
Using Agent-based Softwarefor Scienti�c Computingin the NetSolve System
Henri Casanova� Jack Dongarra� yAugust 9, 1997AbstractAgent-based computing is increasingly regarded as an elegant and e�cient way of providingaccess to computational resources. Several metacomputing research projects are using intelligentagents to manage a resource space and to map user computation to these resources in an optimalfashion. Such a project is NetSolve, developed at the University of Tennessee and Oak RidgeNational Laboratory. NetSolve provides the user with a variety of interfaces that a�ord directaccess to preinstalled, freely available numerical libraries. These libraries are embedded incomputational servers. New numerical functionalities can be integrated easily into the servers bya speci�c framework. The NetSolve agent manages the coherency of the computational servers.It also uses predictions about the network and processor performances to assign user requests tothe most suitable servers. This article reviews some of the basic concepts in agent-based design,discusses the NetSolve project and how its agent enhances
exibility and performance, andprovides examples of other research e�orts. Also discussed are future directions in agent-basedcomputing in general and in NetSolve in particular.KeywordsAgent, Metacomputing, Client-Server, Scienti�c Computing, Networking, Load Balancing,Fault Tolerance, Computational Servers

�Department of Computer Science, University of Tennessee, TN 37996yMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

1 IntroductionScienti�c computing has applications in many �elds of science and engineering and hence has becomea major focus of research centers and industry. The demand for scienti�c problem-solving facilitieshas led to the development of numerous software tools usable on diverse hardware platforms.Some numerical tools, such as MATLAB[1] or Mathematica [2], have enjoyed great success. Theygenerally provide an interactive interface, a set of built-in functionalities, and the possibility ofwriting scripts to perform complex computations.Another class of tools falls under the category of numerical function libraries. These librariesare less convenient than interactive tools because the user is required to write an actual program(generally in C or Fortran). Nevertheless, they o�er several advantages. A large number of suchlibraries exists, and they cover diverse �elds of computational science. Moreover, unlike mostinteractive tools, numerical libraries are often freely available and can be downloaded directly fromthe World Wide Web.A third class of tools comprises runtime packages whose goal is to help the user perform somespeci�c types of scienti�c computations. Like numerical libraries, these packages are usually freelyavailable. One example is the NEOS project [3], which is focused on linear programming andoptimization. However, most such tools are not yet well established, and the user often feel theneed for numerical capabilities that are outside their scope.Users wanting to solve a numerical problem are thus confronted with a dilemma. They canpurchase an expensive commercial product and take the risk that it might not be suitable forfuture use on di�erent kinds of problems, or they can try to locate and download free libraries andwrite programs in terms of speci�c functions or subroutines. In this article, we focus on the secondsituation.The user who decides to use free software libraries must �rst look for the appropriate library orset of libraries needed for his speci�c computational problem. Usually, such libraries can be foundin established software repositories. A well-known repository, for example, is Netlib [4], whichis maintained through the collaborative e�ort of several institutions and universities. Softwarerepositories present some intrinsic di�culties for the unexperienced user. First, they are usuallyvery large. For example, Netlib contains more than 40 di�erent numerical libraries, a number thatamounts to more than 20,000 di�erent numerical subroutines or functions. And Netlib is just oneof many such repositories. The National HPCC Software Exchange (NHSE) [5] Web site givesaccess to more than 50 di�erent HPCC-related repositories. Second, software repositories containvery di�erent types of libraries. Having such diversity can be regarded as a strength of the wholesoftware repository approach: it guarantees that the repositories will target a broad scope of users.However, because of this diversity, each time a user downloads a new library, he must go througha new learning phase.Once the appropriate library has been located, it must be downloaded and installed. Dependingon the nature of the software, this step might be nontrivial. For instance, a lot of freely distributedsoftware is not fully portable: it is not uncommon to have comments in the code of the numericalsoftware saying that such and such sections will run only on certain systems. Another example issoftware using system libraries that might not be directly available on the user's system. To anexperienced user, these problems are not really threatening. They can generally be solved by asequence of compilations, linkings, and system libraries searching. However, all these steps can takea large amount of time if the user has not much experience in software installation. The biggest steps2

still remain|learning how to use the library itself and learning how to write a program in terms ofits component. These tasks can be formidable and time-consuming (without even mentioning thedebugging phase).Clearly, much work remains in order to enable a straightforward use of freely available numericalfunction libraries. Instead of leaving the user responsible for exploring large software repositoriesand installing the downloaded software, an alternative approach is to provide the user with aninfrastructure that facilitates access to numerical libraries through a variety of interfaces. Such aninfrastructure could also manage the di�erent hardware and software computing resources availableto the user, with a view to maximizing performance. In this article, we describe an agent-basedenvironment that provides these capabilities. The environment, called NetSolve, is being developedas part of a project at the University of Tennessee and Oak Ridge National Laboratory.The article is organized as follows. Section 2 gives an overview of NetSolve. Section 3 developsthe agent concept and relates it to several ongoing research works. Section 4 describes in moredetail the way the NetSolve agent operates; examples are provided to illustrate the bene�ts of theagent-based design. Section 5 discusses future directions in the NetSolve system, and Section 6draws some conclusions.2 Overview of NetSolveIn this section we describe basic concepts that are fundamental for agent-based network-enabledsoftware. The concepts are relevant not only to NetSolve but to other projects with similar goals.2.1 BasicsNetSolve is a client-server network-based system. One can distinguish three main paradigms forsuch systems: proxy computing, code shipping, and remote computing. These paradigms di�er in theway they handle the user's data and the program that operates on this data. In proxy computing,the data and the program reside on the user's machine and are both sent to a server that runs thecode on the data and returns the result. In code shipping, the program resides on the server and isdownloaded to the user's machine, where it operates on the data and generates the result on thatmachine. This is the paradigm used by Java applets within Web browsers, for example. In thethird paradigm, remote computing, the program resides on the server. The user's data is sent tothe server, where the programs or numerical libraries operate on it; the result then is sent back tothe user's machine. NetSolve uses this third paradigm.Figure 2.1 depicts the basic layout of the system. NetSolve provides the user with a pool ofcomputational servers that have access to ready-to-use numerical software. As shown in the �gure,the computational servers can be running on single workstations, networks of workstations thatcan collaborate for solving a problem, or massively parallel systems. The user is using one of theNetSolve client interfaces. Such interfaces allow a user to send requests to the NetSolve systemasking for numerical computation to be carried out by one of the servers. The main role of theNetSolve agent is to process this request and to choose the most suitable server for this particularcomputation. The basic concepts of such an agent are described in Section 3.One of the major advantages of this approach is that the agent performs load balancing amongthe di�erent resources. Once a server has been chosen, it is assigned the computation, uses itsavailable numerical software, and eventually returns the results to the user.3

reply

choice

choice

reply

 of

Client

Network

 Servers

Client

Agent

Scalar Server

request

Scalar Server

Agent

request

MPP ServersFigure 1: NetSolve's organizationAs shown in Figure 2.1, there can be multiple instances of the NetSolve agent on the network,and di�erent clients can contact di�erent agents, depending on their locations. The agents canexchange informations about their di�erent servers and allow access from any client to any server,if desirable. Suppose, for example, the set of computational resources spans several local areanetworks and that users on each of these networks want to use NetSolve to perform scienti�ccomputations. It is possible to start a NetSolve agent on each network, so that user requestsalways go to the \closest" agent to be processed. Di�erent instances of the NetSolve agent canthen have di�erent views of the set of computational resources, re
ecting the fact that certainclients are closer to certain computational resources. NetSolve can be used via the Internet or onan intranet, inside a research department or a university, without participating in any Internetcomputation.Another important aspect of NetSolve is that the con�guration of the system is entirely
exible.Any server/agent can be stopped and (re)started at any time without jeopardizing the integrity ofthe system.In addition to being a resource broker for the clients, the NetSolve agent is also the primaryparticipant in the management of the di�erent computational resources (hardware and software)and is also in charge of the fault-tolerance mechanisms. Details on the way the NetSolve agentoperates and its various responsibilities in the system are given in Section 4.4

2.2 The Computational Resources2.2.1 ChallengesOne of the challenges in building the NetSolve system was to design a suitable model for thecomputational servers. Indeed, when designing such servers, we were faced with the very samedi�culties as those highlighted in Section 1. For the user to be able to use numerical softwaredirectly through our servers, three major features seemed to emerge as mandatory:Uniform access to the software: The servers should give the illusion that users have access to auniform set of subroutines or functions. That is, we wish to hide the speci�cities of the underlyingnumerical softwares as much as possible. This feature will ensure that users need not go throughlong learning phases when using a new set of functions.Con�gurability: The servers should not be limited to any particular software. We thereforeneeded to provide a framework to add functionalities to a computational server in an easy way.This would give our system the ability to extend and encompass new numerical applications atwill.Preinstallation: The user should not be responsible for installing any numerical software. Thesoftware present on the servers should be ready to use, already compiled to the target architecture.Or, in a more general view, the system could dynamically take care of installation and compilationitself, without any intervention from the user.2.2.2 The SolutionTo make the implementation of such a computational server model possible, we have designeda machine-independent, general way of describing a numerical computation, as well as a set oftools to generate new computational modules as easily as possible. The main component of thisframework is a descriptive language that is used to describe each separate numerical functionalityof a computational server. Files written in this language can be compiled by NetSolve into actualcomputational modules executable on any UNIX platform.This approach has several advantages. Machine independence is, of course, one advantage, asis the ability of integrating any arbitrary software into NetSolve. But this framework also allowsincreased collaboration between research teams and institutions. Indeed, description �les for agiven numerical library need to be written only once. These �les can then be exchanged by anyinstitutions wanting to set up servers, compiled and run to create a new stand-alone NetSolvesystem or to contribute new servers to an existing system. Each time a new description �le iscreated, the capabilities of the entire NetSolve system are thereby increased.These advantages, however, are e�ective only if the process of creating new input �les andadding them to a computational server is reasonably straightforward. For this reason, we developeda graphical interface to handle the generation of the description �les. The interface performs errorchecking of the user's input. Using the interface is much easier than creating a description �lemanually, especially as the complexity of the problem to be described increases.Not only is this interface graphical, but it is also written in Java. Several factors motivatedthis choice. First, Java allows one to write GUIs (graphical user interfaces) very easily, thanks toits built-in widget classes. Second, Java is object oriented and therefore provides a good degree ofmodularity and data encapsulation. These features are important because we might have to modifythe syntax of the language in the future to describe wider classes of numerical computations. Third,5

Java is Web-enabled. This interface could thus be downloaded as an applet, and users settingup NetSolve computational servers could create their description �les directly from within Webbrowsers. These �les could then be downloaded from the Web browser and compiled into NetSolvecomputational modules (thanks to the compiler provided by the NetSolve server software).The ultimate goal would be to have a NetSolve description �le repository on the Web. From thatrepository, description �les could be downloaded at will to set up computational servers. The actualnumerical software should also be available to make the creation of these servers almost immediate.The idea would then be to add a complementary repository containing NetSolve description �lesto a regular software repository (like Netlib [4]).2.2.3 Existing ResourcesSo far, description �les have been written for the following numerical libraries: FitPack [6], It-Pack [7], MinPack [8], FFTPACK [9], LAPACK [10], BLAS [11, 12, 13], QMR [14], and ScaLA-PACK [15].NetSolve computational servers providing access to these packages are running on a 24-hourbasis at the University of Tennessee and at other locations world-wide. Real-time information onthe available servers and numerical softwares can be found on the NetSolve homepage located athttp://www.cs.utk.edu/netsolve.These numerical libraries cover several �elds of computational science, including linear algebra,optimization, and fast Fourier transforms. Two particular numerical libraries require special treat-ment by NetSolve. In the MINPACK (a package of optimization/minimization software) library,for example, the user must supply a piece of code that implements the function to be minimized.The current version of the NetSolve software handles user-supplied functions in a way described in[16]. The ScaLAPACK library is also a special case because it is a parallel library. A prototypedescription �le for ScaLAPACK has been written and tested on a network of workstations managedby PVM [17]. Integrating ScaLAPACK in NetSolve will allow a user on a workstation to accessmassively parallel systems in order to perform large computations. As outlined in Section 2.3 anddetailed in [16], this access is extremely simple, and users will not be aware that they are using aparallel library. Furthermore, this parallel library will be accessible for C, Fortran, MATLAB, Javaprograms, and even a Java GUI (as explained in the following section).2.3 The Client InterfacesA major concern in designing NetSolve was to provide several interfaces in order to target a widerange of users. Currently, NetSolve provides application program interfaces (APIs) as well ashigher-level interfaces: C, Fortran, and Java APIs are already available, as well as a MATLABinterface and a graphical Java interface.Another concern was keeping the interfaces as simple as possible. For example, the MATLABinterface contains only two functions that allow users to submit problems to the NetSolve system.Every interface provides asynchronous calls to NetSolve in addition to traditional synchronous calls.When several asynchronous requests are sent to a NetSolve agent, they are dispatched among theavailable computational resources according to the load-balancing schemes implemented by theagent. Hence, the user|with virtually no e�ort|can achieve coarse-grained parallelism from eithera C or Fortran program, or from interaction with a high-level interface.6

All the interfaces are described in detail in the \NetSolve's Client User's Guide" [16]. In Section4, we show an example of NetSolve that takes advantage of our agent-based strategy.3 What Is an Agent?The fundamental conception behind NetSolve is that agent-based scheduling can provide robust andhigh-performance application execution in a metacomputing environment. An agent is an entity(process) that reasons about and makes decisions about the mapping of computations to resources.Consequently, an agent must be able to access application- and system-speci�c information.Application-speci�c information can be, for example, the number and type of the applicationdata structures, or the complexity of the algorithm to be used, or the frequency and volume of com-munications and computations for a parallel application, or the amount of memory required by theapplication. System-speci�c information, on the other hand, involves resource performance: num-ber of computational resources available, network characteristics, and, for each of these resources,the amounts of memory available, CPU maximum speeds, and the like.The agent also needs dynamic information to determine the system state. Before mappingcomputations on resources, the agent must take into account whether the candidate CPUs arelightly or heavily loaded, whether the network itself is loaded, and what the best combination ofresources is at any given time. Combining the application-speci�c and system-speci�c informationwith dynamic information describing system conditions allows the agent to assess the cost of agiven mapping, and thus to choose the optimal one with respect to the user's performance criteria.Rather than controlling the resources in a way that maximizes application performance, an agentcontrols the mapping of the computations so that it makes maximal use of the available resources.This general concept is being used by several metacomputing research projects and is widelyextended and adapted to �t the requirements and speci�cations of these projects. Here we discusstwo such projects and distinguish their features from those of NetSolve. In the next section, wedescribe the NetSolve agent.The AppLeS (application-level schedulers) system [18], developed at the University of California- San Diego, focuses on scheduling agents for parallel metacomputing applications. In the AppLeSframework, the agent performs the mapping of computation to resources in the form of a particularscheduling of the user's parallel application. To determine schedules, the agent must consider therequirements of the application and the predicted load and availability of the system resources atscheduling time. Each AppLeS agent has access to dynamic predictions of resource performance,thanks to the NWS (Network Weather Service)[19] that has been developed as a separate facility.AppLeS and NetSolve di�er in that AppLeS is concerned with the scheduling of stand-alone parallelapplications whereas NetSolve schedules computational requests but provides access to numericalsoftware.The Network-based Information Library (Ninf) [20] project developed at the ElectrotechnicalLaboratory in Tsukuba is using an agent-based design. The agent in Ninf, called a meta-server,is responsible for the request assignment to the di�erent servers. Ninf and NetSolve have severalcommon aspects even though NetSolve seems to be a little more mature at this time. This commonground has motivated a collaboration between the University of Tennessee and the ElectrotechnicalLaboratory to built a common interface between the two systems. A prototype of a Ninf-NetSolveadapter has already been developed. The protocols of both projects will evolve to permit a seamless7

integration of both systems. Eventually, Ninf and NetSolve users will be able to use any interfaceof any project to perform computations on servers administrated either by Ninf or by NetSolve.4 The NetSolve AgentIn this section, we highlight the main responsibilities of the agent in the NetSolve system, and wegive some details about its current implementation.4.1 The Agent as a DatabaseKeeping track of what software resources are available and on which servers they are locatedis perhaps the most fundamental responsibility of the NetSolve agent. Since the computationalservers use the same framework to contribute software to the system (see Section 2.2.2), the agentcan maintain data describing the di�erent numerical functionalities available to the users.The protocol is fairly straightforward. Each time a new server is started, it sends a registrationrequest to an instance of the NetSolve agent. This request contains general information about theserver (including its location), but also the list of numerical functions it intends to contribute tothe system. The agent examines this list for possible discrepancies with the other existing serversin the system. Based on the agent's verdict, the server is either rejected or integrated into thesystem.Once a new server is accepted, it can be used by a client. The next section explains how theagent chooses a server.4.2 The Agent as a Resource BrokerThe goal of the NetSolve agent is to choose the best-suited computational server for each incom-ing request to the system. To do so, the agent uses computation-speci�c and resource-speci�cinformation.Computation-speci�c information is mostly included in the user request: size in bytes of theinput data, size of the problem to be solved (e.g., size of the matrices for a linear algebra compu-tation), and so on. Resource-speci�c information, as explained in Section 3, is composed of staticand dynamic data. Static system-speci�c data is communicated to the agent by each server whenit is �rst started and accepted in the system. This data mainly contains the server's host processorspeed, the number of processors, and the complexity of the algorithms used by its numerical soft-ware. Dynamic data is the load of the server's host and the network delays and transmission ratesto contact that host. The network performance is estimated by the agent by constantly averagingsamples of the network delays between the hosts. The strategy for the load of the servers is di�er-ent: the computational servers notify the agent of their workload
uctuations when they deem itnecessary. Rationale and further detail on these protocols can be found in [21].4.3 Fault ToleranceAs previously mentioned, the hosts in the NetSolve system can be located anywhere on the Internetand can therefore be administered by di�erent institutions. Hence, NetSolve does not try to imposeany control on the di�erent resources. This approach is, of course, very
exible, but it requires that8

NetSolve implement some kind of fault-tolerance mechanisms. Indeed, any resource can becomeunreachable at any moment, perhaps because of a network failure, a host failure, or simply asystem administrator rebooting a host. Every instance of the agent is a repository of the hardwareresource. It is therefore natural that the fault-tolerance mechanisms in NetSolve be at least partlyimplemented by the agent.The NetSolve system ensures that a user request will be completed unless every single resourcehas failed. When a client sends a request to a NetSolve agent, it receives a sorted list of compu-tational servers to try. When one of these servers has been successfully contacted, the numericalcomputation is started. If the contacted server fails during the computation, then another serveris contacted and the computation is restarted. This whole process is transparent to the user. Eachtime a computational server malfunction (server unreachable, server stopped, failure during com-putation) is detected by a client, this client noti�es the failure to one agent. The agent updates itstables and takes the necessary measures. If all the servers have failed, the user is noti�ed that thecomputation cannot be performed at that time.4.4 Simple Example of the Agent's E�ectivenessSeveral simple experiments can be done with the current version of the NetSolve software in orderto measure di�erent performance issues. The experiment we describe here provides informationabout the typical gain a user can obtain by using NetSolve. In this experiment, the user is usingMATLAB on a Sun workstation (Sparc 5) to perform several matrix multiplications. The size ofthe matrix is 800 by 800, and the use performs from 1 to 16 multiplications. A NetSolve systemis available consisting of seven computational servers. These servers also run on Sun workstations(Ultra 1's) and are located at the University of Tennessee. We note here that the results of thisexperiment would be the same if, instead of one user, several users were sending requests to theNetSolve system.Figure 4.4 shows the total execution times in in di�erent situation. The �rst curve is labeled'MATLAB' and shows the execution times for 1 to 16 matrix multiplications when the user isusing MATLAB directly. The total execution time increases linearly with the number of operationsperformed, with a rate equal to the execution time of one matrix multiplication. This result wasexpected, since the multiplications are executed one after the other.The other four curves are all labeled 'NetSolve' and show the execution times when the useris using the MATLAB interface to NetSolve to perform his computations. Each curve correspondto a di�erent location of the user's machine. The 'Intranet' curve shows execution times when theuser's machine is located on the network of the Computer Science Department at the Universityof Tennessee. For the 'Close Internet' curve, the user is at the Oak Ridge National laboratory.The 'Continental Internet' curve shows execution times for a user at the University of Californiaat Berkeley, and the 'Overseas Internet' curve is for a user at the Danish Technical University inCopenhagen, Denmark. For these four curves, the user's machines were all Sun workstations (Sparc5), and the measurements were taken from 11:00PM till 4:00AM EST during week days.There are mainly two facts of interest shown on �gure 4.4. First, if the client machine is closeenough to the NetSolve system (Internet-wise), then the NetSolve overhead (contacting the agent,sending the input data, retrieving the result) is still small enough to allow a win over MATLABcomputation. This is of course true because the server machines are faster than the client machine.On the curves, this corresponds to the �rst points (one multiplication) and we can see that NetSolve9

MATLAB

NetSolve (Intranet)

NetSolve (Close Internet)

NetSolve (Continental Internet)

NetSolve (Overseas Internet)

2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of 800x800 matrix operations

R
e

s
p

o
n

s
e

 t
im

e
 i
n

 s
e

c

Figure 2: Multiple 400x400 matrix multiplicationswins over MATLAB for all but the overseas user. In fact, there is a very large performance gapbetween the overseas Internet curve and the other ones due to very poor network bandwidth.Second, the execution times when using NetSolve are sensibly linear. The rates are approxi-matively 22 for the intranet client, 52 for close Internet, 135 for distant Internet, 232 for overseasInternet and 261 for MATLAB. The NetSolve rates are all lower than the MATLAB rate, and ofa di�erent order of magnitude when the user is close enough to the NetSolve system. This is dueto the load-balancing strategy implemented by the NetSolve agent. All the user requests are pro-cessed in parallel on di�erent servers, leading to an impressive speedup. One may be surprised thatthe execution time is linear even for more that seven multiplications since only seven servers areavailable. In fact, due to the matrix size, the speed of the processors and the network contentions,the NetSolve overhead is su�cient to prevent a server from performing two multiplications simul-taneously. For bigger matrix sizes or faster networks, the execution time would not be linear, butwould start increasing faster than its initial rate after seven multiplications.The NetSolve agent attempts to locate and schedule the user's computation on powerful ma-chines, in order to optimize performance. In this experiment, however, all the servers were identical,as was their workload. The agent was therefore compelled to schedule the computation in whatappears to be a round-robin fashion.For the NetSolve approach to be most worthwhile, users must have to change as little of theircode as possible. The explanation is as follows. The MATLAB code to perform a matrix multiplyis given below: 10

c = a * bAn equivalent NetSolve code using a blocking call could bec = netsolve('matmul',a,b)However, to achieve the speedups in the experiment, the user must call NetSolve in an asynchronousway as request = netsolve_nb('matmul',a,b)......c = netsolve('wait',request)The price to pay in code complexity is quite reasonable, given the improvement in speed thatcan be achieved with NetSolve. This is even more true about the C and Fortran interfaces. Evenmore striking, the same performance can be achieved from a Java program calling the NetSolveJava API or from the Java GUI by simply clicking and pointing in graphical windows.5 Future DirectionsAgent-based computing seems to be a promising strategy. NetSolve will certainly evolve into amore elaborate system in the future, and a major part of this evolution is bound to take placewithin the agent. We highlight here some of the expected changes in the agent concept.As the number of users and resources increases, it will be increasingly di�cult to maintaina coherent resource space. The issue of a robust and
exible naming strategy will undoubtedlyarise. Several naming services have been designed (LDAP [22], RCDS [23]), and implementationsare starting to become available. Such services would provide a good basis for a metacomputingproject like NetSolve.NetSolve will eventually need to provide a user-accounting feature so that realistic bounds canbe imposed on resource usage. We could, for instance, restrict the access to the resources, restrictthe access for some users, or do a combination of the two. The word restrict is still to be preciselyde�ned in this context. A practical and convenient scheme would be to use tokens or creditsthat users can release or spend to perform computations. Di�erent users could have a di�erentlevel of access. For instance, students would not be permitted to run large computations, whereasresearchers could have full access. It also might be advisable to let administrative authoritiescustomize their own accounting policy and put bounds on the usage of their resources. Thesebounds would be in terms of CPU time or megabytes on hardware resources, or in terms of numberof requests. We can imagine, for instance, that two universities or national laboratories could alloweach other to use every resources|with, however, a \preference" for the local users to use thelocal resources. It seems natural to make the NetSolve agent the primary actor of any accountingmechanism.Finally, as the types of hardware resources and numerical software available on the compu-tational servers become more and more diverse, the resource broker embedded in the agent willneed greater sophistication. Some issues have already arisen with the current implementation ofNetSolve. For instance, it is di�cult for the agent to predict execution times of computations that11

involve user-supplied functions, or for any iterative algorithm whose complexity depends on the in-put data. Now that ScaLAPACK [15] is being integrated into NetSolve, predicting performance onmultiprocessor con�gurations must also be explored. Many di�culties arise in providing a uniformperformance metric that encompasses any type of algorithmic and hardware considerations in ametacomputing setting. Much work will be devoted to implementing a reasonable approximationof such a metric within the agent.6 ConclusionIn this article, we have described how agent-based computing can help researchers use freely avail-able numerical software in an easy and e�cient way. Several metacomputing research projects havealready used an agent-based strategy to manage a heterogeneous pool of resources. These resourcescan be hardware or software, or a combination of the two.Featured here is the agent-based project called NetSolve, developed at the University of Ten-nessee and Oak Ridge National Laboratory. NetSolve provides the user with a pool of compu-tational servers running on single workstations, networks of workstations, or massively parallelsystems. These servers also provide uniform access to a variety of numerical software. Moreover,a general framework has been designed so that any arbitrary numerical library can be integratedin a NetSolve computational server. The NetSolve agent schedules user requests and manages theresources. The role of this agent is fundamental, and it is bound to become even more importantin the future.A �rst version of the NetSolve software, as well as all relevant information about the system,is available at http://www.cs.utk.edu/netsolve. We anticipate that the NetSolve software willevolve rapidly and will become more and more interoperable with other metacomputing projects.References[1] The Math Works Inc. MATLAB Reference Guide. 1992.[2] S. Wolfram. The Mathematica Book, Third Edition. Wolfram Median, Inc. and CambridgeUniversity Press, 1996.[3] J. Czyzyk, M. Mesnier, and J. Mor�e. NEOS : The Network-Enabled Optimization System.Technical Report MCS-P615-1096, Mathematics and Computer Science Division, ArgonneNational Laboratory, 1996.[4] S. Browne, J. Dongarra, E. Grosse, and T. Rowan. The Netlib Mathematical Software Repos-itory. D-Lib Magazine, Sep. 1995. Accessible at http://www.dlib.org/.[5] S. Browne, J. Dongarra, S. Green, K. Moore, T. Rowan, R. Wade, G. Fox, K. Hawick,K. Kennedy, J. Pool, R. Stevens, R. Olson, and T. Disz. The National HPCC SoftwareExchange. IEEE Computational Science and Engineering, 2(2):62{69, Summer 1995.[6] A. Cline. Scalar- and Planar-Valued Curve Fitting Using Splines Under Tension. Communi-cations of the ACM, 17:218{220, 1974. 12

[7] D. Young, D. Kincaid, J. Respess, and R. Grimes. Itpack2c: a FORTRAN package for solv-ing large sparse linear systems by adaptive accelerated iterative methods. Technical report,University of Texas at Austin, Boeing Computer Services Company, 1996.[8] J. Mor�e, B. Garbow, and K. Hillstrom. Minpack : Documentation �le accessible at:"http://www.netlib.org/minpack/readme".[9] P. Swarztrauber. FFTPACK : Documentation �le accessible at:"ftp://ftp.ucar.edu/ftp/dsl/lib/�tpack/readme".[10] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide, SecondEdition. SIAM, Philadelphia, PA, 1995.[11] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms forFortran Usage. ACM Transactions on Mathematical Software, 5:308{325, 1979.[12] J. Dongarra, J. Du Croz, S Hammarling, and R. Hanson. An Extended Set of Fortran BasicLinear Algebra Subprograms. ACM Transactions on Mathematical Software, 14(1):1{32, 1988.[13] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A Set of Level 3 Basic Linear AlgebraSubprograms. ACM Transactions on Mathematical Software, 16(1):1{17, 1990.[14] R.W. Freund and N.M. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitianlinear systems. Numer. Math., 60:315{339, 1991.[15] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users'Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.[16] H. Casanova, J. Dongarra, and K. Seymour. Client User's Guide to Netsolve. Technical ReportCS-96-343, Department of Computer Science, University of Tennessee, 1996.[17] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM : ParallelVirtual Machine. A Users' Guide and Tutorial for Networked Parallel Computing. The MITPress Cambridge, Massachusetts, 1994.[18] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-Level Scheduling onDistributed Heterogeneous Networks. In Proc. of Supercomputing'96, Pittsburgh. Departmentof Computer Science and Engineering 0114, University of California, San Diego, 1996.[19] R. Wolski. Dynamically Forecasting Network Performance Using the Network Weather Service.Technical Report TR-CS96-494, U.C. San Diego, October 1996.[20] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf : Network basedInformation Library for Globally High Performance Computing. In Proc. of Parallel Object-Oriented Methods and Applications (POOMA), Santa Fe, 1996.
13

[21] H Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational ScienceProblems. In Proc. of Supercomputing'96, Pittsburgh. Department of Computer Science, Uni-versity of Tennessee, Knoxville, 1996. to appear in The International Journal of SupercomputerApplications and High Performance Computing.[22] Timothy A. Howes. The Lightweight Directory Access Protocol: X.500 Lite. Technical ReportCITI-95-8, CITI, University of Michigan, July 1995.[23] Keith Moore, Shirley Browne, Jason Cox, and Jon Gettler. The Resource Cataloging andDistribution system. Technical Report UT-CS-97-346, University of Tennessee, 1997.

14

