
PVMPI: An Integration of the PVM and MPI SystemsGraham E. Fagg � Jack J. DongarrayApril 12, 1996AbstractWe discuss the use of PVM as a system for controlling the execution of MPI applications,by allowing the user access to both the MPI API and an enhanced set of the PVM API.The intention is to give the user community exible control over MPI applications using asystem that is both portable and familiar|without having to wait for new MPI-2 systems tobe developed. Our system, called PVMPI, uses the already proven and widely ported MPImessage-passing system within PVM to to enable interoperation with di�erent implementationsexecuting on distributed hardware. PVMPI also takes advantage of contexts under PVM3.4to provide more security. Additional bene�ts will be available to those who currently alreadyuse resource managers that interface to PVM, in that PVMPI can control MPI applications.1 IntroductionPVM is one of a number of parallel distributed computing environments (DCEs) [16] that wereintroduced to assist users wishing to create portable parallel applications [19]. The system hasbeen in use since 1992 [1] and has grown in popularity, leading to a large body of knowledge and asubstantial quantity of legacy code accounting for many man-years of development.For the past several years, standardization e�orts have attempted to address many of the de�-ciencies of the di�erent DCEs and introduce a single stable system for message passing. These e�ortsculminated in the �rst Message Passing Interface (MPI) standard, introduced in June 1994 [13].Within a year, several di�erent implementations of MPI were available, including both commercialand public systems.One of MPI's prime goals was to produce a system that would allow manufacturers of high-performance massively parallel processing (MPPs) computers to provide highly optimized and ef-�cient implementations. In contrast, PVM was designed primarily for networks of workstations,with the goal of portability, gained at the sacri�ce of optimal performance. PVM has been portedsuccessfully to many MPPs by its developers and by vendors, and several enhancements|includingin-place data packing and pack-send extensions|have been implemented with much success [3].Nevertheless, PVM's inherent message structure has limited overall performance when comparedwith that of native communications systems.�Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301yDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996-1301 and Mathematical SciencesSection, Oak Ridge National Laboratory, Oak Ridge, TN 37831-63671

Thus, PVM has many features required for operation on a distributed system consisting of many(possibly nonhomogeneous) nodes with reliable, but not necessarily optimal, performance. MPI, onthe other hand, provides high-performance communication and a nonexible static process model.The aim of this work is to interface the exible process and virtual machine control from thePVM system with the enhanced communication system of several MPI implementations. The needfor such a system was clearly identi�ed by the �rst MPI forum and motivated the current roundof discussions by the MPI-2 forum. Indeed, MPI-2{style tools have been promised by several MPIimplementors; examples include MPIX [17] and LAM MPI-6.0 [2].In this paper we compare the PVM and MPI systems, focusing in particular on machine de�-nition, process control, and message-passing implementation. Then we consider how these systemscan interoperate, and we address such issues as language binding and interfaces.2 The Dynamic World of PVMPVM (Parallel Virtual Machine) relies on the idea that the system the software runs upon isnot �xed, but is dynamic. This dynamic approach forces application developers to avoid makingassumptions about the underlying system. Such an approach o�ers two major advantages over astatic resource world:1. A truly portable API, supporting over twenty di�erent platform types simultaneously.2. A exible system that can be easily made fault tolerant in the event of node loss, as well asbeing able to take advantage of addition nodes during run time.Although to a user or application developer only the API is of utmost importance, we brieydiscuss here the internal workings of PVM in order to illustrate the di�erence between it and relatedsystems.First, PVM is generally considered as a basic message-passing system built upon a system ofgeneric daemons. Speci�cally, PVM API calls cause the user's application to coordinate with adaemon pvmd to perform some operation (e.g., send a message or start some application). The dae-mons themselves de�ne the virtual machine and provide the same consistent run-time environmentacross diverse platforms, thereby allowing for a single API.When running on a netowrk of workstations (NOW), each host becomes a member of the virtualmachine by running its own daemon. Applications become PVM applications by coordinating withthese daemons via sockets and/or pipes. Thus, applications can become enrolled into PVM andthen be controlled by it even if they were not started by it. Applications can also join and leave asmany times as they wish, allowing them to live through several di�erent virtual machines.Shared-memory processor systems (SMPs), such as Sun MPs and SGI, require only a singledaemon per host regardless of the number of nodes they contain. This method of process control ispossible because they use the same Unix mechanisms as general workstations to initiate and signalprocesses. Dedicated MPPs, on the other hand, do not always o�er such a consistent method ofinitialing and controlling processes. Like SMPs, they usually have only a single daemon runningon a front end or service node. These daemons provide the same or similar facilities and servicesas conventional daemons except they may use di�erent specialized system calls to interface withthe MPP's nodes. Restrictions placed upon PVM by these run-time systems may a�ect the API2

functionality o�ered. or example, IBM's PVMe allows only an SPMD model to be used, and theMeiko CS2 allows only barrier operations across the whole application.An example of a system that can appear as either a NOW or an MPP is the IBM SP2. In itsNOW form it runs a daemon on each node as a conventional cluster of Unix workstations. As anMPP, it runs only a single daemon and uses the local partition management software to controlresource allocation.2.1 Virtual Machine De�nitionThe virtual machine is de�ned by the number and location of the running daemons. Although thenumber of hosts can be indicated by a �xed list at start-up time, there exists only a single pointof failure, the �rst master daemon to start. All other hosts can join, leave, or fail without a�ectingthe rest of the virtual machine.PVM API functions allow the user to� add or delete hosts,� check that a host is responding,� be noti�ed by a user-level message that a host has been deleted (intentionally or not) or hasbeen added, and� shut down the entire virtual machine, killing attached processes and daemons.2.2 Process ControlPVM API functions provide the ability to� join or leave the virtual machine;� start new processes by using a number of di�erent selection criteria, including external sched-ulers and resource managers;� kill a process;� send a signal to a process;� test to check that it is responding; and� notify an arbitrary process if another disconnects from the PVM system.2.3 Message PassingTwo types of message passing exist in PVM: (1) internal (between daemons and other daemons oruser tasks), and (2) user (between two or more user processes enrolled into PVM).User messages are identi�ed by source address and a single user-controlled tag, which can beused by a task to �lter incoming messages from multiple destinations. The lack of contexts prior toPVM 3.4 made safe message passing for libraries extremely di�cult. Although the user could usea set of reserved tags, no guarantee existed for these tags being unique across the virtual machine,since they were user chosen and not system allocated.3

2.4 Resource ManagementPVM's comprehensive array of API routines allows the user the same level of control over thevirtual machine as the system has. This exibility has encouraged many projects to use PVM indi�erent distributed computing environments [14] such as Mist [12], dedicated schedulers [15], loadbalancers, and process migration tools [4, 18].2.5 PVM Group ServicesPVM provides the ability for processes to form into groups identi�ed by a character string name,which is held in a single central database process called the PVM Group Server PVMGS. Processescan join and leave any number of groups at any time, making membership completely dynamic.Processes are allocated instance numbers when they join, in the order that they join a group. The�rst join operation creates the group, and the group is destroyed when the membership falls to zero(i.e., no empty groups), although groups may have gaps in their membership as processes leave outof order.The group service provides a limited number of collective operations such as barrier and reduce.Also provided is a broadcast operation that allows messages to be sent to all members of a group(unless the sender is one). However, there are no point-to-point operations on a group. Thus, theuser must explicitly look up process addresses and use the normal point-to-point send and receiveprimitives.Until recently, the group database was centrally stored and thus had to be accessed beforeeach group operation took place, even if the group had not altered. This strategy led to seriousdegradation in potential performance. Later versions of PVM 3.3 enabled the groups to be frozenand their details to be cached locally. In some cases, full dynamic group caching has also beendeveloped [8].3 The Static World of MPIAs previously stated, many systems provide only a static process control model. The nodes in sucha model may be �xed at compile, download, or spawn time; and once started, an application cannotusually change size or migrate during its execution. Failure of a single program module causing theentire application to fail by invalidating its message communicators.Because of the wide range of possible initialization options, the MPI forum decided againststandardizing process control. This decision had several advantages:� The process model was easy to reason about. A �xed number of processes existed: either allprocesses existed or none.� Collective operations could be optimized, since the members taking part were known before-hand and were not subject to change.� Contexts or application tags could be implemented e�ciently.4

3.1 MPI Process ControlAlthough the MPI standard does not state how processes are started, it does state how and inwhich order processes become MPI processes. All MPI processes join the MPI system by callingMPI Init and leave by calling MPI Finalize. Processes calling MPI Init twice may have an unde�nedbehavior.3.2 Contexts, Process Groups, and CommunicatorsContext is a system-de�ned tag that can be used to di�erentiate messages from one another. Con-texts generally are used by di�erent layers in a library to eliminate possible interference betweenthese layers. In PVM, for example, any task can send a message to any other task, whether thereceiving task wishes to interact with the sender or not (as in the case of two separate applications).In MPI, on the other hand, the two applications have two separate message universes or contexts,which render this potential mistake impossible.Processes in MPI are arranged in rank order, from 0 to N-1, where N is the number of processesin a group. These process groups de�ne the scope for all collective operations within that group.The process group and context, together with other information about topologies and local at-tributes, constitute a communicator. All communications can operate only within a communicator.Thus, this strategy gives rise to a high level of protection against rogue messages.3.3 Static Separate WorldsOnce all the expected processes have joined the system, a common communicator is created by thesystem for them. This communicator, referred to as MPI COMM WORLD, will allow all processesto communicate to all others in their \world." From this communicator, subset communicators canbe created and duplicated for the di�erent modules in an application by using di�erent (possiblyoverlapping) groups of processes.Communications between processes within the same communicator or group are referred to asintracommunicator communications. Communications between di�erent groups are intercommuni-cator communications. The formation of an intercommunicator requires two separate (nonoverlap-ping) groups and a common communicator between the leaders of each group, as shown in Figure1. With the current standard MPI-1 implementation it is impossible to create an intercommunicatorbetween two separately initiatedMPI applications. Each application has its own MPI COMM WORLD,with no existing communicator bridging the gap between them (see Figure 2).All internal details are hidden from the user. MPI communicators have relevance only within aparticular run-time instance. Moreover, this strategy excludes di�erent MPI implementations frominteroperating. In summary, current MPI applications are static and isolated. and communicationbetween them will probably not be possible via message passing, but by other mediums such ascross-mounted �le systems. 5

MPI_COMM_WORLD

Group 1
Group 2

Inter−communicator

Figure 1: Intercommunicator formed inside a single MPI COMM WORLD
MPI_COMM_WORLD

MPI_COMM_WORLD

Ocean Model
Application Air Model

ApplicationFigure 2: Separate applications that are unable to create an intercommunicator because they lackany overlapping communicator4 Related WorkAlthough several MPI implementations are built upon established message-passing libraries such asChameleon-based MPICH [6] and the LAM system [2], Unify [5] from Mississippi State Universityis the closest related project in terms of dual APIs, with LAM 6.0 being closest in dynamic support.The MPIX project also from Mississippi State University has some bearing on this researche�ort in that it extends the capability of current MPI intercommunicators to allow them to be usedin collective operations instead of only in point-to-point operations. Also supported are overlappinggroups, which currently are not allowed in MPI.4.1 UnifyThe Unify system was originally proposed to unify or mate together the PVM and new MPI APIs.The intention was to enable users to take current PVM applications and slowly migrate towardcomplete MPI applications, without having to make the complete conceptual jump from one system6

to the other.The project, which was a masters degree project, never reached full maturity in that manyMPI features (such as virtual topologies, pro�ling, attribute caching, and intercommunicators)were not implemented. Although all the MPI intracommunicator point-to-point and collectiveoperations were included, Unify failed to exploit PVM's dynamic spawning capability (hence noneed for intercommunicators) and forced the user to spawn a �xed number of master-slave SPMDprocesses from the command line. More speci�cally, the start-up sequence consisted of a processthat checked to see whether it was a master by the existence of a parent process and then spawnedN-1 copies of itself. If a parent existed, the process was assumed to be a slave and would block ona receive, awaiting a TID list so that it could build its MPI COMM WORLD, MPI COMM SIZEand MPI COMM RANK values. Thus, a Unify application could not be started by any otherPVM process (including the console). Moreover, it could not use PVM spawn to start other MPIapplications, since their MPI Init calls would wait for never-arriving start-up messages.Unify did address the di�culty of mapping identi�ers between the PVM and MPI domains,where each system used a di�erent scheme; PVM using a 32-bit integer and MPI using a handle toan opaque internal structure together with a rank inside that structure. Unify provided only twonew additional calls: one from MPI to PVM tid, and vice versa (without restrictions, since all thetasks were running within both the PVM and the MPI environments).5 Interoperation Requirements and Membership RulesFor PVM to interconnect any two groups of processes and allow them to communicate, at leastone process in each group must be enrolled into PVM. Processes can become enrolled into PVM bybeing started by PVM (i.e., implicitly) or by calling a PVM library function (i.e., explicitly). Animplicitly started applications may also wish to remain independent, for example, when PVM is usedonly as a start-up facility. Thus, the system must make sure that even if PVM fails pathologically,it must not be able to interfere with the application's life cycle in any way.The scope of any communications will depend upon the completeness of membership, thatis, fully connected to both systems or partially connected. If full connectivity is not possible,intercommunicator operations could use point-to-point only communications between subsets ofnodes. Alternatively, by using extra calls, such operations could use the connected nodes as relaysto complete connections.Another factor in membership is its duration. MPI applications may interact with each otheronly in a server-client behavior pattern, as in the case of computational steering and visualization,and may not wish to be part of the PVM system continuously. Hence the PVMPI membership isrequired to be dynamic, as with the current PVM group services, although many PVMPI operationsmay be required to be blocking and collective to aid correctness, as with current MPI practice.6 Prototype SystemsA prototype system has been developed to ease the interconnection of MPI and PVM. Four separateissues have been addressed:1. mapping identi�ers or managing MPI and PVM IDs,7

2. start-up facilities and process management,3. MPI-style PVM message passing and collective operations, and4. improved security and performance with attribute locking.6.1 Mapping Identi�ersProcesses in an MPI application are identi�ed by referencing a tuple pair such as fprocess group,rankg or fcommunicator, rankg. PVM also has this capability when using the group library, in theform of fgroup name, instanceg.In the simplest case, where all the processes in an MPI application group have access to PVM,a single pair of calls can be used to register a process group with the current PVM group server.The functions are available in both C and Fortran bindings:info = pvmpi_register(char *group, MPI_Comm comm, int *options);info = pvmpi_leave(char *group);call pvmpifregister(group, comm, options)call pvmpifleave (group)Both functions are collective: all processes in the MPI communicator have to call them together.The pvmpi leave command is used to clean up MPI data structures and to leave the PVMsystem in an orderly way if required.Processes can register in multiple groups, although currently separate applications cannot regis-ter into a single group with this call. The register call takes each member of the context and makesit join a named PVM group so that its instance number within that group matches its MPI rank.Since any two MPI applications may be executing on di�erent systems using di�erent implemen-tations of MPI (or even di�erent instances of the same version), the communicator usually has nomeaning outside of any application callable library. The PVM group server, however, can be usedto resolve identity when the groups names are unique.Once the application has registered, an external process can now access any registered processby using that processes group name and instance via the library calls pvm gettid and pvm getinst.When the groups have been fully formed without any errors occurring, they are frozen and all theirdetails are cached locally so that there are very few system over-heads for accessing them using thegroup library.Figure 3 shows the previous example applications using the register group call, and �gure 4shows the new groups communicating using conventional PVM calls.Client-server interactions often require waiting for applications partners to start. To handle thissituation, an additional blocking call has been provided that waits until a group has completelyregistered before returning its size and caching its addresses locally:groupsize = pvmpi_waitfor (char* group);call pvmpifwaitfor (group) 8

MPI_COMM_WORLD
MPI_COMM_WORLD

0

1

1
0

2
PVMGS

PVM

Figure 3: Two separate MPI applications register their process groups by using pvmpi register().
0

1

1
0

2
PVMGS

PVM

Ocean Model

Air Model

Figure 4: The zeroth rank \Air Model" process sending a PVM message to the �rst rank \OceanModel" process with pvm send(pvm gettid(\Ocean Model",1), tag)This routine not only removes the need for a user to poll the group server, but also helpsprevent races caused by the dynamic nature of PVM groups [8]. If two applications are startedseparately, they may not have �xed sizes, and so they may not know when it was safe to startcommunicating with each other without additional handshaking. This routine eliminates the needfor such additional handshaking.6.2 Start-up Facilities and Process ManagementThe spawning of MPI jobs requires di�erent procedures depending upon the target system and theMPI implementation. The situation is complicated by the desire to avoid adding many spawn calls(the current intention of the MPI-2 forum). Instead, a number of di�erent resource managers andMPI implementation speci�c taskers have been developed. This work has been the impetus behinda simpli�cation of the current resource management hooks so that expansion of the PVM systemitself is more modular. 9

Three basic schemes are available:1. An application schemer is created, and the system forks the required version of MPIRUN tostart the MPI job.2. Taskers intercept the calls and modify either the arguments passed to the new processes orthe working environment.3. Current default: Processes are started as normal Unix tasks.The �rst method is being used on various MPP versions of PVM, such as for the SP2 when usingthe SP2MPI variate. In these cases the resource manage and taskers must work closely together toensure that the created groups of processes have the \correct" PVM parent ID. This method is alsoused for MPIF applications and for MPICH and LAM applications depending on circumstances.The second method is used for MPICH applications running under the ch p4 device on work-station clusters. This method currently alters the argument list passed to the processes. WhenMPI-2 eliminates the mandatory passing of fargc,argvg to MPI Init, this will be changed to alterthe environment as required.The third method is applicable to LAM processes when the user requests a single process perLAM/PVM node.These systems require the user to adhere to some super�cial constraints, such as placing MPIexecutables in user-con�gurable directories so that their nature can be determined from their loca-tion. The declaration of available nodes in the case of LAM5.X and MPICH is also required beforespawn time. Since LAM 6.0 can alter its virtual machine, this has to be polled at spawn time by aspecialized tasker running on one of its nodes.The spawn command has not altered, although when interfacing to a resource manager, it isallowed to be called with one of the following additional ags|PVMPI LAM or PVMPI MPICH|in place of the current spawn ag options. If a specialized tasker is used, spawning is identical tospawning on a MPP front-end or service node:pvm_spawn("MPI_APP",..,PvmTaskHost,"Host_in_MPI_system", N, ..)6.2.1 SP2 Process SpawningThe SP2 version of PVM that uses MPI for internal communications appeared initially not to requireany alteration. Unfortunately, when required to spawn N processes, it spawned an extra processto manage communication with the daemon, e�ectively allowing true nonblocking communicationbetween on and o� machine nodes, as shown in Figure 5 for a four-task application. In otherwords, MPI applications have one extra process that they cannot communicate with, because it isdedicated to relaying messages for the PVM system.The library also had other shortcomings in its ability to handle re-entrance of MPI Init. Inparticular, its default failure mode was pathological, and it did not use a private communicatorinternally, but instead used MPI Comm World. Two separate systems [7] are currently being eval-uated that resolve these problems:1. A modi�ed SP2MPI port that creates the required number of tasks, each of which individuallyopens a socket to the spawning PVM daemon for out of application communication. This10

Other PVM tasksPVMD

MPI_COMM_WORLD

appl.host

process

0 1

2 3

4Figure 5: SP2MPI PVM using an application host task to manage nonapplication message routingversion works for both PVMPI and conventional PVM applications and may replace thecurrently used method.2. An SP2 viewed as a cluster of RS/6000 workstations, but with the application spawnedas in the SP2MPI version using the IBM POE[11] called from a special tasker. The tasksindividually connect to their local host daemon, after an extra layer of handshaking thatcorrectly sets up their task data structures (including the parent task identity).6.3 MPI-style Message Passing and Collective OperationsUsing two di�erent styles of API for message passing as opposed to process control may in itselfcause di�culties for users, especially if they have never used PVM or the MPI bu�ered pack routinesbefore. Thus, some basic send and receive operations are provided in a similar form to the originalMPI bu�ered operations. For example, the routinespvmpi_send(void* buf, int count, MPI_Datatype dtype, int destination, int tag,char* group)pvmpi_recv(void* buf, int count, MPI_Datatype dtype, int destination, int tag,char* group)are used in the same way as the current MPI point-to-point operations except that a group nameis given instead of a communicator handle. They support basic continuous data types with moreadvanced derived data types (see the PVM CCL project [9]).The need for collective operations across communicators has been identi�ed by other researchgroups and has led to an experimental library, based upon MPICH, called MPIX (MPI eXten-sions) [17]. The library allows many of the current intracommunicator operations to work acrossintercommunicators such as All Gather and All to all.The current PVM group services, based upon the pvm bcast function, be used to link di�erentimplementations of MPI. Again, PVMPI operations to ease the use of groups can be created and arecurrently being investigated. One operation of particular interest is an intercommunicator sendrecvcall. This call assists the synchronization of two independent applications and allows them to11

exchange data in a convenient way that matches many domain decomposition models (see Figure6).
0

1

2

3
4

0

1

2

3

4
Ocean Model

Air Model

Figure 6: Passing boundary values between two separately initiated applications usingpvmpi sendrecv6.4 Improved Security and Performance with Attribute LockingPVM 3.4 [10] includes many enhancements such as contexts and a mailbox-style user-accessibledatabase. These features can be used to add a level of protection on a par with that of MPI.Thus, by enrolling in PVMPI, an MPI application can still be protected from rogue messages. Thesecond implementation of the PVMPI system uses some of the PVM 3.4 features to stores groupattributes in the mailbox. Attributes include group size, node architectures, context tag, and accesspermissions, which are set by using the options entry in the pvmpi register call. Once a process hasregisted under PVM 3.4, it is issued with a context for its group. External processes cannot accessdetails about that group, such as size or membership, unless it matches the permission criteria setduring the registration.The permission options for registration include the following:� PVMPI ANY: Any process can look up a groups details and attributes. This is the defaultfor the PVM 3.3 group services.� PVMPI SIBLIN: Any process that shares a common parent can access details. The numberof levels up the process tree searched can be varied.� PVMPI CHILD: Only this process's children can �nd details about it.� PVMPI PRIVATE: Access to process's identity and context for any external processes isdisallowed.Processes may change their access permission at any time, noting that this is a collective operationacross the entire group.Once a group has registered, its context is set and stored in the system mailbox. If a processattempts to communicate with these processes, it must obtain the context from the process itself,12

or it can use one of the PVMPI communication routines such as pvmpi send, which will look upand use the correct context if it is available. This arrangement enables processes to communicatewith each other without the user having to explicitly pass the context to other processes.An advantage of having �xed groups with known attributes is that PVM is able to choose thecorrect encoding scheme when message passing, thereby enhancing performance on homogeneoussystems automatically.7 ConclusionsThe PVMPI system is not just a solution to di�culties of static MPI-1 applications. Rather, it isa system that allows more exible control over MPI applications than is currently indicated by theMPI-2 forum.More important, it allows the user to construct sections of an application from di�erent MPIimplementations that match di�erent hardware systems. Thus, the user is not forced to run thewhole application upon a single system with a single implementation.In its most simplistic mode of operation, only two or three additional calls are required tofully interoperate entirely di�erent systems. Upgrading the PVMPI system to support new MPIimplementations requires only simple changes to current tasker and resource management processes.The intercommunication operations make using the PVMPI system more akin to the spirit ofthe original MPI system, especially when it uses contexts in PVM3.4.References[1] A. L. Beguelin, J. J. Dongarra, A. Geist, R. J. Manchek, and V. S. Sunderam. HeterogeneousNetwork Computing. Sixth SIAM Conference on Parallel Processing, 1993.[2] Greg Burns, Raja Daoud and James Vaigl. LAM: An Open Cluster Environment for MPI.Technical report, Ohio Supercomputer Center, Columbus, Ohio, 1994.[3] Henri Casanova, Jack Dongarra and Weicheng Jiang. The Performance of PVM on MPP Sys-tems. Department of Computer Science Technical Report CS-95-301. University of Tennesseeat Knoxville, Knoxville, TN. August 1995.[4] J. Casas, R. Konuru, S. Otto, R. Prouty, and J. Walpole. Adaptive Load Migration Systems forPVM. Supercomputing'94 Proceedings , pp. 390-399, IEEE Computer Society Press, 1994.[5] Fei-Chen Cheng. Unifying the MPI and PVM 3 Systems. Technical report, Department ofComputer Science, Mississippi State University, May 1994.[6] Nathan Doss, William Gropp, Ewing Lusk and Anthony Skjellum. A model implementation ofMPI. Technical report MCS-P393-1193, Mathematics and Computer Science Division, ArgonneNational Laboratory, Argonne, IL 60439, 1993.[7] Graham E. Fagg and Jack J. Dongarra. The Restructuring of SP2MPI PVM. Department ofComputer Science Technical Report CS-96-323. University of Tennessee at Knoxville, Knoxville,TN. Febuary 1996. 13

[8] G.E. Fagg, R.J. Loader, P.R. Minchinton and S.A. Williams. ImprovedGroup Services for PVM.Proceeding of 1995 PVM Users Group Meeting, Pittsburgh, pp.6, May 1995.[9] Graham E. Fagg, Roger J. Loader and Shirley A. Williams. Compiling for Groups. Proceedingof EuroPVM 95, pp. 77-82, Hermes, Paris, 1995.[10] G. Geist, J. Kohl, R. Manchek, and P. Papadopoulos. New Features of PVM 3.4 and Beyond.Proceeding of EuroPVM 95, pp. 1-10, Hermes, Paris, 1995.[11] IBM AIX Parallel Environment, Parallel Programming Reference, IBM, Kingston, New-York,September, 1993[12] R. Konuru, J. Casas, S. Otto, R. Prouty and J. Walpole. A User-Level Process Package forPVM. Scalable High Performance Computing Conference, pp. 48-55, IEEE Computer SocietyPress, 1994.[13] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. InternationalJournal of Supercomputer Applications, 8(3/4), 1994. Special issue on MPI.[14] Jim Pruyne and Miron Livny. \Providing Resource Management Services to Parallel Appli-cations" Proceedings of the Second Workshop on Environments and Tools for Parallel Scienti�cComputing, May 1994.[15] Jim Pruyne and Miron Livny. \Parallel Processing on Dynamic Resources with CARMI",Workshop on Job Scheduling Strategies for Parallel Processing, IPPS 95, April 25, 1995.[16] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O'Reilly & Associates, Inc.,Sebastopol, CA, 1992.[17] Anthony Skjellum, Nathan E. Doss and Kishore Viswanathan. Inter-communicator extensionsto MPI in the MPIX (MPI eXtension) Library. Department of Computer Science TechnicalReport. Mississippi State University, Mississippi State, pp. 18, August 1994.[18] Georg Stellner and JimPruyne. Resource Management and Checkpointing for PVM Proceedingof EuroPVM 95, pp. 130-136, Hermes, Paris, 1995.[19] Louise Turcotte. \A Survey of Software Environments for Exploiting Networked ComputingResources", MSSU-EIRS-ERC-93-2, Enginerring Research Center, Mississippi State University,Febryray 1993.
14

