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Abstract

The EM-ML algorithm belongs to a family of algorithms that compute PET
(positron emission tomography) reconstructions by iteratively solving a large linear
system of equations. We describe a preprocessing scheme for focusing the attention,
and thus the computational resources, on a subset of the equations and unknowns
in order to reduce both the time and space requirements of such algorithms. The
approach is completely data-driven and uses no prior anatomic knowledge. Experi-
mental results are given for a CM-5 parallel computer implementation of the EM-ML
algorithm using a simulated phantom as well as real data obtained from an ECAT 921
PET scanner.
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I. Introduction

Positron emission tomography (PET) is a method for non-invasively studying the phys-
iology of the human body. A patient is injected with a radio-isotope which collects in
the part of the body to be studied, then emits positrons as it decays. Each positron
annihilates with an electron causing two photons to be emitted in opposite directions.
From measurements of these photon pairs obtained externally by a ring of detectors sur-
rounding the patient, a discretized emission map, i.e., an image, that reflects the internal
isotope concentration must be reconstructed by computer.

The de facto standard reconstruction algorithm is Fourier based filtered backprojec-
tion. Many alternatives have been studied, e.g., the ART [1], EM-ML [2, 3, 4], Landweber-
LS [5, 6], and CG-LS [7, 8] algorithms which all iteratively solve the linear system of

equations
P'X = n* (1)

where n* is a D-dimensional vector representing the sinogram, i.e., the number of coin-
cident photons recorded by the detectors, A is a B-dimensional vector representing the
unknown image, i.e., the unknown number of photon pairs actually emitted, and P is a
B x D matrix that describes the connection between the internal emission activity and the
observed data. We henceforth concentrate on the EM-ML algorithm which finds the A
that maximizes the likelihood P(n*|A) based on a Poisson model of the emission process.

Two main concerns with the EM-ML algorithm are: (i) a visually dissatisfying checker-
boarding tends to appear in the reconstructions after a number of iterations, and (ii) the
algorithm is computationally expensive in that it requires many time consuming iterations
as well as significant amounts of memory. The checkerboarding has been addressed in
numerous ways, e.g., regularization by the method of kernel of sieves [9, 10, 11], smooth-
ing [12], and MAP estimation which finds the X that maximizes the posterior probability
P(AIn*) < P(n*|A) P(A) using Poisson and Gaussian priors [13, 14, 15, 16, 17], penalized
likelihoods [18], Good’s measure of roughness [19], and Gibbs priors that induce Markov
random fields [20, 21, 22, 23, 24]. With respect to the computational cost, various at-
tempts have been made to reduce the number of iterations by accelerating convergence,
e.g., overrelaxation [25], line search [7, 8], multigrids [26, 5], incremental partitioning [27],
and preconditioning [28]. In order to achieve acceptable reconstruction times, the use of
parallel computing has been studied and many implementations have been reported, e.g.,
for the iPSC/2 hypercube and the BBN Butterfly GP-1000 shared memory computer
[29], the Cray—1 vector computer [30], the Alliant FX/8 shared memory multiprocessor
[31], the MasPar 4096 and AMT-DAP 4096 SIMD computers [19, 32, 33], the Thinking



Machines CM-5 MIMD computer and a network of loosely coupled SUN workstations
[34].

We present a focus-of-attention preprocessing scheme for reducing the time and space
requirements of the EM-ML algorithm. Simply stated, our approach is to first determine
which of the equations and the unknowns are relevant to the reconstruction and then
concentrate the computational resources thereon. We note that the approach does not
prohibit regularization by means of priors and is generally applicable to the family of
iterative reconstruction algorithms mentioned above.

The paper is organized as follows. In Section II we introduce our notation, review the
EM-ML algorithm, and outline how we compute the P-matrix. We describe the focus-of-
attention preprocessing scheme in Section III with emphasis on issues pertinent to real
data processing. Finally, in Section 1V, we give experimental results obtained from runs
on a CM-5 parallel computer using a simulated phantom and data obtained from an
ECAT 921 PET scanner.

II. Background

A. Notation

We consider a ring with M detectors where M is even. Any pair of opposing detectors
is said to form a tube. Using D to denote the number of tubes, we have that D =
M(M — 1)/2. All tubes having the same slope constitute a projection. There is a
total of M projections. With reference to Fig. 1, we shall distinguish between full-angle
projections, for which all tubes consist of detector pairs whose indices are odd-even or
even-odd, and half-angle projections, for which the detector pair indices are either both
odd or both even. Regarding the image, we assume that it is square and has B < D
pixels, but we make no assumptions about its physical dimension or its precise location
as long as it remains fully contained within the ring of detectors whose radius we refer to
as R.

We denote the number of photon pairs recorded by tube d by nj, the expected number
of photon pairs emitted from pixel b by Ay, and the expected number of photon pairs
recorded by tube d by X = >, Ayprq where pyq is the conditional probability that a photon
pair is recorded by tube d given that it originated from pixel b; we assume normalization

such that )" ;ppg = 1. When referring to these entities collectively, we use vectors n* =

(5], A= [Ap), A" = [A]], and matrix P = [ppg].



B. EM-ML Algorithm

Based on the observation that the photon emissions can be modeled as independent
Poisson processes, the reconstruction problem can be formulated as finding the A that

maximizes the log-likelihood
log P(n*[A) = f(n",X) - D(n*,\") 2)

where function f(n*, X*) represents terms that are constant for a given n* and nonneg-

ative Kullback function
n*
D(n*,X*) = ilog < 3
X = Sl 3

represents terms that are not. The EM-ML (expectation-maximization, maximum-likelihood)
algorithm finds the A that solves D(n*, A*) = 0, and thus also (1), using the multiplicative
iteration scheme [2, 3, 4]

n*
Wi M = A (1)
d d

Typically, A is chosen to be a uniform, positive vector. Important features of the al-
gorithm are that A* remains nonnegative for all k and 3, /\f =Y 4gny for k > 0. The
algorithm ensures that D(n*,A*k) — 0 [2, 3, 4, 35]; also, D(n*,A*k) is o(k™!) which

means that the convergence to 0 takes place faster than k — oo [35].

C. Computing P

Several different methods have been suggested for computing the elements of the P-
matrix, e.g., angle-of-view [2, 29], line intersection [14, 17|, and area intersection based
on circular pixel approximations [36, 34]. We compute pp; as the exact area intersection
of tube d with pixel b relative to the sum-total intersection of all tubes with that pixel;
thus, by design, > ;s prg = 1.

Due to the circular arrangement of the detectors, the width of a tube depends on
its location; a tube located near the center of the ring of detectors is wider than one
located near the periphery (cf. Fig. 1). To take this non-linear nature of the sampling
into consideration, we model each tube by the trapezoid obtained by connecting the
corners of the two detectors in question. This makes geometric arc correction by means
of count redistribution within each projection obsolete.

The P-matrix is quite sparse which makes it advantageous to store only its nonzero



elements. When the image is centered in the ring of detectors, then certain symmetry
considerations can be applied to further reduce the number of elements which have to be
stored [7, 29]. But since we allow the image to be located anywhere within the ring of

detectors these symmetry considerations are not exploited here.

ITI. Focus-of-Attention

The computational requirements of the EM-ML algorithm, which are quite extensive, can
be reduced by realizing that certain parts of the linear system of equations described by

(1) do not contribute to the reconstruction. Consider, for example, the equation
> Npg = nj (5)
b

All numbers being nonnegative, n}; = 0 implies that Ay = 0 for all b for which pyq > 0. By
identifying and discarding such equations and unknowns we can obtain a smaller system
of equations and thus reduce the amount of computation needed. Knowing whether pixel
b is intersected by tube d is enough to say whether pyy > 0. Consequently, we can reduce
the amount of storage needed by computing and storing only the actual values of the ppy
coefficients of the smaller system of equations.

These observations have lead to the following focus-of-attention preprocessing based
EM-ML algorithm:

1. Compute an n*-mask that indicates which equations, i.e., tubes, to focus on.
2. Compute a A-mask that indicates which unknowns, i.e., pixels, to focus on.
3. Compute the P-matrix for the tubes in n*-mask and the pixels in A-mask.
4. When necessary, compensate for edge packing.

5. Apply the EM-ML algorithm to solve the reduced system of equations.

The premise of the computations described below is that all photon emissions originate
from a single, connected subset of pixels !. Under ideal circumstances, this implies that
each projection contains a single, connected sequence of tubes whose counts are non-zero.
This allows us to compute n*-mask (step 1) by locating the corresponding boundary

tubes and, in turn, set A-mask (step 2) to be the convex hull obtained by intersecting

'In applications where this premise does not hold, our algorithm will eliminate only a subset of the
non-contributing equations and unknowns and the system of equations produced will therefore not be a
small as it could be.



the halfplanes defined thereby. However, when processing real data, which typically is
very noisy, the detection of the boundary tubes becomes a difficult task and, unless
an optimization scheme is applied to the m*-mask to ensure that the boundary tubes
are, or become, consistent with one another, it is very likely that a non-convex hull
will be obtained for A-mask. Figure 2 illustrates the difference between consistent and
inconsistent boundary tubes in terms of the shape of the hull.

All the emission counts attributed to tubes located within n*-mask will be distributed
across pixels located within A-mask. For ideal data this is as it should be, but for real
data it means that the counts which reflect only noise will be distributed over fewer pixels.
Since the elements of the P-matrix are computed only for the subset of tubes and pixels
respectively identified by m*-mask and A-mask (step 3), then the pixels located on the
edge of the convex hull may be estimated to have high emission rates although in reality
they should be low. When necessary, we compensate for this edge packing by reducing
some of the tube counts (step 4) before applying the EM-ML algorithm to compute the
reconstruction (step 5).

Since steps 3 and 5 were addressed in the previous section, we now concentrate on
steps 1, 2, and 4.

A. Computing n*-mask

Suppose we want to find the leftmost (resp. rightmost) boundary tube for a given pro-
jection. Scanning from left-to-right (resp. right-to-left) until n} > 0 is sufficient for ideal
data. But when the data is noisy, this approach may cause the search to stop prema-
turely due to spurious occurrences of tubes whose non-zero count only reflects noise.
We therefore use moving average based thresholding in combination with the following
optimization procedure.

Define h = [h,,] to be the 2M-dimensional vector whose elements, also called support
values, denote the distance from the center of each projection to the center of its boundary
tubes. In particular, let h,, (resp. harysm) denote the distance from the center of the mth
projection to the center of its leftmost (resp. rightmost) boundary tube; see Fig. 3. Then
the boundary tubes are consistent with one another, i.e., h is a support vector, if and
only if [37]

Ch < 0 (6)



where C'is a 2M x 2M Toeplitz matrix of the form

1 k0 0 —k |
k1 -k 0 0
0 —k 1
¢ = . (7)
0 . 0
0 1 —k
k0 0 —k 1 |

and k =1/(2cosw/M).

Let h° denote the initial estimate produced by the moving average based thresholding,
and let h* denote a support vector obtained on basis thereof. Then h* is the support
vector closest to h° (in the Euclidean sense) if it solves the quadratic programming
problem [37]

1
m&n §h’h —h'R° s.t. Ch<O. (8)

Because of its simpler constraint set, it is more convenient to consider the dual problem

[38]
min lu’Qu—I—r’u st u>0 (9)
u 2

where Q = C'C'’ and r = —C'h°. The connection between the primary (original) and dual

problems is that the former is solved by
R = B - C'u (10)

if u* solves the latter.
We note that the dual problem may be solved using a Gauss-Seidel iteration which,
when the mth element is updated, has the form [38]

Uy = maX{O7 um—%(rm+§4:wijj)}. (11)

mm ]‘:1

By furthermore exploiting the block structure of matrix €2 and, in particular, the Toeplitz

non-zero structure of matrix €', we obtain the simpler iteration scheme

1

- W ( T'm — Qk(um—l + um—l—l) + kz(“m—? + um—l—?) ) } (12)

Uy = max{ 0,



where the indices are computed modulo 2M.

In practice, the discrete nature of the optimization problem, i.e., the facts that only
a finite number of support values correspond to actual tube locations and that each
full-angle projection is followed by a half-angle projection and vice versa, means that a
computed h™ most likely has no physical interpretation. Rather than proceeding with the

above Gauss-Seidel iteration until we find the h* closest to h°, we therefore stop when

maX‘CfQ(h*)

< ¢ (13)
where function fg quantizes h* into its physical equivalent and
e = Rsin(2r/M)/2 (14)

is half the width of the widest tube which is the largest discrepancy that has to be
compensated for. In other words, we use quadratic programming to obtain a reasonably
close support vector that has a physical interpretation but do not carry the optimization
through in order to find the closest one.

Figure 4 provides an example of the process. The initial estimate h° shown in Fig. 4(a)
contains a number of inconsistencies as indicated by the peaks in Fig. 4(b). After a
number of iterations, typically very few, we obtain the h* shown in Fig. 4(c) for which
the inconsistencies have been resolved. The remaining oscillation between positive and
negative values seen in Fig. 4(d) is due to the interlacing of half-angle and full-angle

projections.

B. JA-mask Computation

As mentioned above, we set A-mask to be the convex hull obtained by intersecting the
halfplanes defined by the boundary tubes of n*-mask. Thus, A-mask consists of the set
of all pixels which have any area in common with the hull including those pixels for which
the intersection is only partial. To help prevent cutting off part of the emitter region, we

move all the halfplane cross-over points out by a distance of £ (cf. (14)).

C. Edge Packing

The P-matrix is computed for the subset of tubes and pixels given by n*-mask and A-
mask, respectively. Consequently, a tube will have its emission count distributed across
a limited number of pixels. For ideal data this is as it should be, but for real data it may
result in the activity of some of the edge pixels becoming artificially high; we refer to this

phenomenon as edge packing.



To alleviate the problem of edge packing, we reduce the emission activity of the
boundary tubes as follows. Let the area covered by boundary tube d of A-mask and the
original image respectively be denoted by Ag and A?; clearly, Ag < A?. Then, under
the assumption that the noise recorded by a tube should be distributed evenly across all
the pixels it intersects, we simply multiply n}; by AQ/A?

The emission activity of the interior tubes also reflect noise and should have their
counts reduced accordingly. But it is unclear how to do so in a straightforward manner,

and we leave it as an open problem for further study.

IV. Experimental Results

We have implemented both the original and the focus-of-attention EM-ML algorithm in
C on a 32-node Thinking Machines CM-5 parallel computer. The nodes, which commu-
nicate via high-speed internal networks, are all equipped with a 32 MHz RISC processor
and 32 Mbytes of RAM. The algorithm is parallelized by letting each node maintain its
own copy of A*¥ while distributing n* and the corresponding columns of the P-matrix
across the nodes. After every iteration, the nodes communicate their subresults, i.e.,
partial multiplier sums, to each other using built-in combiner operators [39].

The experimental work is based on the CTl/Siemens ECAT 921 PET scanner which
generates 384 x 80 sinograms and 128 x 128 images for arbitrary offsets and zoom factors;
the P-matrix is designed accordingly. We use both simulated phantom and real scan data.
The simulated phantom data consists of a single, noise-free sinogram obtained by forward
projecting a version of the Shepp-Vardi phantom [2] through the P-matrix. The real scan
data is obtained from an ECAT 921 PET scanner located at the University of Tennessee
Medical Center, Knoxville (UTMCK). Three real scans are used: an FDG head scan, a
13-N ammonia chest scan, and a (low count) C-11 ACBC abdomen scan. The patient
scans follow routine clinical protocols and data processing approved by the UTMCK
Institutional Review Board. The real sinograms are normalized for detector variability,
corrected for attenuation using transmission scans obtained prior to radiopharmaceutical
injection, and corrected for estimated randoms. Scatter correction is not applied.

Below, we first provide a quantitative assessment of the original and the focus-of-
attention EM-ML algorithms using the simulated phantom. Then we carry out a quali-
tative assessment for the real scanner data followed by an analysis of the computational
savings. Traditionally, sinograms and images alike are displayed white-on-black, but in

order to point out certain details we use reverse video, i.e., black-on-white.
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A. Quantitative Assessment

There are many ways to quantify the quality of a reconstructed image. The Kullback
function D(n*, X*), for example, can be used as a global error measure since the closer
it is to 0, the more likely is the reconstruction. Local characteristics are more difficult
to quantify, but region-of-interest (ROI) statistics (such as mean pixel value, standard
deviation, and regional bias which is the relative difference between the observed and
the true ROl mean pixel values) may be appropriate [36]. Figure 5 shows the simulated
phantom used for this quantitative assessment together with an outline of seven uniform
ROIs that cover 6287, 521, 425, 37, 24, 24, and 140 pixels, respectively.

Figure 6 plots D(n*, A**) as a function of iteration index k for reconstruction of the
phantom using both the original and the focus-of-attention EM-ML algorithms; since
the sinogram is noise-free by design, we create the n*-mask for the latter using simple
thresholding instead of moving average and apply neither the quadratic programming
optimization nor the edge packing compensation scheme. We see that both algorithms
converge nicely and that the focus-of-attention version produces a more likely image at
every iteration. When comparing the two Kullback functions, one must be aware of the
logarithmic ordinate axis. For the first 25-30 iterations the relative difference is about
an order of magnitude, but it settles to a factor of 2-3 for the later iterations. Many
fewer iterations are thus needed for the focus-of-attention EM-ML algorithm to attain
the same likelihood as the original EM-ML algorithm. The reason is, of course, that
the latter requires a number of iterations to overcome the initial assignment of the same
activity to background and foreground pixels.

Figure 7 plots the observed mean pixel value plus-minus one standard deviation for
each iteration between 8 and 1024 which is a power of 2 for the two EM-ML algorithms.
The true mean pixel value of each ROI is indicated by a dotted line. The plot for
ROI 5 is almost identical to the plot for ROI 4 and is therefore not shown. Given enough
iterations, both the original EM-ML algorithm and the focus-of-attention version produce
observed mean values that are very close to the true values for all ROIs. During the early
iterations, however, the regional emission activities are somewhat off the mark, especially
for the smaller ROIs; note that the mean values for ROIs 1-5 computed by the focus-
of-attention EM-ML algorithm are as close to the true values as those computed by the
original algorithm, but significantly closer for ROIs 0 and 6. The standard deviations are
practically indistinguishable for the two algorithms for all ROIs and most iterations, and

the regional biases behave similarly to the observed mean values.
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B. Qualitative Assessment

Figure 8 shows the three ECAT 921 sinograms with the n*-masks overlayed. The mov-
ing average based segmentation uses a window width of 5 and a conservative threshold
corresponding to 1% of the peak value in m*. The number of Gauss-Seidel iterations
required to make the n*-mask consistent is 6, 4, and 4, respectively, for the head, chest,
and abdomen sinogram. Narrowing the moving average window would produce more
irregular initial n*-masks and therefore call for more Gauss-Seidel iterations. Similarly,
increasing the threshold would produce less irregular initial n*-masks and consequently
require fewer Gauss-Seidel iterations. The window width and the threshold used here are
a compromise we have found to work well.

Figures 9-12 show the reconstructed images after 32 iterations of the two EM-ML
algorithms; the z=1 and z=2 annotations refer to an image being unzoomed and zoomed a
factor of two, respectively. The results of applying the original algorithm and the focus-of-
attention version are virtually indistinguishable for the head reconstructions (Figs. 9, 10)
and the chest reconstruction (Fig. 11). For these images, edge packing is not a serious
problem although the transition from foreground to background is somewhat smoother
when compensating for it; this is especially true for the zoomed head reconstruction
(Fig. 10). With respect to the abdomen reconstruction (Fig. 12), the focus-of-attention
preprocessing produces a few relatively dark pixels in the left arm region. Rather than
being a result of edge packing which refers to erroneous concentration of noise activity,
these pixels are a result of imperfect thresholding. The abdomen sinogram (cf. Fig. 8)
shows very little activity for the tubes that specifically intersect the left arm region which,
in turn, results in A-mask cutting off a portion thereof. We see that the edge packing
compensation scheme lessens the impact somewhat but, as should be expected, fails to
completely eliminate the problem. The solution would be to improve on the thresholding

and /or incorporate more knowledge into the quadratic programming optimization.

C. Computational Aspects

The computational benefits of applying focus-of-attention can be seen in a comparison
of array sizes relating to memory consumption. Table 1 therefore lists the number of
tubes, pixels, and non-zero elements in the P-matrix for the reconstruction of the real
scanner data. The original listings for n* and A-mask refer to the 384 x 80 = 30,720
tube recordings in each sinogram and the 128 x 128 = 16,328 pixels in each image,
respectively. When applying focus-of-attention, these numbers drop significantly. In the
best case (head, z=1), for example, about 60% of the tubes and 90% of the pixels are not

needed for the reconstruction. Even in the worst case (abdomen), 20% of the tubes and
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70% of the pixels can be ignored. When it comes to the number of non-zero elements in
the P-matrix, which is the governing factor with respect to memory consumption, we see
reductions on the order of 90% in the best case (head, z=1) and 65% in the worst case
(head, z=2; abdomen, z=1).

Table 2 lists the computational benefits translated into elapsed CPU time (in seconds).
Notice that the time it takes to compute the n* and A-masks is negligible. The fact that
the P-matrix computes in time proportional to the size of n*-mask and is less affected
by the size of the A-mask is due to the implementation which is tube rather than pixel
driven. The compensation for edge packing is not listed but takes only about 0.15 seconds.
The overall time spent on initialization is thus reduced in all cases. But perhaps more
importantly, the time required for a single iteration of the EM-ML algorithm is reduced by
80% in the best case (head, z=1) and 60-70% otherwise (head, z=2; chest and abdomen;
z=1).

V. Conclusion

We have a presented a preprocessing scheme for reducing the computational requirements
of the EM-ML algorithm for PET reconstruction. The approach is simple to implement,
very general, and could be applied to other iterative reconstruction algorithms. The
experimental work indicates that quite significant savings can be obtained with respect

to both time and space without compromising the quality of the reconstructed images.

Acknowledgement

We thank Dr. Gary Smith, Director of Nuclear Medicine at the University of Tennessee
Medical Center, Knoxville, for providing the ECAT 921 PET scanner data.



13

References

[1] G. T. Herman, A. Lent, and S. W. Rowland, “ART: Mathematics and application,”
J Theor. Biol., vol. 42, pp. 1-32, 1973.

[2] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomog-
raphy,” IEFFE Trans. Med. Imaging, vol. 1, pp. 113122, 1982.

[3] Y. Vardi, L. A. Shepp, and L. Kaufman, “A statistical model of positron emission
tomography,” J. Am. Stat. Assoc., vol. 80, pp. 820, 1985.

[4] K. Lange and R. Carson, “EM reconstruction algorithms for emission and transmis-

sion tomography,” J. Comp. Asst. Tomog., vol. 8, pp. 306-316, 1984.

[5] T.-S. Pan and A. E. Yagle, “Numerical study of multigrid implementations of some
iterative image reconstruction algorithms,” IFFE Trans. Med. Imaging, vol. 10,
pp. H72-588, 1991.

[6] T.-S. Pan and A. E. Yagle, “Acceleration of Landweber-type algorithms by suppres-
sion of projection on the maximum singular vector,” IFEF Trans. Med. Imaging,
vol. 11, pp. 479-487, 1992.

[7] L. Kaufman, “Implementing and accelerating the EM algorithm for positron emission
tomography,” IEFFE Trans. Med. Imaging, vol. 6, pp. 37-50, 1987.

[8] L. Kaufman, “Maximum likelihood, least squares, and penalized least squares for
PET,” IFEFE Trans. Med. Imaging, vol. 12, pp. 200-214, 1993.

[9] D. L. Snyder and M. I. Miller, “The use of sieves to stabilize images produced
with the EM algorithm for emission tomography,” IFEF Trans. Nucl. Sci., vol. 32,
pp. 3864-3870, 1985.

. I. Miller, D. L.. Snyder, and S. M. Moore, “An evaluation of the use of sieves for

10] M. I. Miller, D. L. Snyd dSs. M. M “A luati { th { si f
producing estimates of radioactivity distributions with the EM algorithm for PET,”
IFFEFE Trans. Nucl. Sci., vol. 33, pp. 492-495, 1986.

[11] T. R. Miller and J. W. Wallis, “Clinically important characteristics of maximum-
likelihood reconstruction,” J. Nucl. Med., vol. 33, pp. 1678-1684, 1992.

[12] B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A smoothed EM
approach to indirect estimation problems with particular reference to stereology and
emission tomography,” J. Roy. Stat. Soc., vol. 52, pp. 271-324, 1990.



[13]

[14]

[18]

[19]

[20]

[21]

[22]

14

H. Hart and Z. Liang, “Bayesian image processing in two dimensions,” IFEF Trans.
Med. Imaging, vol. 6, pp. 201-208, 1987.

E. Levitan and G. T. Herman, “A maximum a posteriori probability expectation
maximization algorithm for image reconstruction in emission tomography,” IFEF
Trans. Med. Imaging, vol. 6, pp. 185-192, 1987.

7. Liang and H. Hart, “Bayesian reconstruction in emission computerized tomogra-
phy,” IFEFE Trans. Nucl. Sci., vol. 35, pp. 788-792, 1988.

7. Liang, R. Jaszczak, C. Floyd, and K. Greer, “A spatial interaction model for
statistical image processing,” in Information Processing in Medical Imaging, IPMI89,
pp. 29-43, Wiley-Liss, New York, 1991.

G. T. Herman, A. R. De Pierro, and N. Gai, “On methods for maximum a posteriori
image reconstruction with a normal prior,” J. Visual Comm. and Image Rep., vol. 3,
pp. 316-324, 1992.

P. J. Green, “On the use of the EM algorithm for penalized likelihood estimation,”
J. Roy. Stat. Soc., vol. 52, pp. 443-452, 1990.

M. I. Miller and B. Roysam, “Bayesian image reconstruction for emission tomography
incorporating Good’s roughness prior on massively parallel processors,” Proc. Natl.
Acad. Sci., vol. 88, pp. 3223-3227, 1991.

T. Hebert and R. Leahy, “A generalized EM algorithm for 3-D Bayesian recon-
struction from Poisson data using Gibbs priors,” IEFFE Trans. Med. Imaging, vol. 8,
pp. 194-202, 1989.

P. J. Green, “Bayesian reconstructions from emission tomography data using a mod-
ified EM algorithm,” IFEF Trans. Med. Imaging, vol. 9, pp. 84-93, 1990.

V. E. Johnson, W. H. Wong, X. Hu, and C.-T. Chen, “Bayesian restoration of PET
images using Gibbs priors,” in Information Processing in Medical Imaging, IPMI89,
pp. 1528, Wiley-Liss, New York, 1991.

D.S. Lalush and B. M. W. Tsui, “A generalized Gibbs prior for maximum a posteriori
reconstruction in SPECT,” Phys. Med. Biol., vol. 38, pp. 729-741, 1993.

S. Geman, K. M. Manbeck, and D. E. McClure, “A comprehensive statistical model
for single-photon emission tomography,” in Markov Random Fields: Theory and
Application (R. Chellappa and A. Jain, eds.), pp. 93-130, San Diego, CA: Academic
Press, 1993.



[25]

[32]

15

R. M. Lewitt and G. Muehllehner, “Accelerated iterative reconstruction for positron
emission tomography based on the EM algorithm for maximum likelihood estima-
tion,” IFEF Trans. Med. Imaging, vol. 5, pp. 16-22, 1986.

M. V. Ranganath, A. P. Dhawan, and N. Mullani, “A multigrid expectation maxi-
mization reconstruction algorithm for positron emisson tomography,” IEFE Trans.
Med. Imaging, vol. 7, pp. 273-278, 1988.

T. Hebert, R. Leahy, and M. Singh, “Three-dimensional maximum likelihood recon-

struction for an electronically collimated single-photon-emission imaging system,” .J.
Opt. Soc. Am., vol. 7, pp. 1305-1313, 1990.

N. H. Clinthorne, T.-S. Pan, P.-C. Chiao, W. L. Rogers, and J. A. Stamos, “Pre-
conditioning methods for improved convergence rates in iterative reconstructions,”
IFFEFE Trans. Med. Imaging, vol. 12, pp. 78-83, 1993.

C. M. Chen, C. Y. Lee, and Z. H. Cho, “Parallelization of the EM algorithm for 3-D
PET image reconstruction,” IEFF Trans. Med. Imaging, vol. 10, pp. 513-522, 1991.

L. Kaufman, “Solving emission tomography problems on vector machines,” Ann.
Op. Res., vol. 22, pp. 325-353, 1990.

G. T. Herman, D. Odhner, K. D. Toennies, and S. A. Zenios, “A paralleized algo-

i

rithm for image reconstruction from noisy projections,” in Workshop on Large Scale

Optimization (T. Coleman and Y. Li, eds.), Philadelphia: SIAM, 1990.

A. W. McCarthy and M. I. Miller, “Maximum likelihood SPECT in clinical compu-
tation times using mesh-connected parallel computers,” IFEF Trans. Med. Imaging,
vol. 10, pp. 426-436, 1991.

C. S. Butler and M. 1. Miller, “Maximum a posteriori estimation for SPECT us-
ing regularization techniques on massively parallel computers,” IFEFE Trans. Med.
Imaging, vol. 12, pp. 84-89, 1993.

S. P. Olesen, J. Gregor, M. G. Thomason, and G. Smith, “EM-ML PET reconstruc-
tion on multiple processors with reduced communications,” to appear in Interna-

tional Journal of Imaging Systems & Technology.

J. Gregor, S. P. Olesen, and M. G. Thomason, “On convergence of the EM-ML

algorithm for PET reconstruction,” submitted.



16

[36] J. Llacer, E. Veklerov, K. J. Coakley, E. J. Hoffman, and J. Nunez, “Statistical
analysis of maximum likelihood estimator images of human brain FDG PET studies,”
IFEFE Trans. Med. Imaging, vol. 12, pp. 215-213, 1993.

[37] J. L. Prince and A. S. Willsky, “Reconstructing convex sets from support line mea-
surement,” IFEF Trans. Pattern Analysis and Machine Intelligence, vol. 12, pp. 377—
389, 1990.

[38] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numer-
tcal Methods. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[39] Thinking Machines Corporation, Cambridge, MA, CMMD Reference Manual, May
1993.



17

3839 (0\ 1 38390 3
] \\
s T 2
21701918 212019

Figure 1: A projection is either (left) full-angle or (right) half-angle.
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Figure 2: (left),(middle) Consistent boundary tubes result in a convex-hull whereas
(right) inconsistent ones do not. (Adapted from [37].)
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Figure 5:  (left) Simulated phantom and (right) seven regions-of-interest (ROls).
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Figure 6: Convergence of the phantom reconstructions for (dotted line) the original

EM-ML algorithm and (solid line) the focus-of-attention version.
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Figure 8: Sinograms and m*-masks for (left) the head scan, (middle) the chest scan,

and (right) the abdomen scan.
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Figure 9: Reconstructed images for the head scan (z=1): (upper-left) original EM-ML
result, (lower-left) A-mask overlay, (upper-right) focus-of-attention EM-ML
including edge packing compensation, and (lower-right) focus-of-attention

EM-ML without edge packing compensation.



Figure 10:

Reconstructed images for the head scan (z=2). See Fig. 9 for layout.
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Figure 11:

Reconstructed images for the chest scan (z=1). See Fig. 9 for layout.
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Figure 12:

Reconstructed images for the abdomen scan (z=1). See Fig. 9 for layout.



Table 1: Array dimensions (no. elements).
n*-mask A-mask P-matrix
Original 30.7K 16.4K 10.2M
Head, z=1 11.9K 1.6K 1.2M
Head, z=2 11.9K 6.3K 3.50M
Chest 18.6K 3.7K 2.7TM
Abdomen 24.0K 5.1K 3.7TM
Table 2: Timing results (CPU seconds).

n*-mask A-mask P-matrix Initialization Per Iteration
Original — — 4.69s 4.69s 0.96s
Head, z=1 0.18s 0.17s 1.09s 1.44s 0.19s
Head, z=2 0.18s 0.15s 1.60s 1.93s 0.36s
Chest 0.15s 0.16s 2.03s 2.34s 0.31s
Abdomen 0.15s 0.16s 2.85s 3.16s 0.39s
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