
February 1, 1996Fast Algorithms for K4 Immersion Testing�yHeather D. Booth, Rajeev Govindan,Michael A. Langston and Siddharthan RamachandramurthiDepartment of Computer ScienceUniversity of TennesseeKnoxville, TN 37996{1301AbstractMany useful classes of graphs can in principle be recognized with �nite batteriesof obstruction tests. One of the most fundamental tests is to determine whetheran arbitrary input graph contains K4 in the immersion order. In this paper, wepresent for the �rst time a fast, practical algorithm to accomplish this task. Wealso extend our method so that, should an immersed K4 be present, a K4 modelis isolated.
� This research has been supported in part by the National Science Foundation under grant CDA{9115428 and by the O�ce of Naval Research under contract N00014{90{J{1855.y A preliminary version of a portion of this paper was presented at the Great Lakes Symposium onVLSI, held in Kalamazoo, Michigan, in February, 1992.



Contents1 Introduction 12 Preliminaries 22.1 Three-Edge Connectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22.2 Series-Parallel Graphs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43 Testing for K4 53.1 Algorithm decompose : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53.2 Algorithm components : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63.3 The Correctness of components : : : : : : : : : : : : : : : : : : : : : : : : : 113.4 Algorithm test : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 173.5 The Correctness of test : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 174 Finding a Model 274.1 Algorithm corners : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 274.2 Algorithm paths : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 295 Discussion 325.1 Computational Experience : : : : : : : : : : : : : : : : : : : : : : : : : : : : 325.2 Applications Revisited : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 345.3 Parallelization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34References 35



1 IntroductionWe restrict our attention to �nite, undirected graphs. Multiple edges may be present, butloops are ignored. A pair of adjacent edges uv and vw, with u 6= v 6= w, is lifted by deletingthe edges uv and vw, and adding the edge uw. A graph H is immersed in a graph G if andonly if a graph isomorphic to H can be obtained from G by taking a subgraph and liftingpairs of edges.The immersion order can be applied to a number of combinatorial problems. Consider,for example, the problem of deciding whether a graph satis�es a given width metric. Thecutwidth of G = (V;E) is the minimum, over all linear layouts of V; of the maximum numberof edges from E that must be cut if the layout is split between any two consecutive vertices.Although NP-complete in general, cutwidth can, in principle, be decided in linear timefor any �xed width using a �nite but unknown list of immersion tests. Multidimensionalgeneralizations of cutwidth, termed congestion problems, can likewise be solved in lineartime if only one has the right collection of immersion tests available. These and other prob-lems amenable to the immersion order arise during circuit fabrication, parallel computation,network design and many other processes.The graphs required for the aforementioned tests are called obstructions. So, for example,when one knows all obstructions to cutwidth k, one knows a characterization for the familyof graphs that have cutwidth k or less. Given the right collection of obstructions, linear-time decidability is assured by bounding an input graph's treewidth [FL2], computing its treedecomposition [Bo], and applying dynamic programming to test each obstruction against thedecomposition [RS]. We refer the reader to [FL1] for detailed information on this subject.Unfortunately, little is known about immersion obstructions in general or about practicalimmersion tests in particular. Complete graphs are often obstructions. Testing for K1 andK2 are trivial. Detecting a K3 is easy: K3 is immersed in any graph of order three or moreunless the graph is a tree with no pair of multiple edges incident on a common vertex.The �rst really di�cult test, and the one we devise here, is for K4. Observe that K4 is anobstruction for cutwidth three, because any arrangement of its vertices on a line will requirea cut of four edges. Ours is the �rst practical linear-time algorithm known for this task.1



If a graph contains a topological K4, then it also contains an immersed K4. Thus weconsider only those graphs with no topological K4. These are exactly the series-parallelgraphs [Du]. But K4 can be immersed in a series-parallel graph. As a simple example,consider the star graph with three rays, each ray with three edges, as shown in Figure 1.Clearly, multiple edges are critical, making immersion tests potentially more complicatedthan tests in the more-familiar minor and topological orders (see for example [LG]).
lift lift liftFigure 1: A series-parallel graph with an immersed K4.In the next section we state relevant de�nitions and derive a few useful technical lemmas.In Sections 3 and 4, we present algorithms for K4 immersion testing and K4 model �nding,respectively. Although many of the explanatory details are tedious, especially the correctnessproofs, the algorithms themselves are straightforward to implement. In a �nal section wediscuss e�ciency, applications and parallelization.2 PreliminariesWe concentrate on edge-disjoint paths, which are relevant due to the following alternatecharacterization of immersion containment: H = (VH ; EH) is immersed in G = (VG; EG) ifand only if there exists an injection from VH to VG for which the images of adjacent elementsof VH are connected in G by edge-disjoint paths. Under such an injection, an image vertexis called a corner of H in G; all image vertices and their associated paths are collectivelycalled a model of H in G. Our algorithms exploit the edge connectivity of the input graph.2.1 Three-Edge ConnectivityA cut point of a connected graph G is a vertex whose removal disconnects G. Two verticesare said to be biconnected if there are at least two vertex-disjoint paths between them. A2



biconnected component of G is the subgraph induced by a maximal set of pairwise biconnectedvertices.A cut edge of G is an edge whose removal disconnects G. A pair of edges, neither ofwhich is a cut edge, is said to form a cut edge pair if removing both of them disconnects G.Two vertices are three-edge-connected if there are at least three edge-disjoint paths betweenthem. G is three-edge-connected if and only if it has no cut edges and no cut edge pairs.A three-edge-connected component of G = (V;E) is a graph G0 = (V 0; E0) where V 0 � Vis a maximal set of vertices that are pairwise three-edge-connected in G. E 0 contains alledges induced by V 0 plus a (possibly empty) set of virtual edges de�ned as follows: forfu; vg � V 0, a virtual edge uv is added to E0 for each distinct fx; yg � V � V 0 such that uxand vy form a cut edge pair in G. Note that, due to the possible presence of virtual edges,a three-edge-connected component will not necessarily be a subgraph.Lemma 1 If K4 is immersed in G, then K4 is immersed in some three-edge-connectedcomponent of G.Proof Let a, b, c and d denote the corners of a K4 model in G. These corners are joined(in G) by at least six edge-disjoint paths: [ab], [ac], [ad], [bc], [bd] and [cd]. Thus a and b areconnected by at least three edge-disjoint paths: [ab], [ac][cb] and [ad][db]. Maximality ensuresthat the three-edge-connected component containing a also contains b and, by symmetry, cand d. Let Ga denote this component. If [ab] contains edges not in Ga, then [ab] can bewritten as [au]ux[xy]yv[vb], where ux and yv are a cut edge pair in G and uv is a virtualedge in Ga. Thus a and b are connected within Ga by [au]uv[vb], which is edge disjoint fromthe other �ve paths of the model. By symmetry, all pairs of corners are so connected withinGa.The proof of Lemma 1 can be generalized to any three-edge-connected graph immersedin another.For our purposes, a multigraph is said to be reduced if all but four copies of any edgehaving multiplicity �ve or more are removed.3



Lemma 2 If K4 is immersed in G, then K4 is immersed in the reduced graph of G.Proof Let a, b, c and d denote the corners of a K4 model in G, and suppose �ve or morecopies of the edge uv are contained within its six edge-disjoint paths. Without loss ofgenerality, assume these paths are simple. For some pair of corners, say a and b, all �vepaths with an endpoint at a or b contain both u and v. Either u is a corner, or it can bemade a corner by replacing a with u (deleting the three subpaths of the form [au]). Similarly,either v is a corner or b can be replaced with v. G therefore contains a K4 model with cornersu, v, w and x, where fw; xg � fa; b; c; dg. At most one of [uw], [vw] must contain uv; atmost one of [ux], [vx] must contain uv. Thus, of the six edge-disjoint paths of this model,at least two need not contain uv, and all but four copies of uv can be eliminated. Thisconstruction is iterated until a model is obtained whose edges each have at most four copies.Edges not in this model are now removed until G is reduced.In the sequel, we assume that all graphs are reduced.2.2 Series-Parallel GraphsSeries-parallel graphs have been widely studied, and are characterizable in several ways. Asmentioned in Section 1, one such characterization relies on the absence of a topological K4.Topological containment can be de�ned as a restricted form of immersion containment, withlifting permitted only at vertices of degree two. Alternately, topological containment can beviewed as an injection, but with vertex-disjoint rather than edge-disjoint paths.Lemma 3 Each three-edge-connected component of a series-parallel graph is series-parallel.Proof The proof is straightforward, by noting that virtual edges introduce no additionalvertex-disjoint paths.Another useful characterization is much older, and based on graphs that are said tobe two-terminal series-parallel (henceforth 2TSP). A 2TSP graph is de�ned in terms ofbase graphs and two types of composition operators. A base graph is a copy of K2, with4



vertices (terminals) labeled \source" and \sink." A series operator combines two graphs byidentifying one's source with the other's sink. A parallel operator combines two graphs byidentifying source with source and sink with sink. Hence the characterization: a graph isseries-parallel if and only if its biconnected components are two-terminal series-parallel.This characterization is often attractive because it prompts a natural \decompositiontree" T whose labels indicate how a 2TSP can be broken back down into base graphs andoperators. If a 2TSP graph is merely a base graph e, T is a single vertex with label e.Otherwise, T is formed from the decomposition trees, T1 and T2, of the pair of 2TSP graphsused in the composition. The roots of T1 and T2 are joined to the root of T , which is labeledS in the case of a series composition and P in the case of a parallel composition.We conclude this section by noting from [Di] that if a simple graph H is series-parallel,then jEH j � 2jVH j � 3. From this bound and Lemma 2, we know that all graphs of interesthave at most a linear number of edges.3 Testing for K4Let G denote an arbitrary input graph with n vertices and m distinct edges. Without lossof generality, we assume G has already been reduced and is input as a simple graph withinteger weights indicating edge multiplicities.Our method to test for the presence of an immersedK4 proceeds in three steps. Algorithmdecompose is �rst invoked to determine whether G is series-parallel. If G is series-parallel,then algorithm components is used to break G into three-edge-connected components. Fi-nally, algorithm test is employed to search each three-edge-connected component separatelyfor an immersed K4.3.1 Algorithm decomposeAlgorithm decompose is modeled on the method of [He]. It determines whether G is series-parallel and, if so, computes a decomposition tree for each biconnected component. (Recallthat a graph G is series-parallel if and only if every biconnected component is 2TSP.)5



To accomplish this, decompose makes use of the fact that for any edge st in a biconnectedgraph B with p vertices, the vertices of B may be numbered from 1 to p so that vertex sreceives number 1, vertex t receives number p, and every vertex except s and t is adjacentto both a higher-numbered vertex and a lower-numbered vertex [LEC]. Such a numbering iscalled an st-numbering for B.algorithm decompose(G)input: a multigraph Goutput: a series-parallel decomposition tree for each biconnected component of G if G isseries-parallel, NO otherwisebegin�nd all the biconnected components of G; call them B1; : : : ; Bkfor i = 1 to k dobeginchoose a pair of adjacent vertices to be the source s and sink t in Bi�nd an s; t-numbering of Bilet �Bi be the directed graph obtained by orienting each edge in Bi fromthe end point with the lower s; t-number to the one with the higher numberif �Bi is a directed 2TSP graphthen compute a series-parallel decomposition tree Ti for Bielse output NO and stopendfor i = 1 to k dooutput TiendThe correctness of decompose is based on the observation that any s; t-numbering willsu�ce [He]. E�cient methods for �nding biconnected components and computing s; t-numberings are known from [Ta,ET]. Techniques for determining whether directed graphsare 2TSP and �nding decomposition trees can be found in [VTL]. All these algorithms arelinear in n and the number of edges; thus decompose runs in O(n) time.3.2 Algorithm componentsAlgorithm components �nds the three-edge-connected components of a series-parallel multi-graph in linear time. The input to components is a series-parallel graph and a series-paralleldecomposition tree for each of its biconnected components. The output is its set of three-6



edge-connected components (including virtual edges).We proceed by �rst removing all cut edges. These are easily found since each cut edgeis contained in a biconnected component consisting only of that edge. Notice that each cutedge pair must be contained within some biconnected component. Thus it su�ces to givean algorithm for computing the three-edge-connected components of a biconnected 2TSPgraph.Let G be such a 2TSP graph with source s and sink t. Let e; f be a cut edge pair of G.Let G1 and G2 be the graphs left when e and f are deleted from G. We call this cut edgepair s,t-non-separating if s and t are both in G1 or both in G2. Otherwise we call the pairs,t-separating. We say an s; t-non-separating pair is special if its deletion, followed by theaddition of virtual edges, results in two graphs such that one contains s and t and the otheris three-edge-connected.These de�nitions are illustrated in Figure 2. In this �gure, edges ab and cd are a specialpair of graph G. Deleting them and adding virtual edges ad and bc gives G1, which containsboth s and t, and G2, which is three-edge-connected. Edge st and the virtual edge adtogether form the s; t-separating pair of G1. G11, G12 and G2 are the three-edge-connectedcomponents of G.
ss

t

s

d

c

ba
111 GGG

a a

dt

2G

c

b b

c

G2

denotes a virtual edge G12

dtFigure 2: A two-terminal series-parallel graph with cut edge pairs.For our purposes, the decomposition tree T for a 2TSP graph G must be ordered. Thatis, if x is a tree node representing a graph formed by composing G1 and G2 in series such thatthe sink of G1 is identi�ed with the source of G2, then the left child of x must be the root ofa decomposition tree for G1 and the right child of x must be the root of a decomposition treefor G2. Thus the order among children of a series node is �xed. The children of a parallelnode can be in any order. Additionally, we assume that an edge uv stored at a leaf of a7



decomposition tree is represented by the ordered pair (u; v), where u has a smaller numberthan v in the s; t-numbering used in decompose.Our algorithm proceeds in two phases. In the �rst phase special pairs are found anddeleted (and appropriate virtual edges are added) until no more are left. This leaves acollection of (isolated vertices and) 2TSP graphs, one of which contains both s and t. Wewill call this graph Gs;t. All other graphs in the collection are three-edge-connected. GraphGs;t may contain at most one cut edge pair, since otherwise there would also be an s; t-non-separating pair. In the second phase the last remaining cut edge pair, if it exists, is found,removed, and virtual edges are added.In order to �nd any of these cut edge pairs we use the compressed decomposition tree forthe graph. A compressed decomposition tree is formed from a regular decomposition treemerely by identifying all pairs of adjacent nodes that are of the same type.Let G be a biconnected 2TSP graph with compressed decomposition tree T . Let ê denotethe leaf node in T representing edge e in G. Since G is biconnected, the root of T will be aP-node. Our algorithm is based on the following claims, whose correctness we will addresslater (see for example Lemmas 6 and 8).Claim 1 Edges e and f are an s; t-non-separating pair for G if and only if ê and f̂ aresiblings whose parent x is an S-node. Furthermore, e and f are a special pair if and only iffor every node y that is a child of x occurring between ê and f̂ in T , y is not a leaf and thegraph represented by the subtree of y does not contain an s; t-non-separating pair.Claim 2 Edges e and f are an s; t-separating pair if and only if the root of T has exactlytwo children and each of ê; f̂ is either a child of the root or a child of a distinct S-node thatis a child of the root.Special pairs can be found by processing T in a bottom-up fashion. When a special paire; f is removed, virtual edges are added and T is modi�ed to represent the graph G0s;t, whichis the graph containing s and t that is left after removing e and f from G (the other graphleft is a 3-edge-connected component).The s; t-separating pair is easy to detect using Claim 2.8



If e and f are an s; t-non-separating pair such that the vertex pair (u; v) is stored withê and the pair (y; z) is stored with f̂ , then the virtual edges to be added when e and f areremoved are uz and vy. See Lemma 7. We need to construct the compressed decompositiontree T 0 representing G0s;t. Let x be the parent of ê and f̂ . Let g be the virtual edge uz. Ifê is the leftmost child of x and f̂ is the rightmost, then replace x by ĝ; otherwise, replace êand f̂ and all children of x in between by ĝ. See Corollary 1 to Lemma 7.Pseudo code for components is presented below. In a compressed tree, each internal nodewill have at least two children, stored in a linked list called child list. Stored long with eachtree node is its type (P, S, or leaf), a pointer to its child list and, if it is a leaf node, and anordered pair giving the endpoints of its associated edge.The following functions are also used:left child(x): for x a tree node, if x is not a leaf, this returns the leftmost child in x's childlist; otherwise, it returns the value null.right child(x): for x a tree node, if x is not a leaf, this returns the rightmost child in x'schild list; otherwise, it returns the value null.next sibling(q): for q a non-root tree node, this returns the child following q in the childlist of the parent of q or null if no such child exists.left leaf(x): for x a tree node, if x is not a leaf, this returns the leftmost node in x's childlist that is a leaf or null if no such node exists.algorithm components (T )input: a binary series-parallel decomposition tree T of a biconnected multigraph Goutput: the three-edge-connected components of Gbeginlet r be the root of Tcompress(r)remove non sep(r)remove sep(r)endalgorithm compress(x)input: a node x in a binary series-parallel decomposition tree T9



output: the compressed form of the sub-tree rooted at xbeginif x is a leaf nodethen returncompress(left child(x))compress(right child(x))if x and left child(x) are of the same typethen in the child list of x, replace left child(x) by the child list of left child(x)if x and right child(x) are of the same typethen in the child list of x, replace right child(x) by the child list of right child(x)endalgorithm remove non sep(q)input: a node q in a series-parallel decomposition tree T of a multigraph Goutput: the graph G, after deletion of all s; t-non-separating pairs that are contained in thesub-tree of T rooted at q, and addition of virtual edgesbeginch = left child(q)while ch is not nullbeginif ch is not a leaf nodethen remove non sep(ch)ch = next sibling(ch)endif q is an S-nodethen while q has two children that are leavesbeginlet leaf1 and leaf2 be the �rst two leaf-node children of qlet (u; v) be the ordered edge associated with leaf1let (w; x) be the ordered edge associated with leaf2delete uv and wx from the graphadd edges ux and vw to the graphcreate tree node new representing the ordered edge (u; x)if q has more than 2 childrenthen replace all children of q between leaf1 and leaf2 (inclusive)by newelse replace q by newendendendalgorithm remove sep(root)input: the root of a series-parallel decomposition tree T of a multigraph G without anys; t-non-separating pairs 10



output: the graph G after deletion of the s; t-separating pair, if present, and additionof a virtual edgebeginif root has exactly two childrenthen beginlet c1 and c2 be the children of rootif c1 is not leaf nodethen set c1 = left leaf(c1)if c2 is not leaf nodethen set c2 = left leaf(c2)if c1 and c2 are both non-nullthen beginlet (u; v) be the ordered edge associated with c1let (w; x) be the ordered edge associated with c2delete edges uv and wx from the graphadd edges uw and vx to the graphendendendLemma 4 Algorithm components runs in O(m + n) time on a graph with m edges and nvertices.Proof The algorithm takes time proportional to the size of the binary decomposition tree,which is O(m+ n).Thus, in our setting, components takes O(n) time. We note for completeness that amore complex linear-time approach may be viable [Ra], by modifying the ear decompositiontechniques used to decide vertex connectivity in [FRT].3.3 The Correctness of componentsNeither the components driver nor algorithm compress require discussion.Consider algorithm remove non sep. Note �rst that remove non sep cannot inadvertentlyremove an s; t-separating pair, because the edge st must be a child of the root (which is aP-node), and remove non sep eliminates only edges that are children of S-nodes.In order to �nd and remove all s; t-non-separating pairs, remove non sep exploits thesefacts: 11



� If a 2TSP graph has an s; t-non-separating pair, then it has a special pair.� If a biconnected 2TSP graph has no s; t-non-separating pairs, then it is either three-edge-connected or it has one s; t-separating pair.� If a special pair is removed from a biconnected 2TSP graph, then the resulting subgraphcontaining s and t will be biconnected when augmented with a virtual edge.To proceed, we classify edges and pairs of edges in a 2TSP graph as follows. A single edgeis called either a cut edge or a non-cut edge. A pair of edges can be: a pair of cut edges, ans; t-separating pair, an s; t-non-separating pair, or a non-cut pair.Let G1 and G2 be 2TSP graphs such that Gs is the graph formed by composing them inseries and Gp is the graph formed by composing them in parallel. Suppose e is an edge inG1 and f is an edge in G2. Table 1 shows the relation between the class of edge e in G1,edge f in G2 and the pair e; f in Gs and Gp. For example, if edges e and f are cut edges inG1 and G2 respectively, then e and f must be an s; t-separating pair in Gp.class of class of class of e and fedge e in G1 edge f in G2 in Gs in Gpnon-cut edge non-cut edge non-cut pair non-cut pairnon-cut edge cut edge f a cut edge non-cut paircut edge non-cut edge e a cut edge non-cut paircut edge cut edge cut edges s; t-separatingTable 1Now suppose edges e and f are both in the 2TSP graph G1, and G2 is any other 2TSPgraph. Graphs Gs and Gp are as de�ned above. Table 2 relates the class of e and f in G1 totheir class in Gs and Gp.
12



class of edges e and fin G1 in Gs in Gpcut edges cut edges s; t-non-separatings; t-non-separating s; t-non-separating s; t-non-separatings; t-separating s; t-separating non-cut pairnon-cut pair non-cut pair non-cut pairTable 2Let z be a non-leaf node in decomposition tree T and let Tz denote the subtree of Trooted at z. The 2TSP graph H that has Tz as a decomposition tree is a constituent graphfor G with respect to T . If e and f are edges in G then the least constituent graph containinge and f is the smallest constituent graph of G that contains both e and f . This graph hasas a decomposition tree Tz where z is the least common ancestor of ê and f̂ in T .Let G be a 2TSP graph containing edges e and f and let H be the least constituentgraph of G that contains e and f . Table 3 gives the relation between the class of an edge ina 2TSP graph and its class in a constituent of that graph.class of edges e and fin H in Gcut edges cut edges or s; t-non-separatings; t-non-separating s; t-non-separatings; t-separating s; t-separating or non-cut pairnon-cut pair non-cut pairTable 3The following lemmas are used to justify the correctness of the procedure for �ndingspecial pairs, removing special pairs, updating the decomposition tree for the connectedcomponent containing s and t, and adding virtual edges.Lemma 5 Let G be a 2TSP graph, and let e and f be an s; t-non-separating pair for G. IfH is the least constituent graph of G containing e and f , then e and f are cut edges in H.13



Proof By the �rst two lines of Table 3, either e and f are cut edges in H, as claimed,or they form an s; t-non-separating pair. Since H is a least constituent graph, H must beformed by composing two 2TSP graphs H1 and H2 such that H1 contains e and H2 containsf . According to Table 1, e and f cannot be an s; t-non-separating pair in H. Therefore theymust be cut edges for H, as claimed.The following lemma is crucial. Its proof uses the following fact: if G is a 2TSP graphand T is a compressed decomposition tree for G, then edge e is a cut edge of G if and onlyif the root of T is an S-node and ê is a child of the root.Lemma 6 If e and f are edges in a biconnected 2TSP graph G with decomposition tree T ,then e and f are an s; t-non-separating pair if and only if ê and f̂ are siblings whose parentis an S-node.Proof Let z be the least common ancestor of ê and f̂ in T . Let Tz be the subtree of Trooted at z and let H be the 2TSP graph having Tz as a decomposition tree. Note that His the least constituent of G that contains e and f .Suppose e and f are s; t-non-separating. By Lemma 5, e and f are cut edges for H. Thusê and f̂ are children of z and z is an S-node.Now suppose that ê and f̂ are siblings whose parent is an S-node. This implies that eand f are cut edges for H. Then, by Table 3, e and f must be either cut edges or an s; t-non-separating pair in G. Since G is biconnected, e and f must in fact be an s; t-non-separatingpair.In what follows, we say that node x in tree T occurs \between" nodes y and z if x occursbetween y and z in the preorder traversal of T . Let Hx denote the graph having Tx as adecomposition tree.Lemma 7 Let G be a biconnected 2TSP graph and let T be a compressed decomposition treefor G. In G, let e = uv and f = wx be an s; t-non-separating pair whose removal yields agraph G1 containing s and t, and another graph G2. Let (u; v) be the pair stored with ê and(w; x) be the pair stored with f̂ . Then the edges in G2 are fgjĝ occurs between ê and f̂ in14



Tg, and the vertices in G2 are the endpoints of these edges plus fv;wg.Proof Since e and f are s; t-non-separating, by Lemma 6, ê and f̂ are siblings whose parentz is an S-node. Without loss of generality, assume ê occurs before f̂ in T . Since G isbiconnected, z has a P-node parent which we denote by y.Removal of e and f from Hz leaves three graphs H1, H2, and H3 such that: H1 containsall edges represented by nodes occurring before ê in Tz, their associated vertices, and vertexu; H2 contains all edges represented by nodes occurring between ê and f̂ and associatedvertices plus fv;wg; and H3 contains all edges represented by nodes occurring after f̂ in Tzand associated vertices plus x. The source and sink of Hz are in H1 and H3 respectively.In Hy, edges e and f are an s; t-non-separating pair whose removal leavesH2 and anothergraph containing H1, H3, and the portion of Hy not in Hz. The source and sink of Hy arethe source and sink of Hz and are not in H2. Thus the claim holds for Hy.Any graph formed by composing two 2TSP graphs, one of which has Hy as a constituent,still has the claimed property because the paths in the new graph that are not in Hy canonly connect vertices not in H2. Since no new paths are added from vertices in H2 to verticesnot in H2, it is still the case that removal of e and f will separate the vertices in H2 fromthe rest of the graph. Thus the claim also holds for any graph having Hy as a constituent.Corollary 1 Let G;T; e; and f be as de�ned in Lemma 7. Let G10 be the graph consisting ofG1 plus virtual edge ux and let G20 be the graph consisting of G2 plus virtual edge vw. Letz be the parent of ê and f̂ in T and let r1; : : : ; rk be the children of z in order from left toright such that ri = ê and rj = f̂ . Let ĝ be a tree node representing g = ux; the ordered pairstored with ĝ is (u; x). Let ĥ be a tree node representing h = vw; the ordered pair stored withĥ is (v;w).A decomposition tree for G10 is formed by replacing ri; : : : ; rj by node ĝ if i 6= 1 or j 6= kand replacing Tz by ĝ otherwise.A decomposition tree for G20 is one of the following:(a) empty, if j = i+ 1;(b) a P-node with children ĥ and ri+1, if j = i+ 2;(c) a P-node with two children ĥ and an S-node, which in turn has children ri+1; : : : ; rj�1,15



otherwise.Proof We know by Lemma 7 that G1 0 is formed by replacing the portion of G representedby nodes in T between ê and f̂ by a single edge ux, so the decomposition tree for G0 is asclaimed. We also know that G20 consists of the edges represented by nodes in T strictlybetween ê and f̂ , their associated vertices and vertices v and w, with the edge vw composedin parallel. Since the nodes between ê and f̂ are children of an S-node, the decompositiontree for G20 is as claimed.Lemma 8 Let G be a biconnected 2TSP graph and let T be a compressed decomposition treefor G. A pair of s; t-non-separating edges, e, f , is a special pair for G if and only if forevery sibling y of ê and f̂ in T that occurs between ê and f̂ , y is not a leaf and Ty does notrepresent a graph containing an s; t-non-separating pair.Proof Since e and f are s; t-non-separating, removal of e and f yields two graphs G1 andG2 such that G1 contains s and t. Let G0 be the graph G2 plus the virtual edge. Edges eand f are special if and only if G0 is three-edge-connected. Let T 0 be the decomposition treefor G0 as described in Corollary 1. Let z be the parent of ê and f̂ in T .Suppose e and f are special. We employ proof by contradiction and assume there existsa child y of z between ê and f̂ such that y is a leaf or Ty represents a graph containingan s; t-non-separating pair. Then G0 must be three-edge-connected, which implies T 0 hasno cut edges or cut edge pairs. If y is a leaf then, by Corollary 1, T 0 consists of a P-nodewith two children. One of them is a leaf (representing the virtual edge) and the other iseither ŷ or an S-node having ŷ as a child. In either case the structure of T 0 requires thatthe virtual edge and y form an s; t-separating pair for G0, a contradiction. If, on the otherhand, y is non-leaf node whose subtree Ty represents a graph having an s; t-non-separatingpair, then Ty contains an S-node with two leaves as children. These nodes also represent ans; t-non-separating pair for G0, again a contradiction.Now suppose ê and f̂ satisfy the conditions of the lemma, but that e and f are notspecial. Then G0 must have a cut edge or a cut edge pair, and arguments analogous to thoseabove yield a contradiction. 16



Therefore, Lemmas 5 through 8 demonstrate that the algorithm remove non sep correctly�nds special pairs, adds virtual edges, and updates the decomposition tree to represent thegraph left after the edges are removed.We suppress the analysis of remove sep, which at this point is relatively straightforward.3.4 Algorithm testAlgorithm test is the heart of our method. The input to test is a three-edge-connected series-parallel multigraph. In such a graph, suppose v is a vertex with exactly two neighbors, u andw, and suppose there is only one copy of the edge vw. (Thus there are at least two copiesof uv by three-edge-connectivity.) We say that v is pruned if the multiplicity of uv is set totwo. Similarly, we say a graph is pruned if each vertex �tting the pro�le of v is pruned.algorithm test(G)input: a three-edge-connected series-parallel multigraph Goutput: YES, if G contains an immersed K4, NO otherwisebeginfor each vertex v in G with exactly one neighbordelete all but three copies of edges incident on vif any cut point in G has degree seven or morethen output YES and haltfor each biconnected component B with four or more verticesfor each vertex v in Bprune v if possibleif there is a vertex in B with degree �ve or morethen output YES and haltoutput NO and haltend3.5 The Correctness of testThe correctness of test relies on a number of lemmas, which follow. Before proceeding, wemake a few useful observations.Observation 1 If H 0 is immersed in H, and if M 0 is a K4 model in H 0, then in H there isa K4 model M with the same corners as M 0.17



Observation 1 follows from noting that edges in H 0 map to edge-disjoint paths in H, andthat in H a suitable K4 model can be found merely by replacing the edges of M 0 with theirimage paths in H.Observation 2 is a well-known property of series-parallel graphs.Observation 2 Every biconnected series-parallel multigraph with four or more vertices con-tains at least two non-adjacent vertices with exactly two neighbors.Suppose v is a vertex with exactly two neighbors, x and y. We say that v is shorted ifwe lift all pairs of edges vx and vy and delete any remaining edges incident on v along withv itself.Observation 3 Shorting preserves biconnectivity, three-edge-connectivity and series-parallelness.Observation 3 holds because shorting a vertex does not change the number of vertex-disjoint or edge-disjoint paths between any pair of remaining vertices.Observation 4 A biconnected component of a three-edge-connected graph is three-edge-connected.Observation 4 follows from noting that edge-disjoint paths may as well be made simpleand that, whenever a pair of vertices lies in the same biconnected component, all verticesalong simple paths connecting them in the original graph must also lie in this component.Lemma 9 Let G denote a graph in which a vertex, v, has exactly one neighbor, w. Let G0be obtained from G by deleting all but three copies of the edge vw. Then K4 is immersed inG if and only if K4 is immersed in G0.Proof If K4 is immersed in G, then G contains a K4 model whose edge images are simplepaths. Since v cannot be an intermediate vertex in a simple path, at most three copies ofthe edge vw are needed. Thus K4 is also immersed in G0. If K4 is not immersed in G, thenneither is it immersed in G0 since G0 is a subgraph of G.Lemma 10 Let G be three-edge-connected, with non-cut point vertices u and v. Let w denote18



any other vertex in G. Then there exist three mutually edge-disjoint paths, each beginningwith w and ending with either u or v, such that at most two of these paths contain u, andat most two contain v.Proof The paths we seek to identify are illustrated in Figure 3, where the dashed linesdenote edge-disjoint paths that do not contain u or v as an intermediate vertex. Considerthree mutually edge-disjoint paths P1, P2 and P3, each from w to fu; vg. These paths existbecause G is three-edge-connected. Assume all three contain, say, u. Hence all three mayas well be simple and end at u. Consider now some path P between w and v that does notcontain u (such a path exists since u is not a cut point). P may contain vertices and edgesin P1, P2 and P3. Let y be the last vertex in P (counting from w) that is also in P1 or P2or P3. Without loss of generality, assume y is in P1. We can construct a path P 0 from w tov, by taking P1 until we reach y, and using P from there on. Thus P 0, P2 and P3 are thedesired edge-disjoint paths, with P 0 not containing u.
u v

w w

u vFigure 3: Edge-disjoint paths in a three-edge-connected graph.Figure 4 depicts a graph we will discuss frequently, henceforth termed graph M .
Figure 4: The graph M .Lemma 11 Let G be three-edge-connected. Let v denote a non-cut point vertex in G withdegree at least four, let u and w be neighbors of v, and suppose uv has multiplicity at least19



two. Then G contains an M model, with corners u, v and w, and with v the image of M 'sdegree-four vertex.Proof We restrict our attention to G0, the biconnected component of G containing v. (G0is three-edge-connected by Observation 4. Since v is not a cut point, its neighborhood isunchanged in G0.) From Lemma 10, we know that there are three mutually edge-disjointpaths from w to fu; vg such that at most two of these paths contain u and at most twocontain v. One of these paths is the edge wv. If one of the other paths contains v aswell, the lemma holds. So suppose neither contains v. See Figure 5(a). To complete an Mmodel, we must �nd an edge-disjoint path [vw]. If uv has multiplicity three or more, wecan construct this path by combining one of the edges vu and one of the paths [uw]. Soassume uv has multiplicity 2. Let x denote a neighbor of v other than u or w. Since G0 isbiconnected, there is a path [xw] that does not contain any of the edges incident on v. Lety denote the �rst vertex on this path (counting from x) common to either of the two paths[uw]. We combine the edge vx with the paths [xy] and [yw] to get the desired path [vw].See Figure 5(b).
v

u w

(a)
wu

v x

y

(b)Figure 5: Graphs used in the proof of Lemma 11.Lemma 12 Let G be three-edge-connected and series-parallel, with at least three vertices.Let v denote a vertex in G with degree at least four. Then G contains an M model, with vthe image of M 's degree-four vertex, and corner u adjacent to v and corner w adjacent to uor v.Proof Suppose v has only one neighbor, which must be u. Then edge uv has multiplicityfour. Let w denote an arbitrary neighbor of u. Since G is three-edge-connected, and since u20



is a cut point, the graph depicted in Figure 6(a) is immersed in G, satisfying the statement ofthe lemma. Suppose v has two or more neighbors, and v is a cut point. Let u and w denotearbitrary neighbors of v. Now the graph in Figure 6(b) is immersed in G, again satisfyingthe statement of the lemma. Finally, suppose v has two or more neighbors, and v is not acut point. For this case, we prove something slightly stronger, namely, that an M modelexists with v the image of M 's degree-4 vertex, and corners u and w both adjacent to v.We proceed by contradiction, and let H = (VH ; EH) denote a counterexample. Withoutloss of generality, we assume H is minimal. That is, no counterexample exists with fewerthan jVH j vertices and, for this number of vertices, no counterexample exists with fewer thanjEH j edges. H must be biconnected, else the biconnected component containing v provides asmaller counterexample. Similarly, no three-edge-connected, series-parallel graph containingv and all its incident edges can be properly immersed in H, else such a graph would againcontradict minimality. This implies that any vertex with exactly two neighbors must beadjacent to v (else the vertex could be shorted). So there must be some vertex, x, that isadjacent to v and that has exactly one other neighbor, y. By Lemma 11, we know that vxhas multiplicity one. Three-edge-connectivity requires that xy has multiplicity two or more.Now consider H 0, obtained from H by shorting x. H 0 satis�es the conditions of the lemmaand so (by the minimality of H) contains an M model, with v the image of the degree-4vertex in M , and corners u and w both adjacent to v. The only edge in H 0 not in H is vy,implying that y plays the role of u (or, by symmetry in this case, w). But this means that,in H, we can replace the edge-disjoint paths [vy], [vy] and [uy] with vx, [vy]yx and [uy]yxrespectively, giving us an M model with corners v, x and w, a contradiction to the presumedexistence of a counterexample.
wv vu w

(a) (b)

uFigure 6: Graphs used in the proof of Lemma 12.Lemma 13 Let G be three-edge-connected and series-parallel, and let all vertices in G with21



exactly one neighbor have degree three. Suppose G has a cut point v with degree seven ormore. Then there is a K4 model in G with corners u, v, w and x, where u and x are adjacentto v and w is adjacent to u or v.Proof Let C1; : : : ; Ck denote the connected components of G � fvg. Let Ai denote Ciaugmented with a copy of v and the edges it induces. Each Ai is three-edge-connected,and thus contains a model of the triple-edge shown in Figure 7(a), with any pair of verticesserving as the corners. Without loss of generality, assume A1 contains the least number ofedges incident on v, and let H denote G � C1. It follows that v has degree four or more inH and that H has at least three vertices. Thus, by Lemma 12, there is an M model in Hwith v the image of the degree-4 vertex in M , and with corner u adjacent to v and corner wadjacent to u or v. This M model can be combined with a model of the triple-edge in A1 toform in G a model of the graph shown in Figure 7(b), which contains the desired K4 model.
(a)

v x

x

u w

(b)

v

Figure 7: Graphs used in the proof of Lemma 13.Lemma 14 Suppose G has no cut point with degree exceeding six. Then K4 is immersed inG if and only if K4 is immersed in a biconnected component of G.Proof If a biconnected component of G contains K4, then so does G, because a biconnectedcomponent is a subgraph. To prove the converse, consider a K4 model in G with the K4edges mapped to simple paths. Let u, w, x and y denote the corners of this model, and22



suppose there is a cut point v that separates them. We know that v cannot be one of thecorners, else it would need degree seven or more (see Figure 8(a)). Nor can v separate twocorners from the others, else it would need degree eight or more (see Figure 8(b)). So itmust be that v separates just one corner, say y, from the others (see Figure 8(c)). Thus theedge-disjoint paths [uy], [wy] and [xy] all pass through v, and we can construct another K4model in which v replaces y as a corner. By iterating this replacement, we eventually get aK4 model all of whose corners (and paths) are in the same biconnected component.
uu

x y

v

y

v

w

x

u

y

v = x

u w w

(a) (b) (c)Figure 8: Models of K4 that span a cut-point.Lemma 15 Let v denote a vertex with exactly two neighbors, u and w, and suppose the edgevw has multiplicity one. Then u and v can be corners of a given K4 model only if degree(u) �degree(v) + 2.Proof Let x and y denote the other corners of this model. Paths [ux] and [uy] need notcontain uv. Either [vx] or [vy] has to pass through u. Thus at least three edges are incidenton u in addition to the copies of uv (see Figure 9), and the lemma follows.Lemma 16 If G is series-parallel and of maximum degree four, then K4 is not immersed inG.Proof Suppose otherwise, and let H denote a minimal counterexample. H must be three-23



v

u w

x yFigure 9: A model of K4 with corners u, v, x and y.edge-connected by Lemma 1. H must also be biconnected, since a cut point in a three-edge-connected graph has degree at least six. Thus, by Observation 2, H contains a vertex, v,with exactly two neighbors, u and w. It must be that v is needed as a corner in every K4model, else we can short it, contradicting minimality. So v has degree three and we assume,without loss of generality, that uv has multiplicity two, vw has multiplicity one. We now�x the remaining corners of some K4 model. Vertex u cannot be one of these corners, byLemma 15. But now it is easy to see that u can replace v in this model, contradicting thefact that v must be a corner.We henceforth use the term candidate graph to denote a biconnected, three-edge-connected,series-parallel multigraph with four or more vertices.Lemma 17 In a candidate graph, G, suppose vertex v has exactly two neighbors, u andw, and suppose the multiplicity of uv is greater than the multiplicity of vw. If degree(u)�degree(v) � 2, then K4 is immersed in G.Proof Suppose otherwise, and let H denote a minimal counterexample. Let x 6= v denoteanother vertex with exactly two neighbors. The edge xu must exist and have multiplicitytwo or more, else we can short x, contradicting minimality. Consider the e�ect of shortingv, producing the graph H 0. Since u has degree at least four in H 0, we know from Lemma 11that the M model illustrated in Figure 10(a) is immersed in H 0. But this means that thegraph shown in Figure 10(b), which contains K4, is immersed in H, thereby contradictingthe assumption that H is a counterexample.24



u w u w

v

x x

(a) (b)Figure 10: Graphs used in the proofs of Lemmas 17 and 19.Recall pruning, as de�ned in Section 3.4.Lemma 18 In a candidate graph, G, suppose vertex v has exactly two neighbors, u and w,and suppose vw has multiplicity one. Letting G0 denote the graph resulting from pruning v,K4 is immersed in G if and only if it is immersed in G0.Proof If K4 is immersed in G0, then it is immersed in G as well, because G0 � G. SupposeK4 is immersed in G. If G contains a K4 model in which v is not a corner, then so doesG0, since pruning is irrelevant (at most one of the images of the K4 edges in this model canpass through v.) So suppose v is a corner in every K4 model in G. Vertex u must also be acorner in all these models, else we could replace v with u, forming a model in which v is nota corner. Now, by Lemma 15, u has degree at least two more than v, a property unchangedby pruning. Thus, by Lemma 17, K4 is immersed in G0.Lemma 19 In a pruned candidate graph, G, suppose vertex v has exactly two neighbors, uand w, and suppose uv has multiplicity at least three, vw has multiplicity at least two. Thenthere is a K4 model in G with corners u, v, w and x, where x 62 fv;wg is a neighbor of u.Proof The biconnectivity of G ensures that u has some neighbor other than v (and possiblyw) to play the role of x. If v and x are u's only neighbors, then ux must have multiplicitytwo or more (G has been pruned and yet uv has multiplicity three or more). Thus in G0,the graph that results from shorting v, the degree of u is at least four. We conclude fromLemma 11 that the M model illustrated in Figure 10(a) is immersed in G0, and the graph25



shown in Figure 10(b), which contains K4, is immersed in G.Lemma 20 In a candidate graph, G, suppose vertex v has exactly two neighbors, u and w,suppose uv and vw each have multiplicity at least two, and suppose uw exists. Then there isa K4 model in G with corners u, v, w and x, where x 62 fv;wg is a neighbor of u.Proof As in the last lemma, such an x must exist. We apply Lemma 10, with w playingthe role of v and x playing the role of w. Thus at least one of the graphs shown in Figure11, both of which contain K4, is immersed in G.
v

u

v

w

x

(a) (b)

u w

xFigure 11: Graphs used in the proof of Lemma 20.Lemma 21 Let G denote a pruned candidate graph. K4 is immersed in G if and only if Ghas a vertex of degree �ve or more.Proof We know from Lemma 16 that a candidate graph of maximum degree four containsno K4. To prove the converse, we proceed by contradiction and assumeH denotes a minimalpruned candidate graph, with at least one vertex of degree �ve or more, but with no immersedK4. It is easy to verify that H has at least �ve vertices, a necessary property because we willuse shorting to contradict minimality, and a candidate graph requires at least four vertices.Let v denote a vertex in H with exactly two neighbors, u and w, and assume the multiplicityof uv is at least that of vw. Lemma 19 guarantees that v cannot have degree �ve or more. Ifv has degree four, Lemma 20 and the fact that H is pruned ensure that uw does not exist.But now we can short v, obtaining a pruned candidate graph that contradicts minimality.So v must have degree three and, by Lemma 17, u has degree four or less. Biconnectivity26



requires that at most one copy of uw exists. But now we can again short v to obtain apruned candidate graph, contradicting the presumed minimality of H.This completes the proof of the correctness of test. The work of the last two sectionsnow provides the proof of the following principal result.Theorem 1 Algorithms decompose, components and test correctly decide whether K4 isimmersed in an arbitrary input graph.4 Finding a ModelOnce the presence of K4 has been detected in a graph, our method to identify a K4 modelproceeds in two steps. Algorithm corners is �rst invoked to modify the input graph untilan appropriate set of corners is isolated. Then algorithm paths is used to �nd the K4 edgeimages.4.1 Algorithm cornersAlgorithm corners marks vertices in the input graph as part of the corner-�nding process.All vertices are assumed to be unmarked initially. Algorithm corners also maintains a list forevery copy of every edge, to store the sequence of edges that may have been eliminated byshorting. Each list is assumed to contain only the edge itself initially.algorithm corners(G)input: a three-edge-connected series-parallel multigraph G containing an immersed K4output: the four corners of a K4 model in Gbeginfor each vertex with only one neighbordelete all but three copies of its incident edgeif G has a cut point v of degree seven or morethen if G� fvg has three or more connected componentsthen set u;w and x to neighbors of v in G, each in a di�erent connectedcomponent of G � fvg, and haltelse beginlet C1 and C2 denote the connected components of G � fvglet A1 denote C1 augmented with v and the edges it induces27



let A2 denote C2 augmented with v and the edges it inducesif v has degree four or more in A1then set A = A1 and B = A2else set A = A2 and B = A1while v induces no edges of multiplicity two or more in Aif there is a vertex in A with only one neighborthen delete this vertex and its incident edgeselse short some vertex in A with only two neighborsset u to some vertex in A such that uv has multiplicity at least twoif v has a neighbor other than u in Athen set w to any one of these neighborselse set w to any neighbor of u in A other than vset x to any vertex in B that is a neighbor of v and haltendlet C denote some biconnected component containing K4, and discard G� Cprune all vertices with exactly two neighborswhile truebeginset v to an unmarked vertex with exactly two neighbors u and w, with themultiplicity of uv at least that of vwif v has degree at least �ve, or v has degree four and uw existsthen set x to any neighbor of u besides v or w and haltelse if v or u has degree fourthen short velse if uw existsthen set x to any neighbor of u other than v or w and haltelse if there is an edge ua, a 6= v, of multiplicity two or morethen set x to a and haltelse if there are two vertices of degree �ve or morethen short velse mark vendendWe address the correctness of corners. Suppose G contains a cut point v of degree atleast seven. Lemmas 11 and 12 tell us how to �nd the corners of an M model, and from thisLemma 13 tells us how to �nd the corners of a K4 model, as long as either (1) G� fvg hasthree or more connected components or (2) there is an augmented component in which vhas degree at least four and uv has multiplicity at least two. If neither of these conditions isinitially satis�ed, condition (2) is easily forced with a series of vertex deletions and shortingoperations. 28



So suppose no cut point of degree seven or more exists, and consider some biconnectedcomponent containing an immersed K4. This component must also contain a vertex withexactly two neighbors (Observation 2) and a vertex of degree �ve or more (Lemma 21). Inthis event, we employ Lemmas 19, 20, and 21, plus Lemma 22, which follows.Lemma 22 In a candidate graph, G, suppose vertex v has exactly two neighbors, u and w,and suppose uv has multiplicity two, vw has multiplicity one and u has degree at least �ve.Let x denote a neighbor of u other than v or w. If either ux has multiplicity at least two oruw exists, then there is a K4 model in G with u, v, w and x as corners.Proof In G0, the graph resulting from shorting v, u has degree at least four, and either uxhas multiplicity at least two or uw now does. Then by Lemma 11, there is an M model inG0 with corners u, w and x, and with u the image of M 's degree-four vertex. Thus the graphin Figure 10(b), which contains the desired K4 model, is immersed in G.If an immersedK4 cannot yet be identi�ed, then a vertex, v, with exactly two neighborsis shorted as long as the resulting graph retains at least one vertex of degree at least �ve.Accordingly, if one of v's neighbors, u, is the only vertex of degree at least �ve, uv hasmultiplicity two, and all other edges incident on u are simple, then v cannot be shorted. Itsu�ces in this case to mark v as having been visited, since at most one vertex can be somarked and another candidate for v is always available.In each iteration, corners deletes, shorts or marks some vertex. Handling any of theseoperations and updating the appropriate edge list requires only a constant number of steps.Thus corners runs in linear time.4.2 Algorithm pathsAlgorithm paths uses the property that k edge-disjoint paths exist between a pair of verticesif and only if a network 
ow of value k is possible between them.algorithm paths(G, s, t1; : : : ; tk)input: a multigraph G and distinguished vertices s, t1; : : : ; tkoutput: edge-disjoint paths p1; : : : ; pk, with pi connecting s to ti, if such paths exist29



beginconstruct an edge-weighted digraph G0, by replacing each edge uv of multiplicitym withthe directed edges (u; v) and (v; u), each of capacity madd to G0 a vertex t and the edges (t1; t); : : : ; (tk; t), each of capacity one�nd a 
ow of value k from s to t, if such a 
ow existsif there is no such 
owthen haltelse for each edge (u; v) in G0 doif both (u; v) and (v; u) have positive 
ow valuesthen set flow((u; v)) = maxf0; flow((u; v))� flow((v; u))g andset flow((v; u)) = maxf0; flow((v; u))� flow((u; v))gdiscard from G0 any edge without a positive 
owfor i = 1 to k dobeginset p0i to a path in G0 from s to tiset pi to the corresponding path in Gdecrement in G0 the 
ow along each edge in p0i by onedelete from G one copy of each edge in piendoutput p1; : : : ; pkendWe address the correctness and use of paths. In the following �gures, paths that aremere edges are shown as solid lines. These edges are temporarily deleted so that paths canbe employed to �nd additional paths with multiple edges, depicted with dashed lines. Toillustrate, consider the case in which the K4 model spans a cut-point v and G � fvg hasthree or more connected components. See Figure 12. Three calls are made to paths, eachwith v playing the role of s and k set to two. (The �rst call uses u = t1 = t2; the seconduses w = t1 = t2; the third uses x = t1 = t2.) If G�fvg has two connected components, twocalls su�ce. See Figures 13 and 14. If the K4 model is in a single biconnected component,one call is enough. See Figure 15.Recall that the input to paths has at most a linear number of edges and no more thanfour copies of any edge. Thus it takes only linear time to construct G0 and to read o� paths(using, for example, a shortest paths algorithm) after a 
ow of value k has been found. Therunning time of paths is therefore dominated by the algorithm for �nding network 
ows. Sowe employ a 
ow method such as Ford-Fulkerson, which runs in linear time as long as k isbounded by an integer constant and all edge-capacities are integers, as is the case here.30



u
v

w

xFigure 12: Paths to be found if G� fvg has three or more connected components.
v

u w

xFigure 13: Paths to be found if v has at least two neighbors in u's component.
w

u v
xFigure 14: Paths to be found if v has no neighbor besides u in u's component.

v

u w

x

v

u w

x

v

u w

x

v

u w

xFigure 15: Paths to be found if the K4 model lies in a biconnected component.31



In summary, to �nd a K4 model we invoke corners once and paths at most three times.The entire model-�nding process is accomplished in linear time.Theorem 2 Algorithms corners and paths correctly isolate a K4 model if K4 is immersed inan arbitrary input graph.5 Discussion5.1 Computational ExperienceWe implemented our algorithms in C and ran them on a SUN SPARCstation 20. Repre-sentative results are listed in Table 4. Each execution time shown is in seconds, and wasobtained by averaging the times observed in a dozen runs. The graphs employed are (pseudo)random, generated by �xing the number of vertices and then randomly adding edges untilthe desired average degree was reached. Each edge was added only after verifying that itsaddition maintained series-parallelness, since a quick test for a topological (and hence animmersed) K4 su�ces to eliminate non-series-parallel graphs.It is clear that from these results that our algorithms are practical, not just asymptoticallyoptimal. They take only seconds to process graphs with thousands of vertices. The runningtime of the detection algorithm is a�ected mainly by the size of the input graph. One mightsuspect that the distribution of edges over vertices might also have an e�ect, but we sampledseveral edge-probability distributions and could �nd no noticeable di�erences. On the otherhand, the model-�nding algorithm does appear to take slightly longer on graphs in which wehave forced corners to be connected only by long paths. Even on such contrived instances,�nding a model takes no more than twice the average time for random graphs of similar size.
32



Average Number of Detection Percent with Model-FindingDegree Vertices Time Immersed K4 Time200 0.01 0 N/A500 0.03 0 N/A1.0 1000 0.07 0 N/A2000 0.14 0 N/A5000 0.35 0 N/A10000 0.70 0 N/A200 0.02 0 N/A500 0.05 0 N/A1.25 1000 0.09 0 N/A2000 0.16 0 N/A5000 0.41 17 0.7210000 0.80 42 1.42200 0.02 8 0.03500 0.05 33 0.081.5 1000 0.10 50 0.152000 0.20 58 0.325000 0.54 83 0.8310000 1.09 92 1.66200 0.02 25 0.04500 0.05 67 0.091.75 1000 0.11 83 0.192000 0.24 100 0.375000 0.61 100 0.8810000 1.19 100 1.75200 0.02 67 0.05500 0.05 75 0.112.0 1000 0.12 100 0.212000 0.23 100 0.405000 0.60 100 1.0110000 1.20 100 2.05200 0.03 100 0.05500 0.07 100 0.112.25 1000 0.13 100 0.222000 0.26 100 0.435000 0.64 100 1.1310000 1.27 100 2.24Table 433



5.2 Applications RevisitedFast immersion tests are of interest in their own right. In practice, they also have potentialas indicators of graph width metrics. To illustrate, we return to the cutwidth problem, whichhas appeared in a wide variety of VLSI applications (see, as examples, [FHKY, HPK]). De-ciding whether a graph has small cutwidth is an important part of many layout processes.Graphs representing circuits are frequently series-parallel. More generally, they tend to besparse, with at most a linear number of edges, and of bounded degree due to limitationson porting and fan-in/out. Integer weights are used to model multiple edges in these ap-plications, just as we have used them here. The presence of an immersed K4 in such agraph guarantees that it cannot have cutwidth three. The absence of K4, however, merelyapproximates its cutwidth at three. In particular, such an absence says nothing at all abouthow to �nd a layout of width three even if many should exist. To solve this problem, ouralgorithms can be used in conjunction with previously-studied \self reduction" techniques[BFL, FL2] to search for a layout in O(n2) time.Many other combinatorial problems may bene�t from fast immersion tests. For example,a variety of load factor [FL1] problems can be decided by a �nite battery of immersiontests, including K4. A problem indirectly approachable with this method is graph bisection.Bounded cutwidth is a su�cient, but not a necessary, condition for bounded bisection width.For problems such as these, there is interest in devising fast tests for other key graphs [LR,MK].5.3 ParallelizationIt is not di�cult to devise parallel versions of decompose, components and test.Biconnected components can be found in O(log n) time on a CRCW PRAM with O((m+n)�(m;n)= log n) processors [FRT], where �(m;n) denotes the inverse of Ackermann's func-tion. Deciding whether a graph is series-parallel can be done in O(log2 n+ logm) time withO(m+n) processors [He]. A parallel version of decompose therefore needs at most O(log2 n)time with O(n) processors.The triconnected components algorithm of [FRT], modi�ed slightly to �nd three-edge-34



connected components [Ra], yields a parallel version of components that runs in O(log n)time with O(n log log n= log n) processors. It is straightforward to parallelize test so that ittakes constant time with O(n) processors.Thus, in principle, it is possible to determine whether a graph has an immersed K4 inO(log2 n) time with O(n) processors on the CRCW PRAM model. We did not implementthis scheme because many of the algorithms mentioned are highly impractical. The problemof devising an e�cient parallel model-�nding method remains open.References[BFL] D. J. Brown, M. R. Fellows and M. A. Langston, \Polynomial-Time Self-Reducibility:Theoretical Motivations and Practical Results," Int'l J. of Computer Mathematics 31(1989), 1{9.[Bo] H. L. Bodlaender, \A Linear Time Algorithm for Finding Tree-Decompositions ofSmall Treewidth," Proceedings, 25th Annual ACM Symposium on Theory of Comput-ing (1993), 226{234.[Di] G. A. Dirac, \In Abstrakten Graphen Vorhandene Vollstandige 4-Graphen und ihreUnterteilungen," Mathematische Nachrichten 22 (1960), 61{85.[Du] R. J. Du�n, \Topology of Series-Parallel Networks," Journal of Mathematical Anal-ysis and Applications 10 (1965), 303{318.[ET] S. Even and R. E. Tarjan, \Computing an st-numbering," Theoretical ComputerScience 2 (1976), 339-344.[FHKY] T. Fujii, H. Horikawa, T. Kikuno and N. Yoshida, \A Heuristic Algorithm for GateAssignment in One-Dimensional Array Approach," IEEE Transactions on Computer-Aided Design 6 (1987), 159{164.[FL1] M. R. Fellows and M. A. Langston, \On Well-Partial-Order Theory and Its Ap-plication to Combinatorial Problems of VLSI Design," SIAM Journal on DiscreteMathematics 5 (1992), 117{126.[FL2] M. R. Fellows and M. A. Langston, \On Search, Decision and the E�ciency ofPolynomial-Time Algorithms," Journal of Computer and Systems Sciences 49 (1994),35



769{779.[FRT] D. Fussell, V. Ramachandran, R. Thurimella, \Finding Triconnected Componentsby Local Replacements," Proceedings, 16th International Colloquium on Automata,Languages and Programming 372 (1989), 379{393.[He] X. He, \E�cient Parallel Algorithms for Series Parallel Graphs," Journal of Algo-rithms 12 (1991), 409{430.[HPK] Y-S. Hong, K-H. Park and M. Kim, \Heuristic Algorithms for Ordering the Columnsin One-Dimensional Logic Arrays," IEEE Transactions on Computer-Aided Design 8(1989), 547{562.[LEC] A. Lempel, S. Even, and I. Cederbaum, \An Algorithm for Planarity Testing ofGraphs," in Theory of Graphs: International Symposium (P. Rosenstiehl, ed.), Gor-don and Breach, New York, 1967, 215{232.[LG] P. C. Liu and R. C. Geldmacher, \An O(max(m,n)) Algorithm for Finding a SubgraphHomeomorphic to K4," Congressus Numerantium 29 (1980), 597{609.[LR] M. A. Langston and S. Ramachandramurthi, \Dense Layouts for Series-Parallel Cir-cuits," Proceedings, First Great Lakes Symposium on VLSI (1991), 14{17.[MK] P. J. McGuinness and A. E. Kezdy, \An Algorithm to Find a K5 Minor," Proceedings,Third ACM-SIAM Symposium on Discrete Algorithms (1992), 345{356.[Ra] V. Ramachandran, private communication.[RS] N. Robertson and P. D. Seymour, \Graph Minors XIII. The Disjoint Paths Problem,"Journal of Combinatorial Theory, Series B 63 (1995), 65{110.[Ta] R. E. Tarjan, \Depth-First Search and Linear Graph Algorithms," SIAM Journal onComputing 1 (1972), 146{159.[VTL] J. Valdes, R.E. Tarjan, and E. Lawler, \The Recognition of Series-Parallel Digraphs,"SIAM Journal on Computing 11 (1982), 298{313.
36


