
Determining the Idle Time of a Tiling: New Results�Fr�ed�eric Desprez1, Jack Dongarra2;3, Fabrice Rastello1, and Yves Robert21 LIP, Ecole Normale Sup�erieure de Lyon, 69364 Lyon Cedex 07, France2 Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, USA3 Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USAe-mail: [desprez, frastell]@lip.ens-lyon.fre-mail: [dongarra, yrobert]@cs.utk.eduApril 1997
AbstractIn the framework of perfect loop nests with uniform dependencies, tiling has been studiedextensively as a source-to-source program transformation. We build upon recent results byH�ogsted, Carter, and Ferrante [10], who aim at determining the cumulated idle time spent byall processors while executing the partitioned (tiled) computation domain. We propose new,much shorter proofs of all their results and extend these in several important directions. Moreprecisely, we provide an accurate solution for all values of the rise parameter that relates theshape of the iteration space to that of the tiles, and for all possible distributions of the tiles toprocessors. In contrast, the authors in [10] deal only with a limited number of cases and provideupper bounds rather than exact formulas.

Corresponding Author : Yves Robert.�This work was supported in part by the National Science Foundation Grant No. ASC-9005933; by the Defense Ad-vanced Research Projects Agency under contract DAAH04-95-1-0077, administered by the Army Research O�ce; bythe O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract DE-AC05-96OR22464; by the NationalScience Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615; by the CNRS{ENSLyon{INRIA project ReMaP; and by the Eureka Project EuroTOPS. Yves Robert is on leave from Ecole NormaleSup�erieure de Lyon and is partly supported by DRET/DGA under contract ERE 96-1104/A000/DRET/DS/SR.1

1 IntroductionTiling is a widely used technique to increase the granularity of computations and the locality ofdata references. This technique is restricted to perfect loop nests with uniform dependencies, asde�ned by Banerjee [2]. The basic idea is to group elemental computation points into tiles thatwill be viewed as computational units. The larger the tiles, the more e�cient the computationsperformed using state-of-the-art processors with pipelined arithmetic units and a multilevel memoryhierarchy (illustrated by recasting numerical linear algebra algorithms in terms of blocked Level 3BLAS kernels [9, 8]). Another advantage of tiling is the decrease in communication time (which isproportional to the surface of the tile) relative to the computation time (which is proportional tothe volume of the tile). The price to pay for tiling may be an increased latency (if there are datadependencies, for example, we need to wait for the �rst processor to complete the whole executionof the �rst tile before another processor can start the execution of the second one, and so on), as wellas some load-imbalance problems (the larger the tile, the more di�cult to distribute computationsequally among the processors).Tiling has been studied by several researchers and in di�erent contexts [11, 15, 17, 14, 3, 16, 5,13, 1, 7, 12, 4, 10]1. Rather than providing a detailed motivation for tiling, we refer the reader tothe papers by Calland, Dongarra, and Robert [4] and by H�ogsted, Carter and Ferrante [10], whichprovide a review of the existing literature. Most of the work amounts to partitioning the iterationspace of a uniform loop nest into tiles whose shape and size are optimized according to some criteria(such as the communication-to-computation ratio). Once the tile shape and size are de�ned, thereremains to distribute the tiles to physical processors and to compute the �nal scheduling.In this paper, we build upon the work of H�ogsted, Carter, and Ferrante [10]. Given a tileddomain, they aim at determining the cumulated idle time spent by all processors. This cumulatedidle time heavily depends upon the tile and domain shapes. A new parameter, called the tile rise,is introduced in [10] in order to relate the shape of the iteration domain to that of the tiles, and itis shown to have a signi�cant impact on the idle time. Both parallelogram-shaped and trapezoidal-shaped iteration spaces are considered. We summarize the results of [10] in Section 2. Thenwe propose new, much shorter proofs of these results, and we extend them in several importantdirections. More precisely, we provide an accurate solution for all values of the rise parameter andfor all possible distributions of the tiles to processors, while the authors in [10] deal only with alimited number of cases and provide upper bounds rather than exact formulas. These new resultsare presented in Section 3. In Section 4, we apply our results to the problem of hierarchical tiling,that is, when multiple levels of memory and parallelism hierarchy are involved. In Section 5, westate our conclusions and discuss directions for future research.2 Determining the Idle Tile of a TilingIn this section, we summarize the results of H�ogsted, Carter, and Ferrante [10], who make thefollowing hypotheses:(H1) There are P available processors interconnected as a ring. Processors are numbered from 0to P � 1.(H2) Tiles are parallelograms with vertical left and right edges. The size and shape of the tiles aregiven, so that we deal only with a partitioned (already tiled) iteration space, as in Figure 1.1This small list is far from being exhaustive. 2

r = -1
p = 7
M=11

Processors

tile stacks

0 1 2 3 P-1

M-1

3

2

1Figure 1: An example of parallelogram-shaped iteration space with parallelogram-shaped tiles.Arrows represent dependences between tiles.(H3) The iteration space is a two-dimensional parallelogram or trapezoid, with vertical left andright boundaries. The �rst column (and all columns in case of a parallelogram-shaped iterationspace) has M tiles.(H4) Tiles are assigned to processors using either a one-dimensional full block distribution or aone-dimensional cyclic distribution. In other words,� for a block distribution, there are P columns in the iteration space, and all the tiles incolumn j, 0 � j � P � 1, are assigned to processor j; and� for a cyclic distribution, there are bP columns in the iteration space, and all the tiles incolumn j, 0 � j � bP � 1, are assigned to processor j mod P .(H5) The rise parameter relates the shape of the iteration space to that of the tiles. It is de�nedas follows:� Let the slope (in reference to the horizontal axis) of the top and bottom edges of thetiles be rtile.� If the iteration domain is a parallelogram, let riter be the slope of the top and bottomboundaries. In this case, H�ogsted, Carter, and Ferrante [10] de�ne the rise r asr = riter � rtile:� If the iteration domain if a trapezoid, let riter top and riter bottom be the slopes of the topand bottom boundaries, respectively. In this case, H�ogsted, Carter, and Ferrante [10] letrt = riter top�rtile be the rise at the top of the iteration space and rb = riter bottom�rtilebe the rise at the bottom of the iteration space.See Figure 2 for an illustration. 3

(H6) Each tile depends upon both its left neighbor and its bottom neighbor (see Figure 1).(H7) Because of hypotheses (H4) and (H6), the scheduling of the tiles is by column. Each processorstarts executing its �rst column of tiles as soon as possible. After having executed a wholecolumn of tiles, a processor moves on to its next column. The time needed to process a tileis Tcomp (with the notations of [10], Tcomp = h�w, where h and w are the normalized heightand width of a tile). The time needed to communicate data from a tile to its right neighboris Tcomm = c � Tcomp. As stated in [10], c may take any positive value (even though weexpect c < 1 for large tiles, because the communication volume grows linearly with the tileperimeter, while the computation volume is proportional to the tile volume).Communications can be overlapped with the computations of other (independent) tiles. More-over, no communication cost is paid between a tile and its top neighbor, because both areassigned to the same processor.
w

h

-h

1.5h

a)

b)

h
br h

tr h

boundary
tile

A tile

boundary
Lower iteration-space

boundary

Upper
iteration-space

Figure 2: Shape of the iteration space; the rise is positive in (a) and negative in (b).We summarize in Table 1 the results obtained in [10]. In this table, Ia denotes the cumulatedidle time spent by the P processors while executing the tiled iteration space. As pointed outin [10], idle time can occur for two di�erent reasons: (i) a processor may have to wait for datafrom another processor; or (ii) a processor may have �nished all of the tiles assigned to it, and itis waiting for the last processor to terminates execution. In Table 1, condition (C) is a technicalcondition (M � (1+ c+ r)P) that states than no processor is kept idle when ending the processingof one column of tiles assigned to it; in other words, it can move on to its next column withoutwaiting for any data to be communicated.3 New ResultsIn this section we propose new proofs and extend the work of [10].3.1 Task Graph FrameworkThe key to our approach is the following: rather than laboriously computing the idle time of eachprocessor, and then summing up the results to get the total idle time Ia, we compute the parallel4

Parallelogram shaped{Block distributionr � �1 Ia = P (P � 1)(1 + r + c)Tcompr � �2 Ia � max(c� 12r ; �r2)PTcompParallelogram shaped{Cyclic distributionr � �1 and condition (C) Ia = P (P � 1)(1 + r + c)Tcompr � �2 Ia � max(c� 12r ; �r2)bPTcompTrapezoidal shaped{Block distribution{rb < rtrb � �1 Ia = P (P � 1)(1 + rt+rb2 + c)Tcomprb � �2 < �1 � rt Ia � (max(c� 1�r22r ; 0) + (P � 1) rt+rb2)PTcomprb < rt � �1, rb � �2 Ia � (max(c� 1�r22r ; 0) + (P � 1) rt+rb2 � rt2)PTcompTrapezoidal shaped{Block distribution{rt < rb�1 � rt � rb Ia = P (P � 1)(1 + rt+rb2 + c)Tcomp�(1 + c) � rt < �1 � rb Ia � ((P � 1)(1 + rt+rb2 + c)� rt2)PTcomprt � �(1 + c) < �1 � rb Ia � ((P � 1) rb�rt2 � rt2)PTcomprt < rb � �2, rb � �2 Ia � (max(c� 1�r22r ; 0)� (P � 1) rt�rb2 � rt2)PTcompTable 1: Summary of the results of H�ogsted, Carter, and Ferrante [10]execution time tP with P processors, and we state thatP � tP = Ia + Tseq;where Tseq is the sequential time, that is, the sum of all tile weights (see Figure 3).
P4P3P2P1

processors
time-steps

activeidle
Figure 3: Active and idle processors during execution (illustrating the formula P � tP = Ia+Tseq).We describe the tiled iteration space as a task graph G = (V;E), where vertices represent thetiles and edges represent dependencies between tiles. A handy view of the graph is obtained by\rotating" the iteration space so that rtile = 0. Dependencies between tiles are now summarizedby the vector pair f� 10 � ;� 01 �g:5

See Figure 4, where we have rotated the iteration space of Figure 1.

Processors

Tile
stacks

0

1

2

3

4

6

5

1

2

3

4

5

6

7

8

9

10

M=11
p = 7
r =-1

Figure 4: Another view of Figure 1 after rotation.Computing the parallel execution time tP is a well-known task graph scheduling problem. Sincethe allocation of tiles to processors is given, the task amounts to computing the longest path inthe dependency graph, where the weight of a path is the sum of the weights of its vertices andedges. All vertices have same weight Tcomp. Horizontal edges have weight Tcomm (they imply acommunication cost), while vertical edges have zero weight (no communication cost due to theallocation). The problem has complexity O(jV j + jEj) (simply traverse the direct acyclic graphG), but we aim at �nding a closed-form formula for tP , speci�cally, an analytical expression in theproblem parameters M , P , r, and c.3.2 Preview of ResultsA summary of our results is given in Table 2. A few comments are in order:� In Table 2 we assume that M is su�ciently large (see Sections 3.3 to 3.6 for a more precisestatement). This hypothesis was implicit in the results in Table 1 quoted from [10] (seeRemark 2).� We assume that all tiles have the same weight Tcomp. This assumption is di�erent from [10],where partial tiles are assigned a weight that is proportional to their area. Since partial tilesmay only occur at the bottom and at the top of the iteration space, their weight has a littleimpact on the total execution time. Our motivation for handling partial tiles as regular tilesis code generation: it is simpler to have the same code (with guarded instructions) for all tilesthan generating special code for boundary tiles.� For trapezoidal shaped iteration spaces, the total idle time Ia is not reported in the table.However, it can be computed straightforwardly from the relation PtP = Ia + Tseq, whereTseq = bP [M + bP�12 (rt � rb)]Tcomp (let b = 1 for a block distribution).6

Parallelogram shaped{Block distribution1 + r + c � 0 tP =MTcomp, Ia = 01 + r + c � 0 tP = [M + (P � 1)(1 + r + c)]TcompIa = P (P � 1)(1 + r + c)TcompParallelogram shaped{Cyclic distribution1 + r + c � 0 tP = bMTcomp, Ia = 01+r+c � 0,M � (1+r+c)P tP = [M + (1 + r + c)(bP � 1)]TcompIa = P [(bP � 1)(1 + r + c)� (b� 1)M]Tcomp1+r+c � 0,M � (1+r+c)P tP = [bM + (1 + r + c)(P � 1)]TcompIa = P (P � 1)(1 + r + c)TcompTrapezoidal shaped{Block distribution1 + rb + c � 0, rt � rb tP =MTcomp1 + rb + c � 0, rt � rb tP = [M + (P � 1)(rt � rb)]Tcomp1 + rb + c � 0, 1 + rt + c � 0 tP =MTcomp1 + rb + c � 0, 1 + rt + c � 0 tP = [M + (P � 1)(1 + rt + c)]TcompTrapezoidal shaped{Cyclic distribution1 + rb + c � 0, rt � rb tP = [bM + b(b�1)2 P (rt � rb)]Tcomp1 + rb + c � 0, rt � rb tP = [bM + (b(b�1)2 P + b(P � 1))(rt � rb)]Tcomp1 + rb + c � 0 see Proposition 4Table 2: Summary of the results of this paper3.3 Parallelogram shaped{Block distributionThis is the simplest case, and we work it out in full detail. In the formula below, we use the notationa+ to denote the positive part of a real number a:a+ = � a if a � 00 if a � 0Proposition 1 Assume a parallelogram-shaped iteration space of size M � P (block distribution)and rise r. If M � (P � 1)jrj. ThentP = [M + (P � 1)(1 + r + c)+]Tcomp:Equivalently, Ia = � P (P � 1)(1 + r + c)Tcomp if 1 + r + c � 00 otherwiseProof All processors have the same workload MTcomp. Because of the dependencies, processorP � 1 is always the last one to terminate execution. We discuss separately the case r � 0 and thecase r � 0.If r � 0, processor q = P � 1 can start processing its �rst (P � 1):(�r) tasks at time-stept = 0. Then, at time-step t = �(P � 1)rTcomp, it can continue the processing of its column (i.e.,7

Processors

Tile
stacks

0

1

2

3

4

6

5

1

2

3

4

5

6

7

8

9

10

M=11
p = 7
r =-1

Figure 5: Longest path when r � 0 (and M � P jrj)the remaining M + (P � 1)r tiles) only if data communicated along the horizontal axis is alreadyavailable. Otherwise it must wait. To process (and communicate data from) the �rst (P � 1) tasksof the horizontal axis takes (P � 1)(1 + c)Tcomp. Therefore, the longest path in the dependencygraph has length (P � 1)max(�r; 1 + c)Tcomp + (M + (P � 1)r)Tcomp:This longest path is represented in Figure 5.If r � 0, processor q = P �1 must wait (P �1)rTcomp time-steps for processor q = 0 to completeits �rst (P �1)r tasks. Then processor q = P �1 must wait another (P �1)(1+ c)Tcomp time-stepsfor executing tiles and communicating data along the horizontal dependence path that leads to its�rst task. Only then, at time-step t = (P � 1)(1 + r + c)Tcomp, can processor q = P � 1 start theexecution of its M tasks, and it will not be further delayed during this processing. The longestpath in the dependency graph is represented in Figure 6.

Figure 6: Longest path when r � 0 (and M � P jrj)8

We summarize both cases with the single formulatP = [M + (P � 1)(1 + r + c)+]Tcomp:The formula for Ia is derived from the equation PtP = Ia + Tseq, with Tseq =MPTcomp.Remark 1 We see that the results in [10], as reported in Table 1, are inaccurate. A small risedoes not prevent from a quadratic idle time; the precise condition is 1 + c + r � 0, which makesgood sense because the communication-to-computation ratio of the target architecture has to playa role. In a word, when 1 + r + c � 0, the rise is so small (r � �(1 + c)) that all tile columns canbe processed independently. On the other hand, when 1 + r + c � 0 (which is always true whenr � �1), the total idle time grows quadratically with the number of processors.Remark 2 The assumption M � (P � 1)jrj is needed to ensure the validity of the formulas. SeeFigure 7: (one of) the longest path is given by the processor q = Q, where M = (Q � 1)jrj, andthe parallel time is tP = [M + (Q� 1)(1 + r + c)+]Tcomp:Note that Q may be much smaller than P in this case. The idle time becomesIa = (P (Mjrj � 1)(1 + r + c)Tcomp if 1 + r + c � 00 otherwise

Processor QFigure 7: r � 0 and M < P jrj3.4 Trapezoidal Shaped{Block DistributionProposition 2 Assume a trapezoidal-shaped iteration space of size M �P (block distribution) andrises rb (bottom) and rt (top). If M � (P � 1)(jrtj+ jrbj), thentP = [M + (P � 1)((1 + rb + c)+ + rt � rb)+]Tcomp:
9

Proof Let C(j) = M + j(rt � rb) for 0 � j � P � 1 be the workload of processor j, that is,the total weight of column j. If 1 + rb + c � 0, then all columns can be processed independently.The total time is given by the largest processor workload: tP = C(0) = M if rt � rb, andtP = C(P � 1) =M + (P � 1)(rt � rb) otherwise.If 1 + rb + c � 0, all processors spend some idle time due to horizontal communications. Thediscussion is similar to that in the proof of Proposition 1. If r � 0, processor q, 0 � q � P � 1,can start processing its �rst j:(�rb) tiles at time-step t = 0, but then needs to wait until time-stept = (1 + c)jTcomp before processing the rest of its column, that is, the remaining C(j) + rbj tiles.If r � 0, processor j has to wait until time-step t = (1 + c + r)jTcomp before starting to work. Inboth cases, processor j terminates the execution of its column at time-stept = [(1 + c+ rb)j +M + j(rt � rb)]Tcomp:Depending upon the sign of (1 + c+ rb) + (rt � rb) = 1 + c + rt, this quantity is maximum eitherfor j = 0 or for j = P � 1.Altogether, we assemble the results of our case analysis in the above formula.Again, we point out that the condition 1 + rb + c � 0 is the key to minimizing idle time: Ifthis condition holds, the only idle time that remains is due to the unbalanced workload (with atrapezoidal iteration space, processors have di�erent workloads), but no overhead is due to datadependencies (and to the communications they incur).3.5 Parallelogram Shaped{Cyclic DistributionProposition 3 Assume a parallelogram-shaped iteration space of size M �Pb (cyclic distribution)and rise r. If M � (P � 1)br, thentP = 8<: bMTcomp if 1 + r + c � 0[(1 + r + c)(bP � 1) +M]Tcomp if 1 + r + c � 0;M � (1 + r + c)P[(1 + r + c)(P � 1) + bM]Tcomp if 1 + r + c � 0;M � (1 + r + c)P
0 1 2

(P-1)(1+c) P(1+c) P(1+c)

M

-(P-1)r

P-1 2P-1 bP-1

M+(P-1)r

M+(2P-1)r

M+(bP-1)r

-(2P-1)r

-(bP-1)r

Figure 8: Sketch of the proof with rb � 0.10

Proof All processors have the same workload bMTcomp. If 1 + r + c � 0, all tile columns can beprocessed independently, and the �rst part of the result follows.If 1 + r + c � 0, processor P � 1 is always the latest one to terminate execution. We discussthe two cases r � 0 and r � 0 separately. If r � 0, the work of processor P � 1 (which is assignedcolumns P � 1; 2P � 1; : : : ; bP � 1), can be decomposed as follows (see Figure 8):tP = max(1 + c;�r)(P � 1) max of propagating data along horizontal axisand of computing tiles below axis in column P � 1+Pb�1k=1max((1 + c)P;M � Pr) remaining tiles in column kP � 1and tiles below axis in column (k + 1)P � 1+M + (bP � 1)r remaining tiles in column bP � 1For r � 0, the same decomposition leads to (see Figure 9):tP = (1 + r + c)(P � 1) start-up time+Pb�2k=0max((1 + c+ r)P;M) tiles in column j + kP+M tiles in column j + (b� 1)PIt turns out that, because 1 + r + c � 0, the two expressions for tP coincide: in other words,the last expression is valid for both r � 0 and r � 0. This directly leads to the result.

0 1 2 P-1 2P-1 bP-1

{Pr

{(P-1)(1+c)
Pr

{
P(1+c)

P(1+c)
Pr

M

M

M

M

Figure 9: Sketch of the proof with rb � 0.3.6 Trapezoidal Shaped{Cyclic DistributionThe trapezoidal shaped{cyclic distribution is the most di�cult case. We have the following result:Proposition 4 Assume a trapezoidal-shaped iteration space of size M � bP (cyclic distribution)and rises rb (bottom) and rt (top). If M � (P � 1)b(jrtj+ jrbj), thentP = 8><>: [bM + b(b�1)2 P (rt � rb)]Tcomp if 1 + r + c � 0; rt � rb[bM + (b(b�1)2 P + b(P � 1))(rt � rb)]Tcomp if 1 + r + c � 0; rt � rbmax(t(j); 0 � j � P � 1) if 1 + r + c � 0 ;where t(j) = [(1+c)j+Pb�2k=0max((1+c)P;M�Prb+(j+kP)(rt�rb))+M+(j+(b�1)P)rt]Tcomp.11

Proof If 1+rb+c � 0, all tile columns can be processed independently. In this case, the processorthat has the largest workload is processor 0 if rt � rb and processor P �1 otherwise. The workloadof processor j isPb�1k=0C(j+kP), where C(j+kP) =M +(j+kP)(rt�rb) is the weight of columnj+kP , 0 � j � P�1, 0 � k � b�1. This leads to the �rst part of the result: if rt � rb, the maximumis achieved for processor 0 (andPb�1k=0C(kP) = bM+ b(b�1)2 P (rt�rb)), while if rt � rb, the maximumis achieved for processor P � 1 (and Pb�1k=0C(P � 1 + kP) = bM + (b(b�1)2 P + b(P � 1))(rt � rb)).If 1 + rb + c � 0, it is more di�cult to determine the longest path. If rb � 0, we use the samedecomposition as in the proof of Proposition 3 to decompose the work of processor j, 0 � j � P�1:t(j) = max(1 + c;�rb)j max of propagating data along horizontal axisand of computing tiles below axis in column j+Pb�2k=0max((1 + c)P;M � Prb + (j + kP)(rt � rb)) remaining tiles in column j + kPand tiles below axis in column j + (k + 1)P+M + (j + (b� 1)P)rt remaining tiles in column j + (b� 1)PWe have to take the maximum value of these quantities to obtain the parallel execution time:tP = max(t(j); 0 � j � P � 1):Now if rb � 0, the same decomposition leads to the expression (for processor j):t(j) = (1 + c+ rb)j start-up time+Pb�2k=0max((1 + c+ rb)P;M + (j + kP)(rt � rb)) tiles in column j + kP+M + (j + (b� 1)P)(rt � rb) tiles in column j + (b� 1)PAgain, this last expression for t(j) coincides with the one when rb � 0, hence the result.Remark 3 It is not di�cult to analytically compute the value of j, 0 � j � P�1, that maximizest(j) in Proposition 4. This is a simple but tedious case analysis depending upon the problemparameters P , M , c, rb and rt.4 Hierarchical TilingAs pointed out by H�ogsted, Carter, and Ferrante [10], tiling may be used for multiple levels ofmemory and parallelism hierarchy. One important motivation for determining the idle tile of atiming in [10] was, in fact, to demonstrate that such an idle time can have a signi�cant impact onreal performance for a large application.We reuse the example in [10] to illustrate this point. A large rectangular iteration space withhorizontal and vertical dependencies is partitioned into supertiles. In turn, each supertile is parti-tioned into second-level tiles that are assigned to processors. See Figure 10, where supertiles andsecond-level tiles are rectangular, as opposed to the situation in Figure 11, where supertiles andsecond-level tiles have a parallelogram shape. To motivate this example, think of a large out-of-coreproblem, where data is stored on disk. Supertiles are brought in from disk and distributed amongthe processor main memories (there is an implicit synchronization between two consecutive super-tiles). Which is the best strategy, rectangular tiles as in Figure 10, or parallelogram-shaped tiles asin Figure 11? It is stated in [10] that rectangular tiles incur a substantial idle time penalty, whereasparallelogram-shaped tiles do not (at least in steady state|partial tiles do incur a penalty, too).12

0 1 2 3P P PP

{supertile

tile {

Figure 10: Partitioning the iteration space into rectangular supertiles and second-level tiles (therise is r = 0).

P3

P2

P1

P0

tile {
supertile
{

Figure 11: Partitioning the iteration space into parallelogram-shaped supertiles and second-leveltiles (the rise is r = �1).The results of the preceding sections enable us to answer the problem: we analytically computethe best partition shape as a function of the iteration space parameters and of the target machinecharacteristics.Let h and w be the normalized height and width of second-level tiles whose processing requiresTcomp = hw time-steps. Assume a block distribution of tiles to processors so that each supertileis of size Mh � Pw: in other words, in a supertile there are P columns of M tiles each. We haveP = 4 and M = 5 in Figures 10 and 11. Let the size of the whole iteration space be D1h�D2w,where D1 = d1M and D2 = d2P . With the rectangular partitioning, there are d1 � d2 supertiles.With the parallelogram-shaped partitioning, there are (d1+1)�d2 supertiles, and the �rst and lastsupertiles in each column are partial. The following lemma is a direct consequence of the resultsin Table 2:Lemma 1 With the previous notations, assume that M � (P � 1)jrj. The total execution time to13

process the iteration space is� Trect = [M + (P � 1)(1 + c)]d1d2Tcomp for rectangular tilesTrise(r) = [M + (P � 1)(1 + c+ r)+](d1 + 1)d2Tcomp for parallelogram tiles with rise rFor rectangular tiles, we rewrite Trect asTrect = [M + (P � 1)(1 + c)]D1M D2P Tcomp;to show that it is a decreasing function of M . In other words, M should be chosen as large aspossible, namely, M = Mmax, where Mmax is such that Mmax tiles (i.e., Mmaxhw computationalpoints of the iteration space) �t in the (cache) memory of a single processor. For the same value ofM , we choose for r the smallest value such that (1+ r+ c)+ = 0 (i.e., r = �(1 + c)), and we derivethat Trise(�(1 + c)) =M(D1M + 1)D2P Tcomp:We formulate the following proposition:Proposition 5 If Mmax � (P � 1)(1 + c) D1Mmax , then Trise(�(1 + c)) � Trect.The condition in Proposition 5 will always be true for large enough domains. In other words,parallelogram-shaped supertiles will lead to the best performance.5 ConclusionIn this paper, we have extended results by H�ogsted, Carter, and Ferrante [10], and we have beenable to accurately determine the idle time of a tiling for both parallelogram-shaped and trapezoidal-shaped iteration spaces. We have provided a closed-form expression of the idle time for all valuesof the rise parameter, for a block distribution as well as for a cyclic distribution.Furthermore, we have used our new results in the context of hierarchical tiling. Although wehave dealt only with a particular instance of the multilevel tiling problem, we believe our approachis general enough to be applied in several situations (such as those described in [6]).Finally, we point out that the recent development of heterogeneous computing platforms maywell lead to using tiles whose size and shape will depend upon the characteristics of the processorsthey are assigned to. An interesting research direction would be to extend our approach so as toincorporate processor speed as a new parameter of the tiling problem.References[1] A. Agarwal, D.A. Kranz, and V. Natarajan. Automatic partitioning of parallel loops anddata arrays for distributed shared-memory multiprocessors. IEEE Trans. Parallel DistributedSystems, 6(9):943{962, 1995.[2] Utpal Banerjee. An introduction to a formal theory of dependence analysis. The Journal ofSupercomputing, 2:133{149, 1988.[3] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (Pen)-ultimate tiling? Integra-tion, the VLSI Journal, 17:33{51, 1994. 14

[4] Pierre-Yves Calland, Jack Dongarra, and Yves Robert. Tiling with limited resources. Tech-nical Report UT-CS-97-350, University of Tennessee, Knoxville, TN, 1997. Available athttp://www.cs.utk.edu/ yrobert.[5] Pierre-Yves Calland and Tanguy Risset. Precise tiling for uniform loop nests. In P. Cappelloet al., editors, Application Speci�c Array Processors ASAP 95, pages 330{337. IEEE ComputerSociety Press, 1995.[6] L. Carter, J. Ferrante, S. F. Hummel, B. Alpern, and K.S. Gatlin. Hierarchical tiling: amethodology for high performance. Technical Report CS-96-508, University of California atSan Diego, San Diego, CA, 1996. Available at http://www.cse.ucsd.edu/ carter.[7] Y-S. Chen, S-D. Wang, and C-M. Wang. Tiling nested loops into maximal rectangular blocks.Journal of Parallel and Distributed Computing, 35(2):108{120, 1996.[8] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker,and R. C. Whaley. ScaLAPACK: A portable linear algebra library for distributed memorycomputers - design issues and performance. Computer Physics Communications, 97:1{15, 1996.(also LAPACK Working Note #95).[9] J. J. Dongarra and D. W. Walker. Software libraries for linear algebra computations on highperformance computers. SIAM Review, 37(2):151{180, 1995.[10] K. H�gstedt, L. Carter, and J. Ferrante. Determining the idle time of a tiling. In Principlesof Programming Languages, pages 160{173. ACM Press, 1997. Extended version available asTechnical Report UCSD-CS96-489.[11] F. Irigoin and R. Triolet. Supernode partitioning. In Proc. 15th Annual ACM Symp. Principlesof Programming Languages, pages 319{329, San Diego, CA, January 1988.[12] N. Manjikian and T.S. Abdelrahman. Scheduling of wavefront parallelism on scalable sharedmemory multiprocessor. In Proceedings of the International Conference on Parallel ProcessingICPP 96. CRC Press, 1996.[13] H. Ohta, Y. Saito, M. Kainaga, and H. Ono. Optimal tile size adjustment in compiling generalDOACROSS loop nests. In 1995 International Conference on Supercomputing, pages 270{279.ACM Press, 1995.[14] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multicomput-ers. Journal of Parallel and Distributed Computing, 16(2):108{120, 1992.[15] R. Schreiber and Jack J. Dongarra. Automatic blocking of nested loops. Technical Report90-38, The University of Tennessee, Knoxville, TN, August 1990.[16] S. Sharma, C.-H. Huang, and P. Sadayappan. On data dependence analysis for compiling pro-grams on distributed-memory machines. ACM Sigplan Notices, 28(1), January 1993. ExtendedAbstract.[17] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In SIGPLAN Conferenceon Programming Language Design and Implementation, pages 30{44. ACM Press, 1991.15

