
LAPACK Working Note 112:Practical Experience in the Dangers of HeterogeneousComputingL. S. Blackford�, A. Clearyy, J. Demmelz, I. Dhillonz, J. Dongarrax,S. Hammarling{, A. Petitety, H. Renz, K. Stanleyz, R. C. WhaleyyAbstractSpecial challenges exist in writing reliable numerical library software for heteroge-neous computing environments. Although a lot of software for distributed memoryparallel computers has been written, porting this software to a network of workstationsrequires careful consideration. The symptoms of heterogeneous computing failures canrange from erroneous results without warning to deadlock. Some of the problems arestraightforward to solve, but for others the solutions are not so obvious, or incur an un-acceptable overhead. Making software robust on heterogeneous systems often requiresadditional communication.This paper addresses the issue of writing reliable numerical software for networks ofheterogeneous computers. We describe and illustrate the problems encountered duringthe development of ScaLAPACK and the NAG Numerical PVM Library. Where possi-ble, we suggest solutions to avoid potential pitfalls, or if that is not possible, recommendthat the software is not used on heterogeneous networks.1 IntroductionThere are special challenges associated with writing reliable numerical software on net-works containing heterogeneous processors, that is processors which may do 
oating pointarithmetic di�erently. This includes not just machines with completely di�erent 
oatingpoint formats and semantics, such as Cray vector computers running Cray arithmetic versusworkstations running IEEE standard 
oating point arithmetic, but even supposedly iden-tical machines running with di�erent compilers, or even just di�erent compiler options orruntime environments.The basic problem occurs when making data dependent branches on di�erent processors.The 
ow of an algorithm is usually data dependent and so slight variations in the data maylead to di�erent processors executing completely di�erent sections of code.�(formerly L. S. Ostrouchov) University of Tennessee, Knoxville, USAyUniversity of Tennessee, Knoxville, USAzUniversity of California at Berkeley, USAxUniversity of Tennessee, Knoxville, and Oak Ridge National Laboratory, Oak Ridge, TN, USA{University of Tennessee, Knoxville, and Numerical Algorithms Group Ltd., Oxford, UK1



This paper represents the experience of the ScaLAPACK and NAG teams in developingnumerical software for distributed memory message-passing systems, and the awarenessthat the software being developed may not be as robust on heterogeneous systems as onhomogeneous systems. We brie
y describe the work of these teams in Section 2, and Section3 de�nes our use of the terms homogeneous and heterogeneous computing, and discussesthe considerations leading to the de�nitions.In Sections 4, 5 and 8 we look at three areas that require attention in developing soft-ware for heterogeneous networks: machine parameters, where we discuss what the valuesof machine parameters, such as machine precision should be; checking global argumentsand communicating 
oating point values; and algorithmic integrity, that is, how can weensure that algorithms perform correctly in a heterogeneous setting. The particular caseof communicating 
oating point values on IEEE machines is brie
y discussed in Section6. Some additional considerations arising from what we regard as poor arithmetic, rangingfrom lack of full IEEE arithmetic support to unnecessary over
ow in complex arithmetic,are discussed in Section 7.This report is an updated version of [5], which takes into account problems encounteredduring the preparation of Version 1.2 of ScaLAPACK [2].2 Motivation and BackgroundThe challenges of heterogeneous computing discussed in this paper came to light during thedevelopment of ScaLAPACK and the NAG Numerical PVM Library ([17]).ScaLAPACK is a library of high performance linear algebra routines for distributedmemory MIMD machines. It is a continuation of the LAPACK project, which has designedand produced an e�cient linear algebra library for workstations, vector supercomputers andshared memory parallel computers ([1]). Both libraries contain routines for the solution ofsystems of linear equations, linear least squares problems and eigenvalue problems. Thegoals of the LAPACK project, which continue into the ScaLAPACK project, include e�-ciency so that the computationally intensive routines execute as fast as possible; reliability,including the return of condition estimates and error bounds; portability across machines;
exibility so that users may construct new routines from well designed components; andease of use. Towards this last goal the ScaLAPACK software has been designed to look asmuch like the LAPACK software as possible. ScaLAPACK is naturally also concerned withscalability as the problem size and number of processors grow.Many of these goals have been attained by developing and promoting standards, espe-cially speci�cations for basic computational and communication routines. Thus LAPACKrelies on the BLAS ([16, 7, 6]), particularly the Level 2 and 3 BLAS for computationale�ciency, and ScaLAPACK relies upon the BLACS ([8]) for e�ciency of communicationand uses a set of parallel BLAS, the PBLAS ([3]), which themselves call the BLAS and theBLACS. LAPACK and ScaLAPACK will run on any machines for which the BLAS and theBLACS are available. A PVM ([9]) version of the BLACS has been available for some timeand the portability of the BLACS has recently been further increased by the developmentof a version that uses MPI ([18]).As the BLACS are perhaps not so widely known as the BLAS and LAPACK, we now givea brief description. The BLACS, which stands for Basic Linear Algebra Communication2



Subprograms, form a message passing library, speci�cally designed for dense linear algebra,in which the computational model consists of a one or two dimensional grid of processes,where each process stores matrices and vectors. The BLACS include synchronous send andreceive routines to send a matrix or submatrix from one process to another, to broadcastsubmatrices to many processes, or to compute global reductions such as sums, maxima andminima. There are also routines to set up, change, or query the process grid. The BLACSpermit a process to be a member of more than one, possibly overlapping, grids, each onelabeled by a context. Some message passing systems also include the idea of a context; inMPI it is termed a communicator. See [8] and [18] for further details.The NAG Numerical PVM Library is a library of numerical routines, also for distributedmemory MIMD machines, that contains routines for dense and sparse linear algebra, in-cluding ScaLAPACK routines, quadrature, optimization, random number generation andvarious utility routines for operations such as data distribution and error handling. Thislibrary owes much to the ScaLAPACK development, uses essentially the same model fordistributed memory computing as ScaLAPACK and was developed with the same goalsin mind ([11]). Since the development of an MPI version the NAG Library is now knowngenerically as the NAG Parallel Library.Both ScaLAPACK and the NAGNumerical PVM Library use the BLACS computationalmodel and utilize the BLACS context. In addition they both use an SPMD programmingmodel.ScaLAPACK and the NAG Numerical PVM Library were developed with heterogeneousenvironments in mind, as well as standard homogeneous machines. But during developmentit was realized that we could not guarantee the safe behavior of all our routines in a het-erogeneous environment and so, for the time being, both libraries are only fully supportedon homogeneous machines. ScaLAPACK, though, is tested on networks of IEEE machinesand is believed to work correctly in such environments, and it is intended to be able to fullysupport other heterogeneous environments in the near future. Any known heterogeneousfailures are documented in the �le errata.scalapack on Netlib1 . It is intended that theNAG Parallel Libraries should also support heterogeneous environments in the future.In this report we concentrate primarily on the ScaLAPACK experience.3 Homogeneous and Heterogeneous ComputingThe de�nition of a heterogeneous computing environment depends to some extent on theapplication. Here we attempt a de�nition that is relevant to numerical software. The threemain issues determining the classi�cation are the hardware, the communication layer, andthe software (operating system, compiler, compiler options). Any di�erences in these areascan potentially a�ect the behavior of the application. Speci�cally, the following conditionsmust be satis�ed before a system can be considered homogeneous:1. The hardware of each processor guarantees the same storage representation and thesame same results for operations on 
oating point numbers.1http://www.netlib.org/scalapack/index.html3



2. If a 
oating point number is communicated between processors, the communicationlayer guarantees the exact transmittal of the 
oating point value.3. The software (operating system, compiler, compiler options) on each processor alsoguarantees the same storage representation and the same same results for operationson 
oating point numbers.We regard a homogeneous machine as one which satis�es condition (1.); a homo-geneous network as a collection of homogeneous machines which additionally satis�escondition (2.); and �nally, a homogeneous computing environment as a homogeneousnetwork which satis�es condition (3.). We can then make the obvious de�nition that a het-erogeneous computing environment is one that is not homogeneous. The requirementsfor a homogeneous computing environment are quite stringent and are frequently not metin networks of workstations, or PCs, even when each computer in the network is the samemodel.Some areas of distinction are quite obvious, such as a di�erence in the architecture oftwo machines, or the type of communication layer implemented. Communication issuesare discussed in more detail in Section 6. Some hardware and software issues, however,can potentially a�ect the behavior of the application and be di�cult to diagnose. Forexample, the determination of machine parameters such as machine precision, over
ow,and under
ow; or the implementation of complex arithmetic such as complex division; orthe handling of NaNs and subnormal numbers could di�er. Some of these subtleties mayonly become apparent when the arithmetic operations occur on the edge of the range ofrepresentable numbers. Section 4 discusses arithmetic issues in more detail.The di�cult question that remains unanswered for developers of library software is:when can we guarantee that heterogeneous computing is safe? There is also the questionof just how much additional programming e�ort we should expend to gain the additionalrobustness. Unless we can incorporate a reliable test for homogeneity, we are also in dangerof imposing a considerable additional performance penalty on homogeneous systems in orderto perform safely on heterogeneous systems.To illustrate the potential problems consider the iterative solution of a system of linearequations where the stopping criterion depends upon the value of some function, f , of therelative machine precision2, �. The test for convergence might well include a test of theform: If kerk2=kxrk2 < f(�) then convergedIn a heterogeneous setting the value of f may be di�erent on di�erent processors and erand xr may depend upon data of di�erent accuracies, and thus one or more processes mayconverge in a fewer number of iterations. Indeed the stopping criterion used by the mostaccurate processor may never be satis�ed if it depends on data computed less accurately byother processors. If the code contains communication between processors within an itera-tion, it may not complete if one processor converges before the others. In a heterogeneous2A common de�nition of the relative machine precision, or unit roundo�, is the smallest positive 
oatingpoint value, �, such that 
(1+ �) > 1, where 
(x) is the 
oating point representation of x. See [12, Chapter2] for further details. 4



environment, the only way to guarantee termination is to have one processor make theconvergence decision and broadcast that decision.This is a strategy we shall see again in later sections.4 Machine ParametersMachine parameters such as the relative machine precision, the under
ow and over
owthresholds, and the smallest value which can be safely reciprocated (which in LAPACK iscalled sfmin), are frequently used in numerical linear algebra computations, as well as inmany other numerical computations. Without due care, variations in these values betweenprocessors can cause problems, such as those mentioned above.Many such problems can be eliminated by using the largest machine precision amongall participating processors. In LAPACK routine DLAMCH returns the (double precision)machine precision (as well as other machine parameters). In ScaLAPACK this is replacedby PDLAMCH which returns the largest value over all the processors, replacing the unipro-cessor value returned by DLAMCH. Similarly, one should use the smallest over
ow thresholdand largest under
ow threshold over the processors being used. The ScaLAPACK routinePDLAMCH runs the LAPACK routine DLAMCH on each process in the context and communi-cates the relevant maximum or minimum value. We refer to these machine parameters asthe multiprocessor machine parameters. DLAMCH can also return the base, b, whichnowadays is invariably b = 2, but what we would do for PDLAMCH if we ever had a mixtureof binary and decimal machines in a network we leave as an open question!Note that since PDLAMCH requires communication to each process in the context, it su�ersfrom the weakness that it cannot be called by a subset of the processes (as might for examplehappen when a conditional statement such as an IF statement is being executed), becauseprocesses will be waiting for a communication which will never take place. There are manyexamples in ScaLAPACK codes, however, where only a subset of nodes (for instance onecolumn or one row of the process grid) is performing a given computation, such as pivotselection. ScaLAPACK has to avoid calling PDLAMCH from such computations. Section 8contains a speci�c example of this case.For this reason, it is expected that the next release of the BLACS will support cachingbased on the BLACS context. We will then be able to perform the communication just oncefor each context and cache the values on the context. Subsequent PDLAMCH calls within thecontext will then access strictly local data, so will be more e�cient, and thus may be safelycalled from code performing computations on grid subsets.5 Global Arguments and Floating Point ValuesIn a homogeneous environment we think of a global variable as having the same value oneach process, but of course this may not be true of 
oating point values in a heterogeneousenvironment.Where possible, the high level routines in the ScaLAPACK and NAG Libraries checkarguments supplied by users for their validity in order to aid users and provide as muchreliability as possibility. In particular, global arguments are checked. When these global5



arguments are 
oating point values they may of course, for the reasons previously discussed,have di�erent values on di�erent processors.This raises the question of how, and even whether, such arguments should be checked,and what action should be taken when a failure occurs. If we compare the values, theymay not be the same on each process, so we need to allow a tolerance based upon themultiprocessor machine precision. Alternatively, we can check a global argument on justone process and then, if the value is valid, broadcast that value to all the other processes.Of course this alternative approach has extra overhead, but it may be the most numericallysound solution, since the library routine has algorithmic control, and puts slightly lessburden on the user.Similar issues occur whenever we communicate a 
oating point value from one processorto another. Unless we have special knowledge, and one such case will be discussed in thenext section, we should not assume that the target processor will have exactly the samevalue as the sending processor and we must write the code accordingly.6 Communicating Floating Point Values on IEEE MachinesThe IEEE standard for binary 
oating point arithmetic ([13]) speci�es how machines con-forming to the standard should represent 
oating point values. We refer to machines con-forming to this standard as IEEE machines3. Thus, when we communicate 
oating pointnumbers between IEEE machines we might hope that each processor has the same value.This is a reasonable hope and will often be realized.For example, XDR (External Data Representation, [19]) uses the IEEE representationfor 
oating point numbers and so a message passing system that uses XDR will communicate
oating point numbers without change4. PVM is an example of a system that uses XDR.MPI suggests the use of XDR, but does not mandate its use ([18, Section 2.3.3]). Unlesswe have additional information about the implementation we cannot assume that 
oatingpoint numbers will be communicated without change on IEEE machines when using MPI.Note that there is also an IEEE standard concerned with standardizing data formats toaid data conversion between processors ([15]).7 Considerations Due to Poor ArithmeticAs we expand the ScaLAPACK test suite to encompass more rigorous testing, particularlyfor 
oating point values close to the edge of representable numbers (as is present in theLAPACK test suite), we are reminded of additional dangers which must be avoided in
oating point arithmetic. For example, it is a sad re
ection that some compilers still donot implement complex arithmetic carefully. In particular, unscaled complex division stilloccurs on certain architectures, leading to unnecessary over
ow5. To handle this di�cultyScaLAPACK, as LAPACK, restricts the range of representable numbers by a call to rou-tine PDLABAD (in double precision), the equivalent of the LAPACK routine DLABAD, which, if3It should be noted that there is also a radix independent standard ([14]).4It is not clear whether or not this can be assumed for subnormal (denormalized) numbers.5At the time of testing ScaLAPACK version 1.2, the HP9000 exhibited this behavior6



desired, takes the square root of the smallest and largest representable numbers for the com-putation to protect from unnecessary under
ow or over
ow. PDLABAD calls DLABAD locallyon each process and then communicates the minimum and maximum value respectively.Arguably we should have separate routines for real and complex arithmetic, but since wehope that the need for DLABAD will eventually disappear we have so far resisted taking thatstep.This is particularly irritating if one machine in a network is causing us to impose un-necessary restrictions on all the machines in the network, but without this, catastrophicresults can occur during computations near the over
ow or under
ow thresholds.Another problem that we have encountered during testing is in the way that subnormal(denormalized) numbers are handled on certain (near) IEEE architectures. By default,some architectures 
ush subnormal numbers to zero6. Thus, if the computation involvesnumbers near under
ow and a subnormal number is communicated to such a machine, thecomputational results may be invalid and the subsequent behavior unpredictable. Oftensuch machines have a compiler switch to allow the handling of subnormal numbers, but itcan be non-obvious and we cannot guarantee that users will use such a switch.This behavior occurred during the heterogeneous testing of the linear least squaresroutines when the input test matrix was a full-rank matrix scaled near under
ow. Duringthe course of the computation a subnormal number was communicated, this value wasunrecognized on receipt, and a 
oating point exception was 
agged. The execution on theprocessor was killed, subsequently causing the execution on the other processors to hang. Aswe expand the test suite we expect to discover such behavior in other parts of ScaLAPACK,since we do not believe that there was anything special about the least squares routines.A solution would be to replace subnormal numbers either with zero, or with the nearestnormal number, but we are somewhat reluctant to implement this within ScaLAPACK,since this does not seem to be the right software level at which to do this.A simple example program to illustrate this problem is given in Appendix A.8 Algorithmic IntegrityThe suggestions we have made so far certainly do not solve all of the problems. We are stillleft with major concerns for problems associated with varying 
oating point representationsand arithmetic operations between di�erent processors, di�erent compilers and di�erentcompiler options. We have given one example at the end of Section 3 and we now illustratethe di�culties with three further examples from ScaLAPACK, the second example givingrather more severe di�culties than the �rst and third.Many routines in LAPACK and hence also in ScaLAPACK, scale vectors and matrices.The scaling is done to equilibrate or balance a matrix in order to improve its condition, orto avoid harmful under
ow, or over
ow, or even to improve accuracy by scaling away fromsubnormal numbers. When scaling occurs we naturally have to ensure that all processescontaining elements of the vector or matrix to be scaled, take part in the scaling. Considerthe case of a four element vectorxT = � x1 x2 x3 x4 �6The DEC Alpha, at the time of writing, is an example.7



distributed over two processors, with the following test for scaling:if kxk2 < � then x �xAs illustrated below, if we let each processor make the decision independently then we riskthe danger of one processor scaling, while the other does not. x1x2 !? �x1�x2 !  x3x4 !? x3x4 !If this situation occurred the computation would now proceed with the meaninglessvectorxT = � �x1 �x2 x3 x4 � :One way to ensure correct computation is to put one process in control of whether or notscaling should take place, and for that process to communicate the decision to the otherprocesses. Having a controlling process is a common way to solve such problems onheterogeneous networks.An example of a routine that scales to improve accuracy is the LAPACK routine DLARFG,which computes an elementary re
ector (Householder transformation matrix) H such thatHx = �e1;where � is a scalar, x is an n element vector and e1 is the �rst column of the unit matrix.H is represented in the formH = I � �vvT ;where � is a scalar and v is an n element vector. Since H is orthogonal we see thatj�j = kxk2:If j�j is very small (subnormal or close to being subnormal), DLARFG scales x and recomputeskxk2. This computation is at the heart of the LAPACK QR, and other, factorizations (seefor example [10]).In the case of the equivalent ScaLAPACK routine PDLARFG, x will typically be dis-tributed over several processors, each of which participates in the computation of kxk2 and,if necessary, scales its portion of the vector x and recomputes kxk2. From the previousdiscussion we can see that we clearly need to take care here, or else, in close cases, some8



processors may attempt to recompute kxk2, while others do not, leading to completely er-roneous results, or even deadlock. This care will be exercised when ScaLAPACK is ableto call the version of the BLACS that support caching, as discussed at the end of Section4. The hope is that this will occur for Version 2.0 of ScaLAPACK. We could of coursesolve the problem now by using the idea mentioned above of a controlling process, but thiswould involve a rather heavy communication burden, and we prefer to wait until we can usethe more e�cient solution based upon the BLACS. Although failure is very unlikely andindeed we have not yet been able to �nd an example that fails without arti�cially alteringthe PDLARFG code, the possibility of failure exists.Whilst we could not �nd an example that failed without altering the code, we wereable to experimentally simulate such a heterogeneous failure, using the current version ofScaLAPACK7, by performing the QR factorization of a 6 by 6 matrix A such thatA = �0B@ 1 : : : 1... ...1 : : : 1 1CA ; � smallWe took � = sfmin, which is � 10�38 on an IEEE machine. The value of sfmin is used inPDLARFG to determine whether or not to scale the vector, and we arti�cially adjusted thevalue so that sfmin  2 � sfmin on one of the processes involved in the scaling decision.As expected, the execution of the factorization hung.As the second, and somewhat harder problem consider the method of bisection for �nd-ing the eigenvalues of symmetric matrices performed by the ScaLAPACK routine PDSYEVX.In this algorithm, the real axis is broken into disjoint intervals to be searched by di�erentprocesses for the eigenvalues contained in each interval. Disjoint intervals are searched inparallel. The algorithm depends on a function, say count(a,b), that counts the numberof eigenvalues in the half open interval [a, b ). Using count, intervals can be subdividedinto smaller intervals containing eigenvalues until the intervals are narrow enough to declarethe eigenvalues they contain as being found. The problem here is that two processors maynot agree on the boundary between their intervals. This could result in multiple copies ofeigenvalues if intervals overlap, or missing eigenvalues if there are gaps between intervals.Furthermore, the count function may count di�erently on di�erent processors, so an inter-val [a, b ) may be considered to contain 1 eigenvalue by processor A, but 0 eigenvalues byprocessor B, which has been given the interval by processor A during load balancing. Thiscan happen even if processors A and B are identical in hardware terms, but if the compilerson each one generate slightly di�erent code sequences for count. In this example we havenot yet decided what to do about all these problems, so we currently only guarantee correct-ness of PDSYEVX for networks of processors with identical 
oating point formats (but slightlydi�erent 
oating point operations turn out to be acceptable). See [4] for further discussion.Assigning the work by index rather than by range and sorting all the eigenvalues at theend may give the desired result with modest overhead. Of course, if 
oating point formatsdi�er across processors, sorting is a problem in itself. This requires further investigation.The symmetric eigensolvers, PDSYEVX and PZHEEVX, may also have trouble on heteroge-neous networks when a subset of eigenvalues is chosen by value (i.e. RANGE='V') and one7Version 1.2 9



of the limits of that range (VL or VU) is within a couple of units in the last place (ulps) ofan actual eigenvalue. The two processors may then disagree on the number of eigenvaluesspeci�ed by the range VL and VU and the code breaks with each process returning INFO 6= 0(which is the LAPACK and ScaLAPACK failure indicator). This situation can happenwhen running the test code and should again be corrected in the next release. In every casethat we have seen, the answer is correct despite the spurious error message. This is not aproblem on homogeneous systems.The third example is based upon the idea that some algorithms can perform redundantwork in order to gain parallelism. While redundant work on di�erent processors is intendedto yield identical results, this may not be the case in a heterogeneous environment. Forinstance, one approach for parallelizing the symmetric eigenproblem is to perform the tridi-agonal QR algorithm to reduce the tridiagonal matrix to diagonal form redundantly on allprocessors, save the plane rotations, and then accumulate the resulting Givens rotations inparallel into the relevant columns of the unit matrix. This results in O(n2) redundant work,but O(n3) parallel work, and requires no communication. Since the QR algorithm is not ingeneral forward stable, slight di�erences in the underlying arithmetic can lead to completelydi�erent rotations and hence the danger of obtaining quite inconsistent eigenvectors. Thisproblem can be solved by having a controlling process that runs the QR algorithm andthen broadcasts the plane rotations to the other processes, but the communication cost issubstantial: O(n2).9 Closing RemarksWe have tried to illustrate some of the potential di�culties concerned with 
oating pointcomputations on heterogeneous networks. Some of these di�culties are straightforward toaddress, while others require considerably more thought. All of them require some additionallevel of defensive programming to ensure the usual standards of reliability that users havecome to expect from packages such as LAPACK and the NAG Libraries.We have suggested reasonably straightforward solutions to the problems associated with
oating point machine parameters and global values, and have suggested the use of a con-trolling process to solve some of the di�culties of algorithmic integrity. This can probablybe used to solve most of these problems, but in some cases at the expense of considerableadditional overhead, usually in terms of additional communication, which is also imposedon a homogeneous network unless we have separate code for the homogeneous case. Unlesswe can devise a satisfactory test for homogeneity and hence have separate paths within thecode, separate code would defeat the aim of portability.A topic that we have not discussed is that of the additional testing necessary to givecon�dence in heterogeneous environments. The testing strategies that are needed are similarto those already employed in reputable software packages such as LAPACK, but it may bevery hard to produce actual test examples that would detect incorrect implementations ofthe algorithms because, as we have seen, the failures are likely to be very sensitive to thecomputing environment, and in addition may be non-deterministic.The LAPACK and ScaLAPACK software is available from Netlib8, as is the documenta-8http://www.netlib.org/ 10



tion and the LAPACKWorking Notes. A number of the other references in the bibliographycan also be found via Netlib, particularly [1], [9] and [18].10 AcknowledgmentsWe wish to thank all of our ScaLAPACK and NAG colleagues for a number of usefuldiscussions on heterogeneous computing and their valuable input to this paper.Appendix A { Example ProgramThe following code is intended to illustrate possible failure when a processor receives asubnormal number, but may not itself (by default) handle such numbers.The example constructs a one by two grid with process identi�ers (0,0) and (0,1), andassumes that process (0,0) is running on a processor that generates IEEE subnormal num-bers. For (possible) failure to occur process (0,1) should be running on a processor thatdoes not support subnormal numbers.We have observed failure when (0,0) is running on a Sun4 (which handles subnormalnumbers correctly), and process (0,1) is running on a DEC Alpha under Unix, which bydefault 
ushes subnormal numbers to zero. (The non-default compiler 
ag -fpe1 will trapto software emulation.)The program utilizes the BLACS. See [8] for further details on the BLACS.PROGRAM SUBNRM** .. Local Scalars ..INTEGER IAM, ICNTXT, MYCOL, MYROW, NPCOL, NPROCS, NPROWREAL TWO* .. Local Arrays ..REAL X( 1 )* .. External Subroutines ..EXTERNAL BLACS_EXIT, BLACS_GET, BLACS_GRIDINFO,$ BLACS_GRIDINIT, BLACS_PINFO, BLACS_SETUP,$ SGERV2D, SGESD2D* ..** Determine my process number and the number of processes in* machine** .. Executable Statements ..CALL BLACS_PINFO( IAM, NPROCS )** If underlying system needs additional setup, do it now* IF( NPROCS.LT.1 ) THENIF( IAM.EQ.0 ) THEN 11



NPROCS = 2END IFCALL BLACS_SETUP( IAM, NPROCS )END IF** Set up a 1 by 2 process grid* NPROW = 1NPCOL = 2** Get default system context, and initialize the grid* CALL BLACS_GET( 0, 0, ICNTXT )CALL BLACS_GRIDINIT( ICNTXT, 'Row-major', NPROW, NPCOL )CALL BLACS_GRIDINFO( ICNTXT, NPROW, NPCOL, MYROW, MYCOL )** If I am in the grid perform some computation* IF( MYROW.GE.0 .AND. MYROW.LT.NPROW ) THEN* TWO = 2.0E+0IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THENX( 1 ) = 7.52316390E-37X( 1 ) = X( 1 ) / 128.0E+0* X(1) = 0.58774718E-38, which is subnormal on IEEE machines** This call to SGESD2D sends X(1) to process (0,1)CALL SGESD2D( ICNTXT, 1, 1, X, 1, 0, 1 )WRITE( *, FMT = '(A,E16.8)' )'X00 = ', X( 1 )X( 1 ) = X( 1 ) / TWOWRITE( *, FMT = '(A,E16.8)' )'X00 / 2 = ', X( 1 )* ELSE IF( MYROW.EQ.0 .AND. MYCOL.EQ.1 ) THEN** This call to SGERV2D receives X(1) from process (0,0)CALL SGERV2D( ICNTXT, 1, 1, X, 1, 0, 0 )WRITE( *, FMT = '(A,E16.8)' )'X01 = ', X( 1 )X( 1 ) = X( 1 ) / TWOWRITE( *, FMT = '(A,E16.8)' )'X01 / 2 = ', X( 1 )* END IFEND IF** Exit the BLACS cleanly* 12



CALL BLACS_EXIT( 0 )* STOPENDReferences[1] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Green-baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen. LAPACKUsers' Guide. SIAM, Philadelphia, PA, USA, 2nd edition, 1995. (Also available inJapanese, published by Maruzen, Tokyo, translated by Dr Oguni).[2] J. Choi, J. Demmel, I. Dhillon, J. J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley,D. W. Walker, and R. C. Whaley. ScaLAPACK: A portable linear algebra library fordistributed memory computers - design issues and performance. In J. J. Dongarra,K. Masden, and J. Wa�sniewski, editors, Applied Parallel Computing, pages 95{106.Springer-Verlag, Berlin, Germany, 1995. (Proceedings of the Second InternationalWorkshop, PARA '95, Lyngby, Denmark. See also LAPACK Working Note No.95).[3] J. Choi, J. J. Dongarra, S. Ostrouchov, A. Petitet, D. W. Walker, and R. C. Whaley.A proposal for a set of parallel basic linear algebra subprograms. In J. J. Dongarra,K. Masden, and J. Wa�sniewski, editors, Applied Parallel Computing, pages 107{114.Springer-Verlag, Berlin, Germany, 1995. (Proceedings of the Second InternationalWorkshop, PARA '95, Lyngby, Denmark. See also LAPACK Working Note No.100).[4] J. Demmel, I. Dhillon, and H. Ren. On the correctness of parallel bisection in 
oatingpoint. ETNA, 3:116{149, 1995. (See also LAPACK Working Note No.70).[5] J. Demmel, J. J. Dongarra, S. Hammarling, S. Ostrouchov, and K. Stanley. The dangersof heterogeneous network computing: Heterogenous networks considered harmful. InProceedings Heterogeneous Computing Workshop '96, pages 64{71. IEEE ComputerSociety Press, Los Alamitos, CA, USA, 1996.[6] J. J. Dongarra, J. Du Croz, I. S. Du�, and S. Hammarling. A set of Level 3 BasicLinear Algebra Subprograms. ACM Trans. Math. Software, 16:1{28, 1990. (Algorithm679).[7] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set ofFORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Software, 14:1{32,399, 1988. (Algorithm 656).[8] J. J. Dongarra and R. C.Whaley. A users' guide to the BLACS v1.0. LAPACKWorkingNote No.94. Technical Report CS-95-281, Department of Computer Science, Universityof Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA, 1995.[9] A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.PVM: Parallel Virtual Machine. A Users' Guide and Tutorial for Networked ParallelComputing. MIT Press, Cambridge, MA, USA, 1994.13



[10] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins UniversityPress, Baltimore, MD, USA, 2nd edition, 1989.[11] S. Hammarling. Parallel library work at NAG. In J. J. Dongarra and B. Tourancheau,editors, Environments and Tools for Parallel Scienti�c Computing, pages 172{182.SIAM, Philadelphia, PA, USA, 1994. (Proceedings of the Second Workshop, Townsend,TN, USA).[12] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,PA, USA, 1996.[13] IEEE. ANSI/IEEE Standard for Binary Floating Point Arithmetic: Std 754-1985.IEEE Press, New York, NY, USA, 1985.[14] IEEE. ANSI/IEEE Standard for Radix Independent Floating Point Arithmetic: Std854-1987. IEEE Press, New York, NY, USA, 1987.[15] IEEE. IEEE Standard for Shared-Data Formats Optimized for Scalable Coherent In-terface (SCI) Processors: Std 1596.5-1993. IEEE Press, New York, NY, USA, 1994.[16] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear AlgebraSubprograms for FORTRAN usage. ACM Trans. Math. Software, 5:308{323, 1979.[17] K. McDonald. The NAG numerical PVM library. In J. J. Dongarra, K. Masden, andJ. Wa�sniewski, editors, Applied Parallel Computing, pages 419{428. Springer-Verlag,Berlin, Germany, 1995. (Proceedings of the Second International Workshop, PARA'95, Lyngby, Denmark).[18] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. J. Dongarra. MPI: TheComplete Reference. MIT Press, Cambridge, MA, USA, 1996.[19] SunSoft. The XDR Protocol Speci�cation. Appendix A of \Network Interfaces Pro-grammer's Guide". SunSoft, 1993.
14


