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Abstract

Diskless Checkpointing is a technique for checkpointing the state of a long-running computation on a
distributed system without relying on stable storage. As such, it eliminates the performance bottleneck of
traditional checkpointing on distributed systems.

In this paper, we motivate diskless checkpointing and present the basic diskless checkpointing scheme along
with several variants for improved performance. The performance of the basic scheme and its variants is eval-
uated on a high-performance network of workstations and compared to traditional disk-based checkpointing.
We conclude that diskless checkpointing is a desirable alternative to disk-based checkpointing that can improve

the performance of distributed applications in the face of failures.

1 Introduction

Checkpointing i1s an important topic in fault-tolerant computing as the basis for rollback recovery. Suppose a
user is executing a long-running computation and for some reason (hardware or software), the machine running the
computation fails. In the absence of checkpointing, when the machine becomes functional, the user must start the
program over, thus wasting all previous computation. Had the user stored periodic checkpoints of the program’s
state to stable storage, then he or she could instead restart the program from the most recent checkpoint. This
is called rolling back to a stored checkpoint. For long-running computations, checkpointing allows users to limit
the amount of lost computation in the event of a failure (or failures).

There have been many programming environments intended for users with long-running computations that

rely on checkpointing for fault-tolerance. For example, Condor [34], libckpt [25] and others [16, 30, 37] provide
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transparent checkpointing for uniprocessor programs, and checkpointers such as MIST [4], CoCheck [33] and
others [2, 10, 18, 28, 32] provide checkpointing in parallel computing environments.

All of the above systems store their checkpoints on stable storage (i.e. disk), since stable storage typically
survives processor failures. However, since checkpoints can be large (up to hundreds of megabytes per processor),
the act of storing them to disk becomes the main component that contributes to the overhead, or performance
degradation, due to checkpointing. This is more marked in parallel and distributed systems where the number of
processors often vastly outnumbers the number of disks.

Several techniques have been devised and implemented to minimize this source of overhead, including incre-
mental checkpointing [11, 38], checkpoint buffering with copy-on-write [9, 21], compression [20, 28] and memory
exclusion [25]. However with all of these techniques, the performance of the stable storage medium is still the
underlying cause of overhead.

In this paper, we present diskless checkpointing. The goal of diskless checkpointing is to remove stable storage
from checkpointing in parallel and distributed systems, and replace it with memory and processor redundancy.
By eliminating stable storage, diskless checkpointing removes the main source of overhead in checkpointing.
However, this does not come for free. The failure coverage of diskless checkpointing is less than checkpointing to
stable storage, since none of the components in a diskless checkpointing system can survive a wholesale failure.
Moreover, there is memory, processor and network overhead introduced by diskless checkpointing that is absent
in standard disk-based schemes.

The purpose of this paper is twofold. We first present basic schemes for diskless checkpointing and then
performance optimizations to the basic schemes. Second, we assess the performance of diskless checkpointing on
a network of Sparc-b workstations as compared to standard disk-based checkpointing. As anticipated, diskless
checkpointing induces less overhead on applications than disk-based checkpointing, enabling the user to checkpoint
more frequently without a performance penalty. This lowers the application’s expected running time in the
presence of failures.

Diskless checkpointing tolerates single processor failures, and in some cases multiple processor failures. How-
ever, it does not tolerate wholesale failures (such as a power outage that knocks out all machines). Thus, an
optimized fault-tolerant scheme would be a two-level scheme, as advocated by Vaidya [35], where diskless check-
points are taken frequently, and standard, disk-based checkpoints are taken at a much larger interval. In this
way, the more frequent case of one or two processors failing is handled swiftly, with low overhead, while the rarer

case of a wholesale failure is handled as well, albeit with higher overhead and a longer rollback penalty.

2 Overview of Diskless Checkpointing

Diskless checkpointing is based on coordinated checkpointing. With coordinated checkpointing, a collection of

processors with disjoint memories coordinates to take a checkpoint of the global system state. This is called a



“coordinated checkpoint”. A coordinated checkpoint consists of checkpoints of each processor in the system plus
a log of messages in transit at the time of checkpointing. Coordinated checkpointing is a well-studied topic in
fault-tolerance. For a thorough discussion of coordinated checkpointing, the reader is directed to the survey paper
by Elnozahy, Johnson and Wang [8].

With diskless checkpointing we assume that there is no message log to be stored (for example, the “Sync-and-
stop” algorithm for coordinated checkpointing ensures that there is no message log [28]), or that the message log
is contained within the checkpoints of individual processors. This reduces the problem of taking a coordinated
checkpoint to saving the individual checkpoints of each processor in the system.

Diskless checkpointing is composed of two parts — (1) checkpointing the state of each application processor in
memory, and (2) encoding these in-memory checkpoints and storing the encodings in checkpointing processors.
When a failure occurs, the system is recovered in the following manner. First, the non-failed application processors
roll themselves back to their stored checkpoints in memory. Next, replacement processors are chosen to take the
place of the failed processors. Finally, the replacement processors use the checkpointed states of the non-failed
application processors plus the encodings in the checkpointing processors to calculate the checkpoints of the failed
processors. Once these checkpoints are calculated, the replacement processors roll back, and the application
continues from the checkpoint. Note that either spare processors or some of the checkpointing processors may be
used as replacement processors. If checkpointing processors are used, then the system will continue with fewer (or
no) checkpointing processors, thus reducing the fault-tolerance. However, when more processors become available,

they may be employed as additional checkpointing processors.
2.1 Exact Problem Specification

The user is executing a long-running application on a parallel or distributed computing environment composed
of processors with disjoint memories that communicate by message-passing. The application executes on exactly n
processors. With diskless checkpointing, an extra m processors are added to the system, and the n+m processors
cooperate to take diskless checkpoints. As long as the number of processors in the system is at least n, and as
long as failures occur within certain constraints, the application may proceed efficiently.

As stated above, diskless checkpointing may be broken into two parts: application processors checkpointing
themselves, and checkpoint processors encoding the application processors’ checkpoints. FEach is explained below,

followed by issues involved in gluing the two parts together.

3 Application Processors Checkpointing Themselves

Here the goal is for an application processor to checkpoint its state in such a way that if a rollback is called
for, due to the failure of another processor, the processor can roll back to its most recent checkpoint. In standard

disk-based systems, a processor checkpoints itself by saving the contents of its address space to disk. Typically



this involves saving all values in the stack, heap, global variables and registers as in Figure 1(a). If the processor
must roll back, it overwrites the current contents of its address space with the stored checkpoint. As a last step,
it restores the registers, which restarts the computation from the checkpoint, thereby completing the rollback.

For more detail on general process checkpointing and recovery, see the papers on Condor [34] and libckpt [25].

Application Application Application Application
Processor Processor Processor Processor
r/—/%
= g =
3 . fs . . ) .
] Registers % g Registers Registers ] Registers
c = c
2 o g 3
2
35
8 8 3 g 8
& & g & El g
g - g g
< \ @ i X ?
o o o 8 o
o o = = ©
< < <C (®] <

Memory Disk Memory Memory Clone «— Memory

(a) (b) (©) ()

Figure 1: (a) Checkpointing to disk, (b) simple diskless checkpointing, (c) incremental diskless checkpointing,
(d) forked diskless checkpointing

With diskless checkpointing, the processor saves its state in memory, rather than on disk. In its simplest form,
diskless checkpointing requires an in-memory copy of the address space and registers, as in Figure 1(b). If a
rollback is required, the contents of the address space and registers are restored from the in-memory checkpoint.
Note that this checkpoint will not tolerate the failure of the application processor itself; it simply enables the
processor to roll back to the most recent checkpoint if another processor fails.

One drawback of simple diskless checkpointing is memory usage. A complete copy of the application must
be retained in the memory of each application processor. A solution to this problem is to use incremental
checkpointing [11, 38], as in Figure 1(c). To take a checkpoint, an application processor sets the virtual memory
protection bits of all pages in its address space to be read-only [1]. When the application attempts to write a
page, an access violation (page fault) occurs. The checkpointing system then makes a copy of the faulting page,
and resets the page’s protection to read-write. Thus, a processor’s checkpoint consists of the read-only pages in
its address space plus the stored copies of all the read-write pages. To roll back to a checkpoint, the processor
simply copies (or maps) the checkpointed copies of all its read-write pages back to the application’s address space.
As long as the application does not overwrite all of its pages between checkpoints, incremental checkpointing
improves both the performance and memory utilization of checkpointing.

The last useful checkpointing method is forked (or copy-on-write) checkpointing [9, 21, 25]. To checkpoint,
the application clones itself (with, for example, the fork() system call in Unix) as depicted in Figure 1(d).

This clone is the diskless checkpoint. To roll back, the application overwrites its state with the clone’s, or if



possible, the clone merely assumes the role of the application. Forked checkpointing is very similar to incremental
checkpointing because most operating systems implement process cloning with copy-on-write. This means that
the process and its clone will share pages until one of the processes alters the page. Thus, it works in the same
manner as incremental checkpointing, except the identification of modified pages and the page copying are all
performed in the operating system. This results in less CPU activity switching back and forth from system to user
mode. Moreover, forked checkpointing does not require that the user have access to virtual memory protection

facilities, which are not available in all operating systems.

4 Encoding the checkpoints

The goal of this part is for extra checkpoint processors to store enough information that the checkpoints
of failed processors may be reconstructed. Specifically, there are m checkpoint processors. These processors
encode the checkpoints of the application processors in such a way that when application processors fail, their
checkpoints may be recalculated from the checkpoints of the non-failed processors plus the encodings in the

checkpoint processors.
4.1 Parity (Raid Level 5)

The simplest checkpoint encoding is parity (Figure 2(a)). Here there is one checkpoint processor (i.e. m = 1)
that encodes the bitwise parity of each of the application’s checkpoints. In other words, let byte b‘g represent the
j-th byte of application processor i. Then the j-th byte of the checkpoint processor will be:

J
bckp
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If any application processor fails, the state of the system may be recovered as follows. First, a replacement
processor is selected to take the place of the failed application processor. This could be the checkpoint processor,
a spare processor that had previously been unused, or the failed processor itself if the failure was transient. The
replacement processor calculates the checkpoint of the failed processor by taking the parity of the checkpoints of

the non-failed processors and the encoding in the checkpoint processor. In other words, suppose processor ¢ is

the failed processor. Then its checkpoint may be reconstructed as:
M=be.. ebl_ et e . ab bl

Note that this is the same recovery scheme as Raid Level 5 in disk array technology [5]. When the replacement
processor has calculated the checkpoint of the failed processor, then all application processors roll back to the
previous checkpoint, and the computation proceeds from that point.

Besides parity, there are several other schemes than can be used to encode the checkpoints. They vary in the
number of checkpoint processors, the efficiency of encoding, and the amount of failure coverage. They are detailed

below.
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Figure 2: Encoding the checkpoints: (a) Raid Level 5, (b) Mirroring, (¢) One-dimensional parity

4.2 Mirroring

Checkpoint mirroring (Figure 2(b)) is another simple encoding scheme. With mirroring, there are m = n
checkpoint processors, and the i-th checkpoint processor simply stores the checkpoint of the i-th application
processor. Thus, up to n processor failures may be tolerated, although the failure of both an application processor
and 1ts checkpoint processor cannot be tolerated. Checkpoint mirroring should have a very low checkpointing

overhead because no encoding calculations (such as parity) need to be made.
4.3 1-dimensional parity

With one-dimensional parity (Figure 2(c)) there are 1 < m < n checkpoint processors. The application
processors are partitioned into m groups g1, ..., ¢m of roughly equal size. Checkpoint processor ¢ then calculates
the parity of the checkpoints in group i. This increases the failure coverage, because now one processor failure per
group may be tolerated. Moreover, the calculation of the checkpoint encoding should be more efficient because
there is no longer a single bottleneck (the checkpoint processor). Note that 1-dimensional parity reduces to Raid

Level 5 when m = 1, and to mirroring when m = n.
4.4 2-dimensional parity

Two-dimensional parity (Figure 3(d)) is an extension of one-dimensional parity. With two-dimensional parity,
the application processors are arranged logically in a two-dimensional grid, and there is a checkpoint processor for
each row and column of the grid. Each checkpoint processor calculates the parity of the application processors in
its row or column. Two-dimensional parity requires m > 2,/n checkpoint processors, and can tolerate the failure

of any one processor in each row and column. This means that any two-processor failures may be tolerated.
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Figure 3: Encoding the checkpoints: (d) Two-dimensional parity, (¢) Hamming coding, (f) EVENODD coding, (g)

Reed-Solomon coding

4.5 Other parity-based codes

The well-known Hamming codes (Figure 3(e)) may be used to tolerate any two-processor failures with the
addition of roughly logn processors [13]. Each checkpoint processor calculates the parity of a subset of the
application processors. EVENODD coding (Figure 3(f)) is a technique where m = 2 checkpoint processors are
employed and all two-processor failures may be tolerated [3]. The encoding is based on parity calculations, but

is a little more complex than the above schemes.
4.6 Reed-Solomon coding

The most general purpose encoding technique is Reed-Solomon coding [24] (Figure 3(g)). Here m checkpointing
processors use Galois Field arithmetic to encode the checkpoints in such a way that any m failures may be
tolerated. Since the encoding is more complex than parity, the CPU overhead of Reed-Solomon coding is greater

than the other methods, but it achieves maximal failure coverage per checkpoint processor.



5 Gluing the two parts together

Sections 3 and 4 have discussed how application processors store checkpoints internally, and how the checkpoint
processors encode information. The final component of diskless checkpointing is coordinating the application
and checkpointing processors in an efficient and correct way. This section discusses the relevant details in the
coordination of the two sets of processors. We focus primarily on Raid Level 5 encodings, and then discuss the

differences that the other encodings entail.
5.1 Tolerating failures when checkpointing

As with all checkpointing systems, diskless checkpointing systems must take care to remain fault-tolerant even
if there 1s a failure while checkpointing or recovery is underway. This is done by making sure that each coordinated
checkpoint remains valid until the next coordinated checkpoint has been completed. The checkpointing processors
control this process. When all the checkpointing processors have completed calculating their encodings for the
current checkpoint, then they may discard their previous encodings, and then notify the application processors
that they may discard their previous checkpoints.

Upon recovery, if the checkpointing processors all have valid encodings for the most recent checkpoint, then
these are used for recovery, along with the most recent checkpoints in the non-failed application processors. If
any checkpointing processor does not have a valid encoding for the most recent checkpoint, then the previous
encoding must be used along with the previous checkpoints in the non-failed application processors.

This protocol ensures that there 1s always a valid coordinated checkpoint of the system in memory. If all
checkpoint processors have their encodings for coordinated checkpoint i, then all application processors will
have their checkpoints for coordinated checkpoint . If any checkpoint processor has an incomplete encoding for
checkpoint ¢, then all checkpoint processors will still contain their encodings for coordinated checkpoint ¢ — 1.
Moreover, all application processors will have their checkpoints for coordinated checkpoint ¢ — 1. Thus, the whole
system may recover to coordinated checkpoint ¢ — 1.

If a failure is detected during recovery, then the remaining processors simply initiate the recovery procedure

anew.
5.2 Space demands

A ramification of the preceding protocol is that at the moment when the checkpoint processors finish storing
their encodings, all processors contain two checkpoints in memory: the current checkpoint and the previous
checkpoint. Thus, the memory usage of diskless checkpointing is a serious issue.

Suppose the size of an application processor’s address space is M bytes. Then simple diskless checkpointing
consumes an extra M bytes of memory to hold a checkpoint. To ensure that only M bytes of extra memory

are consumed at all times, the application must be frozen during checkpointing. Then the application’s address
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Figure 4: Calculating the encoding: (a) DIRECT, (b) FAN-IN

space may be used (without being copied) to calculate the checkpoint encodings. When the encodings have been
calculated, the application’s address space may be copied over its previous checkpoint, which is now expendable.
Then the application is unfrozen.

With incremental checkpointing, checkpointed copies of pages are made when page faults are caught. At
checkpoint time, the processors calculate the encodings, then discard the checkpointed copies of pages and set the
protection of all application pages to read-only. Thus, if the incremental checkpoint size is 7, then only I extra
bytes of memory are necessary. In the worst case, all pages are modified between checkpoints, and I equals M.

With forked checkpointing, each checkpoint is a separate process. When the checkpoint processors complete
their encodings, there are three processes contained by each application processor: the application itself; its
most recent checkpoint, and the previous checkpoint. Since process cloning uses the copy-on-write optimization,
each checkpoint process only consumes an extra [ bytes of memory. Therefore, forked checkpointing requires an
extra 27 bytes of memory during checkpointing, and I bytes at all other times. In the worst case, this 1s 2M
during checkpointing, and M at other times.

Finally, disk-based checkpointing using the fork optimization requires I’ bytes of memory, where I’ consists of
all pages that are modified while checkpointing is taking place. I’ should be less than I, though if the latency of

checkpointing is large compared to the checkpointing interval, I’ may be close to I.
5.3 Sending and calculating the encoding

With Raid Level 5 encoding, there is one checkpoint processor C7, and n application processors Pi,..., Py,.
(' stores the bitwise parity of the checkpoints of each application processor. The simplest way to calculate the
parity is to employ the DIRECT method: each application processor simply sends its checkpoint to C7. Initially,
(' clears a portion of its memory, which we call e;, to store the checkpoint encoding. Upon receiving ckp; from
P;, it sets €1 to (ex @ ckp;). This is shown in Figure 4(a). In Figure 4, the & signs are shown directly above the
processors that perform the bitwise exclusive or. Arrows from one processor to another represent one processor

sending its checkpoint to another.



There are two problems with the DIRECT method. First, C; can become a message-receiving bottleneck, since
it is the destination of all checkpoint messages. Second, C; does all of the parity calculations. Both problems
may be alleviated with the FAN-IN algorithm. Here, the application processors perform the parity calculation in
log n steps and send the final result to €, which stores the result in its memory. This is shown in Figure 4(b).

For other encodings besides Raid Level 5, these two methods may be extended. In the DIRECT method, each
processor sends its checkpoint in a multicast message to the proper checkpointing processors. If necessary (e.g.,
for Reed-Solomon coding), the checkpointing processors modify the checkpoints, and then exclusive-or them
into their checkpoints. In the FAN-IN method, there is one FAN-IN performed for each checkpointing processor.
This may entail the cooperation of all application processors (e.g., in Reed-Solomon coding), or a subset of the
application processors (e.g., in one-dimensional parity). If a checkpoint must be modified for the encoding, it is
done at application processor P; before the fan-in starts.

For most networks, the FAN-IN algorithm will be preferable to the DIRECT because it eliminates bottlenecks and
distributes the parity calculations. However, if the network supports multicast, the encodings involving multiple

checkpointing processors may profit from the DIRECT method.
5.4 Breaking the checkpoint into chunks

The preceding description implies that whole checkpoints are sent from processor to processor. Since check-
points may be large, it often makes more efficient use of memory to break the checkpoint into chunks of a fixed
size. For example, in the FAN-IN algorithm, only two extra chunks of memory are needed to receive an incoming
chunk from another processor, make the parity calculation, and then send off the result. The chunks should be
small enough that they do not consume too much memory, but large enough that the overhead in sending chunks

is not dominated by message-sending start-up.
5.5 Sending diffs

If the application processors use incremental checkpointing, then they can avoid overhead by sending only
pages that have been modified since the previous checkpoint. However, this can cause problems in creating the
checkpoint encoding. Specifically, if the encoding is to be created anew at each checkpoint, it needs to have all
checkpointing data from all processors. The solution to this is to use diffs.

Assume that the DIRECT encoding method is being employed. The checkpoint processor first copies its previous
checkpoint to its current checkpoint. Then each application processor does the following. For each modified page
pager in its address space, it calculates diff,,, which is the bitwise exclusive-or of the current copy of the page
and the copy of the page in the previous checkpoint (which of course is available to the application processor). It
then sends diff,, to the checkpoint processor, which XOR’s it into its checkpoint. This has the effect of subtracting
out the old copy of the page and adding in the new copy. In this way, unmodified pages need not be sent to the

checkpointing processor.
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One may use diffs with the FAN-IN algorithm as well, stipulating that if a processor does not modify a page
during the checkpoint interval, then it does not need to send that page or XOR it with other pages when performing

the fan-in.
5.6 Compressing Diffs

By sending diffs rather than actual bytes of the checkpoint, an interesting opportunity for compression arises.
Suppose that an application modifies just a few bytes on a page. Then the diff of that page and its previously
checkpointed copy will be composed of mostly zeros, which can be easily compressed using either run-length
encoding or an algorithm that sends tagged bytes rather than whole pages. Such compression trades off use of
more CPU for a reduced load on the network.

Compression combines naturally with incremental checkpointing, where modified pages are compressed before
being sent. It may also be used with simple and forked checkpointing by converting the entire checkpoint into
a diff and compressing it before sending it along. This has the effect of emulating incremental checkpointing,

because regions of memory that have not been modified get compressed to nothing.

6 Implementation and Experiment

In order to assess the performance of diskless checkpointing as compared to standard disk-based checkpointing
on networks of workstations, we implemented a small transparent checkpointing system on a network of 24 Sun
Sparch workstations at the University of Tennessee. Each workstation has 96 Mbytes of physical memory and
runs SunOS version 4.1.3. The workstations are connected to each other by a fast, switched Ethernet which can
be isolated for performance testing. The measured peak bandwidth between any two processors is roughly 5
megabytes per second. The workstations have very little accessible local disk storage: 38 megabytes per machine.
However, the machines are connected via regular Ethernet to the department’s file servers using Sun NFS. These
disks have a bandwidth of 1.7 megabytes per second, but the performance of NFS on the Ethernet is far worse.
With NFS, remote file writes achieve a bandwidth of 0.13 megabytes per second. The page size of each machine
1s 4096 bytes, and access to the page tables is controlled by the mprotect () system call.

Our checkpointer runs on top of PVM [12] and works like many PVM checkpointers [4, 33]. Applications do
not need to be recompiled, but their object modules must be relinked with our checkpointing/modified PVM
library. When the applications are started, the checkpointing code gets control and reads startup information
from a control file. This information includes the checkpoint interval, which checkpointing optimizations to use,
plus where checkpoints should be stored (to disk or to checkpointing processors).

The application then starts, and one of the application processors is interrupted when the checkpointing
interval has expired. This processor coordinates with the other application processors using the “Sync-and-stop”

synchronization algorithm, and once consistency has been determined, the processors checkpoint.
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Abbreviation | Description
BASE No checkpointing
DISK-FORK | Checkpointing to disk using fork()

SIMP Simple diskless checkpointing

INC Incremental diskless checkpointing

FORK Forked diskless checkpointing

INC-FORK Incremental, forked diskless checkpointing

C-SIMP Simple diskless checkpointing with compression
C-INC Incremental diskless checkpointing with compression
C-FORK Forked diskless checkpointing with compression

C-INC-FORK | Incremental, forked diskless checkpointing with compression

Table 1: Checkpointing variants implemented in our experiments

PVM includes some basic forms of failure detection. Specifically, if a processor in the current PVM session fails,
the rest of the processors eventually notice the failure and remove the failed processor from the PVM session.
PVM allows the user to be notified of such events. Our checkpointer uses this facility to recognize processor
failures. When such a failure occurs, then if there is a spare processor in the PVM session, it is selected to
replace the failed processor. If there is no spare processor, and diskless checkpointing is being employed, then a
checkpoint processor is chosen to be the replacement processor. Recovery proceeds automatically, either from the
disk-based or diskless checkpoint.

It is important to note that our checkpointer does not require the programmer to modify his or her code to
enable checkpointing. A simple relinking is all that is necessary.

The gamut of checkpointing variants is enumerated in Table 1. This includes standard disk-based checkpointing
using the fork() optimization. We do not test incremental, disk-based checkpointing because it does not improve
the performance of checkpointing in any of our tests.'.

For diskless checkpointing, we implement Raid Level 5 encoding using the FAN-IN algorithm. Checkpoint
encodings are created in chunks of 4096 bytes (conveniently, also the page size). The choice of algorithm has some
ramifications on how certain optimizations work. For example, when performing incremental checkpointing, the
encoding 1s created chunk-by-chunk, but if a processor has not modified the corresponding page, then an empty
message 1s sent as part of the fan-in instead of the page.

When using diff-based compression, pages are compressed using a bitmap-based compression algorithm [29].

Compression is performed by the sending processor before sending, and then uncompressed by the receiving

I This is not to say that incremental, disk-based checkpointing is not often a useful optimizations. It simply does not help in any

of our tests.
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Application Running Time Checkpoint Size per node
(sec)  (hommiss) (Mbytes)
NBODY 5722 1:35:22 3.7
MAT 6602 1:50:02 15.5
PSTSWM | 5610 1:33:30 24.4
CELL 6351 1:45:51 41.4
PCG 5873 1:37:53 66.6

Table 2: Basic parameters of the testing applications

processor, which merges the page with its own, and compresses the result before sending it along. When the
final compressed chunk reaches the checkpointing processor, it uncompresses the chunk and merges it with the

previous checkpoint encoding, which is then stored as the next encoding.

7 Applications

We used five applications to test the performance of checkpointing. These applications are all CPU-intensive,
parallel programs of the sort that often require hours, or sometimes days of execution. We executed instances of
these programs that took between 1.5 and 2 hours to run on sixteen processors in the absence of checkpointing. In
all cases, it 1s clear how the programs scale in size, and how this scaling will affect the performance of checkpointing.
The basic parameters of each application are presented in Table 2. We briefly describe each application, ordered

by checkpoint size, below.
7.1 NBODY

NBODY computes N-body interactions among particles in a system. The program is written in C, and uses
the parallel multipole tree algorithm [19]. The instance used in our tests was 15,000 particles and ten iterations.

The basic structure of the program is as follows. Each particle is represented by a data structure with several
fields. The particles are partitioned among “slave” processors (sixteen in our tests) in such a way that processors
that are “close to each other” (by some metric) reside in the same slave, to limit interslave communication. For
this reason, slave processors can differ in the number of particles they hold and therefore in their sizes. For
example, in our tests, the slave processors averaged 3.7 megabytes in size, but the largest was six megabytes.

At each iteration, the “location” field (among others) of each particle is updated to reflect the n-body inter-
action. Since the size of a particle’s data structure is less than the machine’s page size, this means that almost
all pages of the slave processors are modified during each iteration, leading to poor incremental checkpointing

behavior when the checkpointing interval spans multiple iterations. However, since much of each particle’s data
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is left unmodified from iteration to iteration, only a few bytes per page are changed, resulting in good diff-based
compression.
There are two parameters that affect the running time and memory usage of NBODY . These are the number
of particles, which affects both time and space, and the number of iterations, which only affects the running time.
NBODY is the only application where the checkpoints are small enough to allow the same number of check-
points (six) in both diskless and disk-based checkpointing.

7.2 MAT

MAT is a C program that computes the floating point matrix product of two square matrices using Cannon’s
algorithm [17]. The matrix size in our tests was 4,608 x4,608, leading to 15.1 megabyte checkpoints per processor.

On a uniprocessor, matrix multiplication typically shows excellent incremental checkpointing behavior, since
the two input matrices are read-only, and the product matrix is calculated sequentially, filling up whole pages at
a time in such a way that once a product element is calculated, it is never subsequently modified [25]. However,
most high-performance parallel algorithms, such as Cannon’s algorithm, differ in this respect.

In Cannon’s algorithm, all three matrices are partitioned in square blocks among the n processors (and it
is assumed n is a perfect square). The algorithm proceeds in \/n steps. In each step, each processor adds the
product of its two input submatrices to its product submatrix. Then the processors send their input submatrices to
neighboring processors, receiving new ones in their place, and repeat until the product submatrices are calculated.
The ramification of this data movement is that during the course of an iteration, all matrices are modified.
Therefore, if checkpoints span iterations (as is the case in disk-based checkpointing), incremental checkpointing
will have no beneficial effect. If multiple checkpoints are taken in the same iteration (as is the case in diskless
checkpointing), then incremental checkpointing will be successful as in the uniprocessor case.

When pages are updated in M AT, they are updated in their entirety, leading to very poor diff-based compres-
sion.

MAT’s time and space demands are determined by the size of the matrix. For an N x N matrix, the memory
usage is proportional to N2, and the running time is proportional to N3. The communication patterns of MAT
depend on the number of processors, and are the same for all matrix sizes.

MAT and NBODY are the only applications where it is possible to take more than one disk-based checkpoint
during the program’s execution. Three disk-based checkpoints (as opposed to seven diskless checkpoints) are taken

in MAT.

7.3 PSTSWM

PSTSWM is a FORTRAN program that solves the nonlinear shallow water equations on a rotating sphere using
the spectral transform method [14]. The instance used here simulates the state of a 3-D system for a duration of

102 (simulated) hours.
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Like NBODY, PSTSWM modifies the majority of its pages during each iteration, but it only modifies
a few bytes per page. Therefore, incremental checkpointing should show limited improvement, but diff-based
compression should work well. PSTSWM’s checkpoints are large — approximately 25 megabytes per processor.
However, since each machine has 96 megabytes of physical memory, two checkpoints may be stored in their
entirety without stressing the limits of physical memory.

PSTSWM can scale in size by simulating a denser particle grid. Once the size is set, each iteration performs
roughly the same actions. Therefore, simulating longer time frames increases the running time in a linear fashion

without altering the general behavior (e.g. memory access pattern) significantly.
7.4 CELL

CELL is a parallel cellular automaton simulation program. Written in C, this program distributes two grids
of cellular automata evenly across all the application processors. One grid is denoted current, and one is denoted
next. The values of the current grid are used to calculate the values in the next grid, and then the two grids’
identities are swapped. The instance used in our tests simulates a 18,512 by 18,512 cellular automaton grid for
475 generations.

During each iteration, CELL updates every automaton in the next grid. Therefore, if checkpoints span two or
more iterations, all memory locations will be updated, rendering incremental checkpointing useless. Compress-
ibility depends on the data itself. “Sparse” grids (where many automata take on zero values) may see little change
in the automata’s values over time, which can lead to good compression. Denser grids lead to less compression.
In our tests, we used very sparse grids.

The program size is directly proportional to the grid size. The running time is proportional to the grid size
times the number of iterations. Each pair of iterations performs the same operations, and thus has the same

memory access and communication patterns.
7.5 PCG

PCG is a FORTRAN program that solves Ax = b for a large, sparse matrix A using the “Preconditioned Con-
jugate Gradient” iterative method The matrix A is converted to a small, dense format, and then approximations
to x are calculated and refined iteratively until they reach a user-specified tolerance from the correct values. In
our tests, A is a 1,638,400 by 1,638,400 element sparse matrix, and the program takes 3,750 iterations.

The exact mechanics and memory usage of PCG are detailed in [26]. The salient points are as follows. The main
data structures in the program may be viewed as many vectors of length N (in our instances, N = 1,638,400).
These vectors are distributed among all the application processors. Roughly three quarters of these vectors are
never modified once the program starts calculating. The rest are updated in their entirety at each iteration.

Therefore, incremental checkpoints should be one quarter the size of non-incremental checkpoints. The data that
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gets updated at every iteration is stored densely on contiguous pages, offering little opportunity for diff-based
compression.

The program size is directly proportional to N, and like CELL and PSTSWM, the running time is propor-
tional to the size times the number of iterations.

Each application processor holds 66.6 megabytes worth of data in PCG. Therefore, one simple diskless check-
point will not fit into memory. However, when incremental and copy-on-write checkpointing are employed, the
application and one or two checkpoints consume just a few megabytes more memory than is available. The size
of the checkpoints combined with the speed of Sun NFS results in the inability to take disk-based checkpoints of

PCG. This is because the time to store one checkpoint is longer than the running time of the application.

8 Results

It should be reiterated that the instances for these tests were chosen to run for a period of time that was
long enough to measure the impact of checkpointing and recovery. In all applications, there are natural input
parameters which result in longer execution times and larger checkpoints. Our goal in these tests is to assess the
performance of checkpointing so that users of longer-running applications may be able to project the expected
running time of their applications in the presence of failures while employing the various checkpointing variants.

The raw data for the experiments is in the Appendix of this paper. All graphs in this section are derived
directly from the raw data. In most cases, the tests were executed in triplicate. The number of times each test
was executed plus the standard deviations in execution times is displayed in the tables in the Appendix. The
tables and graphs display average data.

We concentrate on two performance measures: latency and overhead. Latency is the time between when a
checkpoint is initiated, and when it may be used for recovery. Overhead has been defined previously. Overhead
is a direct measure of the performance penalty induced on an application due to checkpointing. The impact of

latency 1s more subtle, and will be discussed in detail in Section 9.
8.1 Checkpointing to disk

Figure b plots checkpoint latency and overhead of checkpointing to disk (the DISK-FORK tests). These
are plotted as a function of the applications’ per-processor checkpoint sizes. As displayed in leftmost graph,
the latency in the DISK-FORK tests is directly proportional to the checkpoint size, achieving a bandwidth of
0.129 Mbytes/sec. Here bandwidth is calculated as per-processor checkpoint size times the number of processors,
divided by the checkpoint latency. Using that information, the checkpoint latency of the PCG test is projected
to be roughly 8,663 seconds.

The rightmost graph displays overhead as a function of checkpoint size. While the graph appears roughly

linear, it should be noted that the overhead of checkpointing i1s not a simple function of checkpoint size. The bulk
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Figure 6: Checkpoint latency and overhead of SIMP and FORK

of work performed in checkpointing involves DMA from each processor’s memory to its network interface card.

The CPU is only affected significantly when one of the following occurs:
e A DMA transaction needs to be initiated or repeated.
e A copy-on-write page fault occurs in the application.
e There is contention for the memory bus.

There are also effects on the cache as a result of checkpointing. Therefore, although checkpoint size is a rough
measuring stick for computing the overhead of DISK-FORK checkpointing, it is not the whole story. As has been
shown in other research, the copy-on-write optimization does an excellent job of reducing overhead [9, 21, 25]. In

this test, the overhead is between 0.7 and 5.5 percent of the checkpoint latency.
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8.2 Diskless checkpointing: SIMP and FORK

Figure 6 plots checkpoint latency and overhead of the SIMP and FORK tests, again plotted as a function of
checkpoint size. As in the DISK-FORK case, both the SIMP and FORK latencies are directly proportional to
the checkpoint size, with the exception of the SIMP test in the PCG application. Here, the combined size of
the application and its checkpoint exceeds the size of physical memory, resulting in pages being swapped to the
backing store. This degrades the performance of checkpointing. In the FORK test, the checkpoint only requires
an additional 16.6 Mbytes of memory, since the unmodified pages of memory are shared between the application
and its checkpoint. Therefore, the checkpoint latency follows the same linear pattern as in the other applications.
With the exception of the SIMP test in the PCG application, the bandwidth of checkpointing in SIMP and
FORK is roughly 4.4 Mbytes/sec. This is a factor of 34 faster than the DISK-FORK bandwidth.

The overhead of the SIMP tests 1s identical to the latency, since the application is halted during checkpointing.
In the FORK tests, the overhead is reduced by 29.4 (in MAT) to 53.7 (in PCQG) percent. Although this is an
improvement, it is not the same degree of improvement as in the DISK-FORK tests. The reason for this is that
the CPU is more involved in diskless checkpointing than in disk-based checkpointing. In diskless checkpointing,
the parity of each processor’s checkpoint must be calculated, and this takes the CPU (plus some memory) away
from the application. The only time when disk-based checkpointing makes more use of the CPU than diskless

checkpointing is when the longer latency of checkpointing causes more copy-on-write page faults to occur.
8.3 The rest of the tests

All of the diskless checkpointing results are displayed in Figure 7. The top row of graphs shows the checkpoint
latency for each test in each application. The middle row shows checkpoint overhead, and the bottom row shows
the average checkpoint size. This is a bit of a misnomer, because in all cases, the in-memory and parity processor
checkpoints are the same size. However, with incremental checkpointing and compression, fewer bytes are sent
per processor. The “checkpoint size” graphs (and the “checkpoint size” columns in the Appendix) display the
average number of bytes that each processor sends during checkpointing.

Some salient features from Figure 7 are as follows. First, incremental checkpointing significantly reduces the
average checkpoint sizes in the MAT and PCG applications. In the other three applications, the checkpoint size
of SIMP and INC are roughly the same. In the MAT and PCG applications, significant reductions in checkpoint
latency and overhead result from incremental checkpointing. In both cases, the mixture of incremental and forked
checkpointing result in the lowest overhead of the all diskless checkpointing tests.

When incremental checkpointing fails to decrease the size of checkpoints, as in the NBODY and CELL ap-
plications, the overhead of checkpointing is greater than with simple checkpointing. In both of these applications,
the INC-FORK tests yielded the highest checkpoint latencies.

The results of diff-based compression are interesting. In three applications (NBODY, PSTSWM and CELL),
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Application | Recovery Time
(sec)
NBODY 15.7
MAT 46.0
PSTSWM 66.3
CELL 138.3
PCG 375.3

Table 3: Recovery times for the SIMP tests

checkpointing in terms of size or overhead. This i1s because the modified pages showed little compressibility.
8.4 Recovery time

Table 3 shows the time that it takes the system to recover from a single failure and continue execution from
the most recent checkpoint during the SIMP tests. Here, a processor failure is simulated by terminating one of
the application processors. PVM has been written so that the other processors recognize this failure, and our
modifications take advantage of this to automate the process of recovery. In our tests, the checkpointing processor
takes the place of the failed application processor.

The recovery times are roughly equal to the checkpoint latencies of the SIMP applications. It should be noted
that in all but the DISK-FORK tests, the recovery times are equal, since the entire diskless checkpoint of the
failed processor must be calculated. In the DISK-FORK tests, the recovery times are equal to the checkpoint

latencies. Thus, like the latencies, they are extremely large.

9 Discussion
9.1 Diskless vs. disk-based checkpointing

There are two basic results that we may draw from our tests concerning diskless vs. disk-based checkpointing:

e The checkpoint latency and recovery time of diskless checkpointing is vastly lower than disk-
based checkpointing. As stated in section 8.2, the latency (and recovery time) of disk-based checkpointing
is a factor of 34 slower than diskless checkpointing. This is a result of the poor performance of Sun NFS

combined with the fact that all processors use the same disk.

¢ The overhead of diskless checkpointing is comparable to disk-based checkpointing. Figure 8 plots
the overhead of disk-based checkpointing and the overhead of the best diskless variant for each application.
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Figure 8: Checkpoint overhead of disk-based checkpointing as compared to the best diskless variant.

In some cases (NBODY and PSTSWM), diskless checkpointing outperforms disk-based, and in others
(MAT) disk-based outperforms diskless. The question mark is plotted in PCG because we were unable to

complete a disk-based checkpoint during the lifetime of the application.

There are two reasons why diskless checkpointing may be viewed as preferable to disk-based checkpointing.
First, it lowers the expected running time of the application in the presence of failures. Second, it has less effect
on the computing environment, which is of special concern if the environment is shared. We consider each of

these in turn.

9.1.1 Expected running time

Supposing that failure rate is governed by a Poisson process, Vaidya has derived equations for assessing the
performance of an application in the presence of checkpointing and rollback recovery [36]. These equations take

as input the average overhead, latency, and recovery time per checkpoint, plus the rate of failures, and are defined

as follows.
6>‘(Topt+o) (1 - ATopt) = lfor TOPt ;é 0 (1)
r — /\_16>\(L_O+R)(6A(Topt+o) _ 1) (2)

r
r = -1 ’
~ (3)
Tckp - Tbase(r + 1) (4)
Tnockp = /\_1(6’>\TbaSe - 1) (5)
where:

A = The rate of failures (1/MTBF).
Tope = The optimal checkpoint interval.
= The average overhead per checkpoint.
L = The average latency per checkpoint.
= The average recovery time from a checkpoint.
Thase = The running time of the application in the absence of checkpointing, recovery, and failures
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(i.e. the BASE test).
r = The “overhead ratio,
and failures[36].

I' = The expected running time of the optimal checkpoint interval in the presence of failures,

> which is a measure of the performance penalty due to checkpointing, recovery

checkpointing and recovery.
Terp = The optimal expected running time of the application in the presence of failures, checkpointing
and recovery.
Thockp = The expected running time of the application in the presence of failures, but no checkpointing
and recovery (i.e. the application is restarted from scratch following a failure).

In all these equations, the repair time is assumed to be zero. This approximates the case when a spare processor
is ready to continue computation immediately following a failure. If repair time is significant, then Eq’s 2 and 5

become:

I = A lAEmOFRATrepair) (A(TopetO) _ ) (6)

Tnockp = A_leATrepa” (eATbase - 1) (7)

These equations may be used to compare checkpointing algorithms as follows. First, for each algorithm 75p;
may be calculated from A and O using Eq. 1. Next, I' and » may be determined by Eqgs. 2 and 3. If so desired,
the expected running time of an application (T,xp) for each algorithm may then be determined by Eq. 4. The
checkpointing algorithm with the lowest value of r will be the one with the smallest expected running time.
Thus, r suffices as a metric by which to compare checkpointing algorithms.

If T,rp is greater than 75 ,cxp, then the application cannot benefit from checkpointing. This occurs when the
application’s running time (Zpqsc) is not significantly greater than T,,.. However, as Tpase grows, T ockp inCreases
more rapidly than 7.z, to the point that checkpointing improves the program’s expected running time in the
presence of failures.

In Table 4, we use the data from Section 8 to derive values for Top:, I', r, Tirp and Tpockp for each of the tests
presented in Figure 8. We calculated A in the following manner. In their study of host reliability on the Internet,
Long et at [22] determined an average MTBF of 29.29 days. Assuming independent processor failures, this means
that the MTBF of a collection of 16 processors is 29.29/16 = 1.837 days, and the MTBF of a collection of 17
processors is 29.29/17 = 1.729 days. This gives A a value of 6.301 x 10~° failures per second for 16 processors,
and 6.694 x 1079 failures per second for 17 processors. We use the former value as the failure rate for disk-based
checkpointing and for no checkpointing, and the latter value for diskless checkpointing.

Table 4 shows that in all applications, diskless checkpointing performs better than disk-based checkpointing.
This can be seen in the lower expected running times (T.xp), and the lower overhead ratios (r). Therefore, even
though the two have similar checkpoint overheads, the extremely large latency and recovery time of disk-based
checkpointing makes it unattractive in comparison to diskless checkpointing.

Another significant result of Table 4 is that in two applications, NBODY and M AT, the expected running time

in the presence of failures is minimized by diskless checkpointing. In the other three applications, no checkpointing
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Application | Test Trase | Topt r r Tekp | Trockp
(sec) (sec) | (sec) (sec) (sec)
NBODY DISK-FORK 5722 2727 2789 0.0229 5853 5826
NBODY C-FORK 5722 1267 1278 0.0087 5772 5826
MAT DISK-FORK 6602 2215 2302 0.0393 6862 6741
MAT INC-FORK 6602 2370 2409 0.0166 6711 6741
PSTSWM DISK-FORK 5610 3778 4024 0.0652 5976 5710
PSTSWM C-FORK 5610 3251 3325 0.0229 5739 5710
CELL DISK-FORK 6351 5017 5539 0.1040 7012 6480
CELL C-FORK 6351 4856 5025 0.0350 6573 6480
PCG INC-FORK 5874 3357 3444 0.0260 5991 5984

Table 4: Calculated values of Tine, I', 7, Terp and Thoerp.

gives the smallest expected running time. That any checkpointing improves performance is somewhat surprising,
given the relatively small execution times of the experiments with respect to the MTBF. There are no cases where
disk-based checkpointing gives a smaller expected running time.

As the execution time of an application grows, checkpointing becomes much more attractive. For example,
suppose the user desires to simulate 5000 hours in PSTSWM instead of 102. Then the program will take roughly
275,000 seconds, or 3.18 days. Such an execution would not alter the size of the checkpoints, and therefore we may
use the same overhead, latency and recovery times as presented in Section 8. This leads to expected execution
times of 3.256 days for diskless checkpointing, 3.390 days for disk-based checkpointing and 8.553 days for no
checkpointing.

9.1.2 The effect on shared resources

Large checkpoint latencies can be detrimental in other ways. For example, in disk-based checkpointing, the entire
latency period is spent writing checkpoint data to stable storage. If other programs or users share the stable
storage, large checkpoint latencies are undesirable, because the performance of stable storage as seen by others is
degraded for a long period of time.

In [23], the effect of DISK-FORK checkpointing on the performance of stable storage was assessed. While a
DISK-FORK checkpoint was being stored to the central disk, a processor not involved in the application timed
the bandwidth of disk writes. In that test, the performance of stable storage was degraded by 87 percent. This is
significant, for it means that extremely long checkpoint latencies, such as those measured in our tests, have the
potential to degrade the performance of the system in a severe manner for a long time. Diskless checkpointing,
on the other hand, exhibits much smaller checkpoint latencies, and because the calculation of the checkpoint
encoding involves both the network and the CPU, the impact on shared resources (in this case, the network) is

far less [23].
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9.2 Recommendations

Given the results of these experiments, we can make the following recommendations. Of the checkpointing
variants tested in this paper, three stand out as the most useful: DISK-FORK, C-FORK and INC-FORK. On a

system with similar performance to ours, each is the most useful in certain cases:

e If checkpoints are small or the likelihood of wholesale system failures is high, then DISK-FORK checkpoint-

ing should be employed.

e If the program modifies a few bytes per page between checkpoints, or if the machine does not provide access

to virtual memory facilities, then C-FORK diskless checkpointing should be employed.

e If the program does not modify a significant number of pages between checkpoints, then INC-FORK diskless
checkpointing should be employed.

Although we did not test such applications, there may be times when FORK and SIMP are the most useful
checkpointing methods. This is when all pages are modified in a dense manner between checkpoints. Then
FORK will have the lowest overhead when there is enough memory to store two checkpoints, and SIMP will have
the lower overhead otherwise.

None of our applications would have benefited from incremental checkpointing to disk. However, if multiple
checkpoints are taken and the program modifies only a fraction of its pages between checkpoints, incremental
forked checkpoints will outperform DISK-FORK.

Finally, in interpreting the results, it is important to note that the speed of stable storage in these experiments
is quite slow. A faster network, a faster file system, or a file system with multiple disks will improve the
performance of disk-based checkpointing relative to diskless checkpointing. On the other hand, a system with
more processors will degrade the performance of disk-based checkpointing relative to diskless checkpointing. It
should be possible using the equations in Section 9.1.1 to extrapolate the results of our experiments to systems

with different performance parameters.

10 Related Work

There has been much research performed on checkpointing and rollback recovery. The important algorithms
and performance optimizations for disk-based checkpointing in parallel and distributed systems are presented
in [8]. Research more directly related to diskless checkpointing is cited below.

The first paper on diskless checkpointing was presented by Plank and Li [27]. This paper may be viewed as a
completion of that original paper.

Silva et al [32] implemented checkpoint mirroring on a transputer network, and performed experiments to

determine that it outperformed disk-based checkpointing. Chiueh and Deng [6] implemented checkpoint mirroring
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and Raid Level 5 checkpointing on a massively parallel (4096 processors) SIMD machine. They found that
mirroring improved performance by a factor of 10. Both implementations involved modifying the application to
perform checkpointing, rather than simply relinking with a checkpointing library.

Scales and Lam [31] implemented a distributed programming system built on special primitives with shared-
memory semantics. They use redundancy built into the system, plus checkpoint mirroring when necessary to
tolerate single processor failures with low overhead. In a similar manner, Costa et al [7] took advantage of
the natural redundancy in a distributed shared memory system to make it resilient to single processor failures.
Both of these systems export a shared-memory interface to the programmer and embed fault-tolerance into the
implementation with no reliance on stable storage.

Plank et al [26] embedded diskless checkpointing (with Raid Level 5 encoding) into several matrix operations
in the ScaLAPACK distributed linear algebra package, thus making them resilient to single processor failures
with low overhead. Kim et al [15] extended this work to employ one-dimensional parity encoding, which both
lowers the overhead and increases the failure coverage.

In [23], diskless checkpointing ideas are extended to a disk-based checkpointing system where there is disparity
between the performance of local and remote disk storage. In such environments, diskless checkpointing may be
extended so that in-memory checkpoints are stored on local disks (which are fast, but do not survive processor
failures), and checkpoint encodings are stored on remote disks (which are slow, but are available following a
failure). The performance of mirroring, Raid Level 5, and Reed-Solomon codings are all assessed and compare
favorably to standard checkpointing to remote disk. The impact of checkpointing on the remote disk and the
network is also assessed.

Finally in [35], Vaidya makes the case for two-level recovery schemes, where a fast checkpointing method
tolerating single processor failures is combined with a slower method that tolerates wholesale system failures. In
his examples, checkpoint mirroring is employed for the fast method, and DISK-FORK checkpointing is employed

for the slow method. His analysis applies to the methods presented in this paper as well.

11 Conclusion

Diskless checkpointing is a technique where processor redundancy, memory redundancy and failure coverage
are traded off so that a checkpointing system can operate in the absence of stable storage. In the process, the
performance of checkpointing, as well as its impact on shared resources is improved.

In this paper, we have described basic diskless checkpointing plus several performance optimizations. These
have all been implemented and tested on five long-running application programs on a network of workstations and
compared to standard disk-based checkpointing. In this implementation, the diskless checkpointing algorithms
show a 34-fold improvement in checkpointing latency combined with comparable checkpoint overhead. The result

is a lower expected running time in the presence of single processor failures.
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Several checkpointing systems [6, 23, 26, 32] have included variants of diskless checkpointing to improve the

performance of checkpointing. Designers of checkpointing systems should consider the variants of diskless check-

pointing presented in the paper to optimize performance and minimize the impact of checkpointing on shared

resources.
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Raw Data

NBODY
TEST # of Running Time # of Avg Checkpoint Avg Checkpoint
Runs (sec) (std dev) | Checkpoints Size (Mbytes) Latency (sec)
BASE 3 5722.0 15.6
SIMP 3 5805.3 4.5 6 3.7 18.0
FORK 3 5780.7 4.6 6 3.7 16.9
INC 3 5840.3 3.7 6 3.6 17.5
INC-FORK 2 5814.0 13.0 6 3.6 19.6
C-SIMP 3 5774.3 11.9 6 0.8 15.1
C-FORK 2 5754.5 1.5 6 0.8 17.0
C-INC 2 5855.5 25.5 6 0.8 17.8
C-INC-FORK 2 5801.5 5.5 6 0.8 19.8
DISK-FORK 3 5864.3 44.9 6 3.7 430.3
MAT
TEST # of Running Time # of Avg Checkpoint Avg Checkpoint
Runs (sec) (std dev) | Checkpoints Size (Mbytes) Latency (sec)
BASE 3 6602.0 39.1
SIMP 3 7021.0 17.5 7 15.5 61.3
FORK 3 6913.7 54.5 7 15.5 63.0
INC 3 6861.0 25.5 7 9.1 43.0
INC-FORK 3 6735.3 3.4 7 9.2 44.0
C-SIMP 2 6871.5 9.5 7 7.8 46.0
C-FORK 2 6788.5 0.5 7 7.8 60.4
C-INC 2 6871.5 26.5 7 8.5 44.7
C-INC-FORK 2 6788.5 9.5 7 8.5 51.4
DISK-FORK 3 6648.7 37.3 3 15.5 1955.0
PSTSWM
TEST # of Running Time # of Avg Checkpoint Avg Checkpoint
Runs (sec) (std dev) | Checkpoints Size (Mbytes) Latency (sec)
BASE 3 5610.0 22.8
SIMP 3 6110.0 5.7 6 25.3 86.1
FORK 3 5904.0 18.5 6 25.3 97.3
INC 3 6096.3 28.4 6 19.9 75.8
INC-FORK 3 5895.0 46.0 6 20.9 91.6
C-SIMP 2 5916.5 19.5 6 2.8 49.8
C-FORK 2 5825.5 17.5 6 2.8 66.0
C-INC 2 5928.0 2.0 6 2.7 53.0
C-INC-FORK 2 5870.5 9.5 6 2.7 70.8
DISK-FORK 3 5655.7 15.5 1 24.4 31227
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CELL

TEST # of Running Time # of Avg Checkpoint Avg Checkpoint
Runs (sec) (std dev) | Checkpoints Size (Mbytes) Latency (sec)
BASE 3 6351.3 16.9
SIMP 3 7119.7 8.5 5 41.5 156.2
FORK 3 6850.3 33.3 5 41.5 160.4
INC 2 7345.0 55.0 5 41.3 173.7
INC-FORK 2 7075.5 42.5 5 41.3 234.2
C-SIMP 3 6927.0 47.1 5 0.4 122.7
C-FORK 3 6755.0 5.0 5 0.4 140.3
C-INC 2 7025.5 6.5 5 0.4 123.7
C-INC-FORK 1 6951.0 0.0 5 0.4 154.2
DISK-FORK 3 6432.3 6.9 1 41.4 5346.0
PCG
TEST # of Running Time # of Avg Checkpoint Avg Checkpoint
Runs (sec) (std dev) | Checkpoints Size (Mbytes) Latency (sec)
BASE 3 5873.7 19.3
SIMP 3 8011.7 34.2 6 66.6 322.9
FORK 3 6546.7 36.4 6 66.6 242.0
INC 3 6525.3 17.9 6 16.6 85.9
INC-FORK 3 6103.7 6.9 6 16.6 101.6
C-SIMP 2 8019.0 2.0 6 8.0 325.4
C-FORK 2 6901.0 24.0 6 8.0 307.0
C-INC 2 6488.5 52.5 6 12.0 79.7
C-INC-FORK 2 6100.5 8.5 6 12.0 93.0
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