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1 IntroductionRun-time redistribution of arrays that are distributed in a block-cyclic fashion over a multidimen-sional processor grid is a di�cult problem that has recently received considerable attention. Thisinterest is motivated largely by the HPF [13] programming style, in which scienti�c applicationsare decomposed into phases. At each phase, there is an optimal distribution of the data arraysonto the processor grid. Typically, arrays are distributed according to a CYCLIC(r) pattern alongone or several dimensions of the grid. The best value of the distribution parameter r depends onthe characteristics of the algorithmic kernel as well as on the communication-to-computation ratioof the target machine [5]. Because the optimal value of r changes from phase to phase and fromone machine to another (think of a heterogeneous environment), run-time redistribution turns outto be a critical operation, as stated in [10, 21, 22] (among others).Basically, we can decompose the redistribution problem into the following two subproblems:Message generation The array to be redistributed should be e�ciently scanned or processed inorder to build up all the messages that are to be exchanged between processors.Communication scheduling All the messages must be e�ciently scheduled so as to minimizecommunication overhead. A given processor typically has several messages to send, to allother processors or to a subset of these. In terms of MPI collective operations [16], we mustschedule something similar to an MPI ALLTOALL communication, except that each processormay send messages only to a particular subset of receivers (the subset depending on thesender).Previous work has concentrated mainly on the �rst subproblem, message generation. Messagegeneration makes it possible to build a di�erent message for each pair of processors that mustcommunicate, thereby guaranteeing a volume-minimal communication phase (each processor sendsor receives no more data than needed). However, the question of how to e�ciently schedule themessages has received little attention. One exception is an interesting paper by Walker and Otto [21]on how to schedule messages in order to change the array distribution from CYCLIC(r) on a P -processor linear grid to CYCLIC(Kr) on the same grid. Our aim here is to extend Walker and Otto'swork in order to solve the general redistribution problem, that is, moving from a CYCLIC(r)distribution on a P -processor grid to a CYCLIC(s) distribution on a Q-processor grid.The general instance of the redistribution problem turns out to be much more complicatedthan the particular case considered by Walker and Otto. However, we provide e�cient algorithmsand heuristics to optimize the scheduling of the communications induced by the redistributionoperation. Our main result is the following: For any values of the redistribution parameters P , Q,r and s, we construct an optimal schedule, that is, a schedule whose number of communicationsteps is minimal. A communication step is de�ned so that each processor sends/receives at most onemessage, thereby optimizing the amount of bu�ering and minimizing contention on communicationports. The construction of such an optimal schedule relies on graph-theoretic techniques such asthe edge coloring number of bipartite graphs. We delay the precise (mathematical) formulation ofour results until Section 4 because we need several de�nitions beforehand.Without loss of generality, we focus on one-dimensional redistribution problems in this article.Although we usually deal with multidimensional arrays in high-performance computing, the prob-lem reduces to the \tensor product" of the individual dimensions. This is because HPF does notallow more than one loop variable in an ALIGN directive. Therefore, multidimensional assignmentsand redistributions are treated as several independent one-dimensional problem instances.2



The rest of this article is organized as follows. In Section 2 we provide some examples ofredistribution operations to expose the di�culties in scheduling the communications. In Section 3we brie
y survey the literature on the redistribution problem, with particular emphasis given tothe Walker and Otto paper [21]. In Section 4 we present our main results. In Section 5 we reporton some MPI experiments that demonstrate the usefulness of our results. Finally, in Section 6, westate some conclusions and future work directions.2 Motivating ExamplesConsider an array X[0:::M �1] of sizeM that is distributed according to a block cyclic distributionCYCLIC(r) onto a linear grid of P processors (numbered from p = 0 to p = P � 1). Our goal is toredistributeX using a CYCLIC(s) distribution on Q processors (numbered from q = 0 to q = Q�1).For simplicity, assume that the size M of X is a multiple of L = lcm(Pr;Qs), the least commonmultiple of Pr and Qs: this is because the redistribution pattern repeats after each slice of Lelements. Therefore, assuming an even number of slices in X will enable us (without loss ofgenerality) to avoid discussing side e�ects. Let m =M � L be the number of slices.Example 1Consider a �rst example with P = Q = 16 processors, r = 3, and s = 5. Note that the new gridof Q processors can be identical to, or disjoint of, the original grid of P processors. The actualtotal number of processors in use is an unknown value between 16 and 32. All communications aresummarized in Table 1, which we refer to as a communication grid. Note that we view the sourceand target processor grids as disjoint in Table 1 (even if it may not actually be the case). We seethat each source processor p 2 P = f0; 1; : : : ; P � 1g sends 7 messages and that each processorq 2 Q = f0; 1; : : : ; Q � 1g receives 7 messages, too. Hence there is no need to use a full all-to-allcommunication scheme that would require 16 steps, with a total of 16 messages to be sent perprocessor (or more precisely, 15 messages and a local copy). Rather, we should try to schedulethe communication more e�ciently. Ideally, we could think of organizing the redistribution in 7steps, or communication phases. At each step, 16 messages would be exchanged, involving 16disjoint pairs of processors. This would be perfect for one-port communication machines, whereeach processor can send and/or receive at most one message at a time.Note that we may ask something more: we can try to organize the steps in such a way that ateach step, the 8 involved pairs of processors exchange a message of the same length. This approachis of interest because the cost of a step is likely to be dictated by the length of the longest messageexchanged during the step. Note that message lengths may or may not vary signi�cantly. Thenumbers in Table 1 vary from 1 to 3, but they are for a single slice vector. For a vector X of lengthM = 240000, say, m = 1000 and message lengths vary from 1000 to 3000 (times the number ofbytes needed to represent one data-type element).A schedule that meets all these requirements, namely, 7 steps of 16 disjoint processor pairsexchanging messages of the same length, will be provided in Section 4.3.2. We report the solutionschedule in Table 2. Entry in position (p; q) in this table denotes the step (numbered from a to gfor clarity) at which processor p sends its message to processor q.In Table 3, we compute the cost of each communication step as (being proportional to) thelength of the longest message involved in this step. The total cost of the redistribution is then thesum of the cost of all the steps. We further elaborate on how to model communication costs inSection 4.3.1. 3



Table 1: Communication grid for P = Q = 16, r = 3, and s = 5. Message lengths are indicated fora vector X of size L = 240.Communication grid for P = Q = 16, r = 3, s = 5, and L = 240Sender/Recv. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Nbr of msg.0 3 - - 3 - - 3 - - 2 1 - 1 2 - - 71 2 1 - 1 2 - - 3 - - 3 - - 3 - - 72 - 3 - - 3 - - 2 1 - 1 2 - - 3 - 73 - 1 2 - - 3 - - 3 - - 3 - - 2 1 74 - - 3 - - 2 1 - 1 2 - - 3 - - 3 75 2 - - 3 - - 3 - - 3 - - 2 1 - 1 76 3 - - 2 1 - 1 2 - - 3 - - 3 - - 77 - 3 - - 3 - - 3 - - 2 1 - 1 2 - 78 - 2 1 - 1 2 - - 3 - - 3 - - 3 - 79 - - 3 - - 3 - - 2 1 - 1 2 - - 3 710 1 - 1 2 - - 3 - - 3 - - 3 - - 2 711 3 - - 3 - - 2 1 - 1 2 - - 3 - - 712 1 2 - - 3 - - 3 - - 3 - - 2 1 - 713 - 3 - - 2 1 - 1 2 - - 3 - - 3 - 714 - - 3 - - 3 - - 3 - - 2 1 - 1 2 715 - - 2 1 - 1 2 - - 3 - - 3 - - 3 7Nbr of msg. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7Example 2The second example, with P = Q = 16, r = 7, and s = 11, shows the usefulness of an e�cientschedule even when each processor communicates with every other processor. As illustrated inTable 4, message lengths vary with a ratio from 2 to 7, and we need to organize the all-to-allexchange steps in such a way that messages of the same length are communicated at each step.Again, we are able to achieve such a goal (see Section 4.3.2). The solution schedule is given inTable 5 (where steps are numbered from a to p), and its cost is given in Table 6. (We do checkthat each of the 16 steps is composed of messages of the same length.)Example 3Our third motivating example is with P = Q = 15, r = 3, and s = 5. As shown in Table 7, thecommunication scheme is severely unbalanced, in that processors may have a di�erent number ofmessages to send and/or to receive. Our technique is able to handle such complicated situations.We provide in Section 4.4 a schedule composed of 10 steps. It is no longer possible to have messagesof the same length at each step (for instance, processor p = 0 has messages only of length 3 to send,while processor p = 1 has messages only of length 1 or 2), but we do achieve a redistribution in10 communication steps, where each processor sends/receives at most one message per step. Thenumber of communication steps in Table 8 is clearly optimal, as processor p = 1 has 10 messagesto send. The cost of the schedule is given in Table 9.4



Table 2: Communication steps for P = Q = 16, r = 3, and s = 5.Communication steps for P = Q = 16, r = 3, and s = 5Sender/Recv. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 b - - a - - c - - e g - f d - -1 d f - g e - - c - - b - - a - -2 - b - - c - - e g - f d - - a -3 - g e - - a - - b - - c - - d f4 - - c - - e g - f d - - b - - a5 e - - c - - a - - b - - d f - g6 c - - e g - f d - - a - - b - -7 - c - - b - - a - - d f - g e -8 - e g - f d - - c - - a - - b -9 - - a - - b - - d f - g e - - c10 g - f d - - b - - c - - a - - e11 a - - b - - d f - g e - - c - -12 f d - - a - - b - - c - - e g -13 - a - - d f - g e - - b - - c -14 - - b - - c - - a - - e g - f d15 - - d f - g e - - a - - c - - bTable 3: Communication costs for P = Q = 16, r = 3, and s = 5.Communication costs for P = Q = 16, r = 3, and s = 5Step a b c d e f g TotalCost 3 3 3 2 2 1 1 15Example 4Our �nal example is with P 6= Q, just to show that the size of the two processor grids need not bethe same. See Table 10 for the communication grid, which is unbalanced. The solution schedule(see Section 4.4) is composed of 4 communication steps, and this number is optimal, since processorq = 1 has 4 messages to receive. Note that the total cost is equal to the sum of the message lengthsthat processor q = 1 must receive; hence, it too is optimal.3 Literature overviewWe brie
y survey the literature on the redistribution problem, with particular emphasis given tothe work of Walker and Otto [21].
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Table 4: Communication grid for P = Q = 16, r = 7, and s = 11. Message lengths are indicatedfor a vector X of size L = 1232.P = Q = 16, r = 7, s = 11, and L = 1232Sender/Recv. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Nbr of msg.0 7 6 2 6 7 2 5 7 3 4 7 4 3 7 5 2 161 4 3 7 5 2 7 6 2 6 7 2 5 7 3 4 7 162 5 7 3 4 7 4 3 7 5 2 7 6 2 6 7 2 163 6 2 6 7 2 5 7 3 4 7 4 3 7 5 2 7 164 3 7 5 2 7 6 2 6 7 2 5 7 3 4 7 4 165 7 3 4 7 4 3 7 5 2 7 6 2 6 7 2 5 166 2 6 7 2 5 7 3 4 7 4 3 7 5 2 7 6 167 7 5 2 7 6 2 6 7 2 5 7 3 4 7 4 3 168 3 4 7 4 3 7 5 2 7 6 2 6 7 2 5 7 169 6 7 2 5 7 3 4 7 4 3 7 5 2 7 6 2 1610 5 2 7 6 2 6 7 2 5 7 3 4 7 4 3 7 1611 4 7 4 3 7 5 2 7 6 2 6 7 2 5 7 3 1612 7 2 5 7 3 4 7 4 3 7 5 2 7 6 2 6 1613 2 7 6 2 6 7 2 5 7 3 4 7 4 3 7 5 1614 7 4 3 7 5 2 7 6 2 6 7 2 5 7 3 4 1615 2 5 7 3 4 7 4 3 7 5 2 7 6 2 6 7 16Nbr of msg. 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 163.1 Message GenerationSeveral papers have dealt with the problem of e�cient code generation for an HPF array assignmentstatement like A[l1 : u1 : s1] = B[l2 : u2 : s2];where both arrays A and B are distributed in a block-cyclic fashion on a linear processor grid. Someresearchers (see Stichnoth et al.[17], van Reeuwijk et al.[19], and Wakatani and Wolfe [20]) havedealt principally with arrays distributed by using either a purely scattered or cyclic distribution(CYCLIC(1) in HPF) or a full block distribution (CYCLIC(dnp e), where n is the array size and p thenumber of processors).Recently, however, several algorithms have been published that handle general block-cyclicCYCLIC(k) distributions. Sophisticated techniques involve �nite-state machines (see Chatterjee etal. [3]), set-theoretic methods (see Gupta et al. [8]), Diophantine equations (see Kennedy et al. [11,12]), Hermite forms and lattices (see Thirumalai and Ramanujam [18]), or linear programming (seeAncourt et al. [1]). A comparative survey of these algorithms can be found in Wang et al. [22],where it is reported that the most powerful algorithms can handle block-cyclic distributions ase�ciently as the simpler case of pure cyclic or full-block mapping.At the end of the message generation phase, each processor has computed several di�erentmessages (usually stored in temporary bu�ers). These messages must be sent to a set of receivingprocessors, as the examples of Section 2 illustrate. Symmetrically, each processor computes thenumber and length of the messages it has to receive and therefore can allocate the correspondingmemory space. To summarize, when the message generation phase is completed, each processor6



Table 5: Communication steps for P = Q = 16, r = 7, and s = 11.Communication steps for P = Q = 16, r = 7, and s = 11Sender/Recv. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 c f n g d p i e m k a j l b h o1 k m d h o c f n g e p i b l j a2 h b l k a j m d i n e f o g c p3 f n g e p i d l j c k m a h o b4 l e i n c f o g d p h a m k b j5 b l j c k m e i n d f o g a p h6 o g c p i d l k b j m e h n a f7 a i p d f n g b o h c l j e k m8 m k b j l a h p e f n g d o i c9 g a o i e l j c k m b h p d f n10 i p e f n g a o h b l k c j m d11 j d k m b h p a f o g c n i e l12 d o h b m k c j l a i p e f n g13 p c f o g e n h a l j b k m d i14 e j m a h o b f p g d n i c l k15 n h a l j b k m c i o d f p g eTable 6: Communication costs for P = Q = 16, r = 7, and s = 11.Communication costs for P = Q = 16, r = 7, and s = 11Step a b c d e f g h i j k l m n o p TotalCost 7 7 7 7 7 6 6 5 5 4 4 3 3 2 2 2 77has prepared a message for all those processors to which it must send data, and each processorpossesses all the information regarding the messages it will receive (number, length, and origin).3.2 Communication SchedulingLittle attention has been paid to the scheduling of the communications induced by the redistributionoperation. Simple strategies have been advocated. For instance, Kalns and Ni [10] view thecommunications as a total exchange between all processors and do not further specify the operation.In their comparative survey, Wang et al. [22] use the following template for executing an arrayassignment statement:1. Generate message tables, and post all receives in advance to minimize operating systemsoverhead2. Pack all communication bu�ers3. Carry out barrier synchronization 7



Table 7: Communication grid for P = Q = 15, r = 3, and s = 5. Message lengths are indicated fora vector X of size L = 225. P = Q = 15, r = 3, s = 5, L = 225Sender/Recv. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Nbr of msg.0 3 - - 3 - - 3 - - 3 - - 3 - - 51 2 1 - 2 1 - 2 1 - 2 1 - 2 1 - 102 - 3 - - 3 - - 3 - - 3 - - 3 - 53 - 1 2 - 1 2 - 1 2 - 1 2 - 1 2 104 - - 3 - - 3 - - 3 - - 3 - - 3 55 3 - - 3 - - 3 - - 3 - - 3 - - 56 2 1 - 2 1 - 2 1 - 2 1 - 2 1 - 107 - 3 - - 3 - - 3 - - 3 - - 3 - 58 - 1 2 - 1 2 - 1 2 - 1 2 - 1 2 109 - - 3 - - 3 - - 3 - - 3 - - 3 510 3 - - 3 - - 3 - - 3 - - 3 - - 511 2 1 - 2 1 - 2 1 - 2 1 - 2 1 - 1012 - 3 - - 3 - - 3 - - 3 - - 3 - 513 - 1 2 - 1 2 - 1 2 - 1 2 - 1 2 1014 - - 3 - - 3 - - 3 - - 3 - - 3 5Nbr of msg. 6 9 6 6 9 6 6 9 6 6 9 6 6 9 94. Send all bu�ers5. Wait for all messages to arrive6. Unpack all bu�ersAlthough the communication phase is described more precisely, note that there is no explicitscheduling: all messages are sent simultaneously by using an asynchronous communication pro-tocol. This approach induces a tremendous requirement in terms of bu�ering space, and deadlockmay well happen when redistributing large arrays.The ScaLAPACK library [4] provides a set of routines to perform array redistribution. Asdescribed by Prylli and Tourancheau [15], a total exchange is organized between processors, whichare arranged as a (virtual) caterpillar. The total exchange is implemented as a succession of steps.At each step, processors are arranged into pairs that perform a send/receive operation. Then thecaterpillar is shifted so that new exchange pairs are formed. Again, even though special care is takenin implementing the total exchange, no attempt is made to exploit the fact that some processorpairs may not need to communicate.The �rst paper devoted to scheduling the communications induced by a redistribution is thatof Walker and Otto [21]. They review two main possibilities for implementing the communicationsinduced by a redistribution operation:Wildcarded nonblocking receives Similar to the strategy of Wang et al. described above, thisasynchronous strategy is simple to implement but requires bu�ering for all the messages tobe received (hence, the total amount of bu�ering is as high as the total volume of data to beredistributed). 8



Table 8: Communication steps for P = Q = 15, r = 3, and s = 5.Communication steps for P = Q = 15, r = 3, and s = 5Sender/Recv. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 140 c - - d - - e - - a - - b - -1 f h - b i - j d - g c - e a -2 - e - - d - - c - - a - - b -3 - i f - j c - g e - h b - d a4 - - c - - e - - d - - a - - b5 d - - e - - a - - b - - c - -6 e j - a h - b i - c f - d g -7 - d - - e - - a - - b - - c -8 - g d - b f - j a - i e - h c9 - - e - - a - - b - - c - - d10 b - - f - - c - - d - - a - -11 a b - c g - d h - e j - f i -12 - c - - a - - b - - d - - e -13 - a b - c d - e f - g h - j i14 - - a - - b - - c - - d - - eTable 9: Communication costs for P = Q = 15, r = 3, and s = 5.Communication costs for P = Q = 15, r = 3, and s = 5Step a b c d e f g h i j TotalCost 3 3 3 3 3 3 2 2 2 2 26Synchronous schedules A synchronized algorithm involves communication phases or steps. Ateach step, each participating processor posts a receive, sends data, and then waits for thecompletion of the receive. But several factors can lead to performance degradation. Forinstance, some processors may have to wait for others before they can receive any data. Orhot spots can arise if several processors attempt to send messages to the same processor atthe same step. To avoid these drawbacks, Walker and Otto propose to schedule messagesso that, at each step, each processor sends no more than one message and receives no morethan one message. This strategy leads to a synchronized algorithm that is as e�cient as theasynchronous version, as demonstrated by experiments (written in MPI [16]) on the IBMSP-1 and Intel Paragon, while requiring much less bu�ering space.Walker and Otto [21] provide synchronous schedules only for some special instances of theredistribution problem, namely, to change the array distribution from CYCLIC(r) on a P -processorlinear grid to CYCLIC(Kr) on a grid of same size. Their main result is to provide a schedulecomposed of K steps. At each step, all processors send and receive exactly one message. If K issmaller than P , the size of the grid, there is a dramatic improvement over a traditional all-to-allimplementation. 9



Table 10: Communication grid for P = 12, Q = 8, r = 4, and s = 3. Message lengths are indicatedfor a vector X of size L = 48.P = 12, Q = 8, r = 4, s = 3, L = 48Sender/Recv. 0 1 2 3 4 5 6 7 Nbr of msg.0 3 1 - - - - - - 21 - 2 2 - - - - - 22 - - 1 3 - - - - 23 - - - - 3 1 - - 24 - - - - - 2 2 - 25 - - - - - - 1 3 26 3 1 - - - - - - 27 - 2 2 - - - - - 28 - - 1 3 - - - - 29 - - - - 3 1 - - 210 - - - - - 2 2 - 211 - - - - - - 1 3 2Nbr of msg. 2 4 4 2 2 4 4 4Our aim in this article is to extend Walker and Otto's work in order to solve the general re-distribution problem, that is, moving from a CYCLIC(r) distribution on a P -processor grid to aCYCLIC(s) distribution on a Q-processor grid. We retain their original idea: schedule the com-munications into steps. At each step, each participating processor neither sends nor receives morethan one message, to avoid hot spots and resource contentions. As explained in [21], this strategyis well suited to current parallel architectures. In Section 4.3.1, we give a precise framework tomodel the cost of a redistribution.4 Main Results4.1 Problem FormulationConsider an array X[0:::M �1] of sizeM that is distributed according to a block-cyclic distributionCYCLIC(r) onto a linear grid of P processors (numbered from p = 0 to p = P � 1). Our goal isto redistribute X by using a CYCLIC(s) distribution on Q processors (numbered from q = 0 toq = Q � 1). Equivalently, we perform the HPF assignment Y = X, where X is CYCLIC(r) on aP -processor grid, while Y is CYCLIC(s) on a Q-processor grid1.The block-cyclic data distribution maps the global index i of vector X (i.e., element X[i]) onto aprocessor index p, a block index l, and an item index x, local to the block (with all indices startingat 0). The mapping i �! (p; l; x) may be written asi �! (p = bi=rc mod P; l = bi=rcP ; x = i mod r): (1)We derive the relation i = (P � l + p)� r + x: (2)1The more general assignment Y [a : ::] = X[b : ::] can be dealt with similarly.10



Table 11: Communication steps for P = 12, Q = 8, r = 4, and s = 3.Communication steps for P = 12, Q = 8, r = 4, and s = 3Sender/Recv. 0 1 2 3 4 5 6 70 a c - - - - - -1 - b a - - - - -2 - - c a - - - -3 - - - - a c - -4 - - - - - b a -5 - - - - - - c a6 b d - - - - - -7 - a b - - - - -8 - - d b - - - -9 - - - - b d - -10 - - - - - a b -11 - - - - - - d bTable 12: Communication costs for P = 12, Q = 8, r = 4, and s = 3.Communication costs for P = 12, Q = 8, r = 4, and s = 3Step a b c d TotalCost 3 3 1 1 8Similarly, since Y is distributed CYCLIC(s) on a Q-processor grid, its global index j is mapped asj �! (q;m; y), where j = (Q�m+ q)� s+ y. We then get the redistribution equationi = (P � l + p)� r + x = (Q�m+ q)� s+ y: (3)Let L = lcm(Pr;Qs) be the least common multiple of Pr and Qs. Elements i and L+i of X areinitially distributed onto the same processor p = bi=rc mod P (because L is a multiple of Pr, hencer divides L, and P divides L � r). For a similar reason, these two elements will be redistributedonto the same processor q = bi=sc mod Q. In other words, the redistribution pattern repeats aftereach slice of L elements. Therefore, we restrict the discussion to a vector X of length L in thefollowing. Let g = gcd(Pr;Qs) (of course Lg = PrQs). The bounds in equation (3) become8<: 0 � p < P 0 � q < Q0 � l < LPr = Qsg 0 � m < LQs = Prg0 � x < r 0 � y < s: (4)De�nition 1 Given the distribution parameters r and s, and the grid parameters P and Q, theredistribution problem is to determine all the messages to be exchanged, that is, to �nd allvalues of p and q such that the redistribution equation (3) has a solution in the unknowns l, m,x, and y, subject to the bounds in Equation (4). Computing the number of solutions for a givenprocessor pair (p; q) will give the length of the message.11



We start with a simple lemma that leads to a handy simpli�cation:Lemma 1 We can assume that r and s are relatively prime, that is, gcd(r; s) = 1.Proof The redistribution equation (3) can be expressed aspr � qs = z + (Pr:l �Qs:m); (5)where z = y � x 2 [1 � r; s � 1]. Let � = gcd(r; s), r = �r0 and s = �s0. Equation (3) can beexpressed as �(pr0 � qs0) = z +�(Pr0:l �Qs0:m):If it has a solution for a given processor pair (p; q), then � divides z, z = �z0, and we deduce asolution for the redistribution problem with r0, s0, P , and Q.Let us illustrate this simpli�cation on one of our motivating examples:Back to Example 3Note that we need to scale message lengths to move from a redistribution operation where r and sare relatively prime to one where they are not. Let us return to Example 3 and assume for a whilethat we know how to build the communication grid in Table 7. To deduce the communication gridfor r = 12 and s = 20, say, we keep the same messages, but we scale all lengths by � = gcd(r; s) = 4.This process makes sense because the new size of a vector slice is �L rather than L. See Table 13for the resulting communication grid. Of course, the scheduling of the communications will remainthe same as with r = 3 and s = 5, while the cost in Table 9 will be multiplied by �.4.2 Communication PatternLemma 2 Consider a redistribution with parameters r, s, P , and Q, and assume that gcd(r; s) = 1.Let g = gcd(Pr;Qs). The communication pattern induced by the redistribution operation is acomplete all-to-all operation if and only if g � r + s� 1:Proof We rewrite Equation (5) as ps�qr = z+��g because Pr:l�Qs:m is an arbitrary multipleof g. Since z lies in the interval [1 � r; s � 1] whose length is r + s � 1, it is guaranteed that amultiple of g can be found within this interval if g � r+ s� 1. Conversely, assume that g � r+ s:we will exhibit a processor pair (p; q) exchanging no message. Indeed, p = P � 1 and q = 0 is thedesired processor pair. To see this, note that pr � qs = �r mod g (because g divides Pr); hence,no multiple of g can be added to pr � qs so that it lies in the interval [1 � r; s� 1], Therefore, nomessage will be sent from p to q during the redistribution.2In the following, our aim is to characterize the pairs of processors that need to communicateduring the redistribution operation (in the case g � r + s). Consider the following function f :� [0::P � 1]� [0::Q� 1] �! Zg(p; q) �! f(p; q) = pr � qs mod g (6)2For another proof, see Petitet [14]. 12



Table 13: Communications for P = Q = 15, r = 12, and s = 20. Message lengths are indicated fora vector X of size L = 900. P = Q = 15, r = 12, s = 20, L = 900Sender/Recv. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Nbr of msg.0 12 - - 12 - - 12 - - 12 - - 12 - - 51 8 4 - 8 4 - 8 4 - 8 4 - 8 4 - 102 - 12 - - 12 - - 12 - - 12 - - 12 - 53 - 4 8 - 4 8 - 4 8 - 4 8 - 4 8 104 - - 12 - - 12 - - 12 - - 12 - - 12 55 12 - - 12 - - 12 - - 12 - - 12 - - 56 8 4 - 8 4 - 8 4 - 8 4 - 8 4 - 107 - 12 - - 12 - - 12 - - 12 - - 12 - 58 - 4 8 - 4 8 - 4 8 - 4 8 - 4 8 109 - - 12 - - 12 - - 12 - - 12 - - 12 510 12 - - 12 - - 12 - - 12 - - 12 - - 511 8 4 - 8 4 - 8 4 - 8 4 - 8 4 - 1012 - 12 - - 12 - - 12 - - 12 - - 12 - 513 - 4 8 - 4 8 - 4 8 - 4 8 - 4 8 1014 - - 12 - - 12 - - 12 - - 12 - - 12 5Nbr of msg. 6 9 6 6 9 6 6 9 6 6 9 6 6 9 9Function f maps each processor pair (p; q) onto the congruence class of pr � qs modulo g.According to the proof of Lemma 2, p sends a message to q if and only if f(p; q) 2 [1 � r; s �1] (modg). Let us illustrate this process by using one of our motivating examples.Back to Example 4In this example, P = 12, Q = 8, r = 4 and s = 3. We have g = 24. Take p = 11 (as in the proofof Lemma 2). If q = 0, f(p; q) = �4 =2 [�3; 2], and q receives no message from p. But if q = 6,f(p; q) = 2 2 [�3; 2], and q does receive a message (see Table 10 to check this).De�nition 2 For 0 � k < g, let class(k) = f�1(k), that is,f�1(k) = f(p; q) 2 [0::P � 1]� [0::Q� 1]; f(p; q) = kg:To characterize classes, we introduce integers u and v such thatr � u� s� v = 1(the extended Euclid algorithm provides such numbers for relatively prime r and s). We have thefollowing result.Proposition 1 Assume that gcd(r; s) = 1. For 0 � k < g,class(k) = f� pq � = �� sr �+ k� uv � mod � PQ � ; 0 � � < PQg g:13



Proof First, to see that PQg indeed is an integer, note that PQ = PQ(ru�sv) = Pr:Qu�Qs:Pv.Since g divides both Pr and Qs, it divides PQ.Two di�erent classes are disjoint (by de�nition). It turns out that all classes have the samenumber of elements. To see this, note that for all k 2 [0; g � 1],(p; q) 2 class(0)() (p+ ku mod P; q + kv mod Q) 2 class(k):Indeed, p+ ku mod P = p + ku + dP for some integer d, q + kv mod Q = q + kv + d0Q for someinteger d0, andf(p+ ku mod P; q + kv mod Q) = (p+ ku+ dP )r � (q + kv + d0Q)s mod g= pr � qs+ k + dPr + d0Qs mod g= f(p; q) + k mod g:Since there are g classes, we deduce that the number of elements in each class is PQg .Next, we see that (p�; q�) = (�s mod p; �r mod Q) 2 class(0) for 0 � � < PQg (becausep�r � q�s = 0 mod g).Finally, (p�; q�) = (p�0 ; q�0) implies that P divides (���0)s and Q divides (���0)r. Therefore,both Pr and Qs divide (�� �0)rs; hence, L = lcm(Pr;Qs) = Pr:Qsg divides (�� �0)rs. We deducethat PQg divides (� � �0); hence all the processors pairs (p�; q�) for 0 � � < PQg are distinct. Wehave thus enumerated class(0).De�nition 3 Consider a redistribution with parameters r, s, P , and Q, and assume that gcd(r; s) =1. Let length(p; q) be the length of the message sent by processor p to processor q to redistribute asingle slice vector X of size L = lcm(Pr;Qs).As we said earlier, the communication pattern repeats for each slice, and the value reported inthe communication grid tables of Section 2 are for a single slice; that is, they are equal to length(p; q).Classes are interesting because they represent homogeneous communications: all processor pairs ina given class exchange a message of same length.Proposition 2 Assume that gcd(r; s) = 1, and let L = lcm(Pr;Qs) be the length of the vector Xto be redistributed. Let vol(k) be the piecewise function given by Figure 1 for k 2 [1� r; s� 1].� If r + s� 1 � g, then for k 2 [1� r; s� 1],(p; q) 2 class(k)) length(p; q) = vol(k)(recall that if (p; q) 2 class(k) where k =2 [1� r; s� 1], then p sends no message to q).� If g � r + s, then for k 2 [0; g � 1],(p; q) 2 class(k)) length(p; q) = Xk02[1�r;s�1]; k0 mod g=k vol(k0):
14
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1r 1-r 0 s-r s-1s > r r > sFigure 1: The piecewise linear function vol.Proof We simply count the number of solutions to the redistribution equation pr � qs = y �x mod g, where 0 � x < r and 0 � y < s. We easily derive the piecewise linear vol functionrepresented in Figure 1.We now know how to build the communication tables in Section 2. We still have to derive aschedule, that is, a way to organize the communications as e�ciently as possible.4.3 Communication Schedule4.3.1 Communication ModelAccording to the previous discussion, we concentrate on schedules that are composed of severalsuccessive steps. At each step, each sender should send no more than one message; symmetrically,each receiver should receive no more than one message. We give a formal de�nition of a scheduleas follows.De�nition 4 Consider a redistribution with parameters r, s, P , and Q.� The communication grid is a P � Q table with a nonzero entry length(p; q) in position(p; q) if and only if p has to send a message to q.� A communication step is a collection of pairs f(p1; q1); (p2; q2); : : : ; (pt; qt)g such that pi 6=pj for 1 � i < j � t, qi 6= qj for 1 � i < j � t, and length(pi; qi) > 0 for 1 � i � t.A communication step is complete if t = min(P;Q) (either all senders or all receivers areactive) and is incomplete otherwise. The cost of a communication step is the maximum valueof its entries, in other words, maxflength(pi; qi); 1 � i � tg� A schedule is a succession of communication steps such that each nonzero entry in the com-munication grid appears in one and only one of the steps. The cost of a schedule may beevaluated in two ways:1. the number of steps NS, which is simply the number of communication steps in theschedule; or2. the total cost TC, which is the sum of the cost of each communication step (as de�nedabove). 15



The communication grid, as illustrated in the tables of Section 2, summarizes the length of therequired communications for a single slice vector, that is, a vector of size L = lcm(Pr;Qs). Themotivation for evaluating schedules via their number of steps or via their total cost is as follows:� The number of steps NS is the number of synchronizations required to implement the sched-ule. If we roughly estimate each communication step involving all processors (a permutation)as a measure unit, the number of steps is the good evaluation of the cost of the redistribution.� We may try to be more precise. At each step, several messages of di�erent lengths areexchanged. The duration of a step is likely to be related to the longest length of thesemessages. A simple model would state that the cost of a step is �+maxflength(pi; qi)g � � ,where � is a start-up time and � the inverse of the bandwidth on a physical communicationlink. Although this expression does not take hot spots and link contentions into account, ithas proven useful on a variety of machines [4, 6]. The cost of a redistribution, according tothis formula, is the a�ne expression ��NS + � � TCwith motivates our interest in both the number of steps and the total cost.4.3.2 A Simple CaseThere is a very simple characterization of processor pairs in each class, in the special case where rand Q, as well as s and P , are relatively prime.Proposition 3 Assume that gcd(r; s) = 1. If gcd(r;Q) = gcd(s; P ) = 1, then for 0 � k < g,(p; q) 2 class(k)() q = s�1(pr � k) mod g () p = r�1(qs+ k) mod g(s�1 and r�1 respectively denote the inverses of s and r modulo g).Proof Since gcd(r; s) = gcd(r;Q) = 1, r is relatively prime with Qs, hence with g. Thereforethe inverse of r modulo g is well de�ned (and can be computed by using the extended Euclid algo-rithm applied to r and g). Similarly, the inverse of s modulo g is well de�ned, too. The conditionpr � qs = k mod g easily translates into the conditions of the proposition.In this simple case, we have a very nice solution to our scheduling problem. Assume �rst thatg � r + s � 1. Then we simply schedule communications class by class. Each class is composedof PQg processor pairs that are equally distributed on each row and column of the communicationgrid: in each class, there are exactly Qg sending processors per row, and Pg receiving processors percolumn. This is a direct consequence of Proposition 3. Note that g does divide P and Q: underthe hypothesis gcd(r;Q) = gcd(s; P ) = 1, g = gcd(Pr;Qs) = gcd(P;Qs) = gcd(P;Q).To schedule a class, we want each processor p = �g + p0, where 0 � � < Pg ; 0 � p0 < g, to senda message to each processor q = �g+ q0, where 0 � � < Qg ; 0 � q0 < g, and q0 = s�1(p0r�k) mod g(or equivalently, p0 = r�1(q0s + k) mod g if we look at the receiving side). In other words, theprocessor in position p0 within each block of g elements must send a message to the processorin position q0 within each block of g elements. This can be done in max(P;Q)g complete steps ofmin(P;Q) messages. For instance, if there are �ve blocks of senders (P = 5g) and three blocksof receivers (Q = 3g), we have 5 steps where 3 blocks of senders send messages to 3 blocks of16



receivers. We can use any algorithm for generating the block permutation; the ordering of thecommunications between blocks is irrelevant.If g = r + s� 1, we have an all-to-all communication scheme, as illustrated in Example 2, butour scheduling by classes leads to an algorithm where all messages have the same length at a givenstep. If g < r + s� 1, we have fewer classes than r + s� 1. In this case we simply regroup classesthat are equivalent modulo g and proceed as before.We summarize the discussion by the following resultProposition 4 Assume that gcd(r; s) = 1. If gcd(r;Q) = gcd(s; P ) = 1, then scheduling eachclass successively leads to an optimal communication scheme, in terms of both the number of stepsand the total cost.Proof Assume without loss of generality that P � Q. According to the previous discussion, ifg � r+ s�1, we have r+ s�1 (the number of classes) times Pg (the number of steps for each class)communication steps. At each step we schedule messages of the same class k, hence of same lengthvol(k). If g < r+ s� 1, we have g times Pg communication steps, each composed of messages of thesame length (namely,Pk02[1�r;s�1]; k0 mod g=k vol(k0) when processing a given class k 2 [0; g� 1].Remark 1 Walker and Otto [21] deal with a redistribution with P = Q and s = Kr. We haveshown that going from r to Kr can be simpli�ed to going from r = 1 to s = K. If gcd(K;P ) = 1,the technique described in this section enables us to retrieve the results of [21].4.4 The General CaseWhen gcd(s; P ) = s0 > 1, entries of the communication grid may not be evenly distributed on therows (senders). Similarly, when gcd(r;Q) = r0 > 1, entries of the communication grid may not beevenly distributed on the columns (receivers).Back to Example 3We have P = 15 and s = 5; hence s0 = 5. We see in Table 7 that some rows of the communicationgrid have 5 nonzero entries (messages), while other rows have 10. Similarly, Q = 15 and r = 3;hence r0 = 3. Some columns of the communication grid have 6 nonzero entries, while other columnshave 10.Our �rst goal is to determine the maximum number of nonzero entries in a row or a column ofthe communication grid. We start by analyzing the distribution of each class.Lemma 3 Let gcd(s; P ) = s0 and gcd(r;Q) = r0. Let P = P 0s0 and Q = Q0s0, and g0 =gcd(P 0; Q0). Then g = r0s0g0, and in any class class(k), k 2 [0; g � 1], the processors pairs aredistributed as follows:� There are P 0g0 entries per column in Q0 columns of the grid, and none in the remaining columns.� There are Q0g0 entries per row in P 0 rows of the grid, and none in the remaining rows.
17



Proof First let us check that g = r0s0g0. We write r = r0r" and s = s0s". We have Pr =(P 0s0):(r0r") = r0s0:(P 0r"). Similarly,Qs = r0s0:(Q0s"). Thus g = gcd(Pr;Qs) = r0s0 gcd(P 0r"; Q0s").Since r" is relatively prime with Q0 (by de�nition of r0) and with s" (because gcd(r; s) = 1), wehave gcd(P 0r"; Q0s") = gcd(P 0; Q0s"). Similarly, gcd(P 0; Q0s") = gcd(P 0; Q0) = g0.There are PQg elements per class. Since all classes are obtained by a translation of class(0),we can restrict ourselves to discussing the distribution of elements in this class. The formulain Lemma 1 states that class(0) = f� pq � = �� sr � mod � PQ �g for 0 � � < PQg . But�s mod P can take only those values that are multiple of s0 and �r mod Q can take only thosevalues that are multiple of r0, hence the result. To check the total number of elements, note thatPQg = P 0s0:Q0r0r0s0g0 = P 0Q0g0 .Let us illustrate Lemma 3 with one of our motivating examples.Back to Example 3Elements of each class should be located on P 0g0 = 31 = 3 rows and Q0g0 = 51 = 5 columns of theprocessor grid. Let us check class(1) for instance. Indeed we have the following.class(1) = f (2; 1); (7; 4); (12; 7); (2; 10); (7; 13); (12; 1);(2; 4); (7; 7); (12; 10); (2; 13); (7; 1); (12; 4); (2; 7); (7; 10); (12; 13) gLemma 3 shows that we cannot use a schedule based on classes: considering each class separatelywould lead to incomplete communication steps. Rather, we should build up communication stepsby mixing elements of several classes, in order to use all available processors. The maximum numberof elements in a row or column of the communication grid is an obvious lower bound for the numberof steps of any schedule, because each processor cannot send (or receive) more than one messageat any communication step.Proposition 5 Assume that gcd(r; s) = 1 and that r + s � 1 � g (otherwise the communicationgrid is full). If we use the notation of Lemma 3,1. the maximum number mR of elements in a row of the communication grid is mR = Q0g0 d r+s�1s0 e;and2. the maximum number mC of elements in a column of the communication grid is mC =P 0g0 d r+s�1r0 e:Proof According to Lemma 1, two elements of class(k) and class(k0) are on the same row of thecommunication grid if �s + ku = �0s + k0u mod P for some � and �0 in the interval [0; PQg � 1].Necessarily, s0, which divides P and (� � �0)s, divides (k � k0)u. But we have ru� sv = 1, and sis relatively prime with u. A fortiori s0 is relatively prime with u. Therefore s0 divides k � k0.Classes share the same rows of the processor grid if they are congruent modulo s0. This inducesa partition on classes. Since there are exactly Q0g0 elements per row in each class, and since thenumber of classes congruent to the same value modulo s0 is either b r+s�1s0 c or d r+s�1s0 e, we deducethe value of mR. The value of mC is obtained similarly.18



It turns out that the lower bound for the number of steps given by Lemma 5 can indeed beachieved.Theorem 1 Assume that gcd(r; s) = 1 and that r + s� 1 � g (otherwise the communication gridis full), and use the notation of Lemma 3 and Lemma 5. The optimal number of steps NSopt forany schedule is NSopt = maxfmR;mCg:Proof We already know that the number of steps NS of any schedule is greater than or equal tomaxfmR;mCg. We give a constructive proof that this bound is tight: we derive a schedule whosenumber of steps is maxfmR;mCg. To do so, we borrow some material from graph theory. We viewthe communication grid as a graph G = (V;E), where� V = P[Q, where P = f0; 1; : : : ; p�1g is the set of sending processors, andQ = f0; 1; : : : ; q�1gis the set of receiving processors; and� e = (p; q) 2 E if and only if the entry (p; q) in the communication grid is nonzero.G is a bipartite graph (all edges link a vertex in P to a vertex in Q). The degree of G, de�ned asthe maximum degree of its vertices, is dG = maxfmR;mCg. According to K�onig's edge coloringtheorem, the edge coloring number of a bipartite graph is equal to its degree (see [7, vol. 2, p.1666]or Berge [2, p. 238]). This means that the edges of a bipartite graph can be partitioned in dGdisjoint edge matchings. A constructive proof is as follows: repeatedly extract from E a maximummatching that saturates all maximum degree nodes. At each iteration, the existence of such amaximum matching is guaranteed (see Berge [2, p. 130]). To de�ne the schedule, we simply let thematchings at each iteration represent the communication steps.Remark 2 The proof of Theorem 1 gives a bound for the complexity of determining the optimalnumber of steps. The best known maximum matching algorithm for bipartite graphs is due toHopcroft and Karp [9] and has cost O(jV j 52 ). Since there are at most max(P;Q) iterations toconstruct the schedule, we have a procedure in O((jP j + jQj) 72 to construct a schedule whosenumber of steps is minimal.4.5 Schedule ImplementationOur goal is twofold when designing a schedule:� minimize the number of steps of the schedule, and� minimize the total cost of the schedule.We have already explained how to view the communication grid as a bipartite graph G = (V;E).More accurately, we view it as an edge-weighted bipartite graph: the edge of each edge (p; q) is thelength length(p; q) of the message sent by processor p to processor q.We adopt the following two strategies:
19



stepwise If we specify the number of steps, we have to choose at each iteration a maximummatching that saturates all nodes of maximum degree. Since we are free to select any of suchmatchings, a natural idea is to select among all such matchings one of maximum weight (theweight of a matching is de�ned as the sum of the weight of its edges).greedy If we specify the total cost, we can adopt a greedy heuristic that selects a maximumweighted matching at each step. We might end up with a schedule having more than NSoptsteps but whose total cost is less.To implement both approaches, we rely on a linear programming framework (see [7, chapter30]). Let A be the jV j � jEj incidence matrix of G, whereaij = � 1 if edge j is incident to vertex i0 otherwiseSince G is bipartite, A is totally unimodular (each square submatrix of A has determinant 0, 1 or�1). The matching polytope of G is the set of all vectors x 2 Q jEj such that� x(e) � 0 8e 2 EPe3v x(e) � 1 8v 2 V (7)(intuitively, x(e) = 1 i� edge e is selected in the matching). Because the polyhedron determinedby Equation 7 is integral, we can rewrite it as the set of all vectors x 2 Q jEj such thatx � 0; Ax � b where b = 0BB@ 11: : :1 1CCA 2 Q jV j: (8)To �nd a maximum weighted matching, we look for x such thatmaxfctx; x � 0; Ax � bg; (9)where c 2 N jEj is the weight vector.If we choose the greedy strategy, we simply repeat the search for a maximum weighted matchinguntil all communications are done. If we choose the stepwise strategy, we have to ensure that, ateach iteration, all vertices of maximum degree are saturated. This task is not di�cult: for eachvertex v of maximum degree in position i, we replace the constraint (Ax)i � 1 by (Ax)i = 1. Thistranslates into Y tAx = k, where k is the number of maximum degree vertices and Y 2 f0; 1gjV jwhose entry in position i is 1 i� the ith vertex is of maximum degree. We note that in either casewe have a polynomial method. Because the matching polyhedron is integral, we solve a rationallinear problem but are guaranteed to �nd integer solutions.To see the fact that the greedy strategy can be better than the stepwise strategy in terms oftotal cost, consider the following example.Example 5Consider a redistribution problem with P = 15, Q = 6, r = 2, and s = 3. The communication gridis given in Table 14. The stepwise strategy is illustrated in Table 15: the number of steps is equalto 10, which is optimal, but the total cost is 20 (see Table 16). The greedy strategy requires moresteps, namely, 12 (see Table 17), but its total cost is 18 only (see Table 18).20



Table 14: Communication grid for P = 15, Q = 6, r = 2, and s = 3. Message lengths are indicatedfor a vector X of size L = 90.P = 15, Q = 6, r = 2, s = 3, L = 90Sender/Recv. 0 1 2 3 4 5 Nbr of msg.0 2 - 2 - 2 - 31 1 1 1 1 1 1 62 - 2 - 2 - 2 33 2 - 2 - 2 - 34 1 1 1 1 1 1 65 - 2 - 2 - 2 36 2 - 2 - 2 - 37 1 1 1 1 1 1 68 - 2 - 2 - 2 39 2 - 2 - 2 - 310 1 1 1 1 1 1 611 - 2 - 2 - 2 312 2 - 2 - 2 - 313 1 1 1 1 1 1 614 - 2 - 2 - 2 3Nbr of msg. 10 10 10 10 10 104.5.1 Comparison with Walker and Otto's StrategyWalker and Otto [21] deal with a redistribution where P = Q and s = Kr. We know that goingfrom r to Kr can be simpli�ed to going from r = 1 to s = K. If gcd(K;P ) = 1, we apply theresults of Section 4.3.2 (see Remark 1). In the general case (s0 = gcd(K;P ) � 1), classes are evenlydistributed among the columns of the communication grid (because r0 = r = 1), but not necessarilyamong the rows. However, all rows have the same total number of nonzero elements because s0divides r + s � 1 = K. In other words, the bipartite graph is regular. And since P = Q, anymaximum matching is a perfect matching.Because r = 1, all messages have the same length: length(p; q) = 1 for every nonzero entry(p; q) in the communication grid. As a consequence, the stepwise strategy will lead to an optimalschedule, in terms of both the number of steps and the total cost. Note that NSopt = K underthe hypotheses of Walker and Otto: using the notation of Lemma 5, we have g = P = Q. Sincer = r0 = 1, Q0 = Q; s0 = gcd(K;P ), P = s0P 0, and g0 = P 0. We havemR = Q0g0 dr + s� 1s0 e = 1:s = K;mC = P 0g0 dr + s� 1r0 e = PP 0 ss0 = s = K:Note that the same result applies when r = 1 and P 6= Q. Because the graph is regular and allentries in the communication grid are equal, we have the following theorem, which extends Walkerand Otto main result [21]. 21



Table 15: Communication steps (stepwise strategy) for P = 15, Q = 6, r = 2, and s = 3.Stepwise strategy for P = 15, Q = 6, r = 2, and s = 3Sender/Recv. 0 1 2 3 4 50 a - b - c -1 h i j e g f2 - b - c - a3 b - c - a -4 j e i h f g5 - c - a - b6 c - a - b -7 i h f g j d8 - a - b - c9 f - e - d -10 g j d f i h11 - g - d - e12 d - h - e -13 e f g j h i14 - d - i - jTable 16: Communication costs (stepwise strategy) for P = 15, Q = 6, r = 2, and s = 3.Stepwise strategy for P = 15, Q = 6, r = 2, and s = 3Step a b c d e f g h i j TotalCost 2 2 2 2 2 2 2 2 2 2 20Proposition 6 Consider a redistribution problem with r = 1 (and arbitrary P , Q and s). Theschedule generated by the stepwise strategy is optimal, in terms of both the number of steps and thetotal cost.The strategy presented in this article makes it possible to directly handle a redistribution froman arbitrary CYCLIC(r) to an arbitrary CYCLIC(s). In contrast, the strategy advocated by Walkerand Otto requires two redistributions: one from CYCLIC(r) to CYCLIC(lcm(r,s)) and a secondone from CYCLIC(lcm(r,s)) to CYCLIC(s).5 MPI ExperimentsThis section presents results for runs on the Intel Paragon for the redistribution algorithm describedin Section 4.
22



Table 17: Communication steps (greedy strategy) for P = 15, Q = 6, r = 2, and s = 3.Greedy strategy for P = 15, Q = 6, r = 2, and s = 3Sender/Recv. 0 1 2 3 4 50 a - b - c -1 j k l h g i2 - b - c - a3 b - c - a -4 i g h f e j5 - c - a - b6 c - a - b -7 h e g i j d8 - a - b - c9 e - f - d -10 f i d g h k11 - f - d - e12 d - e - f -13 g h i j k l14 - d - e - fTable 18: Communication costs (greedy strategy) for P = 15, Q = 6, r = 2, and s = 3.Greedy strategy for P = 15, Q = 6, r = 2, and s = 3Step a b c d e f g h i j k l TotalCost 2 2 2 2 2 2 1 1 1 1 1 1 185.1 DescriptionExperiments have been executed on the Intel Paragon XP/S 5 computer with a C program callingroutines from the MPI library. MPI is chosen for portability and reusability reasons. Schedulesare composed of steps, and each step generates at most one send and/or one receive per processor.Hence we used only one-to-one communication primitives from MPI.Our main objective was a comparison of our new scheduling strategy against the current re-distribution algorithm of ScaLAPACK [15], namely, the \caterpillar" algorithm that was brie
ysummarized in Section 3.2. To run our scheduling algorithm, we proceed as follows:1. Compute schedule steps using the results of Section 4.2. Pack all the communication bu�ers.3. Carry out barrier synchronization.4. Start the timer.5. Execute communications using our redistribution algorithm (resp. the caterpillar algorithm).23



6. Stop the timer.7. Unpack all bu�ers.The maximum of the timers is taken over all processors. We emphasize that we do not take thecost of message generation into account: we compare communication costs only.Instead of the caterpillar algorithm, we could have used the MPI ALLTOALLV communicationprimitive. It turns out that the caterpillar algorithm leads to better performance than the MPI ALLTOALLVfor all our experiments (the di�erence is roughly 20% for short vectors and 5% for long vectors).We use the same physical processors for the input and the output processor grid. Results arenot very sensitive to having the same grid or disjoint grids for senders and receivers.5.2 ResultsThree experiments are presented below. The �rst two experiments use the schedule presented inSection 4.3.2, which is optimal in terms of both the number of steps NS and the total cost TC.The third experiment uses the schedule presented in Section 4.4, which is optimal only in terms ofNS.Back to Example 1The �rst experiment corresponds to Example 1, with P = Q = 16, r = 3, and s = 5. Theredistribution schedule requires 7 steps (see Table 3). Since all messages have same length, thetheoretical improvement over the caterpillar algorithm, which as 16 steps, is 7=16 � 0:44. Figure 2shows that there is a signi�cant di�erence between the two execution times. The theoretical ratiois obtained for very small vectors (e.g., of size 1200 double-precision reals). This result is notsurprising because start-up times dominate the cost for small vectors. For larger vectors the ratiovaries between 0:56 and 0:64. This is due to contention problems: our scheduler needs only 7 step,but each step generates 16 communications, whereas each of the 16 steps of the caterpillar algorithmgenerates fewer communications (between 6 and 8 per step), thereby generating less contention.Back to Example 2The second experiment corresponds to Example 2, with P = Q = 16 processors, r = 7, and s = 11.Our redistribution schedule requires 16 steps, and its total cost is TC = 77 (see Table 6). Thecaterpillar algorithm requires 16 steps, too, but at each step at least one processor sends a messageof length (proportional to) 7, hence a total cost of 112. The theoretical gain 77=112 � 0:69 is to beexpected for very long vectors only (because of start-up times). We do not obtain anything betterthan 0:86, because of contentions. Experiments on an IBM SP2 or on a Network of Workstationswould most likely lead to more favorable ratios.Back to Example 4The third experiment corresponds to Example 4, with P = 12, Q = 8, r = 4, and s = 3. Thisexperiment is similar to the �rst one in that our redistribution schedule requires much fewer steps(4) than does the caterpillar (12). There are two di�erences, however: P 6= Q, and our algorithmis not guaranteed to be optimal in terms of total cost. Instead of obtaining the theoretical ratioof 4=12 � 0:33, we obtain results close to 0:6. To explain this, we need to take a closer look atthe caterpillar algorithm. As shown in Table 19, 6 of the 12 steps of the caterpillar algorithm areindeed empty steps, and the theoretical ratio rather is 4=6 � 0:66.24
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Figure 2: Comparing redistribution times on the Intel Paragon for P = Q = 16, r = 3 and s = 5.Table 19: Communication costs for P = 12; Q = 8, r = 4, and s = 3 with the caterpillar schedule.Caterpillar for P = 12, Q = 8, r = 4, and s = 3Step a b c d e f g h i j k l TotalCost 3 0 0 0 3 3 3 0 0 0 3 3 186 ConclusionIn this article, we have extendedWalker and Otto's work in order to solve the general redistributionproblem, that is, moving from a CYCLIC(r) distribution on a P -processor grid to a CYCLIC(s)distribution on a Q-processor grid. For any values of the redistribution parameters P , Q, r, and s,we have constructed a schedule whose number of steps is optimal. Such a schedule has been shownoptimal in terms of total cost for some particular instances of the redistribution problem (thatinclude Walker and Otto's work). Future work will be devoted to �nding a schedule that is optimalin terms of both the number of steps and the total cost for arbitrary values of the redistributionproblem. Since this problem seems very di�cult (it may prove NP-complete), another perspectiveis to further explore the use of heuristics like the greedy algorithm that we have introduced, andto assess their performances.We have run a few experiments, and these generated optimistic results. One of the next releasesof the ScaLAPACK library may well include the redistribution algorithm presented in this article.
25
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Figure 3: Time measurement for caterpillar and greedy schedule for di�erent vector sizes, redis-tributed from P = 16, r = 7 to Q = 16, s = 11.References[1] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear algebra framework for staticHPF code distribution. Scienti�c programming, to appear. Avalaible as CRI{Ecole des MinesTechnical Report A-278-CRI, and at http://www.cri.ensmp.fr.[2] Claude Berge. Graphes et hypergraphes. Dunod, 1970.[3] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and S.-H. Teng. Generating local ad-dresses and communication sets for data-parallel programs. Journal of Parallel and DistributedComputing, 26(1):72{84, 1995.[4] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker,and R. C. Whaley. ScaLAPACK: A portable linear algebra library for distributed memorycomputers - design issues and performance. Computer Physics Communications, 97:1{15, 1996.(also LAPACK Working Note #95). 26
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