Memory Exclusion: Optimizing the Performance
of Checkpointing Systems

James S. Plank
Yuqun Chen i
Kai Li §
Micah Beck
Gerry Kingsley

1 Department of Computer Science
University of Tennessee
Knoxville, TN 37996

[plank,beck,kingsleyl@cs.utk.edu

1 Department of Computer Science
Princeton University
35 Olden Street
Princeton, NJ 08544

[yuqun,li]@cs.princeton.edu

Technical Report UT-CS-96-335
University of Tennessee

August, 1996

Submatted for publication

See http://www.cs.utk.edu/ plank/plank/papers/CS-96-335.html for up to date information

Memory Exclusion: Optimizing the Performance of Checkpointing

Systems

James S. Plank* Yuqun Chen Kai Li Micah Beck Gerry Kingsley

Technical Report UT-CS-96-335
University of Tennessee

August, 1996

This paper has been submitted for publication. Please see http://www.cs.utk.edu/ plank/plank/papers/CS-96-335.html for up to date infor-

mation concerning the publication status.
Abstract

Checkpointing systems are a convenient way for users to make thewr programs fault-tolerant by intermattently
saving program state to disk, and restoring that state following a failure. The main concern with checkpointing is
the overhead that it adds to running time of the program. This paper describes memory exclusion, an important
class of optimizations that reduce the overhead of checkpointing. These optimizations have been implemented
in two checkpointers: libckpt, which works on Uniz-based workstations, and libNXckpt, which works on the
Intel Paragon. Both checkpointers are publicly available at no cost. We have checkpointed various long-running
applications with both checkpointers and have explored the performance improvements that may be gained through
memory exclusion. Results from these experiments are presented and show that the tmprovements are significant.
We conclude that all checkpointing systems should include primitives allowing programmers and users to gain the

full benefits of memory exclusion.

1 Introduction

Checkpointing has become an increasingly important tool for uniprocessors, multiprocessors and distributed
systems. It provides the backbone for fault-tolerant systems, migration systems, load-balancing systems, play-

back debuggers and many other functionalities [WHV*95]. Currently, the major concern with checkpointing is

*plank@cs.utk.edu. This material is based upon work supported by the National Science Foundation under grants CCR-9409496
and MIP-9420653, by the ORAU Junior Faculty Enhancement Award, and by DARPA under grant NO0014-95-1-1144 and contract
DABT63-94-C-0049.

overhead [Vai95], defined as the amount of time added to a program due to checkpointing. Experimental research
has shown that the main source of overhead in all checkpointing systems is the time required to save a checkpoint
to stable storage, and larger programming platforms with more processing elements and more memory simply
exacerbate the problem [EJZ92, P1.94].

Many techniques have been studied to reduce the overhead of saving checkpoints. These can be divided into
two classes. Latency hiding techniques attempt to reduce or hide the overhead of disk writes, and size reduction
techniques attempt to minimize the amount of data that gets stored per checkpoint. An important concept in
size reduction is memory exclusion. With memory exclusion, regions of a process’s memory are excluded from a
checkpoint because they are either read-only, meaning their values have not changed since the previous checkpoint,
or dead, meaning their values are not necessary for the successful completion of the program.

The challenge with memory exclusion is to identify the dead and read-only regions of memory with low
overhead. This paper describes various techniques, both old and new, for performing this identification. Also
included are performance results of implementing these techniques on a uniprocessor checkpointer, libckpt,
running on a Sparc-2 workstation, and on a multiprocessor checkpointer, libNXckpt, running on the Intel
Paragon. The conclusion that we draw from these implementations is that memory exclusion can often provide
drastic improvements in the performance of checkpointing. These improvements are significant enough that all
implementations of checkpointing should include some facilities that enable the user to gain the full benefits of

memory exclusion.

2 Overview of Checkpointing

The goal of checkpointing is to establish a recovery point in the execution of a program, and to save enough
state to restore the program to this recovery point in the event of a failure. A checkpoint of a single process is
usually composed of the process’s address space and the state of its registers. To recover from a checkpoint, a
new process is spawned which initializes its address space from the checkpoint file and then resets its registers.
This resetting of the registers (the last being the program counter) effects a restarting of the failed program.

Checkpoints of multiprocessors and distributed systems require that the processors store a global system state
to stable storage. This state is composed of checkpoints for each processor in the system plus information
describing the causal relationship between the checkpoints.

A checkpointer is a piece of code that is compiled or linked with an application and directs its checkpointing
and recovery. Checkpointers strive to be as transparent as possible. In other words, the programmer should not
have to tailor his or her code to the checkpointer. A simple recompilation or relinking plus the setting of runtime
variables is all that is necessary.

For fault-tolerance, the checkpointer periodically checkpoints the application program. Upon failure, the

program is restored from its most recent checkpoint, thus reducing the amount of lost work.

For further details on checkpointing, the reader is referred to papers by Tannenbaum [TL95] (for uniprocessors)
and Elnozahy [EJW96] (for multi-processor systems). Throughout this paper, we refer to libckpt, a public-domain
checkpointer for checkpointing programs on Unix-based workstations, and libNXckpt, an extension of libckpt
for the Intel Paragon. Both libckpt and libNXckpt are available to the public at no cost. For more detail on
libckpt, the reader is referred the paper by Plank et al [PBKL95]. For more information on libNXckpt, the

reader is referred to the URL http://www.cs.princeton.edu/~yuqun/checkpoint/1ibNXckpt.html.

3 Overview of Memory Exclusion

Memory exclusion can be motivated best by an example. Consider the C program in Figure 1. Suppose the
arrays a and b are large. If a checkpoint is taken at the program location C1, then the contents of of array b do
not need to be stored because they are never used. Instead, they are computed from array a in the loop. Since
array b is large, excluding it from C1 will constitute a significant savings.

If checkpoints are taken at locations C1 and C2, then the contents of array a do not need to be stored in
checkpoint €2 because its values have not changed since checkpoint C1. They can instead be retrieved from

checkpoint C1.

voi d doubl e_a(double a[], double b[], int n)
{

int i;

/* CL */

for (i =0; i <n; i++) b[i] =2.0 * a[i];
[* C2 */

return;

Figure 1: Memory exclusion example program

To generalize the above example, there are two distinct ways in which memory can be excluded from check-

points:

Dead memory: If a location in memory is dead at the time of a checkpoint, then it does not have to be included
in the checkpoint. A dead memory location is one whose value is never read following the checkpoint. Array

b at checkpoint C1 above is an example of dead memory.

Read-only memory: If a location in memory has not been modified since the most recent checkpoint, then as
long as its value is retained on disk, it does not have to be included in the current checkpoint. Array a at

checkpoint €2 above 1s an example of read-only memory.

As will be shown in the later sections, there are many times when these two types of memory exclusion can

reduce the size of checkpoint files, and therefore the overhead of checkpointing, significantly.

4 Transparent Techniques for Memory Exclusion

There are two challenges for optimizing the performance of checkpointing with memory exclusion. These are
identifying the locations of memory to exclude, and maximizing the amount of memory excluded per checkpoint.
There are two transparent techniques that have used to implement memory exclusion in checkpointing systems.

They are outlined below:
4.1 Excluding the Code Segment and Using the Stack Pointer

Checkpoints store the address space of a processor. Typically these address spaces have four segments: exe-
cutable code, global data, heap and stack. In most computer systems, the code segment is initialized by loading
the program into memory. Once loaded, it is never modified. Thus, it is read-only for the lifetime of the compu-
tation and does not have to be stored in any checkpoints. Upon recovery, it can be reloaded from the executable
file.

The stack segment can also benefit from memory exclusion. When taking a checkpoint, most checkpointing
systems do not save the memory addresses directly below the stack pointer (this is assuming that the stack
grows downward), because their current values will never be used. This is a primitive example of dead memory
exclusion. Sometimes the savings from this technique can be significant if the checkpoints are taken in the right
places [LSF94].

Both of these examples of memory exclusion are standard. They are employed by all known implementations

of transparent checkpointing.
4.2 Incremental Checkpointing

Incremental checkpointing [FB89, WM89] uses virtual memory protection hardware to perform page-based
read-only memory exclusion. While the program is executing, the checkpointer maintains a list of all pages that
have been modified since the most recent checkpoint. This list can be maintained with user-level virtual memory
primitives if the operating system supports them. For example, on most Unix systems, one can use mprotect ()
to set all pages to be read-only following the checkpoint, and then add a page to the changed-page list upon
catching the SEGV signal. The page is also set to be read-write at this time. When it is time to checkpoint, only
the pages on this list are stored, since the remaining pages are composed solely of read-only variables.

Incremental checkpointing can result in a significant reduction in checkpoint size and overhead if the program

being checkpointed shows good locality of modification [FB89, EJZ92, PBKL95]. If the program modifies most

of its pages between checkpoints, then incremental checkpointing increases the overhead of checkpointing because

of the extra time it spends processing SEGV signals.

5 Non-transparent Techniques for Memory Exclusion

Though often effective, the above two techniques do not realize the full potential of memory exclusion. In

particular, there are three weaknesses with the transparent techniques:
1. They do not exclude dead memory in the data and heap segments.
2. User-level virtual memory primitives are not available in all machines and operating systems.

3. A read-only memory location is only excluded if all the other bytes that share the same page are also

read-only.

One way to attack these weaknesses is for the programmer to have some control over the memory exclusion.

What follows is a description of the way programmer-directed memory exclusion has been implemented in libckpt

and libNXckpt.
5.1 Excluding free memory

Many programming languages like C require the programmer to allocate and deallocate memory explicitly
from the heap segment by employing procedures like malloc() and free(). Standard implementations of these
procedures manage a list of free memory locations. When the program tries to allocate a region of memory, the
free list is checked to see if it can provide the memory. If not, a request is made to the operating system to
enlarge the heap segment, and if granted, memory is given to the program from this new area of the heap. The
procedure free() is called to put memory back on the free list.

When these procedures are used correctly, all memory on the free list is dead. Libckpt and libNXckpt take
advantage of this fact by instrumenting malloc(), free() and related procedure calls so that all memory on
the free list is excluded. This is a simple technique that can enable the programmer to take advantage of dead

memory exclusion in the heap.
5.2 Memory Exclusion Procedure Calls (MEPC’s)

Although excluding free memory can help, there are opportunities for memory exclusion in non-free memory.
For example, large portions of arrays can be read-only for long periods of time, or they can be dead at certain
program locations. In order for the programmer to gain the full potential of memory exclusion, libckpt and
libNX ckpt allow the programmer to direct the explicit exclusion and inclusion of any regions of memory with

two memory exclusion procedure calls (MEPC’s):

exclude bytes (char xaddr, int size, int usage)

include bytes (char *addr, int size)

Exclude bytes() tells the checkpointer to exclude the region of memory specified from subsequent checkpoints.
It may be called when the programmer knows that these bytes are not necessary for the correct recovery of the
program. Usage is an argument which may have one of two values: READONLY or DEAD. If READONLY is specified,
then this memory is included in the next checkpoint, but excluded from subsequent checkpoints. If DEAD is
specified, then the memory is dead — it will not be read before it is next written. Thus, it is excluded from the
next and subsequent checkpoints.

Include bytes() tells the checkpointer to include the specified region of memory in the next and subse-
quent checkpoints. Thus, include bytes() cancels the effect of calls to exclude bytes(), although calls to
include bytes() do not have to match calls to exclude bytes().

MEPC’s allow the programmer to track memory usage as it affects checkpointing. When combined with
synchronous checkpointing, described below, they have the potential to improve the performance of checkpointing

drastically.
5.3 Synchronous Checkpointing

There are times during the execution of a program when the amount of dead memory may be very large.
If MEPC’s are being used, then it is most beneficial to checkpoint at these times. Libckpt and libNXckpt
allow the programmer to specify such program locations with the procedure checkpoint_here(), which forces
the checkpointer to take a checkpoint. Such checkpoints are called “synchronous” because they are not initiated
by timer interrupts, and thus the programmer knows exactly when they occur. Synchronous checkpoints should
be inserted by the programmer at points where memory exclusion can have the greatest effect.

Synchronous checkpoints may be placed in program locations that are reached very often or very rarely.
Checkpointing too often, however, can lead to poor performance, and checkpointing too infrequently can negate
the fault-tolerant benefits of checkpointing. Therefore, libckpt and libNXckpt contain two runtime parameters
maxtime and mintime, that only allow synchronous checkpoints to occur within a window of time following the
previous checkpoint. When that window expires, if a synchronous checkpoint has not been taken, the checkpointer
forces an asynchronous checkpoint to be taken.

Specifically:

e mintime specifies the minimum period of time that must pass between checkpoints. If mintime seconds have not

passed since the previous checkpoint, then checkpoint_here() calls are ignored.

e maxtime defines the maximum interval between checkpoints. At the beginning of the program, and after each
checkpoint, libckpt calls alarm(maxtime) and takes an asynchronous checkpoint upon catching each ALRM signal.

Setting the maxtime to zero turns off all asynchronous checkpointing.

6 Examples of Programs That Impact Memory Exclusion

In this section, we present five example programs that we checkpoint in the next section. Each program is
a long-running application that can benefit from checkpointing. Moreover, each program exemplifies a different

type of behavior that can affect the performance of checkpointing when memory exclusion is employed.

STSWM — A program with a large, contiguous, read-only data space

STSWDM is a public-domain FORTRAN program from the National Center for Atmospheric Research that im-
plements the “spectral transform shallow water model,” an important technique in oceanic and atmospheric
research. It models a complex system over several time steps and is a challenging computational problem. The
main feature of STSWM that affects checkpointing is that it initializes a very large and contiguous data space at
the beginning of the program that remains read-only for the lifetime of the program. This means that read-only
memory exclusion, as implemented by incremental checkpointing, can provide great savings when this program

is checkpointed.

NNET — A program with a large, non-contiguous read-only data space

This is a neural network simulation program that processes continuously generated input with a large neural
network. NINNET is typical of many graph-processing programs in its memory usage. In particular, its data
structures for nodes and links contain both read-only and non-read-only components, and they are all allocated
together at the beginning of the program. As such, the read-only and non-read-only variables are interleaved in
memory at a relatively fine granularity. Thus, although there is great potential for read-only memory exclusion,
it cannot be realized by incremental checkpointing, since most pages contain both read-only and non-read-only
portions. To realize the benefits of memory exclusion, we traverse the network following its creation and insert

MEPC’s to mark the read-only part of nodes and links.

SOLVE — A problem that iterates over several large data sets

This is a testing program from LAPACK, a high-performance package of linear-algebra subroutines available on
Netlib. The program reads input data to generate a linear system of equations represented by a square matrix of
double precision floating point numbers. LU decomposition is used to solve the system, and the solution is then
written to disk. This process is repeated for several sets of input data.

This program is typical of many driver programs for scientific applications — a complex procedure 1s executed
several times on different sets of input data, and output is written at the end of each iteration. The important
feature of these programs is that they share little to no information from iteration to iteration. In other words,

between iterations, most of their data space is dead. For example, in SOLVE, the matrix, which composes the

majority of the address space, is dead between iterations. Therefore, if a synchronous checkpoint is taken between

iterations, then the bulk of the checkpoint may be excluded either through malloc()/free() or through MEPC’s.

CELL — A problem with a large dead regions of memory

This is a simple program that executes a grid of cellular automata for numerous iterations. Like most cellular
automaton programs, this one employs two automaton grids — a current grid and a previous grid. During a
single iteration, the values of the current grid are calculated from the values of the previous grid. At the end
of an iteration, the identities of the two grids are reversed so that the current grid becomes the previous grid,
and vice versa.

The important feature of CELL as it impacts checkpointing is that between iterations, the previous grid
becomes dead — its values are not read before they are next written. Thus, with synchronous checkpointing and

MEPC’s, almost half of the checkpoint may be eliminated due to dead memory exclusion.

EIGEN — A program that with little potential for improvement due to memory exclusion

EIGEN is a program that computes the eigenvalues of a general complex matrix using the cgeev subroutine
from LAPACK. Like many subroutines from LAPACK, cgeev works in iterations (one per column of the matrix)
and modifies almost all of the matrix during each iteration. As such, there is no significant amount of read-only or
dead memory to exclude at any point in the program. EIGEN is included to show that there do exist programs

that memory exclusion cannot help.

7 Experiments

In this section, we detail our experiments with memory exclusion on a uniprocessor checkpointer (libckpt) and
a multicomputer checkpointer (libNXckpt). Each checkpointer implements incremental checkpointing and the
MEPC’s described above. In addition, libckpt implements the copy-on-write checkpointing optimization [LNP90,
EJZ92], which enables the application to continue executing while the checkpoint is written to disk.

For each program, we selected input parameters that resulted in fairly long running times and the use of almost
all of physical memory. Thus the programs represent a challenge to the checkpointing system. In particular, the
large checkpointing sizes preclude simple buffering strategies such as taking an in-memory checkpoint, and writing

that checkpoint asynchronously to disk [LNP90].

7.1 Experiments with libckpt on the SPARC-2

Each of the applications described in section 6 was compiled with libckpt and executed on a Sparcstation-
2 containing 16 MBytes of physical memory. Checkpoints were taken via NFS over a standard Ethernet to a
central file server. The disk bandwidth in this configuration is poor (around 140 Kbytes/second) but is typical

Name Language Parameters Running time Memory Checkpoint # of

Usage Interval Check-

(sec) (h:mm:ss) (Mbytes) (min) points
STSWM Fortran “Test 57, MM=170, TAUE=9.0 13406 3:43:26 36.8 22 10
NNET C 22,500 nodes, 900,000 links, 187 iterations 13077 3:37:57 13.8 22 10
SOLVE C/Fortran Nine different 1400 X 1400 matrices 13961 3:52:41 15.1 29 8
CELL C 2850 X 2850 grid for 85 iterations 13407 3:43:27 15.6 20 11
EIGEN Fortran 1000 X 1000 matrix of complex doubles 14794 4:06:34 16.0 21 12

Table 1: Basic parameters for the uniprocessor applications

for many workstation environments. In all cases, the checkpoint interval is between 20 and 30 minutes. The basic

parameters for each application are in Table 1.1

- 15 15] 15] 15]
< =]]]]
8_2 30]]]]
é = 10 10 10 H 10
cs 2]]]]
Og .]]]
5 54 54 54
N 1] j . j j
2]] 28]]
<]] S S]]
001 =% 1 E E =0 1 E & 00 T E IE 001
STSWM NNET SOLVE CELL EIGEN
mmmmmm O -- No memory exclusion = E -- Mdloc & memory exclusion procedure calls
——= | -- Incremental checkpointing ——— |E-- Incremental, malloc & memory exclusion proc. calls

Figure 2: Checkpoint sizes of the uniprocessor applications

The impact of memory exclusion on the checkpoint size is shown in Figure 2. As expected, incremental
checkpointing has a large impact on STSWDM, but little on the other programs as they modify almost all of
their pages between checkpoints. In NNET and CELL, significant portions (9.2 and 7.8 Mbytes respectively per
checkpoint) of the checkpoints are excluded with MEPC’s, while in SOLVE, almost all of the checkpoints (15.0
Mbytes) are excluded as free memory.

It should be noted that in NINET, incremental checkpointing with MEPC’s excludes an average of 0.55 Mbytes
more per checkpoint than using MEPC’s without incremental checkpointing. This is because in NNET, many
small regions of memory are excluded, requiring 0.55 Mbytes of data structures to keep track of the regions.
These data structures are read-only once the MEPC’s are made, and since they are all stored contiguously in
memory, they can be tracked and excluded with incremental checkpointing.

The impact of memory exclusion on the checkpoint overhead is shown in Figure 3. Results for normal and

copy-on-write checkpointing are given. The overheads are displayed as the average overhead per checkpoint. The

Due to space constraints, we do not tabulate the data, and instead present it graphically. For the interested reader, the data is

available at the URL http://www.cs.utk.edu/ plank/plank/libckpt/raw.html.

Overhead per

Overhead per

o] 10% 150
g 300 100] :
=] 100 5%
'S 200] 5%]
S _]
X 50 H -
g 100] 03
< -]
o 0 0 - 0 z|:|_

0 | 0 | 0 I E IE 0 I E IE 0 I E IE 0 I E IE

Normal Copy-on-write Normal Copy-on-write Normal Copy-on-write

STSWM NNET SOLVE
15% .

T 150 mmmmmm 0 -- No memory exclusion
§§ 10% 150 = | -- Incremental checkpointing
= 10%
5 100 100 @ E--Maloc& memory exclusion
o 5% 50 procedure calls
X A
8 50 50
= m ——=3 |E-- Incremental, malloc &
O 9 0 _-:I_ memory exclusion proc. calls

0 I E IE 0 I E IE 0 | 0 |

Normal Copy-on-write Normal Copy-on-write
CELL EIGEN

Figure 3: Checkpoint overheads of the uniprocessor applications

lines across the graphs represent the overhead as a percentage of the program’s running time.?

As shown previously [LNP90, EJZ92, PBKL95], the copy-on-write optimization consistently improves the
performance of checkpointing, though in varying degrees depending on the memory access patterns of the program.
For example, although both programs modify all their pages between checkpoints, SOLVE has a very poor locality
of modification, which penalizes the performance of copy-on-write checkpointing as compared to CELL.

SOLVE and STSWDM show the most dramatic improvements in checkpoint overhead due to memory exclu-
sion. In SOLVE, the per-checkpoint overhead is reduced from 107 seconds (using copy-on-write) to 3.3 (without
copy-on-write) with memory exclusion, while in STSWM, incremental checkpointing improves the performance
of copy-on-write checkpointing by 50.7 seconds per checkpoint. The other applications show more marked im-
provements when copy-on-write is not employed; however memory exclusion improves the performance of the
copy-on-write cases too.

These results show that memory exclusion in combination with copy-on-write checkpointing can result in low-
overhead checkpointing with very little programmer effort. To summarize, Table 2 displays the best combination

of optimizations for each application. For the applications where extra code is inserted by the programmer, the

2There is an apparent anomaly in Figure 3 that should be explained. This is the fact that in NNET, SOLVE and CELL,
incremental checkpointing tmproves the overhead even though the checkpoint sizes are the same. This should not be the case —
incremental checkpointing should actually penalize performance here because since the same amount of data is being written to disk,
and there is extra overhead processing SEGV signals. This anomaly arises because the operating system buffers user writes that do
not fall on page boundaries, and libckpt does not take account of this fact in non-incremental checkpointing. This bug will be fixed

shortly, and new data will be taken so that this anomaly is no longer present.

10

Name Copy-on-write Synchronous Incremental MEPC/Malloc Lines of
Checkpoints Checkpointing code added
STSWM yes no yes no —
NNET yes no yes yes 6
SOLVE no yes no yes 1
CELL yes yes no yes 5
EIGEN yes no yes no —

Table 2: Optimization used for the best checkpointing performance

number of additional lines of code is also noted.
7.2 Experiments with libNXckpt on the Intel Paragon

We compiled three application programs with libNXckpt and executed them on a 32-node Paragon at CalTech.
Each node of the Paragon is an Intel 80860 processor with around 22 Mbytes of physical memory available for
user processes. Unlike the Sparc-2 environment, file /O on the Paragon is extremely fast. It performs striping
with 64 Kbyte blocks to six I/O nodes and can achieve a disk bandwidth of up to 29 Mbytes per second.

LibNXckpt periodically forces the system to take a global checkpoint using the “Sync-and-stop” algorithm [P1.94].
All processors synchronize to eliminate message state, and then they checkpoint themselves before resuming the
application. LibNXckpt implements all varieties of memory exclusion and synchronous checkpointing; however

due to problems reconstructing the network state, ibNXckpt does not implement copy-on-write checkpointing.

Name Language | Parameters Running time Memory Usage Checkpoint # of

Per Node Interval Check-

(sec) (h:mm:ss) (Mbytes) (min) points
PRISM C Norder=7, Nsteps=2400 7656 2:07:36 17.8 11 12
PCELL C 17408 X 17408 grid for 800 iterations 7099 1:58:19 19.5 12 10
PSOLVE Fortran 10 6100 X 6100 matrices 4791 1:19:51 22.2 8 10

Table 3: Basic parameters for the parallel applications

Table 3 summarizes the basic characteristics of the three applications. PCELL and PSOLVE are paral-
lelized versions of CELL and SOLVE respectively (PSOLVE coming from ScaLAPACK instead of LAPACK).
PRISM is a fluid dynamics modeling code from the Aeronautics & Applied Mathematics at CalTech. Like their
uniprocessor counterparts, PCELL and PSOLVE both benefit from dead memory exclusion and synchronous
checkpointing. PRISM is a program with a very large and contiguous read-only portion, and thus can benefit
from incremental checkpointing. Additionally, PRISM performs a good deal of memory allocation and deallo-
cation during each iteration, meaning that dead memory exclusion via malloc()/free() should be effective.

Due to the high desirability of the CalTech Paragon, the program runs are shorter than the uniprocessor

11

runs. However, they do attempt to use most of the available physical memory so that the checkpointer is again
challenged.

The checkpoint size and overhead information is displayed in Figure 4. As expected, PCELL and PSOLVE
show significant space savings (306 and 548 Mbytes per checkpoint respectively) due to dead memory exclusion.
This results in a corresponding decrease in checkpointing overhead for both applications. In PRISM, 397 Mbytes
are saved per checkpoint due to incremental checkpointing, and an additional 43 Mbytes are saved by excluding

free memory. Again, these savings are reflected in lower checkpoint overheads.

600 -
o 8 500 - 500 - mmmmmm 0-- No memory exclusion
=3V g 400- 1 400 =——= | -- Incremental checkpointing
ged 400 —
3: © S 300 - i 300 - > E-- Maloc & memory exclusion
® %- S 200 - 200 - 200 = procedure calls
*6 ~—
- 6 100 - - 100 - ——= |E-- Incremental, malloc &
_ _ | _ awr— memory exclusion proc. cals
0 0O I E IE 0 0O I E IE 0 0O I E IE
PRISM PCELL PSOLVE
'% N — 5%
= 20 4%
= 0

g 8_ 15 2% 30 -

3 é g 10 20

% 6 25 10

@ 5 10 5

E 2_ 0 0 0

< 0O I E IE 0O I E IE 0O I E IE

PRISM PCELL PSOLVE

Figure 4: Checkpoint sizes and overheads of the parallel applications

In sum, the results from the Paragon mirror the uniprocessor results, although the checkpoint sizes, and
therefore the savings due to memory exclusion, are much larger. The overheads, and (therefore the savings
in overhead) are lower because of the faster file operations. However, percentage-wise, the savings in these

applications due to memory exclusion are indeed significant.

8 More advanced memory exclusion techniques

There have been several research projects targetted at optimizing the performance of memory exclusion. Since

each is too complex to describe fully, they are summarized below.

e Compiler-assisted memory exclusion (CAME) [PBK95]: One weakness of MEPC’s is that the pro-
grammer can err. If the programmer excludes memory that is neither read-only nor dead, then the check-
points may become invalid. With the CAME technique, the programmer inserts compiler directives into the

program, telling the compiler when to take synchronous checkpoints, and when to exclude memory. The

12

compiler uses these directives to determine what memory to exclude, and it inserts the proper MEPC’s into
the code. The CAME technique is advantageous because it will never err, and it can often discover more

memory to exclude than the programmer.

e Compiler-assisted full checkpointing [LSF94]: This technique takes a collection of potential syn-
chronous checkpoint locations and attempts to checkpoint only at the ones that maximize memory ex-
clusion during the specified checkpointing interval. This can be done adaptively at runtime, or off-line using
a “training” run. This technique may be combined with the techniques described in this paper to optimize

the selection of synchronous checkpoint locations.

e Variable-level tracking of memory exclusion [NW94]: This is a technique for tracking read-only
and dead memory at the variable level in order to minimize checkpoint sizes. To perform this tracking,
memory reads and writes are monitored by executable rewriting. This enables the checkpointer to obtain
optimally small checkpoint files. The monitoring incurs a very high overhead (a factor of 1.7 to 7 in their
measurements), meaning that this technique is useful only in debugging applications where minimizing

checkpoint size is more important than the time overhead.

9 Conclusion

Memory exclusion is an important concept in reducing the space and time overhead of checkpointing. We have
presented several old and new techniques for excluding memory from checkpoints, and detailed results from two
checkpointers that have implemented these techniques. The conclusions that can be drawn from these results
i1s that memory exclusion can optimize the performance of checkpointing significantly for many long-running
programs. The degree of optimization is, of course, dependent on the memory access patterns of the application.
However, as shown by NNET, SOLVE and CELL, different kinds of access patterns may be converted into
savings in checkpoint overhead with very little programmer effort.

It should be noted that while often beneficial (e.g. for STSWM and PRISM), incremental checkpointing is
not sufficient for getting the most out of memory exclusion. Given the results of this paper, we believe that all
checkpointing implementations should follow the lead of libckpt and ibNXckpt by merging memory exclusion

with memory allocation, and implementing memory exclusion procedure calls.

References

[EJW96] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A survey of rollback-recovery protocols in message-passing systems. To appear,
1996.

[EJZ92] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The performance of consistent checkpointing. In 11th Symposium on
Reliable Distributed Systems, pages 39—47, October 1992.

13

[FB89]

[LNP90]

[LSF94]

[INW94]

[PBK95]

[PBKL95]

[PL94]

[TL95]

[Vai9s]

[WHV195]

[WMS89]

S. I. Feldman and C. B. Brown. Igor: A system for program debugging via reversible execution. ACM SIGPLAN Notices,
Workshop on Parallel and Distributed Debugging, 24(1):112-123, January 1989.

K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent checkpoint for parallel programs. In Second ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programmaing, pages 79-88, March 1990.

C-C. J. Li, E. M. Stewart, and W. K. Fuchs. Compiler-assisted full checkpointing. Software — Practice and Ezperience,
24(10):871-886, October 1994.

R. H. B. Netzer and M. H. Weaver. Optimal tracing and incremental reexecution for debugging long-running programs. In ACM
SIGPLAN ’94 Conference on Programming Language Design and Implementation, pages 313-325, Orlando, FL, June 1994.

J. S. Plank, M. Beck, and G. Kingsley. Compiler-assisted memory exclusion for fast checkpointing. IEEE Technical Committee
on Operating Systems and Application Environments, 7(4):10-14, Winter 1995.

J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under unix. In Conference Proceedings,
Useniz Winter 1995 Technical Conference, pages 213-223, January 1995.

J. S. Plank and K. Li. Ickp — a consistent checkpointer for multicomputers. IEEE Parallel & Distributed Technology, 2(2):62-67,
Summer 1994.

T. Tannenbaum and M. Litzkow. The Condor distributed processing system. Dr. Dobb’s Journal, #227:40-48, February 1995.

N. H. Vaidya. On checkpoint latency. In Pacific Rim International Symposium on Fault-Tolerant Systems, Newport Beach,
December 1995.

Y-M. Wang, Y. Huang, K-P. Vo, P-Y. Chung, and C. Kintala. Checkpointing and its applications. In 25th International
Symposium on Fault-Tolerant Computing, pages 22-31, Pasadena, CA, June 1995.

P. R. Wilson and T. G Moher. Demonic memory for process histories. In SIGPLAN ’89 Conference on Programming Language
Design and Implementation, pages 330—-343, June 1989.

14

