you don't wish to speci�y the de-sired behavior of a node at all time-steps; typically, this is done toallow a network to interpolate between speci�ed target values. Anon-zero value in dcvector tells SNARL not to compute an error atthe corresponding time step; a zero value in this vector causes theerror to be computed. If no such don't-care conditions are needed,you can pass NULL for dcvector.For example, consider the table on the following page, which showsa set of training data for a network with one input node and oneoutput node, where an asterisk (*) indicates a don't-care condition:22



SnpBindVectorPattern Time Input TargetA 1 .1 .82 .2 *3 .3 .6B 1 .6 .32 .5 .13 .4 .2To implement these patterns, you could writedouble input vector[] = f.1, .2, .3, .6, .5, .4g;double target vector[] = f.8, 0, .6, .3, .1, .2g;int dc vector[] = f0, 1, 0, 0, 0, 0g;/* set up the network here */SnpBindVector(input node, input vector, dc vector, 2, 3);

23



SnpGetErrorMaxSnpGetErrorMax - get the current maximum error in a networkSynopsisdouble SnpGetErrorMax(network)Network network;Argumentsnetwork Speci�es the networkDescriptionSnpGetErrorMax returns a double-precision oating-point value equalto the maximum error at any time step on any output node in thenetwork network. An output node is de�ned as a node having atleast one input from another node as well as a target set by one ofthe SnpBind routines. SnpGetErrorMax runs a forward pass on alltraining patterns set up through the SnpBind routines, and com-putes the errors on all nodes at all time steps, using the methoddescribed in Section 2.3.2 above. SnpGetErrorMax is useful for �nd-ing the \worst-case" error in a network, whereas SnpGetErrorRMS(q.v.) gives an average idea of the error over all patterns and timesteps.
24



SnpGetErrorRMSSnpGetErrorRMS - get the current RMS error in a networkSynopsisdouble SnpGetErrorRMS(network)Network network;Argumentsnetwork Speci�es the networkDescriptionSnpGetErrorRMS returns a double-precision oating-point value equalto the root-mean-squared error over all output nodes and all timesteps in the network network. An output node is de�ned as a nodehaving having at least one input from another node as well as atarget set by one of the SnpBind routines. SnpGetErrorRMS runs aforward pass on all training patterns set up through the SnpBindroutines, and computes the errors on all nodes at all time steps, us-ing the method described in section 2.3.2 above. SnpGetErrorRMS isuseful for getting an average idea of the error in a network over allpatterns and time steps, whereas SnpGetErrorMax (q.v.) provides a\worst-case" measurement of the error.RMS error is computed according to the following equation, in whichn indexes output nodes, p indexes patterns, and t indexes time steps:Error =vuuuut NXn=1 PXp=1 TXt=1(targetn;p;t � outputn;p;t)2NPT (10)
25



SnpGetWeightSnpGetWeight - get the current weight on a linkSynopsisdouble SnpGetWeight(link)Link link;Argumentslink Speci�es the linkDescriptionSnpGetWeight returns a double-precision oating-point value equalto the weight on the link link at the current training iteration.

26



SnpInitSnpInit - initialize a network for trainingSynopsisvoid SnpInit(network)Network network;Argumentsnetwork Speci�es the networkDescriptionSnpInit should be called on a network each time the set of pat-tern bindings on the network changes; i.e., after calling the SnpBindroutines and before calling theSnpStepEpoch or SnpStepPatternroutine..

27



SnpLoadWeightsSnpLoadWeights - load network weights from a �leSynopsisvoid SnpLoadWeights(network, �le)Network network;char *�le;Argumentsnetwork Speci�es the network�le Speci�es the �le nameDescriptionUse SnpLoadWeights to restore network weights saved from an ear-lier training session. The network argument should refer to a networkthat has already been created exactly like the network from whichthe weights were saved. The �le argument should refer to a �lecreated by SnpSaveWeights (q.v.). Fixed weights are not loaded.

28



SnpRandomizeWeightsSnpRanodmize - randomize link weights in a networkSynopsisvoid SnpRanodmizeWeights(network, wmin, wmax, seed)Network network;double wmin;double wmax;int seed;Argumentsnetwork Speci�es the networkwmin Speci�es the minimum random weight valuewmax Speci�es the maximum random weight valueseed Speci�es the seed for the random-number generatorDescriptionSnpRanodmizeWeights is useful for setting up arbitrary intitial con-ditions when training a network. Certain values of wmin and wmaxwill typically cause a given network to get stuck in a local minimum;if this happens, try changing the values and re-compiling your pro-gram. Setting the random seed allows you to �x the quasi-randomsequence used to create activations; a value of -1 for this argumentcauses SNARL to use the current time in seconds, since 00:00:00GMT, January 1, 1970.
29



SnpSaveWeightsSnpSaveWeights - save network weights to a �leSynopsisvoid SnpSaveWeights(network, �le)Network network;char *�le;Argumentsnetwork Speci�es the network�le Speci�es the �le nameDescriptionUse SnpSaveWeights to save network weights after training, for laterrestoration by SnpLoadWeights (q.v.). Weights are saved in textformat, one weight per line. Fixed weights are not saved.

30



SnpSetEtaMuLinkSnpSetEtaMuLink - set a link's learning rate and momentumSynopsisvoid SnpSetEtaMuLink(link, eta, mu)Link link;double eta;double mu;Argumentslink Speci�es the Linketa Speci�es the learning ratemu Speci�es the momentumDescriptionSnpSetEtaMuLink should be called on each link in a network whenyou want di�erent links to have di�erent learning rates and mo-menta. Otherwise, you can call SnpSetEtaMuNet (q.v.) on the en-tire network. One of these two routines must be called in order forlearning to take place.

31



SnpSetEtaMuNetSnpSetEtaMuNet - set a learning rate and momentum for all links in anetworkSynopsisvoid SnpSetEtaMuLink(network, eta, mu)Network link;double eta;double mu;Argumentsnetwork Speci�es the networketa Speci�es the learning ratemu Speci�es the momentumDescriptionSnpSetEtaMuNet should be called on a network when you want alllinks to have the same learning rate and momentum. Otherwise,you can call SnpSetEtaMuLink (q.v.) on each link. One of these tworoutines must be called in order for learning to take place.

32



SnpSetWeightSnpSetWeight - set a link's weightSynopsisvoid SnpSetWeight(link, weight)Link link;double weight;Argumentslink Speci�es the linkweight Speci�es the desired weightDescriptionSnpSetWeight should be called when you want to set a link's weightto some previously determined value, such as a weight obtained froman earlier training session.

33



SnpStepEpochSnpStepEpoch - step a network through one iteration of training onall patternsSynopsisvoid SnpStepEpoch(network)Network network;Argumentsnetwork Speci�es the networkDescriptionSnpStepEpoch performs the back-propagation-in-time algorithm onthe speci�ed network, computing node errors as described in sec-tion 2.3.2, and modifying link weights as described in section 3. InSnpStepEpoch, juncture weights are modi�ed only after all patternshave been tested; contrast this with SnpStepPattern (q.v.).

34



SnpStepPatternSnpStepPattern - step a network through one iteration of training on asingle patternSynopsisvoid SnpStepPattern(network, pattern)Network network;int pattern;Argumentsnetwork Speci�es the networkpattern Speci�es the pattern number (�rst = 0)DescriptionSnpStepPattern performs the back-propagation in time algorithmon the speci�ed network, computing node errors as described in sec-tion 2.3.2, but only for the speci�ed pattern, and modifying thelink weights as described in section 3. In SnpStepPattern, junc-ture weights are modi�ed "on-line" after the presentation of a singlepattern; contrast this with SnpStepEpoch (q.v.).

35



SnlConnectFull4.4 Layer-based network-creation routinesSnlConnectFull - fully connect two layersSynopsisvoid SnlConnectFull(layer from, layer to, is delay)Layer layer from;Layer layer to;int is delay;Argumentslayer from Speci�es the layer to connect fromlayer to Speci�es the layer to connect tois delay Non-zero for delay connection; zero for no delayDescriptionSnlConnectFull fully connects two layers; i.e., it connects everynode in layer from to every node in layer to. If is delay is non-zero,the connections are implemented as delays (input from previous ac-tivations of layer from); otherwise, the connections are implementednormally (inputs from current activations of layer from).
36



SnlConnectFullFixedSnlConnectFullFixed - fully connect two layers using a single �xed weightSynopsisvoid SnlConnectFullFixed(layer from, layer to, is delay, weight)Layer layer from;Layer layer to;int is delay;double weight;Argumentslayer from Speci�es the layer to connect fromlayer to Speci�es the layer to connect tois delay Non-zero for delay connection; zero for no delayweight Speci�es the �xed weightDescriptionSnlConnectFullFixed is the same as SnlConnectFull (q.v.), withthe addition of a parameter for �xing the weight on all connections.This routine may not be very useful and was included for the sakeof completeness.

37



SnlConnectOneToOneSnlConnectOneToOne - connect two layers in a 1:1 mannerSynopsisvoid SnlConnectOneToOne(layer from, layer to, is delay)Layer layer from;Layer layer to;int is delay;Argumentslayer from Speci�es the layer to connect fromlayer to Speci�es the layer to connect tois delay Non-zero for delay connection; zero for no delayDescriptionSnlConnectOneToOne connects the �rst node in layer from to the�rst node in layer to, the second node in layer from to the sec-ond node in layer to, etc. If the layers have a di�erent number ofnodes, a non-fatal error is reported, and the routine has no e�ect. Ifis delay is non-zero, the connections are are implemented as delays(input from previous activations of layer from); otherwise, the con-nections are implemented normally (inputs from current activationsof layer from).
38



SnlConnectOneToOneFixedSnlConnectOneToOneFixed - connect two layers in a 1:1 manner using asingle �xed weightSynopsisvoid SnlConnectOneToOneFixed(layer from, layer to, is delay, weight)Layer layer from;Layer layer to;int is delay;double weight;Argumentslayer from Speci�es the layer to connect fromlayer to Speci�es the layer to connect tois delay Non-zero for delay connection; zero for no delayweight Speci�es the �xed weightDescriptionSnlConnectOneToOneFixed is the same as SnlConnectOneToOne (q.v.),with the addtion of a parameter for �xing the weight on all connec-tions. This routine is especially useful for creating the feedbackconnections of a recurrent net, in which it is often not desired tomodify the connection weights dynamically.
39



SnlCreateIdentityLayerSnlCreateIdentityLayer - create a layer of identity nodes in a networkSynopsisLayer SnlCreateIdentityLayer(network, count)Network network;int count;Argumentsnetwork Speci�es the networkcount Speci�es the number of nodes to create in the layerDescriptionSnlCreateIdentityLayer adds a new layer of identity nodes to anexisting network, returning a new identi�er of type Layer. An iden-tity node has the activation function f(x) = x.

40



SnlCreateLayerSnlCreateLayer - create a layer of nodes with an arbitrary activation functionin a networkSynopsisLayer SnlCreateLayer(network, count, func, dfunc)Network network;int count;double (*func)(double);double (*dfunc)(double);Argumentsnetwork Speci�es the networkcount Speci�es the number of nodes to create in the layerfunc Speci�es the routine that computes the activation functiondfunc Speci�es the routine that computes the �rstderivative of the activation functionDescriptionSnlCreateLayer adds a new customized layer to an existing net-work, returning an identi�er of type Layer. The func and dfuncarguments refer to C routines declared earlier in the code (via aheader �le, e.g.). The user is responsible for making sure that dfuncaccurately computes the �rst derivative of func.
41



SnlCreateLogisticLayerSnlCreateLogisticLayer - create a layer of nodes with the logistic-sigmoidactivation function in a networkSynopsisLayer SnlCreateLogisticLayer(network, count)Network network;int count;Argumentsnetwork Speci�es the networkcount Speci�es the number of nodes to create in the layerDescriptionSnlCreateLogisticLayeradds a new layer of logistic-sigmoid nodesto an existing network, returning a new identi�er of type Layer. Alogistic-sigmoidnode has the activation function f(x) = 1=(1 + e�x).SnlCreateLogisticLayer automatically adds a bias to each nodeit creates. This routine is especially useful for creating hidden andoutput layers.

42



SnlsBindScalar4.5 Layer-based state-dynamics routinesSnlsBindScalar - bind a vector of scalars to a layer as asequenceSynopsisvoid SnlsBindScalar(layer, svector, slen)Layer layer;double *svector;int slen;Argumentslayer Speci�es the layersvector Speci�es the vector of scalar valuesslen Speci�es the length of the vectors created by repeating the scalarsDescriptionSnlsBindScalar converts the argument in svector to a vector of vec-tors, each of length slen and \binds" these vectors to the nodes in thelayer speci�ed by layer. This is the same as calling SnlsBindVector(q.v.) with all the values in each sub-vector being equal. In otherwords, SnlsBindScalar is the layered version of SnsBindScalar(q.v.). Say, for example, you had trained a sequential net havingtwo nodes in its input layer, and you wanted to test the net with thesequence f.1, .1, .1g on the �rst node and f.9, .9, .9g on the secondnode. You could write:double input vector[] = f.1, .9g;/* set up the network here */SnlsBindScalar(input layer, input vector, 3);
43



SnlsBindVectorSnlsBindVector - bind a vector of sequences to a layerSynopsisvoid SnlsBindVector(layer, vvector, slen)Layer layer;double *vvector;int slen;Argumentslayer Speci�es the layervvector Speci�es the vectorslen Speci�es the length of each sub-vector sequenceDescriptionSnlsBindVector treats vvector as if it contained a sequence of sub-vectors, each of length slen, and binds each sub-vector to a node inlayer. This is useful testing the behavior of a layered net on a novelinput. Say, for example, you had trained a sequential net havingtwo nodes in its input layer, and you wanted to test the net with thesequence f.1, .2, .7g on the �rst node and f.6, .4, .5g on the secondnode. You could write:double input vector[] f.1, .2, .7, .6, .4, .5g;/* set up the network here */SnlsBindVector(input layer, input vector, 3);
44



SnlsGetActivationsSnlsGetActivations - get current activations of nodes in a layerSynopsisvoid SnlsGetActivations(layer, vector)Layer layer;double *vector;Argumentslayer Speci�es the layervector Speci�es the vector in which activations will be returnedDescriptionSnlsGetActivations returns the current activations from the nodesin layer in the vector vector, which must be big enough to hold anumber of values equal to the number of nodes in layer. This routineis useful for testing the output of a layered network based on inputset by one of the SnlsBind or SnlsSetActviations routines.

45



SnlsSetActivationsScalarSnlsSetActivationsScalar - set current activations of nodes in a layer toa single valueSynopsisvoid SnlsSetActivationsScalar(layer, scalar)Layer layer;double scalar;Argumentslayer Speci�es the layerscalar Speci�es the valueDescriptionSnlsSetActivationsScalar sets the current activations of all nodesin layer to the value scalar. This is the same as calling SnlsSetActivationsVector(q.v.) with all the values in the vector being the same.

46



SnlsSetActivationsVectorSnlsSetActivationsVector - set current activations of nodes in a layer tovalues in a vectorSynopsisvoid SnlsSetActivationsVector(layer, vector)Layer layer;double *vector;Argumentslayer Speci�es the layervector Speci�es the vectorDescriptionSnlsSetActivationsVector sets the current activations of the nodesin layer to the values in vector, which should contain the same num-ber of values as there are nodes in the layer.

47



SnpBindScalar4.6 Layer-based parameter-dynamics routinesSnlpBindScalar - bind a vector of scalars to a layer as training listsSynopsisvoid SnlpBindScalar(layer, svector, nseq, slen)Layer layer;double *svector;int nseq;int slen;Argumentslayer Speci�es the layersvector Speci�es the vector of scalarsnseq Speci�es the number of sequences implicit in the vectorslen Speci�es the length of the sequences in time stepsDescriptionSnlpBindScalar converts each of the nseq elements of the vectorsvector to a vector of length slen and uses the resultant vector ofvectors as a set of \training lists" for the nodes in layer layer. Thisis the same as calling SnlpBindVector (q.v.) with all the values ineach of the nseq sub-vectors being equal. Sub-vectors correspond toa set of training sequences that will be used to set the activationsor targets of the nodes during training. The sub-vectors should beinitialized according to a pattern/node hierarchy. SnpBindScalaris useful when you want the acviation or target to remain constantover all time steps in a training sequence, as with the input node(s)of a recurrent net that outputs a time-varying sequence for a �xedinput.Say, for example, that you had a network with a two-node inputlayer and a two-node output layer, and you wanted the network tolearn the following mapping:Pattern Time Input1 Input2 Target1 Target2A 1 .1 .9 .3 .42 .1 .9 .3 .43 .1 .9 .3 .4B 1 .8 .2 .5 .62 .8 .2 .5 .63 .8 .2 .5 .648



SnpBindScalarYou could set up the patterns above with the following code:double input vector[] = f.1, .9, .8, .2 g;double target vector[] = f.3, .4, .5, .6 g;/* set up the network here */SnlpBindScalar(input layer, input vector, 2, 3);SnlpBindScalar(target layer, target vector, 2, 3);

49



SnlpBindVectorSnlpBindVector - bind a vector of values to a layer as training listsSynopsisvoid SnlpBindVector(layer, vvector, dcvector, nseq, slen)Layer layer;double *vvector;int *dcvector;int nseq;int slen;Argumentslayer Speci�es the layervector Speci�es the vectordcvector Speci�es a vector of don't-care ag sequences (or NULL)nseq Speci�es the number of patterns implicit in the vectorslen Speci�es the length of the sequences in time stepsDescriptionSnlpBindVector uses the vector vvector as a set of \training list"sub-vectors for the nodes in layer layer. Sub-vectors correspond toa set of training sequences that will be used to set the activationsor targets of the nodes during training. The sub-vectors should beinitialized according to a pattern/node hierarchy. Don't-care agsare useful when you don't wish to speci�y the desired behavior ofa node at all time-steps; typically, this is done to allow a networkto interpolate between speci�ed target values. A non-zero value indcvector tells SNARL not to compute an error at the correspondingtime step; a zero value in this vector causes the error to be com-puted. If no such don't-care conditions are needed, you can passNULL for dcvector.Say, for example, that you had a network with a two-node inputlayer and a two-node output layer, and you wanted the network tolearn the mapping below, where an asterisk (*) indicates a don't-carecondition:Pattern Time Input1 Input2 Target1 Target2A 1 .11 .91 * .412 .12 .92 .32 *3 .13 .93 .33 .43B 1 .81 .21 * .612 .82 .22 .52 .623 .83 .23 .53 *50



SnlpBindVectorYou could set up the patterns above with the following code:double input vector[] = f.11, .12, .13, /* pattern A, input 1 */.91, .92, .93, /* pattern A, input 2 */.81, .82, .83, /* pattern B, input 1 */.21, .22, .23 /* pattern B, input 2 */g;double target vector[] = f0, .32, .33, /* pattern A, target 1 */.41, 0, .43, /* pattern A, target 2 */0, .52, .53, /* pattern B, target 1 */.61, .62, 0 /* pattern B, target 2 */g;int dc vector[] = f1, 0, 0, /* pattern A, target 1 */0, 1, 0, /* pattern A, target 2 */1, 0, 0, /* pattern B, target 1 */0, 0, 1 /* pattern B, target 2 */g;/* set up the network here */SnlpBindVector(input layer, input vector, NULL, 2, 3);SnlpBindVector(target layer, target vector, dc vector, 2, 3);
51



References[1] M. Caudill and C. Butler. (1992) Understanding Neural Networks: Com-puter Explorations. Chapter 5: Recurrent Networks. Cambridge, MA: MITPress.[2] D.E. Rumelhart, G.E. Hinton, and J.L. McClelland (1986) A GeneralFramework for Parallel Distributed Processing. In D.E. Rumelhart and J.L.McClelland, eds., Parallel Distributed Processing: Explorations in the Mi-crostructure of Cognition. Volume 1: Foundations. Cambridge, MA: MITPress.[3] D.E. Rumelhart, G.E. Hinton, and R.J. Williams (1986) Learning InternalRepresentations by Error Propagation. In Rumelhart and McClelland, op.cit.[4] E.L. Saltzman and K.G. Munhall (1992) Skill Acquisition and Develop-ment: The Role of State-, Parameter-, and Graph-Dynamics. Journal ofMotor Behavior, Vol. 24, No. 1, 49-57.

52


