February 1, 1996

Fast Algorithms for K, Immersion Testing*T

Heather D. Booth, Rajeev Govindan,
Michael A. Langston and Siddharthan Ramachandramurthi

Department of Computer Science
University of Tennessee

Knoxville, TN 37996-1301

Abstract

Many useful classes of graphs can in principle be recognized with finite batteries
of obstruction tests. One of the most fundamental tests is to determine whether
an arbitrary input graph contains K, in the immersion order. In this paper, we
present for the first time a fast, practical algorithm to accomplish this task. We
also extend our method so that, should an immersed K4 be present, a K4 model
is isolated.

This research has been supported in part by the National Science Foundation under grant CDA-
9115428 and by the Office of Naval Research under contract N00014-90-J-1855.

A preliminary version of a portion of this paper was presented at the Great Lakes Symposium on
VLSI, held in Kalamazoo, Michigan, in February, 1992.

Contents
1 Introduction

2 Preliminaries

2.1 Three-Edge Connectivity o

2.2 Series-Parallel Graphs oo

3 Testing for K,

3.1 Algorithm decompose L
3.2 Algorithm components L L
3.3 The Correctness of components L.

3.4 Algorithm test

3.5 The Correctness of test

4 Finding a Model

4.1 Algorithm corners

4.2 Algorithm paths

5 Discussion

5.1 Computational Experience o0

5.2 Applications Revisitedo o

5.3 Parallelization

References

11
17
17

27
27
29

32
32
34
34

35

1 Introduction

We restrict our attention to finite, undirected graphs. Multiple edges may be present, but
loops are ignored. A pair of adjacent edges uv and vw, with u # v # w, is lifted by deleting
the edges uv and vw, and adding the edge uw. A graph H is immersed in a graph G if and
only if a graph isomorphic to H can be obtained from ' by taking a subgraph and lifting
pairs of edges.

The immersion order can be applied to a number of combinatorial problems. Consider,
for example, the problem of deciding whether a graph satisfies a given width metric. The
cutwidth of G = (V, E) is the minimum, over all linear layouts of V, of the maximum number
of edges from F that must be cut if the layout is split between any two consecutive vertices.
Although N'P-complete in general, cutwidth can, in principle, be decided in linear time
for any fixed width using a finite but unknown list of immersion tests. Multidimensional
generalizations of cutwidth, termed congestion problems, can likewise be solved in linear
time if only one has the right collection of immersion tests available. These and other prob-
lems amenable to the immersion order arise during circuit fabrication, parallel computation,
network design and many other processes.

The graphs required for the aforementioned tests are called obstructions. So, for example,
when one knows all obstructions to cutwidth k, one knows a characterization for the family
of graphs that have cutwidth k or less. Given the right collection of obstructions, linear-
time decidability is assured by bounding an input graph’s treewidth [FL2], computing its tree
decomposition [Bo], and applying dynamic programming to test each obstruction against the
decomposition [RS]. We refer the reader to [FL1] for detailed information on this subject.

Unfortunately, little is known about immersion obstructions in general or about practical
immersion tests in particular. Complete graphs are often obstructions. Testing for K; and
Ky are trivial. Detecting a K3 is easy: K3 is immersed in any graph of order three or more
unless the graph is a tree with no pair of multiple edges incident on a common vertex.

The first really difficult test, and the one we devise here, is for K4. Observe that K4 is an
obstruction for cutwidth three, because any arrangement of its vertices on a line will require

a cut of four edges. Ours is the first practical linear-time algorithm known for this task.

If a graph contains a topological K4, then it also contains an immersed K4. Thus we
consider only those graphs with no topological K4. These are exactly the series-parallel
graphs [Du]. But K can be immersed in a series-parallel graph. As a simple example,
consider the star graph with three rays, each ray with three edges, as shown in Figure 1.
Clearly, multiple edges are critical, making immersion tests potentially more complicated

than tests in the more-familiar minor and topological orders (see for example [LG).

Figure 1: A series-parallel graph with an immersed Kj.

In the next section we state relevant definitions and derive a few useful technical lemmas.
In Sections 3 and 4, we present algorithms for K4 immersion testing and K4 model finding,
respectively. Although many of the explanatory details are tedious, especially the correctness
proofs, the algorithms themselves are straightforward to implement. In a final section we

discuss efficiency, applications and parallelization.

2 Preliminaries

We concentrate on edge-disjoint paths, which are relevant due to the following alternate
characterization of immersion containment: H = (Vi, Fg) is immersed in G = (Vg, Eq) if
and only if there exists an injection from Vi to Vi for which the images of adjacent elements
of V7 are connected in GG by edge-disjoint paths. Under such an injection, an image vertex
is called a corner of H in (; all image vertices and their associated paths are collectively

called a model of H in (G. Our algorithms exploit the edge connectivity of the input graph.

2.1 Three-Edge Connectivity

A cut point of a connected graph G is a vertex whose removal disconnects (. Two vertices

are said to be biconnected if there are at least two vertex-disjoint paths between them. A

biconnected component of GG is the subgraph induced by a maximal set of pairwise biconnected
vertices.

A cut edge of G is an edge whose removal disconnects G. A pair of edges, neither of
which is a cut edge, is said to form a cut edge pair if removing both of them disconnects G.
Two vertices are three-edge-connected if there are at least three edge-disjoint paths between
them. (' is three-edge-connected if and only if it has no cut edges and no cut edge pairs.

A three-edge-connected component of G = (V, F) is a graph ' = (V' E') where V! C V
is a maximal set of vertices that are pairwise three-edge-connected in G. FE’ contains all
edges induced by V' plus a (possibly empty) set of virtual edges defined as follows: for
{u,v} C V' a virtual edge uv is added to F’ for each distinct {z,y} C V — V' such that ux
and vy form a cut edge pair in (. Note that, due to the possible presence of virtual edges,

a three-edge-connected component will not necessarily be a subgraph.

Lemma 1 If K, is timmersed in GG, then K4 is immersed in some three-edge-connected

component of GG.

Proof Let a, b, ¢ and d denote the corners of a K4 model in (G. These corners are joined
(in () by at least six edge-disjoint paths: [ab], [ac], [ad], [bc], [bd] and [e¢d]. Thus « and b are
connected by at least three edge-disjoint paths: [ab], [ac][cb] and [ad][db]. Maximality ensures
that the three-edge-connected component containing @ also contains b and, by symmetry, ¢
and d. Let (G, denote this component. If [ab] contains edges not in (,, then [ab] can be
written as [au]uz[rylyv]vb], where ux and yv are a cut edge pair in G and uv is a virtual
edge in GG,. Thus a and b are connected within GG, by [au]uv]vb], which is edge disjoint from

the other five paths of the model. By symmetry, all pairs of corners are so connected within

Gy. B

The proof of Lemma 1 can be generalized to any three-edge-connected graph immersed
in another.
For our purposes, a multigraph is said to be reduced if all but four copies of any edge

having multiplicity five or more are removed.

Lemma 2 If K, is immersed in G, then K4 is immersed in the reduced graph of G.

Proof Let a, b, ¢ and d denote the corners of a K4 model in G, and suppose five or more
copies of the edge uv are contained within its six edge-disjoint paths. Without loss of
generality, assume these paths are simple. For some pair of corners, say a and b, all five
paths with an endpoint at @ or b contain both u and v. Either u is a corner, or it can be
made a corner by replacing a with u (deleting the three subpaths of the form [au]). Similarly,
either v is a corner or b can be replaced with v. G therefore contains a Ky model with corners
u, v, w and x, where {w, 2} C {a,b,¢,d}. At most one of [uw], [vw] must contain uwv; at
most one of [uz], [vx] must contain wv. Thus, of the six edge-disjoint paths of this model,
at least two need not contain wv, and all but four copies of uv can be eliminated. This
construction is iterated until a model is obtained whose edges each have at most four copies.

Edges not in this model are now removed until (& is reduced. il

In the sequel, we assume that all graphs are reduced.

2.2 Series-Parallel Graphs

Series-parallel graphs have been widely studied, and are characterizable in several ways. As
mentioned in Section 1, one such characterization relies on the absence of a topological Kj.
Topological containment can be defined as a restricted form of immersion containment, with
lifting permitted only at vertices of degree two. Alternately, topological containment can be

viewed as an injection, but with vertex-disjoint rather than edge-disjoint paths.
Lemma 3 Fach three-edge-connected component of a series-parallel graph is series-parallel.

Proof The proof is straightforward, by noting that virtual edges introduce no additional
vertex-disjoint paths. W

Another useful characterization is much older, and based on graphs that are said to
be two-terminal series-parallel (henceforth 2TSP). A 2TSP graph is defined in terms of

base graphs and two types of composition operators. A base graph is a copy of K;, with

vertices (terminals) labeled “source” and “sink.” A series operator combines two graphs by
identifying one’s source with the other’s sink. A parallel operator combines two graphs by
identifying source with source and sink with sink. Hence the characterization: a graph is
series-parallel if and only if its biconnected components are two-terminal series-parallel.

This characterization is often attractive because it prompts a natural “decomposition
tree” T whose labels indicate how a 2TSP can be broken back down into base graphs and
operators. If a 2TSP graph is merely a base graph e, T is a single vertex with label e.
Otherwise, T' is formed from the decomposition trees, T} and T5, of the pair of 2TSP graphs
used in the composition. The roots of T} and T3 are joined to the root of T', which is labeled
S in the case of a series composition and P in the case of a parallel composition.

We conclude this section by noting from [Di] that if a simple graph H is series-parallel,
then |Fy| < 2|Vg| — 3. From this bound and Lemma 2, we know that all graphs of interest

have at most a linear number of edges.

3 Testing for K,

Let G denote an arbitrary input graph with n vertices and m distinct edges. Without loss
of generality, we assume (G has already been reduced and is input as a simple graph with
integer weights indicating edge multiplicities.

Our method to test for the presence of an immersed K4 proceeds in three steps. Algorithm
decompose is first invoked to determine whether (&' is series-parallel. If GG is series-parallel,
then algorithm components is used to break GG into three-edge-connected components. Fi-
nally, algorithm test is employed to search each three-edge-connected component separately

for an immersed Kj.

3.1 Algorithm decompose

Algorithm decompose is modeled on the method of [He]. It determines whether (¢ is series-
parallel and, if so, computes a decomposition tree for each biconnected component. (Recall

that a graph G is series-parallel if and only if every biconnected component is 2TSP.)

To accomplish this, decompose makes use of the fact that for any edge st in a biconnected
graph B with p vertices, the vertices of B may be numbered from 1 to p so that vertex s
receives number 1, vertex ¢ receives number p, and every vertex except s and ¢ is adjacent
to both a higher-numbered vertex and a lower-numbered vertex [LEC]. Such a numbering is

called an st-numbering for B.

algorithm decompose(()
input: a multigraph ¢
output: a series-parallel decomposition tree for each biconnected component of GG if GG is
series-parallel, NO otherwise
begin
find all the biconnected components of (5 call them By,..., By
for:=1to k do
begin
choose a pair of adjacent vertices to be the source s and sink ¢ in B;
find an s,?#-numbering of B;
let B; be the directed graph obtained by orienting each edge in B; from
the end point with the lower s, ¢-number to the one with the higher number
if B; is a directed 2TSP graph
then compute a series-parallel decomposition tree T} for B;
else output NO and stop
end
for:=1to k do
output T;
end

The correctness of decompose is based on the observation that any s,#-numbering will
suffice [He]. Efficient methods for finding biconnected components and computing s, -
numberings are known from [Ta,ET]. Techniques for determining whether directed graphs
are 2TSP and finding decomposition trees can be found in [VTL]. All these algorithms are

linear in n and the number of edges; thus decompose runs in O(n) time.

3.2 Algorithm components

Algorithm components finds the three-edge-connected components of a series-parallel multi-
graph in linear time. The input to components is a series-parallel graph and a series-parallel

decomposition tree for each of its biconnected components. The output is its set of three-

edge-connected components (including virtual edges).

We proceed by first removing all cut edges. These are easily found since each cut edge
is contained in a biconnected component consisting only of that edge. Notice that each cut
edge pair must be contained within some biconnected component. Thus it suffices to give
an algorithm for computing the three-edge-connected components of a biconnected 2TSP
graph.

Let GG be such a 2TSP graph with source s and sink ¢. Let e, f be a cut edge pair of G.
Let GGy and G5 be the graphs left when e and f are deleted from G. We call this cut edge
pair s,t-non-separating if s and ¢ are both in GGy or both in (5. Otherwise we call the pair
s,t-separating. We say an s,{-non-separating pair is special if its deletion, followed by the
addition of virtual edges, results in two graphs such that one contains s and ¢ and the other
is three-edge-connected.

These definitions are illustrated in Figure 2. In this figure, edges ab and ¢d are a special
pair of graph G. Deleting them and adding virtual edges ad and be gives (G, which contains
both s and ¢, and G5, which is three-edge-connected. FEdge st and the virtual edge ad
together form the s, t-separating pair of (Gy. G117, G2 and (5 are the three-edge-connected

components of G.

Figure 2: A two-terminal series-parallel graph with cut edge pairs.

For our purposes, the decomposition tree T for a 2TSP graph G must be ordered. That
is, if # is a tree node representing a graph formed by composing (G; and (55 in series such that
the sink of (7; is identified with the source of G5, then the left child of & must be the root of
a decomposition tree for (7 and the right child of must be the root of a decomposition tree
for GG3. Thus the order among children of a series node is fixed. The children of a parallel

node can be in any order. Additionally, we assume that an edge uv stored at a leaf of a

decomposition tree is represented by the ordered pair (u,v), where u has a smaller number
than v in the s, t-numbering used in decompose.

Our algorithm proceeds in two phases. In the first phase special pairs are found and
deleted (and appropriate virtual edges are added) until no more are left. This leaves a
collection of (isolated vertices and) 2TSP graphs, one of which contains both s and ¢. We
will call this graph G;. All other graphs in the collection are three-edge-connected. Graph
(s, may contain at most one cut edge pair, since otherwise there would also be an s, {-non-
separating pair. In the second phase the last remaining cut edge pair, if it exists, is found,
removed, and virtual edges are added.

In order to find any of these cut edge pairs we use the compressed decomposition tree for
the graph. A compressed decomposition tree is formed from a regular decomposition tree
merely by identifying all pairs of adjacent nodes that are of the same type.

Let (G be a biconnected 2TSP graph with compressed decomposition tree T'. Let é denote
the leaf node in T representing edge e in (. Since (G is biconnected, the root of T will be a
P-node. Our algorithm is based on the following claims, whose correctness we will address

later (see for example Lemmas 6 and 8).

Claim 1 Edges e and f are an s,t-non-separating pair for G if and only if & and f are
siblings whose parent = is an S-node. Furthermore, e and f are a special pair if and only if
for every node y that is a child of z occurring between € and f in T', y is not a leaf and the

graph represented by the subtree of y does not contain an s, {-non-separating pair.

Claim 2 Edges ¢ and f are an s, t-separating pair if and only if the root of T" has exactly
two children and each of é,f is either a child of the root or a child of a distinct S-node that
is a child of the root.

Special pairs can be found by processing T' in a bottom-up fashion. When a special pair
¢, f is removed, virtual edges are added and 7" is modified to represent the graph 7 ;, which
is the graph containing s and ¢ that is left after removing e and f from G (the other graph
left is a 3-edge-connected component).

The s, t-separating pair is easy to detect using Claim 2.

If e and f are an s, t-non-separating pair such that the vertex pair (u,v) is stored with
é and the pair (y, z) is stored with f, then the virtual edges to be added when e and f are
removed are uz and vy. See Lemma 7. We need to construct the compressed decomposition
tree 1" representing G ,. Let = be the parent of é and f Let g be the virtual edge uz. If
¢ is the leftmost child of x and f is the rightmost, then replace = by g; otherwise, replace é
and f and all children of z in between by g. See Corollary 1 to Lemma 7.

Pseudo code for components is presented below. In a compressed tree, each internal node
will have at least two children, stored in a linked list called child list. Stored long with each
tree node is its type (P, S, or leaf), a pointer to its child list and, if it is a leaf node, and an
ordered pair giving the endpoints of its associated edge.

The following functions are also used:

left_child(x): for @ a tree node, if x is not a leaf, this returns the leftmost child in 2’s child

list; otherwise, it returns the value NULL.

right_child(z): for @ a tree node, if « is not a leaf, this returns the rightmost child in a’s

child list; otherwise, it returns the value NULL.

next_sibling(¢): for ¢ a non-root tree node, this returns the child following ¢ in the child

list of the parent of ¢ or NULL if no such child exists.

left_leaf(x): for « a tree node, if = is not a leaf, this returns the leftmost node in «’s child

list that is a leaf or NULL if no such node exists.

algorithm components (7')
input: a binary series-parallel decomposition tree T' of a biconnected multigraph ¢
output: the three-edge-connected components of ¢
begin
let r be the root of T
compress(r)
remove_non_sep(r)
remove_sep(r)
end

algorithm compress(z)
input: a node x in a binary series-parallel decomposition tree T'

output: the compressed form of the sub-tree rooted at x
begin
if « is a leaf node
then return
compress(left_child(z))
compress(right child(z))
if & and left_child(z) are of the same type
then in the child list of &, replace left_child(x) by the child list of left_child(x)
if and right_child(x) are of the same type
then in the child list of x, replace right_child(z) by the child list of right_child(x)
end

algorithm remove_non_sep(q)
input: a node ¢ in a series-parallel decomposition tree T' of a multigraph G
output: the graph G, after deletion of all s, {-non-separating pairs that are contained in the
sub-tree of T' rooted at ¢, and addition of virtual edges
begin
ch = left_child(q)
while ch is not NULL
begin
if ch is not a leaf node
then remove_non_sep(ch)
ch = next sibling(ch)
end
if ¢ is an S-node
then while ¢ has two children that are leaves
begin
let leafl and leaf2 be the first two leaf-node children of ¢
let (u,v) be the ordered edge associated with lea f1
let (w,) be the ordered edge associated with lea f2
delete uv and waz from the graph
add edges ux and vw to the graph
create tree node new representing the ordered edge (u,)
if ¢ has more than 2 children
then replace all children of ¢ between leaf1 and lea f2 (inclusive)
by new
else replace ¢ by new
end
end
end

algorithm remove_sep(root)
input: the root of a series-parallel decomposition tree T' of a multigraph G without any
s, l-non-separating pairs

10

output: the graph G after deletion of the s,¢-separating pair, if present, and addition
of a virtual edge

begin
if root has exactly two children
then begin
let ¢l and ¢2 be the children of root
if ¢l is not leaf node
then set ¢l = left_leaf(cl)
if ¢2 is not leaf node
then set ¢2 = left_leaf(¢2)
if ¢l and ¢2 are both non-NULL
then begin
let (u,v) be the ordered edge associated with ¢l
let (w, x) be the ordered edge associated with ¢2
delete edges uv and waz from the graph
add edges uw and vz to the graph
end
end
end

Lemma 4 Algorithm components runs in O(m + n) time on a graph with m edges and n

vertices.

Proof The algorithm takes time proportional to the size of the binary decomposition tree,

which is O(m +n). 1

Thus, in our setting, components takes O(n) time. We note for completeness that a
more complex linear-time approach may be viable [Ra], by modifying the ear decomposition

techniques used to decide vertex connectivity in [FRT].

3.3 The Correctness of components

Neither the components driver nor algorithm compress require discussion.

Consider algorithm remove_non_sep. Note first that remove_non_sep cannot inadvertently
remove an s, t-separating pair, because the edge st must be a child of the root (which is a
P-node), and remove_non_sep eliminates only edges that are children of S-nodes.

In order to find and remove all s,t-non-separating pairs, remove_non_sep exploits these

facts:

11

o If a 2TSP graph has an s, {-non-separating pair, then it has a special pair.

o If a biconnected 2TSP graph has no s,t-non-separating pairs, then it is either three-

edge-connected or it has one s, t-separating pair.

o If a special pair is removed from a biconnected 2TSP graph, then the resulting subgraph

containing s and ¢ will be biconnected when augmented with a virtual edge.
To proceed, we classify edges and pairs of edges in a 2TSP graph as follows. A single edge
is called either a cut edge or a non-cut edge. A pair of edges can be: a pair of cut edges, an
s, l-separating pair, an s, {-non-separating pair, or a non-cut pair.

Let GGy and G5 be 2TSP graphs such that Gy is the graph formed by composing them in
series and G, is the graph formed by composing them in parallel. Suppose e is an edge in
GGy and f is an edge in (. Table 1 shows the relation between the class of edge e in Gy,
edge f in (G5 and the pair e, f in G and G,. For example, if edges e and f are cut edges in

(i1 and G5 respectively, then e and f must be an s, {-separating pair in G,,.

class of class of class of ¢ and f

edge ¢ in (4

edge f in G,

in G,

in G,

non-cut edge

non-cut edge

non-cut edge

cut edge

non-cut pair

f a cut edge

non-cut pair

non-cut pair

cut edge non-cut edge || e a cut edge | non-cut pair
cut edge cut edge cut edges | s,t-separating
Table 1

Now suppose edges e and f are both in the 2TSP graph (1, and (5 is any other 2TSP
graph. Graphs G and (7, are as defined above. Table 2 relates the class of e and f in G5 to
their class in G and G,,.

12

class of edges ¢ and f

in Gl

in G,

in G,

cut edges
s, l-non-separating
s, l-separating

non-cut pair

cut edges
s, l-non-separating
s, l-separating

non-cut pair

s, l-non-separating
s, l-non-separating
non-cut pair

non-cut pair

Table 2

Let z be a non-leaf node in decomposition tree T" and let T, denote the subtree of T
rooted at z. The 2TSP graph H that has T, as a decomposition tree is a constituent graph
for G with respect to T'. If e and f are edges in G then the least constituent graph containing
e and f is the smallest constituent graph of (¢ that contains both e and f. This graph has
as a decomposition tree T, where z is the least common ancestor of é and f in T

Let GG be a 2TSP graph containing edges e and f and let H be the least constituent
graph of GG that contains e and f. Table 3 gives the relation between the class of an edge in
a 2TSP graph and its class in a constituent of that graph.

class of edges ¢ and f

in G

in H

cut edges cut edges or s, t-non-separating

s, l-non-separating s, l-non-separating

s, l-separating s, l-separating or non-cut pair

non-cut pair non-cut pair

Table 3

The following lemmas are used to justify the correctness of the procedure for finding
special pairs, removing special pairs, updating the decomposition tree for the connected

component containing s and ¢, and adding virtual edges.

Lemma 5 Let G be a 2TSP graph, and let e and f be an s,t-non-separating pair for G. If

H s the least constituent graph of G' containing e and f, then e and f are cut edges in H.

13

Proof By the first two lines of Table 3, either e and f are cut edges in H, as claimed,
or they form an s,t{-non-separating pair. Since H is a least constituent graph, H must be
formed by composing two 2TSP graphs H; and H; such that H; contains e and Hs contains
f. According to Table 1, e and f cannot be an s, t-non-separating pair in H. Therefore they

must be cut edges for H, as claimed. B

The following lemma is crucial. Its proof uses the following fact: if G is a 2TSP graph
and T is a compressed decomposition tree for (¢, then edge e is a cut edge of GG if and only

if the root of T is an S-node and ¢ is a child of the root.

Lemma 6 If e and [are edges in a biconnected 2TSP graph G with decomposition tree T,
then e and [are an s,t-non-separating pair if and only if é andf are siblings whose parent

s an S-node.

Proof Let z be the least common ancestor of ¢ and f in T'. Let T, be the subtree of T'
rooted at z and let H be the 2TSP graph having T’ as a decomposition tree. Note that H
is the least constituent of G that contains e and f.

Suppose e and f are s, t-non-separating. By Lemma 5, e and f are cut edges for H. Thus
¢ and f are children of z and z is an S-node.

Now suppose that é and f are siblings whose parent is an S-node. This implies that e
and f are cut edges for H. Then, by Table 3, e and f must be either cut edges or an s, t-non-
separating pair in (. Since (i is biconnected, e and f must in fact be an s, {-non-separating

pair. i

In what follows, we say that node x in tree T' occurs “between” nodes y and z if @ occurs
between y and z in the preorder traversal of T. Let H, denote the graph having 7T, as a

decomposition tree.

Lemma 7 Let GG be a biconnected 2TSP graph and let T' be a compressed decomposition tree
for G. In G, let e = wv and f = wx be an s,t-non-separating pair whose removal yields a
graph Gy containing s and t, and another graph Gs. Let (u,v) be the pair stored with é and
(w,x) be the pair stored with f. Then the edges in Gy are {9l occurs between é and [in

14

T}, and the vertices in G are the endpoints of these edges plus {v,w}.

Proof Since e and f are s, ¢t-non-separating, by Lemma 6, é and f are siblings whose parent
z 1s an S-node. Without loss of generality, assume é occurs before f in T'. Since (G 1s
biconnected, z has a P-node parent which we denote by y.

Removal of e and f from H, leaves three graphs Hy, Hy, and Hj such that: H; contains
all edges represented by nodes occurring before é in T, their associated vertices, and vertex
u; Hy contains all edges represented by nodes occurring between € and f and associated
vertices plus {v, w}; and Hj contains all edges represented by nodes occurring after f in T,
and associated vertices plus x. The source and sink of H, are in H; and Hjs respectively.

In H,, edges e and f are an s, {-non-separating pair whose removal leaves H; and another
graph containing Hy, Hj, and the portion of H, not in H,. The source and sink of H, are
the source and sink of H, and are not in H,. Thus the claim holds for H,,.

Any graph formed by composing two 2TSP graphs, one of which has H,, as a constituent,
still has the claimed property because the paths in the new graph that are not in H, can
only connect vertices not in H,. Since no new paths are added from vertices in Hs to vertices
not in Hs, it is still the case that removal of ¢ and f will separate the vertices in Hy from

the rest of the graph. Thus the claim also holds for any graph having H, as a constituent. W

Corollary 1 Let G, T, ¢, and [be as defined in Lemma 7. Let G’ be the graph consisting of
G plus virtual edge ux and let Gy be the graph consisting of Gy plus virtual edge vw. Let
z be the parent of é andf in T and let rq,...,ry be the children of z in order from left to
right such that r; = é and r; = f Let g be a tree node representing g = ux,; the ordered pair
stored with g is (u,x). Let h be a tree node representing h = vw; the ordered pair stored with
h s (v, w).
A decomposition tree for Gy is formed by replacing r;,...,r; by node § if i £ 1 or j #k
and replacing T, by ¢ otherwise.
A decomposition tree for Gy’ is one of the following:
(a) empty, if j =1+ 1;
(b) a P-node with children h and rivt, if j =1+ 2;

(¢) a P-node with two children h and an S-node, which in turn has children riyq, ... 71—y,

15

otherwise.

Proof We know by Lemma 7 that ¢, is formed by replacing the portion of GG represented
by nodes in T between é and f by a single edge ux, so the decomposition tree for G’ is as
claimed. We also know that (3’ consists of the edges represented by nodes in 7' strictly
between é and f, their associated vertices and vertices v and w, with the edge vw composed
in parallel. Since the nodes between é and f are children of an S-node, the decomposition

tree for G5’ is as claimed. B

Lemma 8 Let GG be a biconnected 2TSP graph and let T' be a compressed decomposition tree
for G. A pair of s,t-non-separating edges, e, f, is a special pair for G if and only if for
every sibling y of é andf in T" that occurs between € and f, y s not a leaf and T, does not

represent a graph containing an s,t-non-separating pair.

Proof Since e and f are s,t-non-separating, removal of ¢ and f yields two graphs Gy and
(5 such that GGy contains s and ¢. Let G’ be the graph G5 plus the virtual edge. Edges e
and f are special if and only if GG is three-edge-connected. Let T" be the decomposition tree
for G’ as described in Corollary 1. Let z be the parent of ¢ and f in T

Suppose e and f are special. We employ proof by contradiction and assume there exists
a child y of z between ¢ and f such that y is a leaf or T, represents a graph containing
an s,t-non-separating pair. Then G’ must be three-edge-connected, which implies 7" has
no cut edges or cut edge pairs. If y is a leaf then, by Corollary 1, T” consists of a P-node
with two children. One of them is a leaf (representing the virtual edge) and the other is
either ¢ or an S-node having ¢ as a child. In either case the structure of T” requires that
the virtual edge and y form an s, {-separating pair for GG/, a contradiction. If, on the other
hand, y is non-leaf node whose subtree T, represents a graph having an s,{-non-separating
pair, then T}, contains an S-node with two leaves as children. These nodes also represent an
8, t-non-separating pair for G, again a contradiction.

Now suppose ¢ and f satisfy the conditions of the lemma, but that ¢ and f are not
special. Then GG must have a cut edge or a cut edge pair, and arguments analogous to those

above yield a contradiction. il

16

Therefore, Lemmas 5 through 8 demonstrate that the algorithm remove_non_sep correctly
finds special pairs, adds virtual edges, and updates the decomposition tree to represent the
graph left after the edges are removed.

We suppress the analysis of remove_sep, which at this point is relatively straightforward.

3.4 Algorithm test

Algorithm test is the heart of our method. The input to test is a three-edge-connected series-
parallel multigraph. In such a graph, suppose v is a vertex with exactly two neighbors, u and
w, and suppose there is only one copy of the edge vw. (Thus there are at least two copies
of uv by three-edge-connectivity.) We say that v is pruned if the multiplicity of uv is set to

two. Similarly, we say a graph is pruned if each vertex fitting the profile of v is pruned.

algorithm test(()
input: a three-edge-connected series-parallel multigraph GG
output: YES, if G contains an immersed Ky, NO otherwise
begin
for each vertex v in (G with exactly one neighbor
delete all but three copies of edges incident on v
if any cut point in GG has degree seven or more
then output YES and halt
for each biconnected component B with four or more vertices
for each vertex v in B
prune v if possible
if there is a vertex in B with degree five or more
then output YES and halt
output NO and halt
end

3.5 The Correctness of test

The correctness of test relies on a number of lemmas, which follow. Before proceeding, we

make a few useful observations.

Observation 1 If H' is immersed in H, and if M' is a K4 model in H', then in H there is

a K4 model M with the same corners as M'.

17

Observation 1 follows from noting that edges in H' map to edge-disjoint paths in H, and
that in H a suitable Ky model can be found merely by replacing the edges of M’ with their
image paths in H.

Observation 2 is a well-known property of series-parallel graphs.

Observation 2 Fvery biconnected series-parallel multigraph with four or more vertices con-

tains at least two non-adjacent vertices with exactly two neighbors.

Suppose v is a vertex with exactly two neighbors, = and y. We say that v is shorted if
we lift all pairs of edges vz and vy and delete any remaining edges incident on v along with

v itself.
Observation 3 Shorting preserves biconnectivity, three-edge-connectivity and series-parallelness.

Observation 3 holds because shorting a vertex does not change the number of vertex-

disjoint or edge-disjoint paths between any pair of remaining vertices.

Observation 4 A biconnected component of a three-edge-connected graph is three-edge-

connected.

Observation 4 follows from noting that edge-disjoint paths may as well be made simple
and that, whenever a pair of vertices lies in the same biconnected component, all vertices

along simple paths connecting them in the original graph must also lie in this component.

Lemma 9 Let GG denote a graph in which a vertex, v, has exactly one neighbor, w. Let G’
be obtained from G by deleting all but three copies of the edge vw. Then K4 ts immersed in
G if and only if Ky is immersed in G'.

Proof If K, is immersed in (7, then G contains a K4 model whose edge images are simple
paths. Since v cannot be an intermediate vertex in a simple path, at most three copies of
the edge vw are needed. Thus Ky is also immersed in G'. If K, is not immersed in G, then

neither is it immersed in G’ since i/ is a subgraph of G. i

Lemma 10 Let GG be three-edge-connected, with non-cut point vertices u and v. Let w denote

18

any other vertex in GG. Then there exist three mutually edge-disjoint paths, each beginning
with w and ending with either u or v, such that at most two of these paths contain u, and

at most two contain v.

Proof The paths we seek to identify are illustrated in Figure 3, where the dashed lines
denote edge-disjoint paths that do not contain w or v as an intermediate vertex. Consider
three mutually edge-disjoint paths P, P, and Ps, each from w to {w,v}. These paths exist
because (i is three-edge-connected. Assume all three contain, say, u. Hence all three may
as well be simple and end at u. Consider now some path P between w and v that does not
contain u (such a path exists since u is not a cut point). P may contain vertices and edges
in P, P, and Ps. Let y be the last vertex in P (counting from w) that is also in P, or P,
or P3. Without loss of generality, assume y is in P;. We can construct a path P’ from w to
v, by taking Py until we reach y, and using P from there on. Thus P’, P, and P are the
desired edge-disjoint paths, with P’ not containing u. W

[2 N w
Figure 3: Edge-disjoint paths in a three-edge-connected graph.

Figure 4 depicts a graph we will discuss frequently, henceforth termed graph M.

Figure 4: The graph M.

Lemma 11 Let G be three-edge-connected. Let v denote a non-cut point vertex in G with

degree at least four, let w and w be neighbors of v, and suppose uv has multiplicity at least

19

two. Then G contains an M model, with corners u, v and w, and with v the image of M’s

degree-four vertex.

Proof We restrict our attention to ', the biconnected component of ¢ containing v. (G’
is three-edge-connected by Observation 4. Since v is not a cut point, its neighborhood is
unchanged in G".) From Lemma 10, we know that there are three mutually edge-disjoint
paths from w to {w,v} such that at most two of these paths contain u and at most two
contain v. One of these paths is the edge wv. If one of the other paths contains v as
well, the lemma holds. So suppose neither contains v. See Figure 5(a). To complete an M
model, we must find an edge-disjoint path [vw]. If wv has multiplicity three or more, we
can construct this path by combining one of the edges vu and one of the paths [uw]. So
assume wv has multiplicity 2. Let = denote a neighbor of v other than u or w. Since G’ is
biconnected, there is a path [zw] that does not contain any of the edges incident on v. Let
y denote the first vertex on this path (counting from) common to either of the two paths
[uw]. We combine the edge va with the paths [xy] and [yw] to get the desired path [vw].
See Figure 5(b). I

Figure 5: Graphs used in the proof of Lemma 11.

Lemma 12 Let GG be three-edge-connected and series-parallel, with at least three vertices.
Let v denote a vertex in G with degree at least four. Then G contains an M model, with v
the image of M ’s degree-four vertex, and corner u adjacent to v and corner w adjacent to u

oruv.

Proof Suppose v has only one neighbor, which must be u. Then edge uv has multiplicity

four. Let w denote an arbitrary neighbor of u. Since G is three-edge-connected, and since u

20

is a cut point, the graph depicted in Figure 6(a) is immersed in (7, satisfying the statement of
the lemma. Suppose v has two or more neighbors, and v is a cut point. Let v and w denote
arbitrary neighbors of v. Now the graph in Figure 6(b) is immersed in (7, again satisfying
the statement of the lemma. Finally, suppose v has two or more neighbors, and v is not a
cut point. For this case, we prove something slightly stronger, namely, that an M model
exists with v the image of M’s degree-4 vertex, and corners u and w both adjacent to v.
We proceed by contradiction, and let H = (Vi, F) denote a counterexample. Without
loss of generality, we assume H is minimal. That is, no counterexample exists with fewer
than |Vy| vertices and, for this number of vertices, no counterexample exists with fewer than
| Epr| edges. H must be biconnected, else the biconnected component containing v provides a
smaller counterexample. Similarly, no three-edge-connected, series-parallel graph containing
v and all its incident edges can be properly immersed in H, else such a graph would again
contradict minimality. This implies that any vertex with exactly two neighbors must be
adjacent to v (else the vertex could be shorted). So there must be some vertex, x, that is
adjacent to v and that has exactly one other neighbor, y. By Lemma 11, we know that vz
has multiplicity one. Three-edge-connectivity requires that zy has multiplicity two or more.
Now consider H', obtained from H by shorting x. H’ satisfies the conditions of the lemma
and so (by the minimality of H) contains an M model, with v the image of the degree-4
vertex in M, and corners u and w both adjacent to v. The only edge in H' not in H is vy,
implying that y plays the role of w (or, by symmetry in this case, w). But this means that,
in H, we can replace the edge-disjoint paths [vy], [vy] and [uy] with vz, [vy]yz and [uy]yx
respectively, giving us an M model with corners v, z and w, a contradiction to the presumed

existence of a counterexample. il

@ (b)

Figure 6: Graphs used in the proof of Lemma 12.

Lemma 13 Let (G be three-edge-connected and series-parallel, and let all vertices in G with

21

exactly one neighbor have degree three. Suppose G has a cut point v with degree seven or
more. Then there is a Ky model in G with corners u, v, w and x, where w and = are adjacent

to v and w is adjacent to u or v.

Proof Let C,...,C} denote the connected components of G — {v}. Let A; denote C;
augmented with a copy of v and the edges it induces. Fach A; is three-edge-connected,
and thus contains a model of the triple-edge shown in Figure 7(a), with any pair of vertices
serving as the corners. Without loss of generality, assume A; contains the least number of
edges incident on v, and let H denote G — (4. It follows that v has degree four or more in
H and that H has at least three vertices. Thus, by Lemma 12, there is an M model in H
with v the image of the degree-4 vertex in M, and with corner u adjacent to v and corner w
adjacent to v or v. This M model can be combined with a model of the triple-edge in A; to
form in G a model of the graph shown in Figure 7(b), which contains the desired Ky model.
||

-
(@ (b)

Figure 7: Graphs used in the proof of Lemma 13.

Lemma 14 Suppose ' has no cut point with degree exceeding siz. Then K4 is immersed in

G if and only if Ky is immersed in a biconnected component of G.

Proof If a biconnected component of G contains K4, then so does (&, because a biconnected
component is a subgraph. To prove the converse, consider a K4 model in G with the K}

edges mapped to simple paths. Let u, w, = and y denote the corners of this model, and

22

suppose there is a cut point v that separates them. We know that v cannot be one of the
corners, else it would need degree seven or more (see Figure 8(a)). Nor can v separate two
corners from the others, else it would need degree eight or more (see Figure 8(b)). So it
must be that v separates just one corner, say y, from the others (see Figure 8(c)). Thus the
edge-disjoint paths [uy], [wy] and [zy] all pass through v, and we can construct another K4
model in which v replaces y as a corner. By iterating this replacement, we eventually get a

K4 model all of whose corners (and paths) are in the same biconnected component. i

[]
AR
y X y
[
,,,,,,,, Vo
[] S /’ Ny
AR \ / N
AT N 4 ; V®
[o 4 /N
[\ \ o) AN
N N N s AN
\\/ \\\\ /- , | N
VEXe. Voo SN
ST NS ST NS ./ : N
’ 4 \ 7 / \
/ / \ \\ / / \ \\ .77777777.
| / \ I / \ \ I
L NI N Y u-. | /’W
L/ v ! A I ’
/ / N
[SEE——) [SEE——) S
\\//
u W u w ®
X

(@ (b) (©)

Figure 8: Models of K4 that span a cut-point.

Lemma 15 Let v denote a vertex with exactly two neighbors, u and w, and suppose the edge
vw has multiplicity one. Then w and v can be corners of a given Ky model only if degree(u) >

degree(v) + 2.

Proof Let x and y denote the other corners of this model. Paths [uz] and [uy] need not
contain uv. Either [vx] or [vy] has to pass through u. Thus at least three edges are incident

on u in addition to the copies of uv (see Figure 9), and the lemma follows. W

Lemma 16 [f GG is series-parallel and of mazimum degree four, then Ky is not immersed in

G.

Proof Suppose otherwise, and let H denote a minimal counterexample. H must be three-

23

Figure 9: A model of K, with corners u, v, x and y.

edge-connected by Lemma 1. H must also be biconnected, since a cut point in a three-edge-
connected graph has degree at least six. Thus, by Observation 2, H contains a vertex, v,
with exactly two neighbors, v and w. It must be that v is needed as a corner in every Ky
model, else we can short it, contradicting minimality. So v has degree three and we assume,
without loss of generality, that wv has multiplicity two, vw has multiplicity one. We now
fix the remaining corners of some K; model. Vertex u cannot be one of these corners, by
Lemma 15. But now it is easy to see that u can replace v in this model, contradicting the

fact that v must be a corner.

We henceforth use the term candidate graph to denote a biconnected, three-edge-connected,

series-parallel multigraph with four or more vertices.

Lemma 17 In a candidate graph, G, suppose vertex v has exactly two neighbors, u and
w, and suppose the multiplicity of wv is greater than the multiplicity of vw. If degree(u) —

degree(v) > 2, then Ky is immersed in G.

Proof Suppose otherwise, and let H denote a minimal counterexample. Let & # v denote
another vertex with exactly two neighbors. The edge zu must exist and have multiplicity
two or more, else we can short z, contradicting minimality. Consider the effect of shorting
v, producing the graph H’. Since u has degree at least four in H’, we know from Lemma 11
that the M model illustrated in Figure 10(a) is immersed in H’. But this means that the
graph shown in Figure 10(b), which contains Ky, is immersed in H, thereby contradicting

the assumption that [is a counterexample. li

24

(@ (b)

Figure 10: Graphs used in the proofs of Lemmas 17 and 19.
Recall pruning, as defined in Section 3.4.

Lemma 18 In a candidate graph, G, suppose vertex v has exactly two neighbors, u and w,
and suppose vw has multiplicity one. Letting G' denote the graph resulting from pruning v,

Ky is immersed in G if and only if it is immersed in G'.

Proof If K, is immersed in G/, then it is immersed in G as well, because G' C G. Suppose
K4 is immersed in GG. If G contains a K4 model in which v is not a corner, then so does
(', since pruning is irrelevant (at most one of the images of the K, edges in this model can
pass through v.) So suppose v is a corner in every K4 model in (i. Vertex u must also be a
corner in all these models, else we could replace v with u, forming a model in which v is not
a corner. Now, by Lemma 15, u has degree at least two more than v, a property unchanged

by pruning. Thus, by Lemma 17, K, is immersed in G’. I

Lemma 19 In a pruned candidate graph, G, suppose vertex v has exactly two neighbors, u
and w, and suppose uv has multiplicity at least three, vw has multiplicity at least two. Then

there is a Ky model in G with corners u, v, w and x, where @ € {v,w} is a neighbor of w.

Proof The biconnectivity of ¢ ensures that u has some neighbor other than v (and possibly
w) to play the role of x. If v and are u’s only neighbors, then ux must have multiplicity
two or more (GG has been pruned and yet uv has multiplicity three or more). Thus in G’,
the graph that results from shorting v, the degree of u is at least four. We conclude from

Lemma 11 that the M model illustrated in Figure 10(a) is immersed in G, and the graph

25

shown in Figure 10(b), which contains Ky, is immersed in G. B

Lemma 20 In a candidate graph, G, suppose vertex v has exactly two neighbors, u and w,
suppose uv and vw each have multiplicity at least two, and suppose uw exists. Then there is

a Ky model in G with corners u, v, w and x, where v & {v,w} is a neighbor of u.

Proof As in the last lemma, such an # must exist. We apply Lemma 10, with w playing
the role of v and x playing the role of w. Thus at least one of the graphs shown in Figure
11, both of which contain Ky, is immersed in G. i

\ \

(@ (b)

Figure 11: Graphs used in the proof of Lemma 20.

Lemma 21 Let GG denote a pruned candidate graph. Ky is immersed in G if and only if G

has a vertex of degree five or more.

Proof We know from Lemma 16 that a candidate graph of maximum degree four contains
no K4. To prove the converse, we proceed by contradiction and assume H denotes a minimal
pruned candidate graph, with at least one vertex of degree five or more, but with no immersed
K4. 1t is easy to verify that H has at least five vertices, a necessary property because we will
use shorting to contradict minimality, and a candidate graph requires at least four vertices.
Let v denote a vertex in H with exactly two neighbors, u and w, and assume the multiplicity
of uv is at least that of vw. Lemma 19 guarantees that v cannot have degree five or more. If
v has degree four, Lemma 20 and the fact that H is pruned ensure that ww does not exist.
But now we can short v, obtaining a pruned candidate graph that contradicts minimality.

So v must have degree three and, by Lemma 17, u has degree four or less. Biconnectivity

26

requires that at most one copy of uw exists. But now we can again short v to obtain a

pruned candidate graph, contradicting the presumed minimality of H. I

This completes the proof of the correctness of test. The work of the last two sections

now provides the proof of the following principal result.

Theorem 1 Algorithms decompose, components and test correctly decide whether Ky is

immersed in an arbitrary input graph.

4 Finding a Model

Once the presence of K4 has been detected in a graph, our method to identify a Ky model
proceeds in two steps. Algorithm corners is first invoked to modify the input graph until
an appropriate set of corners is isolated. Then algorithm paths is used to find the K, edge

images.

4.1 Algorithm corners

Algorithm corners marks vertices in the input graph as part of the corner-finding process.
All vertices are assumed to be unmarked initially. Algorithm corners also maintains a list for
every copy of every edge, to store the sequence of edges that may have been eliminated by

shorting. Fach list is assumed to contain only the edge itself initially.

algorithm corners(()
input: a three-edge-connected series-parallel multigraph GG containing an immersed Ky
output: the four corners of a Ky model in (¢
begin
for each vertex with only one neighbor
delete all but three copies of its incident edge
if G has a cut point v of degree seven or more
then if G — {v} has three or more connected components
then set uw,w and = to neighbors of v in GG, each in a different connected
component of G — {v}, and halt
else begin
let Cy and C3 denote the connected components of G — {v}
let Ay denote 'y augmented with v and the edges it induces

27

let Ay denote 'y augmented with v and the edges it induces
if v has degree four or more in A,
then set A = A, and B = A,
elseset A = A, and B = A;
while v induces no edges of multiplicity two or more in A
if there is a vertex in A with only one neighbor
then delete this vertex and its incident edges
else short some vertex in A with only two neighbors
set u to some vertex in A such that wv has multiplicity at least two
if v has a neighbor other than w in A
then set w to any one of these neighbors
else set w to any neighbor of u in A other than v
set x to any vertex in B that is a neighbor of v and halt
end
let C' denote some biconnected component containing K, and discard G — C
prune all vertices with exactly two neighbors
while true
begin
set v to an unmarked vertex with exactly two neighbors v and w, with the
multiplicity of uv at least that of vw
if v has degree at least five, or v has degree four and ww exists
then set x to any neighbor of u besides v or w and halt
else if v or u has degree four
then short v
else if uw exists
then set x to any neighbor of u other than v or w and halt
else if there is an edge wa, a # v, of multiplicity two or more
then set = to a and halt
else if there are two vertices of degree five or more
then short v
else mark v
end

We address the correctness of corners. Suppose (¢ contains a cut point v of degree at

least seven. Lemmas 11 and 12 tell us how to find the corners of an M model, and from this

Lemma 13 tells us how to find the corners of a K4 model, as long as either (1) G — {v} has

three or more connected components or (2) there is an augmented component in which v

has degree at least four and wv has multiplicity at least two. If neither of these conditions is

initially satisfied, condition (2) is easily forced with a series of vertex deletions and shorting

operations.

28

So suppose no cut point of degree seven or more exists, and consider some biconnected
component containing an immersed K4. This component must also contain a vertex with
exactly two neighbors (Observation 2) and a vertex of degree five or more (Lemma 21). In

this event, we employ Lemmas 19, 20, and 21, plus Lemma 22, which follows.

Lemma 22 In a candidate graph, GG, suppose vertex v has exactly two neighbors, u and w,
and suppose uv has multiplicity two, vw has multiplicity one and u has degree at least five.
Let @ denote a neighbor of u other than v or w. If either ux has multiplicity at least two or

uw exists, then there is a K4 model in G with u, v, w and x as corners.

Proof In (| the graph resulting from shorting v, u has degree at least four, and either ux
has multiplicity at least two or uw now does. Then by Lemma 11, there is an M model in
G’ with corners u, w and z, and with u the image of M’s degree-four vertex. Thus the graph

in Figure 10(b), which contains the desired K4y model, is immersed in G. 1

If an immersed K4 cannot yet be identified, then a vertex, v, with exactly two neighbors
is shorted as long as the resulting graph retains at least one vertex of degree at least five.
Accordingly, if one of v’s neighbors, wu, is the only vertex of degree at least five, uv has
multiplicity two, and all other edges incident on u are simple, then v cannot be shorted. It
suffices in this case to mark v as having been visited, since at most one vertex can be so
marked and another candidate for v is always available.

In each iteration, corners deletes, shorts or marks some vertex. Handling any of these
operations and updating the appropriate edge list requires only a constant number of steps.

Thus corners runs in linear time.

4.2 Algorithm paths

Algorithm paths uses the property that k edge-disjoint paths exist between a pair of vertices
if and only if a network flow of value k is possible between them.
algorithm paths(G, s, t1,..., 1)

input: a multigraph GG and distinguished vertices s, t1,...,
output: edge-disjoint paths py,..., pg, with p; connecting s to ¢;, if such paths exist

29

begin
construct an edge-weighted digraph GG’, by replacing each edge uv of multiplicity m with
the directed edges (u,v) and (v, u), each of capacity m
add to G a vertex t and the edges (¢1,t),...,(tx, 1), each of capacity one
find a flow of value k£ from s to ¢, if such a flow exists
if there is no such flow
then halt
else for each edge (u,v) in ' do
if both (u,v) and (v, u) have positive flow values
then set flow((u,v)) = max{0, flow((u,v)) — flow((v,u))} and
set flow((v,u)) = max{0, flow((v,u)) — flow((u,v))}
discard from G’ any edge without a positive flow
for:=1to k do
begin
set p! to a path in GG from s to ¢;
set p; to the corresponding path in ¢
decrement in GG’ the flow along each edge in p! by one
delete from G one copy of each edge in p;
end

output p1,...,px
end

We address the correctness and use of paths. In the following figures, paths that are
mere edges are shown as solid lines. These edges are temporarily deleted so that paths can
be employed to find additional paths with multiple edges, depicted with dashed lines. To
illustrate, consider the case in which the K, model spans a cut-point v and G — {v} has
three or more connected components. See Figure 12. Three calls are made to paths, each
with v playing the role of s and k set to two. (The first call uses u = t; = t3; the second
uses w = 1y = t; the third uses x = t; = t5.) If G — {v} has two connected components, two
calls suffice. See Figures 13 and 14. If the K4 model is in a single biconnected component,
one call is enough. See Figure 15.

Recall that the input to paths has at most a linear number of edges and no more than
four copies of any edge. Thus it takes only linear time to construct G’ and to read off paths
(using, for example, a shortest paths algorithm) after a flow of value k has been found. The
running time of paths is therefore dominated by the algorithm for finding network flows. So
we employ a flow method such as Ford-Fulkerson, which runs in linear time as long as & is

bounded by an integer constant and all edge-capacities are integers, as is the case here.

30

Figure 15: Paths to be found if the K4y model lies in a biconnected component.

31

In summary, to find a K4 model we invoke corners once and paths at most three times.

The entire model-finding process is accomplished in linear time.

Theorem 2 Algorithms corners and paths correctly isolate a Ky model if Ky is immersed in

an arbitrary input graph.

5 Discussion

5.1 Computational Experience

We implemented our algorithms in C and ran them on a SUN SPARCstation 20. Repre-
sentative results are listed in Table 4. Each execution time shown is in seconds, and was
obtained by averaging the times observed in a dozen runs. The graphs employed are (pseudo)
random, generated by fixing the number of vertices and then randomly adding edges until
the desired average degree was reached. Fach edge was added only after verifying that its
addition maintained series-parallelness, since a quick test for a topological (and hence an
immersed) Ky suffices to eliminate non-series-parallel graphs.

It is clear that from these results that our algorithms are practical, not just asymptotically
optimal. They take only seconds to process graphs with thousands of vertices. The running
time of the detection algorithm is affected mainly by the size of the input graph. One might
suspect that the distribution of edges over vertices might also have an effect, but we sampled
several edge-probability distributions and could find no noticeable differences. On the other
hand, the model-finding algorithm does appear to take slightly longer on graphs in which we
have forced corners to be connected only by long paths. Even on such contrived instances,

finding a model takes no more than twice the average time for random graphs of similar size.

32

Average | Number of | Detection | Percent with | Model-Finding
Degree Vertices Time Immersed A, Time
200 0.01 0 N/A
500 0.03 0 N/A
1.0 1000 0.07 0 N/A
2000 0.14 0 N/A
5000 0.35 0 N/A
10000 0.70 0 N/A
200 0.02 0 N/A
500 0.05 0 N/A
1.25 1000 0.09 0 N/A
2000 0.16 0 N/A
5000 0.41 17 0.72
10000 0.80 42 1.42
200 0.02 8 0.03
500 0.05 33 0.08
1.5 1000 0.10 50 0.15
2000 0.20 58 0.32
5000 0.54 83 0.83
10000 1.09 92 1.66
200 0.02 25 0.04
500 0.05 67 0.09
1.75 1000 0.11 83 0.19
2000 0.24 100 0.37
5000 0.61 100 0.88
10000 1.19 100 1.75
200 0.02 67 0.05
500 0.05 75 0.11
2.0 1000 0.12 100 0.21
2000 0.23 100 0.40
5000 0.60 100 1.01
10000 1.20 100 2.05
200 0.03 100 0.05
500 0.07 100 0.11
2.25 1000 0.13 100 0.22
2000 0.26 100 0.43
5000 0.64 100 1.13
10000 1.27 100 2.24
Table 4

33

5.2 Applications Revisited

Fast immersion tests are of interest in their own right. In practice, they also have potential
as indicators of graph width metrics. To illustrate, we return to the cutwidth problem, which
has appeared in a wide variety of VLSI applications (see, as examples, [FHKY, HPK]). De-
ciding whether a graph has small cutwidth is an important part of many layout processes.
Graphs representing circuits are frequently series-parallel. More generally, they tend to be
sparse, with at most a linear number of edges, and of bounded degree due to limitations
on porting and fan-in/out. Integer weights are used to model multiple edges in these ap-
plications, just as we have used them here. The presence of an immersed K4 in such a
graph guarantees that it cannot have cutwidth three. The absence of K4, however, merely
approximates its cutwidth at three. In particular, such an absence says nothing at all about
how to find a layout of width three even if many should exist. To solve this problem, our
algorithms can be used in conjunction with previously-studied “self reduction” techniques
[BFL, FL2] to search for a layout in O(r?) time.

Many other combinatorial problems may benefit from fast immersion tests. For example,
a variety of load factor [FL1] problems can be decided by a finite battery of immersion
tests, including K4. A problem indirectly approachable with this method is graph bisection.
Bounded cutwidth is a sufficient, but not a necessary, condition for bounded bisection width.
For problems such as these, there is interest in devising fast tests for other key graphs [LR,

5.3 Parallelization

It is not difficult to devise parallel versions of decompose, components and test.

Biconnected components can be found in O(log n) time on a CRCW PRAM with O((m+
n)a(m,n)/logn) processors [FRT], where a(m,n) denotes the inverse of Ackermann’s func-
tion. Deciding whether a graph is series-parallel can be done in O(log? n + log m) time with
O(m +n) processors [He]. A parallel version of decompose therefore needs at most O(log®n)
time with O(n) processors.

The triconnected components algorithm of [FRT], modified slightly to find three-edge-

34

connected components [Ra], yields a parallel version of components that runs in O(logn)

time with O(nloglogn/logn) processors. It is straightforward to parallelize test so that it

takes constant time with O(n) processors.

Thus, in principle, it is possible to determine whether a graph has an immersed K in

O(log® n) time with O(n) processors on the CRCW PRAM model. We did not implement

this scheme because many of the algorithms mentioned are highly impractical. The problem

of devising an efficient parallel model-finding method remains open.

[BFL]

[Du]

[ET]

[FHKY]

[FL1]

[FL2]

References

D. J. Brown, M. R. Fellows and M. A. Langston, “Polynomial-Time Self-Reducibility:
Theoretical Motivations and Practical Results,” Int’l J. of Computer Mathematics 31
(1989), 1-9.

H. L. Bodlaender, “A Linear Time Algorithm for Finding Tree-Decompositions of
Small Treewidth,” Proceedings, 25th Annual ACM Symposium on Theory of Comput-
ing (1993), 226-234.

G. A. Dirac, “In Abstrakten Graphen Vorhandene Vollstandige 4-Graphen und ihre
Unterteilungen,” Mathematische Nachrichten 22 (1960), 61-85.

R. J. Duffin, “Topology of Series-Parallel Networks,” Journal of Mathematical Anal-
ysis and Applications 10 (1965), 303-318.

S. Even and R. E. Tarjan, “Computing an st-numbering,” Theoretical Computer
Secience 2 (1976), 339-344.

T. Fujii, H. Horikawa, T. Kikuno and N. Yoshida, “A Heuristic Algorithm for Gate
Assignment in One-Dimensional Array Approach,” IEEFE Transactions on Computer-
Aided Design 6 (1987), 159-164.

M. R. Fellows and M. A. Langston, “On Well-Partial-Order Theory and Its Ap-
plication to Combinatorial Problems of VLSI Design,” SIAM Journal on Discrete
Mathematics 5 (1992), 117-126.

M. R. Fellows and M. A. Langston, “On Search, Decision and the Efficiency of

Polynomial-Time Algorithms,” Journal of Computer and Systems Sciences 49 (1994),

35

[FRT]

[He]

[HPK]

[LEC]

769-779.

D. Fussell, V. Ramachandran, R. Thurimella, “Finding Triconnected Components
by Local Replacements,” Proceedings, 16th International Colloguium on Automata,
Languages and Programming 372 (1989), 379-393.

X. He, “Efficient Parallel Algorithms for Series Parallel Graphs,” Journal of Algo-
rithms 12 (1991), 409-430.

Y-S. Hong, K-H. Park and M. Kim, “Heuristic Algorithms for Ordering the Columns
in One-Dimensional Logic Arrays,” IFEE Transactions on Computer-Aided Design 8
(1989), 547-562.

A. Lempel, S. Even, and I. Cederbaum, “An Algorithm for Planarity Testing of
Graphs,” in Theory of Graphs: International Symposium (P. Rosenstiehl, ed.), Gor-
don and Breach, New York, 1967, 215-232.

P. C. Liu and R. C. Geldmacher, “An O(max(m,n)) Algorithm for Finding a Subgraph
Homeomorphic to K4,” Congressus Numerantium 29 (1980), 597-609.

M. A. Langston and S. Ramachandramurthi, “Dense Layouts for Series-Parallel Cir-
cuits,” Proceedings, First Great Lakes Symposium on VLSI (1991), 14-17.

P. J. McGuinness and A. E. Kezdy, “An Algorithm to Find a K5 Minor,” Proceedings,
Third ACM-SIAM Symposium on Discrete Algorithms (1992), 345-356.

V. Ramachandran, private communication.

N. Robertson and P. D. Seymour, “Graph Minors XIII. The Disjoint Paths Problem,”
Journal of Combinatorial Theory, Series B 63 (1995), 65-110.

R. E. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM Journal on
Computing 1 (1972), 146-159.

J. Valdes, R.E. Tarjan, and E. Lawler, “The Recognition of Series-Parallel Digraphs,”
SIAM Journal on Computing 11 (1982), 298-313.

36

