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use of de
ation. This algorithm yields the �rst scalable, portable and nu-merically stable parallel divide and conquer eigensolver. Numerical resultscon�rm the e�ectiveness of our algorithm. We compare performance ofthe algorithm with that of the QR algorithm and of bisection followed byinverse iteration on an IBM SP2 and a cluster of Pentium PII's.Key words. Divide and conquer, symmetric eigenvalueproblem, tridiagonal matrix, rank-one modi�cation, parallel al-gorithm, ScaLAPACK, LAPACK, distributed memory architec-tureAMS subject classi�cations. 65F15, 68C251 IntroductionThe divide and conquer algorithm is an important recent development forsolving the tridiagonal symmetric eigenvalue problem. The algorithm was�rst developed by Cuppen [8] based on previous ideas of Golub [17] andBunch, Nielson and Sorensen [5] for the solution of the secular equationand made popular as a practical parallel method by Dongarra and Sorensen[14]. This simple and attractive algorithm was considered unstable for awhile because of a lack of orthogonality in the computed eigenvectors. Itwas thought that extended precision arithmetic was needed in the solutionof the secular equation to guarantee that su�ciently orthogonal eigenvec-tors are produced when there are close eigenvalues. Recently, however,Gu and Eisenstat [20] have found a new approach that does not requireextended precision and we have used it in our implementation.The divide and conquer algorithm has natural parallelism as the initialproblem is partitioned into several subproblems that can be solved inde-pendently. Early parallel implementations had mixed success. Dongarraand Sorensen [14] and later Darbyshire [9] wrote an implementation forshared memory machines (Alliant FX/8, KSR1). They concluded that di-vide and conquer algorithms, when properly implemented, can be manytimes faster than traditional ones such as bisection followed by inverse it-eration or the QR algorithm, even on serial computers. Hence, a versionhas been incorporated in LAPACK [1]. Ipsen and Jessup [23] compared2



their parallel implementations of the divide and conquer algorithm andthe bisection algorithm on the Intel iPSC-1 hypercube. They found thattheir bisection implementation was more e�cient than their divide andconquer implementation because of the excessive amount of data that wastransferred between processors and also because of unbalanced work loadafter the de
ation process. More recently, Gates and Arbenz [16] with animplementation for the Intel Paragon and Fachin [15] with an implemen-tation on a network of T800 transputers showed that good speed-up canbe achieved from distributed memory parallel implementations. However,their implementations are not as e�cient as they could have been. Theydid not use techniques described in [20] that guarantee the orthogonalityof the eigenvectors and that make good use of the de
ation in order tospeed the computation.In this paper, we describe an e�cient, scalable, and portable parallelimplementation for distributed memory machines of a divide and conqueralgorithm for the symmetric tridiagonal eigenvalue problem.Divide and conquer methods consist of an initial partition of the prob-lem into subproblems and then, after some appropriate computations doneon these individual subproblems, results are joined together using rank-rupdates (r > 1). We chose to implement the rank-one update of Cuppen[8] rather than the rank-two update used in [16], [20]. A priori, we see noreason why one update should be more accurate than the other or fasterin general, but Cuppen's method, as reviewed in Section 2, appears to beeasier to implement.In Section 3 we discuss several important issues to consider for parallelimplementations of a divide and conquer algorithm. Then, in Section 4,we derive our algorithm. We have implemented our algorithm in Fortran77 as production quality software in the ScaLAPACK model [4]. Ouralgorithm is well suited to compute all the eigenvalues and eigenvectors oflarge matrices with clusters of eigenvalues. For these problems, bisectionfollowed by inverse iteration as implemented in ScaLAPACK [4], [11] islimited by the size of the largest cluster that �ts on one processor. TheQR algorithm is less sensitive to the eigenvalue distribution but is moreexpensive in computation and communication and thus does not performas well as the divide and conquer method. Examples that demonstrate the3



e�ciency and numerical performance are presented in x6.2 Cuppen's MethodSolving the symmetric eigenvalue problem consists, in general, in threesteps: the symmetric matrix A is reduced to tridiagonal form T , then onecomputes the eigenvalues and eigenvectors of T and �nally, one computesthe eigenvectors of A from the eigenvectors of T .In this section we consider the problem of determining the spectraldecomposition T = W�WTof a symmetric tridiagonal matrix T 2 Rn�n, where � is diagonal and Wis orthogonal.Cuppen [8] divides the original problem into subproblems of smallersize by introducing the decomposition:T =  k n�kk T1 �ekeT1n�k �e1eTk T2 ! =  bT1 00 bT2 !+��  ek��1e1 !� eTk ��1eT1 �where 1 � k � n, ej represents the jth canonical vector of appropriatedimension, � is the kth o�-diagonal element of T , and bT1 and bT2 di�erfrom the corresponding submatrices of T only by their last and �rst di-agonal coe�cient, respectively. This is the divide phase. Dongarra andSorensen [14] introduced the factor � to avoid cancellation when formingthe new diagonal elements of diag(bT1; bT2). We now have two independentsymmetric tridiagonal eigenvalue problems of order k and n� k. LetbT1 = Q1D1QT1 ; bT2 = Q2D2QT2 (2.1)be their spectral decompositions andz = diag(Q1; Q2)T  ek��1e1 ! : (2.2)Then we getT =  Q1 00 Q2 !( D1 D2 !+ �zzT) Q1 00 Q2 !T ; � = ��;(2.3)= Q(D + �zzT )QT 4



and the eigenvalues of T are therefore those of D + �zzT . Finding thespectral decomposition D + �zzT = U�UTof a rank-one update is the heart of the divide and conquer algorithm.This is the conquer phase. Then it follows thatT = W�WT with W = QU: (2.4)A recursive application of the strategy described above on the twotridiagonal matrices in (2.1) leads to the divide and conquer method forthe symmetric tridiagonal eigenvalue problem.2.1 Computing the Spectral Decomposition of aRank-One Perturbed MatrixAn updating technique as described in [5], [8], [17] can be used to computethe spectral decomposition of a rank-one perturbed matrixD + �zzT = U�UT (2.5)where D = diag(d1; d2; : : : ; dn), z = (z1; z2; : : : ; zn) and � is a nonzeroscalar. By setting equal to zero the characteristic polynomial of D+ �zzTwe �nd that the eigenvalues f�igni=1 of D + �zzT are the roots off(�) = 1 + � nXi=1 z2idi � �; (2.6)which is called the secular equation.Many methods have been suggested for solving the secular equation (seeMelman [27] for a survey). Each eigenvalue is computed in O(n) 
ops. Acorresponding normalized eigenvector u can be computed from the formulau = (D� �I)�1zjj(D� �I)�1zjj = � z1d1 � �; : : : ; zndn � ��,vuut nXj=1 z2j(dj � �)2 (2.7)in only O(n) 
ops. Thus, the spectral decomposition of a rank-one per-turbed matrix can be computed in O(n2) 
ops. Unfortunately, calculationof eigenvectors using (2.7) can lead to a loss of orthogonality for closeeigenvalues. We discuss solutions to this problem in Section 4.2.5



2.2 De
ationDongarra and Sorensen showed [14] that the problem (2.5) can potentiallybe reduced in size. If zi = 0 for some i, we see from (2.3) that di is aneigenvalue of D + �zzT with eigenvector ei. Moreover, if D has an eigen-value di of multiplicity m > 1, we can rotate the eigenvector basis in orderto zero out the component of z corresponding to the repeated eigenvalues.Then, we can remove rows and columns from D + �zzT corresponding tozero components of z.When working in �nite precision arithmetic, we must deal with theproblem of the zi's nearly equal to zero and nearly equal di's. Then,in order to precisely describe when we can de
ate, we need to de�ne atolerance �. Let � = "kD + �zzTk2 where " is the machine precision.We say that the �rst type of de
ation arises when j�zij � �. Nowassume that kzk2 = 1. We havek(D+ �zzT )ei � dieik2 = j�zijkzk2 � �:Then (di; ei) may be considered as an approximate eigenpair for D+ �zzTand zi is set to zero.The second type of de
ation comes from a Givens rotation applied toD + �zzT in order to set a component of z equal to zero. Suppose thatjzizj jjdi � dj j=qz2i + z2j � �. Let Gij be the Givens rotation de�ned by[ei; ej ]TGij [ei; ej] =  c s�s c !with c = zi=r; s = zj=r; r =qz2i + z2j and c2 + s2 = 1. ThenGi(D+ �zzT )GTi = eD + �~z~zT +Eij ; kEijk2 � �;where ~zi = r2; ~zj = 0; ~di = dic2+djs2; ~dj = dis2+djc2 and Eij = (di�dj)cs.The result of recognizing all these de
ations is to replace the rank-one update problem D + �zzT with one of smaller size. Hence, if G isthe product of all the rotations used to zero out certain components of zand if P is the accumulation of permutations used to translate the zerocomponents of z to the bottom of z, the result isPG(D + �zzT )GTPT =  eD + �~z~zT 00 � ! +E; kEk2 � c�6



with c a constant of order unity. The matrix eD + �~z~zT has only simpleeigenvalues and all the elements of ~z are nonzero.The de
ation process is essential for the success of the divide and con-quer algorithm. In practice, the dimension of eD+�~z~zT is usually consider-ably smaller than the dimension of D+ �zzt reducing the number of 
opswhen computing the eigenvector matrix of T in (2.4). Cuppen [8] showedthat de
ation are more likely to take place when the matrix is diagonallydominant.2.3 Algorithm and ComplexityThe divide and conquer algorithm is naturally expressed in recursive formas follows.Procedure dc�eigendecomposition(T;W;�)n� From input T compute output W;� such that T = W�WT . �nif T is 1-by-1return Q = 1; � = TelseExpress T =  T1 00 T2 !+ �vvTcall dc�eigendecomposition(T1;W1; �1)call dc�eigendecomposition(T2;W2; �2)Form D + �zzT from �1;W1; �2;W2Find eigenvalues � and eigenvectors U of D + �zzTForm W =  W1 00 W2 !Ureturn W , �endThe recursion can be carried on until we reach a 2�2 or 1�1 eigenvalueproblem or it can be terminated with an n0 � n0 problem and we can usethe QR algorithm or some other method to solve the tridiagonal problem.Note that we have not speci�ed the dimensions of T1 and T2. We refer toSection 4.1 for details of how we choose the size of the subproblems in ourparallel implementation. 7



Pb0 Pb1 Pb2 Pb3 Pb4 Pb5 Pb6 Pb7

Level 0

Level 1

Level 2

Level 3 Figure 3.1: A divide and conquer tree.We count as one 
op, an elementary 
oating point operation +;�; =or �. Assuming no de
ation and ignoring the terms in O(n2), the numberof 
ops t(n) to run dc�eigendecomposition for an n � n T satis�es therecursion t(n) = n3 + 2t(n=2);which has the solution t(n) � 43n3 +O(n2):In practice, because of de
ation, it appears that the algorithm takes onlyO(n2:3) 
ops on average and the cost can even be as low as O(n2) for somespecial cases (see [10]). 8



3 Parallelization IssuesDivide and conquer algorithms have been successfully implemented onshared memory multiprocessors for solving the symmetric tridiagonal eigen-value problem and for the computation of the singular value decompositionof bidiagonal matrices [14], [24]. By contrast, the implementation of thesealgorithms on distributed memory machines poses di�culties. Several is-sues need to be addressed and several implementations are possible.The �rst issue is how to split the work among the processors. As shownin Figure 3.1, the recursive matrix splitting leads to a hierarchy of sub-problems with a data dependency graph in the form of a binary tree. Thisstructure suggests a natural way to split the work among the processes. IfP is the number of processes, the smallest subproblems are chosen to be ofdimension n=P , lying at the leaves of the tree. At the top of the tree, allprocesses cooperate. At each branch of the tree, the task is naturally splitin two sets of processes where, in each set, processes cooperate. At theleaves of the tree, each process solves its subproblem independently. Thisis the way previous implementations have been done [15], [16], [23]. Thisapproach o�ers a natural parallelism for the update of the subproblems.Ipsen and Jessup [23] report unbalanced work load among the processeswhen the de
ations are not evenly distributed across the sets of processesinvolved at the branches of the tree. In this case, the faster set of processes(those that experience de
ation) will have to wait for the other set of pro-cesses before beginning the next merge. This reduces the speedup gainedthough the use of the tree. Gates and Arbenz [16] showed that if we as-sume that the work corresponding to any node in the tree is well balancedamong the processors, then the implementation should still have 85% ef-�ciency even in the worst case of bad distribution of de
ations. However,it is worth considering this problem for our implementation. A possibleissue is dynamic splitting versus static splitting [6]. A task list is usedto keep track of the various parts of the matrix during the decompositionprocess and make use of data and task parallelism. This approach hasbeen investigated1 for the parallel implementation of the spectral divideand conquer algorithm for the unsymmetric eigenvalue problem using the1A ScaLAPACK prototype code is available at http://www.netlib.org/scalapack/prototype/9



matrix sign function [2]. We did not choose this approach because in thesymmetric case the partitioning of the matrix can be done arbitrarily andwe prefer to take advantage of this opportunity. By contrast with previ-ous implementations we use a splitting di�erent from the natural splittingassociated with the binary tree. We explain our approach in Section 4.1.The second issue is to maintain orthogonality between eigenvectors inthe presence of close eigenvalues. There are two approaches: the extraprecision approach of Sorensen and Tang [30], used by Gates and Arbenz[16] in their implementation, and the L�owner Theorem approach proposedby Gu and Eisenstat [19] and adopted for LAPACK [1], [29]. There aretrade-o�s that we shall discuss in Section 4.2 between these two approaches.The third issue is the back transformation process, which is of greatimportance for the success of divide and conquer algorithms because itreduces the cost of forming the eigenvector matrix of the tridiagonal form.We explain in Section 4.3 the idea of Gu and Eisenstat for reorganizing thedata structure of the orthogonal matrices before the back transformationand we propose a parallel implementation of this approach. While usedin the serial LAPACK divide and conquer code, this idea has never beenconsidered in any current parallel implementation of the divide and conqueralgorithm.The last issue, and perhaps the most critical step when writing a paral-lel program, is how to distribute the data. Previous implementations useda one-dimensional distribution [16], [23]. Gates and Arbenz [16] used aone-dimensional row block distribution for Q, the matrix of eigenvectorsand a one-dimensional column block distribution for U , the eigenvectormatrix of the rank-one updates. This distribution simpli�es their parallelmatrix-matrix multiplication used for the back transformation QU . How-ever, their matrix multiplication routine grows in communication with thenumber of processes, making it not scalable. By contrast, our implemen-tation uses a two dimensional block cyclic distribution of the data in thestyle of ScaLAPACK. We use the PBLAS (Parallel BLAS) routine PxGEMMto perform our parallel matrix multiplications. This routine has a commu-nication cost that grows with the square root of the number of processes,leading to good e�ciency and scalability.10



4 Implementation DetailsWe now describe a parallel implementation of the divide and conquer algo-rithm that addresses the issues discussed in previous the section. Our goalwas to write an e�cient, reliable, portable and scalable code that followsthe conventions of the ScaLAPACK software [4].On shared-memory concurrent computers, LAPACK seeks to make ef-�cient use of the memory hierarchy by maximizing data reuse. Speci�cally,LAPACK casts linear algebra computations in terms of block-orientedmatrix-matrix operations whenever possible, enabling maximal use of Level3 BLAS (matrix-matrix operations). An analogous approach has beentaken by ScaLAPACK for distributed-memory machines. ScaLAPACKuses block partitioned algorithms in order to reduce the frequency withwhich data must be transferred between processes and thereby to reducethe �xed startup cost incurred each time a message is sent.4.1 Data DistributionIn contrast to all previous parallel implementations for distributed memorymachines [15], [16], [23], we use a two-dimensional block cyclic distributionfor U , the eigenvector matrix of the rank-one update, and Q, the matrixof the back transformation. For linear algebra routines and matrix multi-plications, two-dimensional block cyclic distribution has been shown to bee�cient and scalable [7],[21], [28]. The ScaLAPACK software has adoptedthis data layout.The block-cyclic distribution is a generalization of the block and thecyclic distributions. The processes of the parallel computer are �rst mappedonto a two-dimensional rectangular grid of size P �Q. Any general m� ndense matrix is decomposed into mb � nb blocks starting at its upper leftcorner. These blocks are then uniformly distributed in each dimension ofthe P �Q process grid as illustrated in Figure 4.1. In our implementation,we impose the block size to be equal in each direction: mb = nb.Previous parallel implementations gave a subproblem of size n2=(Q�P )to each processor. As we use the two-dimensional block cyclic distribution,it is now natural to partition the original problem into subproblems ofsize nb. At the leaves of the tree, processes that hold a diagonal block11
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Figure 4.1: Global (left) and the distributed (right) views of the matrix (P =2; Q = 3).solve their own subproblems of size nb � nb using the QR algorithm orthe serial divide and conquer algorithm. Some processes may hold severalsubproblems and some of them none. As the computational cost of this�rst step is negligible compared with the computational cost of the wholealgorithm, it does not matter if the work is not well distributed there.However, good load balancing of the work is assured when the grid P �Qof processes is such that lcm(P;Q) = 1. In this case, at the leaves of thetree, all the processes hold a subproblem [28]. The worst case happenswhen lcm(P;Q) = P or lcm(P;Q) = Q.For a given rank-one update Q(D+�zzT )QT the processes that collab-orate are those that hold a part of the global matrix Q. By contrast withprevious implementations, with the two dimensional block cyclic distribu-tion all the processes collaborate before reaching the top of the tree. Weillustrate this in Figures 4.2 and 4.3 where the eigenvector matrix is dis-tributed over 4 processes, using �rstly a one-dimensional block distributionand secondly a two-dimensional block cyclic distribution. Suppose that,at level 1, all the de
ations occur in the �rst submatrix, which is held byprocesses P0 and P1 for a one-dimensional block distribution and processesP0; P1; P2; P3 for a two-dimensional block distribution. With a one dimen-12
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Level 0Level 2 Level 1Figure 4.3: Active part of the matrix Q held by each process.sional block distribution, processors P0 and P1 will have little computationto perform and then will have to wait for processes P2 and P3 before begin-ning the last rank-one update (level 0). With the two-dimensional blockcyclic distribution, the computation is distributed among the 4 processes.This solves some of the load balancing problems that may appear whende
ations are not evenly distributed among the processes.Moreover, the two-dimensional block cyclic distribution is particularlywell adapted for e�cient and scalable parallel matrix-matrix multiplica-tions. These operations are the main computational cost of this algorithm.In our parallel implementation, we use PxGEMM, as included in ScaLAPACK.13



4.2 OrthogonalityLet �̂ be an approximate root of the secular equation (2.6). When weapproximate the eigenvector u by replacing � in (2.7) by its approximation�̂ then when dj � �, even if �̂ is close to �, the ratio zi=(dj � �̂) can bevery far from the exact one zj=(dj � �). As a consequence, the computedeigenvector is very far from the true one and the resulting eigenvectormatrix is far from being orthogonal.Sorensen and Tang [30] proposed using extended precision to computethe di�erences dj � �̂i. However, this approach is hard to implementportably across all the usual architectures. There are many machine-dependent tricks to make the implementation of extended precision gofaster, but on some machines, such as Crays, these tricks do not help andperformance su�ers.The Gu and Eisenstat approach based on the L�owner Theorem caneasily be implemented portably on IEEE machines and Crays using onlyworking precision arithmetic throughout, with a trivial bit of extra work inone place to compensate for the lack of a guard digit in Cray add/subtract.By contrast, the L�owner approach may require more communication thanthe extra precision approach, depending on how the parallelization is done.The reason is that the L�owner approach uses a formula that requires infor-mation about all the eigenvalues, requiring a broadcast, whereas the extraprecision approach is \embarrassingly" parallel, with each eigenvalue andeigenvector computed without communication. However the extra com-munication the L�owner approach uses is trivial compared with the com-munication of eigenvectors elsewhere in the computation.The L�owner approach [19], [26] considers that the computed eigenvaluesare the exact eigenvalues of a new rank-one modi�cation D + �~z~zT . Byde�nition we have thatdet(D + �~z~zT � �I) = nYj=1(�̂j � �) (4.1)and alsodet(D+ �~z~zT � �I) = 0@1 + � nXj=1 ~z2jdj � �1A nYj=1(dj � �): (4.2)14



Then, combining (4.1) and (4.2) and setting � = di leads to~zi =vuuut(�̂i � di) i�1Yj=1j 6=i �̂j � didj � di ; i = 1; : : : ; n:If all the quantities �̂j � di are computed to high relative accuracythen ~zi can be computed to high relative accuracy. Substituting the exacteigenvalues f�̂igni=1 and the computed ~z into (2.7) givesûi = � ~z1d1 � �̂i ; : : : ; ~zndn � �̂i�,vuut nXj=1 ~z2j(dj � �̂i)2 :Evaluating this formula, we obtain approximations of high componen-twise accuracy to the eigenvectors ûi of D+ ~z~zT . Provided that the eigen-values �̂i are su�ciently accurate, which is assured by the used of a suitablestopping criterion when solving the secular equation, it can be shown (see[19]) that we obtain a numerical eigendecomposition T � bU b�bUT , that is,a decomposition with a relative residual of order " and with bU orthogonalto working precision.There are several ways to parallelize this approach. Either we considerit as an O(n2) operations cost, which means we can justify redundantcomputation in order to avoid communications, or we consider that thesize of the data to communicate is negligible compare with what is sentfor the back transformation and then we can justify communications fordistributing the work among the processes. We chose the latter approach.Let S denote the set of processes that cooperate for a given rank-oneupdate and k be the number of roots to approximate. Then each processof S computes k=S roots labeled f�̂igiksi=i0 ; the corresponding quantities�̂i � dj ; i0 � i � iks; j = 1; : : : ; k and a part of each component of ~z:�zj = iksYi=i0(�̂i � dj) iksYi=i0;j 6=i(di � dj)�1:Results are broadcast over S and processes update their ~z:~zj =YS �zj :Each process of S then holds the necessary information to compute itslocal part of Û and no more communication is needed.15



To compute the approximate eigenvalues and the quantities �̂j � distably and e�ciently, we use the hybrid scheme for the rational interpola-tion of f(x) as developed by Li [25]. The hybrid scheme keeps the peaknumber of iterations relatively small for solving the secular equation. Forour parallel implementation, this is helpful because the execution time forthis part is determined by whichever eigenvalue takes the largest numberof iterations.4.3 Back TransformationThe main cost in the divide and conquer algorithm is in computing theproduct QU (see (2.4)). The e�ciency of the whole implementation relieson a proper implementation of this back transformation. The goal is toreduce the size of the matrix-matrix multiplication when transforming theeigenvectors of the perturbed diagonal matrix to the eigenvectors of thetridiagonal matrix.In this section, we explain a permutation strategy originally suggestedby Gu [18] and used in the serial LAPACK divide and conquer code. Thenwe derive a permutation strategy more suitable for our parallel implemen-tation. This new strategy is one of the major contributions of our work.After the de
ation process, we denote bt G the product of all the Givensrotations used to set to zero component of z corresponding to nearly equaldiagonal elements of D and by P the accumulation of permutations usedto translate the zero components of z to the bottom of z:PG(D + �zzt)GTPT =  eD + �~z~zT 00 �� ! : (4.3)Let (eU; e�) be the spectral decomposition of eD + �~z~zT . Then eD + �~z~zT 00 �� ! =  eU 00 I ! e� 00 �� ! eU 00 I !T = U�UT ;and the spectral decomposition of the tridiagonal matrix T = Q(D +�zzT )Q is obtained fromT = Q(PG)TPG(D + �zzT )(PG)TPGQT= Q(PG)TU�UTPGQT= W�WT 16



with W = Q(PG)TU .When not properly implemented, the computation of W can be veryexpensive. To simplify the explanation, we illustrate it with a 4�4 example:we suppose that d1 = d3 and that G is the Givens rotation used to set tozero the third component of z. The matrix P is a permutation that movesz3 to the bottom of z. We indicate by a \ �" that a value has changed.There are two way of applying the transformation (PG)T , either on theleft, that is on Q, or on the right, that is on U . Note that Q = diag(Q1; Q2)is block diagonal (see(2.3)) and so we would like to to take advantage ofthis structure. It would halve the cost of the matrix multiplication if Q1,Q2are of the same size. To preserve the block diagonal form of Q, we need toapply (PG)T on the right:Q � (PG)TU = 0BBBBB@ � �� � � �� � 1CCCCCA (PG)T 0BBBBB@ � � �� � �� � � 1 1CCCCCA= 0BBBBB@ � �� � � �� � 1CCCCCAG0BBBBB@ � � �� � � 1� � � 1CCCCCA= 0BBBBB@ � �� � � �� � 1CCCCCA0BBBBB@ � � � �� � � 0� � � �� � � 0 1CCCCCAThe product between the two last matrices is performed with 64 
opsinstead of the 2n3 = 128 
ops of a full matrix product. However, if we apply(PG)T on the left, we can reduce further the number of 
ops. Consideragain the 4� 4 example:Q(PG)T � U = 0BBBBB@ � �� � � �� � 1CCCCCAGTPT 0BBBBB@ � � �� � �� � � 1 1CCCCCA17



= 0BBBBB@ � � �� � �� � �� � � 1CCCCCAP 0BBBBB@ � � �� � �� � � 1 1CCCCCA= 0BBBBB@ � � �� � �� � �� � � 1CCCCCA0BBBBB@ � � �� � �� � � 1 1CCCCCA = eQUAt this step, a permutation is used to group the columns of Q accordingto their sparsity structure:eQU = 0BBBBB@ � � �� � �� � �� � � 1CCCCCA �P �PT 0BBBBB@ � � �� � �� � � 1 1CCCCCA= 0BBBBB@ � � �� � �� � �� � � 1CCCCCA0BBBBB@ � � �� � �� � � 1 1CCCCCA = �Q �U:Then, three matrix multiplications are performed with 48 
ops involvingthe matrices �Q(1: 2; 1); �Q(3: 4; 2); �Q(1: 4; 3) and �U(1: 3; 1: 3). This organi-zation allows the BLAS to perform three matrix multiplies of minimal size.In parallel, this strategy is hard to implement e�ciently. One needs torede�ne the permutation �P in order to avoid communication between pro-cess columns. In our parallel implementation, �P groups the column of Qaccording to their local sparsity structure, that is, �P permutes columns ofQ belonging to the same process column. More precisely, locally, �P puts to-gether columns of Q with zero components in the lower part, then columnsof Q without zero components, columns of Q with zero components in theupper part and �nally columns of Q that are already eigenvectors. Theresultant matrix �Q has the following global structure: �Q11 �Q12 0 �Q130 �Q21 �Q22 �Q23 ! :�Q11 contains n1 columns of Q1 that have not been a�ected by de
ation,�Q22 contains n2 columns of Q2 that have not been a�ected by de
ation,18



( �Q13; �Q23)T contains k0 columns of Q2 that correspond to de
ated eigen-values (they are eigenvectors of T ),( �Q12; �Q21)T contains the n � (n1 + n2 + k0) remaining columns of Q.The matrix �U has the structure�U =  n�k0 k0n�k0 �U1 0k0 0 I !:Then, for the computation of the product �Q �U , we use two calls to the paral-lel BLAS PxGEMM involving parts ofU1 and the matrices ( �Q11; �Q12); ( �Q21; �Q22).Unlike in the serial implementation, we can not assume that k0 = k, that is,that ( �Q13; �Q23)T contains all the columns corresponding to de
ated eigen-values. This is due to the fact that �P acts only on columns of Q that belongto the same process column. Let k(q) bet the number of de
ated eigenval-ues held by the process column q, 0 � q � Q�1. Then, k0 = min0�q�Q�1 k(q).So, even if we can not perform matrix multiplies of minimal sizes as in theserial case, we still get good speed-up on many matrices.5 The Divide and Conquer CodeThe code is composed of 7 parallel routines PxSTEDC, PxLAED0, PxLAED1,PxLAEDZ, PxLAED2, PxLAED3, PxLASRT and it uses LAPACK's serial rou-tines whenever possible.PxSTEDC scales the tridiagonal matrix, calls PxLAED0 to solve the tridiago-nal eigenvalue problem, scales back when �nished and sorts the eigenvaluesand corresponding eigenvectors in ascending order by calling PxLASRT.PxLAED0 is the driver of the divide and conquer algorithm. It splits thetridiagonal matrix T into TSUBPBS = (N-1)/NB +1 submatrices using rank-one modi�cation. NB is the size of the block used for the two dimensionalblock cyclic distribution. It calls the serial divide and conquer code xSTEDCto solve each eigenvalue problem at the leaves of the tree. Then, each rank-one modi�cation is merged by a call to PxLAED1:TSUBPBS = (N-1)/NB +1 19



while (TSUBPBS > 1 )for i = 1:TSUBPBS/2call PxLAED1(i,TSUBPBS,D,Q, ...)endTSUBPBS = TSUBPBS / 2endPxLAED1 is the routine that combines eigensystems of adjacent submatricesinto an eigensystem for the corresponding larger matrix. It calls PxLAEDZto form z as in (2.2), then calls PxLAED2 to de
ate eigenvalues and to groupcolumns of Q following their sparsity structure as described in Section 4.3.Then, it calls PxLAED3, which distributes the work among the processesin order to compute the roots of the secular equation, solve the L�ownerinverse eigenvalue problem and compute the eigenvectors of the rank-oneupdate eD+�~z~zT (see (4.3)). Each root of the secular equation is computedby the serial LAPACK routine xLAED4. Finally, the eigenvector matrix ofthe rank-one update is multiplied into the larger matrix that holds thecollective results of all the previous eigenvector calculations via the use oftwo calls to the parallel matrix multiplication PxGEMM.6 Numerical ExperimentsThis section concerns accuracy tests, execution times and performance re-sults. We compare our parallel implementation of the divide and conqueralgorithm with the two parallel algorithms for solving the symmetric tridi-agonal eigenvalue problem available in ScaLAPACK [4]:� B/II: Bisection followed by inverse iteration (subroutines PxTEBZ andPxHEIN). The inverse iteration algorithm can be used with two op-tions:II-1: Inverse iteration without a reorthogonalization process.II-2: Inverse iteration with a reorthogonalization process when theeigenvalues are separated by less than 10�3 in absolute value.� QR: The QR algorithm (subroutine PxSTEQR2).20



PxSYEVX is the name of the expert driver2 associated with B/II andPxSYEV is the simple driver associated with QR. We have written a drivercalled PxSYEVD that computes all the eigenvalues and eigenvectors of asymmetric matrix using our parallel divide and conquer routine PxSTEDC.We use two types of test matrices. The �rst are symmetric matriceswith random entries from a uniform distribution on [�1; 1]. The secondtype are generated by the ScaLAPACK subroutine PxLATMS. The matrixA = UTDU; where U is orthogonal and D = diag(si; ti) with ti � 0 andsi = �1 chosen randomly with equal probability. Matrix 1 has equallyspaced entries from " to 1, matrix 2 has geometrically spaced entries from" to 1, di = �" i�1n�1 ; i = 1 : n;and matrix 3 has clustered entriesdi = �"; i = 1 : n� 1; dn = 1:The type 3 matrices are designed to illustrate how B/II can fail to computeorthogonal eigenvectors.Let bQ b� bQT be the computed spectral decomposition of A. To determinethe accuracy of our results, we measure the scaled residual error and thescaled departure from orthogonality, de�ned byR = kA bQ� bQT b�k1n"kAk1 and O = kI � bQT bQk1n" :When both quantities are small, the computed spectral decomposition isthe exact spectral decomposition of a slight perturbation of the originalproblem.The tests were run on an IBM SP2 in double precision arithmetic. Onthis machine, " = 2�53 � 1:1� 10�16:Table 6.1 shows the greatest residual and departure from orthogonalitymeasured for matrices of type 1, 2 and 3 solved by B/II-1, B/II-2, QR anddivide and conquer. The matrices are of order n = 1500 with a block sizenb = 60 on a 2 � 4 processor grid. For eigenvalues with equally spaced2\Driver" refers to the routine that solves the eigenproblem for a full symmetric matrixby reducing the matrix to tridiagonal form, solving the tridiagonal eigenvalue problem, andtransforming the eigenvectors back to those of the original matrix.21



Matrix Eigensolverstype B/II-1 B/II-2 QR D&CUniform R 3 � 10�4 3 � 10�4 3 � 10�4 2 � 10�4distribution O 0:20 0:17 0:55 0:27[�; 1] Time 52 52 120 58Geometrical R 3 � 10�4 3 � 10�4 5 � 10�4 4 � 10�4distribution O � 1; 000 88:03 0:23 0:20[�; 1] Time 53 137 95 51R 4 � 10�4 4 � 10�4 4 � 10�4 4 � 10�4Clustered O � 1; 000 � 1; 000 0:50 0:16at " Time 52 139 120 47Table 6.1: Normalized residual, normalized eigenvector orthogonality, and tim-ing for a matrix of size n = 1500 on an IBM-SP2 (2x4 processor grid) for bi-section/inverse iteration without and with reorthogonization, QR algorithm, anddivide and conquer algorithm.modulus, bisection followed by inverse iteration gives good numerical re-sults and is slightly faster than the divide and conquer algorithm. Thisis due to the absence of communication when computing the eigenvectors,both for B/II-1 and B/II-2. However, as illustrated by matrices of type 2,if no reorthogonalization is used, numerical orthogonality can be lost withinverse iteration when the eigenvalues are poorly separated. It is clear thatthe reorthogonalization process greatly increases the execution time of theinverse iteration algorithm. For large clusters, the reorthogonalization pro-cess in PxHEIN is limited by the size of the largest cluster that �ts on oneprocessor. Unfortunately, in this case, orthogonality is not guaranteed.This phenomenon is illustrated by matrices of type 3. In the remainingexperiments, we always use B/II with reorthogonalization.We compared the relative performance of B/II, QR and divide andconquer. In our �gures, the horizontal axis is matrix dimension and thevertical axis is time divided by the time for divide and conquer, so that the22
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Figure 6.1: Execution times of PDTEBZ+PDSTEIN (B/II) and PDSTEQR2 (QR) rel-ative to PDSTEDC (D&C), on an IBM SP2, using 8 nodes. Tridiagonal matrices,eigenvalues of equally spaced modulus.
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Figure 6.2: Execution times of PDSYEVX (B/II), PDSYEV (QR) and PDSYTRD (tridi-agonalization) relative to PDSYEVD (D&C), on an IBM SP2, using 8 nodes. Fullmatrices, eigenvalues of equally spaced modulus.
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Figure 6.3: Execution times of PDSYEVX (B/II), PDSYEV (QR) and PDSYTRD (tridi-agonalization) relative to PDSYEVD (D&C), on an IBM SP2, using 8 nodes. Fullmatrices, eigenvalues of geometrically spaced modulus.
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Figure 6.4: Execution times of PDSTEQR2 (QR), PDSYTRD (tridiagonalization)and PDORMTR (back transformation) relative to PDSTEDC (D&C). Measured onan IBM SP2, using 8 nodes. Tridiagonal matrices, eigenvalues of geometricallyspaced modulus.
26



1000 1500 2000 2500 3000 3500
1

2

3

4

5

6

7

evenly spaced entries

 geometrically spaced entries

 random entries

E
xe

cu
tio

n 
tim

e 
of

 Q
R

 r
el

at
iv

e 
to

 D
&

C

Matrix size

 Speed−up of D&C over QR, IBM SP2, 12 nodes 

Figure 6.5: Speedups of PDSYEVD(D&C) over PDSYEV(QR) with several types offull matrices. Tests done on an IBM SP2 using 12 nodes.divide and conquer curve is constant at 1. It is clear from Figures 6.1 and6.2, which correspond to the spectral decomposition of the tridiagonal ma-trix T and the symmetric matrix A, respectively, that divide and conquercompetes with bisection followed by inverse iteration when the eigenvaluesof the matrices in question are well separated. For inverse iteration, thissituation is good since no reorthogonalization of eigenvectors is required.For divide and conquer it is bad since this means there is little de
ationwithin intermediate problems. Note that the execution times of QR aremuch larger. This distinction in speed between QR or B/II and divideand conquer is more noticeable in Figure 6.1 (speed-up up to 6.5) thanin Figure 6.2 (speed-up up to 2) because Figure 6.2 includes the overheaddue to the tridiagonalization and back transformation processes.As illustrated in Figure 6.3, divide and conquer runs faster than B/IIas soon as eigenvalues are poorly separated or in clusters.We also compare execution times of the tridiagonalization, QR, B/II-2and back transformation relative to the execution time of divide and con-quer. >From Figure 6.4, it appears that when using the QR algorithm27
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for the computing all the eigenvalues and eigenvectors of a symmetric ma-trix, the bottleneck is the spectral decomposition of the tridiagonal matrix.This is not true any more when using our parallel divide and conquer algo-rithm: spectral decomposition of the tridiagonal matrix is now faster thanthe tridiagonalization and back transformation of the eigenvectors. Ef-fort as in [22] should be made to improve the tridiagonalization and backtransformation.We measured the performances of PDSTEDC on an IBM SP2 (Figure 6.6)and on a cluster of 300 MHz Intel PII processors using a 100 Mbit SwitchEthernet connection (Figure 6.7). In our �gures, the horizontal axis is thenumber of processors and the vertical axis is the number of 
ops per secondobtained when the size of the problem is maintained constant on eachprocess. The performance increases with the number of processors, whichillustrates the scalability of our parallel implementation. These measureshave been done using the Level 3 BLAS of ATLAS (Automatically TunedLinear Algebra Software) [32], which run at a peak of 440 M
op/s on theSP2 and 190 M
op/s on the PII. On the SP2, our code runs at 50% of thepeak performance of matrix multiplication and 40% on the cluster of PII's.Note that these percentages take into account the time spent at the endof the computation to sort the eigenvalues and corresponding eigenvectorsinto increasing order.7 ConclusionsFor serial and shared memory machines, divide and conquer is one of thefastest available algorithms for �nding all the eigenvalues and eigenvec-tors of a large dense symmetric matrix. By contrast, implementations ofthis algorithm on distributed memory machines have in the past poseddi�culties.In this paper, we showed that divide and conquer can be e�cientlyparallelized on distributed memory machines. By using the L�owner the-orem approach, good numerical eigendecompositions are obtained in allsituations. From the point of view of execution time, our results seem tobe better for most cases when compared with the parallel execution timeof QR and bisection followed by inverse iteration available in the ScaLA-29



PACK library.Performance results on the IBM SP2 and a cluster of PC PII demon-strate the scalability and portability of our algorithm. Good e�ciency ismainly obtained by exploiting the data parallelism inherent to this algo-rithm rather than its task parallelism. For this, we concentrated our e�ortson a good implementation of the back transformation process in order toreach maximum speed-up for the matrix multiplications. Unlike in previ-ous implementations, the number of processes is not required to be a powerof two. This implementation will be incorporated in the ScaLAPACK li-brary.Recent work [12] has been done on an algorithm based on inverse iter-ation which may provide a faster and more accurate algorithm and shouldalso yield an embarrassingly parallel algorithm. Unfortunately, there is noparallel implementation available at this time, so we could not comparethis new method with divide and conquer.We showed that in contrast to the ScaLAPACK QR algorithm imple-mentation, the spectral decomposition of the tridiagonal matrix is no longerthe bottleneck. E�orts should be made to improve the tridiagonalizationand the back transformation of the eigenvector matrix of the tridiagonalform to the original one.The main limitation of this proposed parallel algorithm is the amountof storage needed. Compared with the ScaLAPACK QR implementation,2n2 extra storage locations are required to perform the back transforma-tion in the last step of the divide and conquer algorithm. This is the pricewe pay for using level 3 BLAS operations. It is worth noting that in most ofthe cases, not all this storage is used, because of de
ation. Unfortunately,ideas as developed in [31] for the sequential divide and conquer seem hardto implement e�ciently in parallel as they require a lot of communication.As in many algorithms, there is a trade o� between good e�ciency andworkspace [3], [13]. Such a trade-o� appears also in parallel implementa-tions of inverse iteration when reorthogonalization of the eigenvectors isperformed.In future work, the authors plan to use ideas developed in this paperfor the development of a parallel implementation of the divide and conqueralgorithm for the singular value decomposition.30
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