
LAPACK Working Note 137Installation Guide and Design of the HPF 1.1 interface toScaLAPACK, SLHPF 1L.S. Blackford, J.J. DongarraC. A. Papadopoulos, and R. C. WhaleyDepartment of Computer ScienceUniversity of TennesseeKnoxville, Tennessee 37996-1301REVISED: RELEASE VERSION 1.1, Sept 1, 1998AbstractThis working note describes release version 1.1 of the HPF 1.1 compliant interface to ScaLA-PACK, SLHPF. Along with a description of the interface, installation instructions, a simpleexample program, and a testing suite are included. ScaLAPACK is a library of high-performance linear algebra routines for distributed-memory parallel machines or clustersof workstations supporting MPI or PVM. SLHPF allows the user to call the ScaLAPACKlibrary from within an HPF program.
1This work was supported by the National Science Foundation Grant No. ASC-9005933; by the De-fense Advanced Research Projects Agency under contract DAAH04-95-1-0077, administered by the ArmyResearch O�ce; by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract DE-AC05-84OR21400; and by the National Science Foundation Science and Technology Center CooperativeAgreement No. CCR-8809615; and by the DoD High Performance Computing Modernization Program ASCMajor Shared Resource Center through Programming Environment and Training (PET) under ContractNumber DAHC-94-96-C-0005, Nichols Research Corporation, subcontract no. NRC CR-96-0011.1

Contents1 Introduction . 32 Revisions Since the First Public Release . 33 File Format . 34 Overview of Library Contents . 44.1 SLHPF Routines . 54.2 SLHPF Test Routines . 55 Installing SLHPF on a Unix System . 55.1 Untar the File . 65.2 Edit the �le SLhpf make.inc . 65.3 If you are using MPI under PGHPF 65.4 Compiling SLHPF . 76 Run the SLHPF Test Programs . 76.1 A Simple Example Program . 76.2 Testers . 96.3 Send the Results to Tennessee . 107 Required HPF features . 108 Further details of the interface . 118.1 Layer 1 . 118.2 Layer 2 . 128.3 Layer 3 . 129 Explanation of needed HPF features . 139.1 !HPF$ INHERIT . 139.2 HPF DISTRIBUTION and HPF ALIGNMENT 139.3 !HPF$ PROCESSORS PROC(P,Q) and!HPF$ DISTRIBUTE A(CYCLIC(MB) CYCLIC(NB)) ONTO PROC 149.4 !HPF$ ALIGN WITH . 149.5 Labeling the processes for process grid setup 1410 Implementation details . 1410.1 Layer 1 . 1510.2 Layer 2 . 1510.3 Layer 3 . 1711 Extrinsics . 17A Calling sequences 20Bibliography . 222

1 IntroductionSLHPF is an interface layer that allows the user to call ScaLAPACK from an HPF 1.1program. ScaLAPACK, written in Fortran 77 and C, is a library of high-performance linearalgebra routines for distributed-memory message-passing MIMD computers and networksof workstations supporting PVM or MPI. It is a scalable distributed memory version of LA-PACK. ScaLAPACK contains routines for solving systems of linear equations, least squaresproblems, singular value decomposition, and eigenvalue problems. ScaLAPACK's approachto achieving high e�ciency is based on the use of a standard set of Basic Linear AlgebraSubprograms (BLAS), which can be optimized for each computational environment. Bycon�ning most of the computational work to the BLAS, the subroutines should be trans-portable and e�cient across a wide range of computers. For communication, ScaLAPACKuses the Basic Linear Algebra Communication Subprograms (BLACS) from which a parallelimplementation of the BLAS, (PBLAS) are implemented.The parallel language HPF supports CYCLIC(k) distributions of matrices, and thusis a natural platform from which to call ScaLAPACK. The SLHPF interface is designed tomake this approach both easy to use and portable, thus allowing the e�ciency and reliabilityof ScaLAPACK to be realized. HPF compilers are relatively young and the language is largeand complex, making it di�cult for compiler writers to implement all of the features of theHPF 1.1 standard. In view of this we have chosen a minimum subset of HPF compilerdirectives necessary to implement the interface and to make the interface as portable aspossible. This working note describes how to install and test this release of SLHPF.2 Revisions Since the First Public ReleaseSince its �rst public release SLHPF version 0.2Beta, many of the problems and di�-culties with compiler limitations have been addressed. SLHPF release version 1.1 has beenrewritten to comply with version 1.1 of the HPF standard. It will not work with a 1.0compliant HPF compiler. Some of the limitations from the 0.2Beta release that have beenaddressed are: Redistribution is now supported. Driver routines which accept argumentswhich may be 2D or 1D arrays (eg. the right hand side vector (or series of vectors) X) nowwill accept 1D or 2D arrays. A few code segments are still required to write around knowncompiler bugs; however, include �les are still used instead of module �les as in the originalrelease. This is because we have had problems with compiler bugs using module �les in thepast and we wanted as few potential problems with new compilers as possible. We have alsoincreased the functionality by providing an HPF interface to the ScaLAPACK symmetriceigenproblem driver SYEV.3 File FormatThe software for SLHPF is distributed in the form of a gzipped tar �le (via anonymousftp or the World Wide Web) which contains the HPF source for SLHPF, the testing pro-grams, this working note, and a simple example program. The package may be accessedvia the World Wide Web through the URL address:3

SLHPF

TESTING SRCINSTALL

Testing Routines

Data Files

Layer2 Layer3

Sample SLhpf_make.inc

HPF local Routines

Routines
HPF Global

F77 Local Routines

ScaLAPACK

BLACS

BLAS

PVM or MPI

README

Data Files

Figure 1: Organization of SLHPFhttp://www.netlib.org/scalapack/prototype/index.htmlOr, you can retrieve the �le via anonymous ftp at netlib:ftp ftp.netlib.orglogin: anonymouspassword: <your email address>cd scalapack/prototypebinaryget slhpf.tar.gzquitThe software on the tar �le is organized into a number of essential directories as shownin Figure 1. Please note that this �gure does not reect every �le contained in the SLHPFdirectory. Libraries are created in the SLHPF directory and executable �les are createdin TESTING directory. Input �les for the testing programs are also found in the testingdirectory, so that testing may be performed in the directory SLHPF/TESTING. A top-levelmake�le in the SLHPF directory is provided to perform the entire installation procedure.4 Overview of Library ContentsMost routines in SLHPF occur in four versions: REAL, DOUBLE PRECISION, COM-PLEX, and COMPLEX*16. The �rst three versions (REAL, DOUBLE PRECISION, and4

COMPLEX) are written to interface with standard Fortran 77 and are completely portable;the COMPLEX*16 version is provided for those Fortran 77 compilers which allow this datatype. For convenience, we often refer to routines by their single precision names; the leading`S' can be replaced by a `D' for double precision, a `C' for complex, or a `Z' for complex*16.The module HPF LAPACK provides an interface so that the top level driver routines do nothave an S D C or Z pre�x, but rather have the pre�x LA . There is a separate tester foreach precision of the driver routines.4.1 SLHPF RoutinesThere are three classes of SLHPF routines:� Global HPF routines that are located in the SLHPF/SRC directory that include theactual interface routines and the HPF module for interfacing with HPF programs.These routines are all HPF global and will only call HPF global and HPF localroutines. We will refer to these as Layer 1 routines.� Local HPF routines which are called by the Global routines. These routines are usedby the interface to call Layer 3 and ScaLAPACK's F77 routines. They also performsome local tasks. We will refer to these as Layer 2 routines.� Layer 3 routines are F77 routines called by the Layer 2 routines. The ScaLAPACKlibrary, along with the BLACS, PVM, or MPI are considered to be at this level.4.2 SLHPF Test RoutinesThis release contains test programs, located in SLHPF/TESTING, for each of theinterface routines in each data type. These test programs test di�erent types of distributionsto ensure that the interface is installed correctly. The test program executables will havethe form of xproutinename where p is the precision and routinename is the name of thedriver routine such as gesv. For example xsgesv is the single precision tester for gesv. Data�les for the testers are provided in the same directory. It is assumed that the ScaLAPACKtest suites have already been run successfully. The SLHPF test suite should be run beforeusing this interface in your own code.5 Installing SLHPF on a Unix SystemInstalling and testing release version 1.1 of SLHPF involves the following steps:1. Uncompress and tar the �le.2. Edit the �le SLHPF/SLhpf make.inc.3. If using MPI with PGHPF, set the environment variable HPF MPI and edit the �leSLHPF/SRC/misc.h.4. Type make all 5

5.1 Untar the FileIf you received a tar �le of SLHPF via the World Wide Web or anonymous ftp, enterthe following command to untar the �le:gunzip -c �le j tar xvf -where �le is the name of the gzipped tar �le. This will create a top-level directory calledSLHPF, which requires approximately 10 Mbytes of disk space. The total space requirementsincluding the object �les and executables is approximately 60 Mbytes for all four data types.5.2 Edit the �le SLhpf make.incBefore the libraries can be built, or the testing programs run, you must de�ne allmachine/compiler-speci�c parameters for the architecture and HPF compiler to which youare installing SLHPF. All machine-speci�c parameters are contained in the SLhpf make.inc�le. Sample SLhpf make.inc �les for di�erent machines and/or compilers are in theINSTALL directory. Copy the one closest to your system to the SLHPF directory and re-name it SLhpf make.inc.The �rst line of this SLHPF make.inc �le is:TOPdir = $(HOME)/SLHPFand may need to be modi�ed to wherever you have put your SLHPF directory. Sec-ond, you will need to modify the PLAT de�nition to specify the architecture to which youare installing SLHPF. Next, you will need to modify SLdir, Bdir, Mpdir, Mplib, BLAS,SYSlib, to indicate where the ScaLAPACK, BLACS, Message Passing (MPI or PVM orother message passing library) and BLAS libraries are located. The de�nition of setupallows you to specify whether you are running PVM, MPI, or any other message pass-ing layer. You may need to modify SYSlib for speci�c system libraries that also need tobe included. For example, Solaris requires you to link in the -lsocket and -lnsl librarieswhen using MPI or PVM. The CONVERT FROM and CONVERT TO allows you to con-vert from/to when changing what extrinsic declaration is used for Layer 3 routines. Thisdepends on your HPF compiler. For example Portland Group HPF (PGHPF) requiresf77 local for Layer 3 while Digital Equipment requires hpf local. Finally you will needto set your compiler and ags for each layer as well as the archiver ags. These can beset with FL1, FL1FLAGS, FL2, FL2FLAGS, FL3, FL3FLAGS, L1LOADER, L1LOADFLAGS, ARCH,ARCHFLAGS, and RANLIB. For more details on the SLhpf make.inc �le please see the README�le in the SLHPF/INSTALL directory, and the errata.SLHPF �le on netlib (URL address:http://www.netlib.org/scalapack/prototype/errata.SLHPF).5.3 If you are using MPI under PGHPFIf you are using MPI under PGHPF you need to set the environment variable HPF MPI topoint to your MPI library, for example 6

setenv HPF MPI /usr/local/MPI/mpich/lib/solaris/ch p4/libmpi.aYou will also need to modify SLHPF/SRC/misc.h to change EXITVAL=0 to EXITVAL=1 ifyour compiler is using the same message passing layer as the BLACS you are running.Make sure that you have set setup to MPI in your SLhpf make.inc �le.5.4 Compiling SLHPFTo compile the library and testing �les:cd SLHPFmake allOr just compile the library by:cd SLHPFmake libThe removal of object �les can be accomplished by the following:cd SLHPFmake cleanFor further installation details, please see the README �le in the SLHPF/INSTALL direc-tory.6 Run the SLHPF Test Programs6.1 A Simple Example ProgramIncluded in the SLHPF/TESTING directory is the simple example program xsimple.This is the �rst program you should try to run. If this runs correctly, then you canproceed to running the entire SLHPF test suite and then use SLHPF in your own HPF1.1 programs. Another feature of the simple example program code is that its source,SLHPF/TESTING/xsgesv.f, is very simple and easy to read. It will serve as a good guide ofhow to call an SLHPF routine by using the SLHPF module HPF LAPACK. In this particularcode we are calling a dgesv solver and comparing the results with the actual matrix thatis obtained from matmul. The other testers are designed to test the interface to make surethat the implementation of SLHPF is correctly installed and are more di�cult to read.7

program simplegesv!! -- Layer 1 ScaLAPACK HPF wrapper routine, (version 1.1) --! September 1, 1998! Written by R. Clint Whaley, University of Tennessee, Knoxville! use HPF_LAPACKinteger, parameter :: N=500, NRHS=20, NB=64, NBRHS=64, P=1, Q=4integer, parameter :: DP=kind(0.0D0)integer :: IPIV(N)real(DP) :: A(N, N), X(N, NRHS), B(N, NRHS)!HPF$ PROCESSORS PROC(P,Q)!HPF$ DISTRIBUTE A(cyclic(NB), cyclic(NB)) ONTO PROC!HPF$ DISTRIBUTE (cyclic(NB), cyclic(NBRHS)) ONTO PROC :: B, X!! Randomly generate the coefficient matrix A and the solution! matrix X. Set the right hand side matrix B such that B = A * X.! call random_number(A)call random_number(X)B = matmul(A, X)!! Solve the linear system; the computed solution overwrites B! call la_gesv(A, B, IPIV)!! As a simple test, print the largest difference (in absolute value)! between the computed solution (B) and the generated solution (X).! print*,'MAX(ABS(X~ - X)) = ',maxval(abs(B - X))!! Shutdown the ScaLAPACK system, I'm done! call SLhpf_exit()stopendTo run xsimple using MPI run your program as though you were running any otherMPI executable on your system. For example if you were using mpich you would use thefollowing in the SLHPF/TESTING directory: 8

% mpirun xsimple -procs 4To run xsimple using PVM you would run your program as though you were running anyother HPF executable on your system. Note: you need to start up PVM before runningyour executable. For example with Portland Group HPF you would use the following inthe SLHPF/TESTING directory:% xsimple -pghpf -np 4The output should look something like the following:% xsimple -pghpf -np 4MAX(ABS(X~ - X)) = 2.5913715617775779E-012FORTRAN STOPIf the di�erence is around 1.0E-8 or less then your program is working correctly and haspassed the test within a double precision tolerance.6.2 TestersThere are test programs for each of the interface routines in each data type in theTESTING directory. There is an input �le for each of the testing programs. These testersare designed to check that the HPF data distribution is working correctly, and assume thatScaLAPACK, BLAS, and BLACS have already been tested and are working correctly. Thetests have real, complex, double, and double complex routines unless otherwise indicated.The following is a list of the testers for the REAL version.xsgelsxsgemmxsgesvxsimple (simple example program)xsposvxssyev (real and double precision only)xstrsmFor the other precisions the leading `xs' �le names must be changed to `xc', `xd', or `xz'. Ifyou encountered failures in this phase of the testing process, please refer to Section 6.3. Forinformation on the data �les and how to modify them please see the SLHPF/INSTALL/README�le for a detailed description. 9

6.3 Send the Results to TennesseeCongratulations! You have now �nished installing, and testing SLHPF. If you en-countered failures in any phase of the testing, please consult the README �le in theSLHPF/INSTALL directory and our errata.SLHPF �le on netlib (URL address:http:www.netlib.org/scalapack/prototype/errata.SLHPF).This �le contains machine-dependent installation clues which hopefully will alleviate your di�culties or at least let youknow that other users have had similar di�culties on that machine. If there is not an entryfor your machine or the suggestions do not �x your problem, please feel free to contact theauthors atscalapack@cs.utk.edu.Tell us the type of machine on which the tests were run, the version of the operating system,the compiler and compiler options that were used, and details of the ScaLAPACK, BLACS,and BLAS libraries that you used. You should also include a copy of the output �le inwhich the failure occurs. We encourage you to make the SLHPF library available to yourusers and provide us with feedback from their experiences. This release of SLHPF is notguaranteed to be compatible with any previous test release.7 Required HPF featuresThe approach we are using requires the following HPF features:1. !HPF$ INHERITUsed to ensure no unneeded matrix redistribution occurs across subroutine calls2. HPF DISTRIBUTION (from HPF LIBRARY)Used to determine the distribution of the matrix's ultimate align target3. HPF ALIGNMENT (from HPF LIBRARY)Used to determine how the distribution of the ultimate align target a�ects the actualmatrix distribution4. !HPF$ PROCESSORS PROC(P,Q),where P and Q are dummy arguments to a routineWhen we have determined that redistribution must occur, this command is used toensure that all matrices passed to the routine are distributed over the same processgrid5. !HPF$ ALIGN X(:) WITH A(:,*)This command is used to ensure vectors without proper distributions are aligned cor-rectly to their corresponding arrays that are already correctly distributed, or in somecases used as !HPF$ ALIGN X(*) WITH A(*,*) to replicate a vector across all proces-sors6. !HPF$ DISTRIBUTE A(CYCLIC(MB) CYCLIC(NB)) ONTO PROCMB and NB parameters to routine, PROC from above10

When we have determined that a redistribution must occur, this allows us to expressthe kind of distributions ScaLAPACK will accept7. HPF LOCAL LIBRARYUsed for labeling the processes in a system independent way, allowing for a systemindependent process grid setup8. A way to go from HPF to a language such as Fortran77. We will need the followingextrinsics:� HPF LOCALGives us access to HPF LOCAL LIBRARY� F77 LOCAL, F90 LOCAL, or HPF2.0's HPF LOCALDeclares our Fortran77 library, so it can take assumed size arrays8 Further details of the interfaceOur wrapper library is divided into three distinct layers. Layer 1 is the global HPFlayer, consisting solely of strict HPF code. It never makes calls to Layer 3; all such calls arerouted through Layer 2. Layer 3 is the Fortran77 message passing layer, containing strictFortran77 code (or C code made to be callable from Fortran77). This layer contains all theFortran77 routines used, including the ScaLAPACK library, as well as some tool routinesfor the SLHPF wrapper library.Layer 2 is the transition layer, existing in order to facilitate the transition from theglobal HPF layer to the local Fortran77 message passing layer. This layer is HPF LOCALcode.8.1 Layer 1Layer 1 represents the user-callable wrapper functions, and their HPF tools. This layeris responsible for accepting the user's arguments, ensuring they are in a format whichScaLAPACK supports, and calling the appropriate Layer 2 wrapper to the ScaLAPACKroutine. They should also be written in such a way as to minimize data movement.To implement this, all wrapper routines have two paths to making a ScaLAPACK call.The �rst is a direct call to the appropriate Layer 2 routine, with all operands havingthe INHERIT attribute. This path requires no data movement, and if the compiler issophisticated, should avoid copying the matrices as well.The following things must be true for this optimal path to be followed:� All matrix operands can be expressed as some legal form of CYCLIC(K) distribution(this includes all BLOCK distributions).� All matrix operands are distributed across the same process grid (or, in some degen-erate cases, some subset of the same process grid).� The process grid over which the matrix operands are distributed over is one or twodimensional. 11

� Certain routine-dependent alignment restrictions between matrix operands are met.If any of the above assertions are not true, we cannot use the most optimal path tocalling ScaLAPACK, and must instead force a redistribution of the data to a form whichScaLAPACK can support. In this case, we call a Layer 2 wrapper to the ScaLAPACKroutine, which contains explicit distribution instructions to guarantee all of the above as-sertions hold true. The REDIST ag in the SLHPF/SRC/misc.h �le can be set to TRUE toissue a warning whenever this second option is used, allowing the user to monitor if he willbe taking a performance loss on his current data distribution.8.2 Layer 2This layer is responsible for the transition from a global HPF code to a local mes-sage passing library. This obviously involves the use of the EXTRINSIC features of HPF.In our wrappers, this layer is EXTRINSIC(HPF LOCAL) code. This allows us to use theHPF LOCAL LIBRARY routines necessary for process grid formation. This intermediatelevel is also responsible for translating HPF's global assumed shape arrays to Fortran77'slocal assumed size arrays. See section 11 for further discussion of this issue.In general, this layer contains two routines for every ScaLAPACK routine. One acceptsINHERITed matrix operands for maximal performance, and the other accepts matriceswhich have been explicitly distributed. This layer also contains wrappers around somemiscellaneous ScaLAPACK routines which need to be called from Layer 1, such as thoseresponsible for initializing the process grid.8.3 Layer 3As mentioned before, this layer consists primarily of the ScaLAPACK library. How-ever, there are several tool routines as well. These routines perform such functions assetting up the ScaLAPACK process grid, etc. Layer 3 is written in strict Fortran77, sothe most natural extrinsic is F77 LOCAL or HPF LOCAL when supported as in the HPF 2.0standard. Since Fortran77 is a proper subset of Fortran90, this layer may also be declaredEXTRINSIC(F90 LOCAL) if F77 LOCAL or HPF LOCAL do not exist. NOTE: The declarationof Layer 3 routines may change depending on the compiler and the extrinsics supported. Seethe SLHPF/INSTALL/README's section which covers converting Layer 3 to a new extrinsicfor details of how to change the extrinsic to match your compiler.In the HPF 1.1 standard, HPF LOCAL routines are constrained to accepting onlyassumed shape arrays as arguments. Since Fortran77 requires assumed size, we are un-able to declare these routines HPF LOCAL under this de�nition. HPF 2.0 indicates thatHPF LOCAL routines which are not called from global HPF directly (true for all of layer 3)can accept assumed size arrays. Therefore, on compilers supporting HPF 2.0's de�nition ofHPF LOCAL, we can declare layer 3 routines to be EXTRINSIC(HPF LOCAL). An exampleof this is the DEC f90 compiler, which does not support F90 LOCAL or F77 LOCAL, butdoes support HPF LOCAL routines accepting assumed size arrays. On this platform, alllayer 3 routines are declared as EXTRINSIC(HPF LOCAL).12

9 Explanation of needed HPF featuresThis section explains in more detail how and why we used certain features of HPF.9.1 !HPF$ INHERITIn order for the SLHPF library to be general purpose, it should accept any kind of legalinput. Further, if it is to be used, it must show better performance than the user can easilyobtain by writing the code himself. In light of this, we use the !HPF INHERIT directive asoften as possible to avoid unnecessary redistribution of data. Redistribuition has two majordrawbacks: memory usage, and performance degradation.If a matrix must be redistributed before an operation, then obviously a new matrix mustbe allocated to store the redistributed matrix. Since matrices usually represent most of alinear algebra program's memory requirements and users often move to parallel computingbecause the problem is too big to �t in serial memory, this cost can quickly become bur-densome. This a�ect is magni�ed when we consider routines which take multiple matrices,such as matrix multiplication (which takes a total of 3 matrices). If all of these matricesare redistributed, we must have su�cient memory for 6 N2 arrays. This then reduces themaximal size of the problem we can solve, which tends to keep the O(N2) communicationterm signi�cant.Redistribution also leads to performance degradation because the cost of communica-tion is much greater than the cost of computation. This is true even on dedicated parallelmachines; on clusters of workstations there may be orders of magnitude di�erence in com-putation and communication speeds. It is therefore obvious that there must be much morecomputation than there is data movement to justify a redistribution cost. If we are re-quired to perform a redistribution when envoking library calls, we see that routines whichhave operation counts of the same order of magnitude as their data (e.g., the level 1 and2 BLAS), will be prohibitively expensive. However, there is a large set of linear algebraroutines which have O(N3) operations, while having only O(N2) data. With these routines,one may hope to be better able to tolerate the redistribution costs, since the computationtime should dominate.It is obviously true that we will need the size of our computation to be fairly large if weare going to have our O(N3) computation dominate our O(N2) communication time, bearingin mind the relative costs of these commodities. This is where the fact that redistributionconsumes more memory also becomes a factor. Su�ce it to say, that for many operations,the cost of the redistribution will be much greater than the cost of the operation itself.Using INHERIT, we can ensure that no unnecessary redistribution occurs, both whenthe user passes the matrix to us, and when we pass it internally. In cases when the matrixoperands are correctly distributed, the INHERIT command assures no data movement willoccur. In the case when we must redistribute, INHERIT ensures that no data movement isrequired as we pass the matrices through our intermediate routines.9.2 HPF DISTRIBUTION and HPF ALIGNMENTHPF DISTRIBUTION is used to �nd the rank and shape of the process arrangement overwhich a matrix is distributed. A process arrangement is acceptable if it is one or two13

dimensional. These arrangements correspond to a PxQ process grid, where P and Q arereturned in the process shape.HPF DISTRIBUTION also returns the distribution information of the ultimate align-targetof the matrix. In our terms we discover whether the distribution corresponds to a legalCYCLIC(k) mapping. Please note that BLOCK and even COLLAPSED dimensions may be ex-pressed as CYCLIC(k) distributions. Also, this distribution information does not necessarilydescribe the distribution of the matrix we are concerned with: it describes the distributionof the ultimate align-target of the matrix. To determine how the information returned byHPF DISTRIBUTION a�ects the matrix, we must call HPF ALIGNMENT.In the example routines, our use of HPF DISTRIBUTION and HPF ALIGNMENT is con�nedto the routine SLhpf dmatinf.9.3 !HPF$ PROCESSORS PROC(P,Q) and!HPF$ DISTRIBUTE A(CYCLIC(MB) CYCLIC(NB)) ONTO PROCWhen we have determined that the matrix operands need to be redistributed, we mustcall an explicit interface which guarantees a particular distribution that ScaLAPACK canhandle. We use these two statements for this purpose.ScaLAPACK requires that all matrix operands be distributed over the same processgrid. Our use of PROCESSORS and the ONTO clause of DISTRIBUTE guarantee this. To see anexample of our usage of this feature, examine the interface section of SLhpf dgesv.9.4 !HPF$ ALIGN WITHThe !HPF$ ALIGN WITH is used in the wrappers in two di�erent ways. First of all we use!HPF$ ALIGN X(*) WITH A(*,*) to replicate the vector X amongst all of the processorsused by A. The second way we use this is to align a particular vector to a matrix thatalready has the correct distribution; this is only necessary if the vector is not alreadycorrectly distributed. !HPF$ ALIGN WITH allows us to correctly correlate the distributionsof vectors with their corresponding matrices.9.5 Labeling the processes for process grid setupAs mentioned before, ScaLAPACK has its own message passing layer, the BLACS. TheBLACS take as input the process IDs that de�ne a particular process grid upon which theScaLAPACK computation is to take place.Therefore, in order to get ScaLAPACK started, we will need to �nd the process gridover which the matrix has been distributed. To do this, we need to �nd in what process'smemory particular blocks of the matrix reside. Routines from HPF LOCAL LIBRARY areused to establish this mapping.10 Implementation detailsThis section provides a quick overview of the main routines used in the wrappers. Fig-ure 2 shows a simpli�ed version of the internal calls that occur when a user calls LA GESV14

with double precision arguments. This schematic ow chart establishes the hierarchy of theindividual routines and complements their descriptions in the following subsections.10.1 Layer 1SLhpf dgesv HPF interface to p2gesv.SLhpf ddescset3 Determines if the matrices can be represented by a simplecyclic(k) format. If they can, �lls in descriptor (includingformation of context), and returns INFO = 0. Otherwise,the context is not formed, and INFO is returned as nonzero.SLhpf dmatinf Fills in the descriptor entries M , N , MB , NB .SLhpf dgridinf Fills in a gridmap describing the process grid over whichthe matrix is distributed.10.2 Layer 2SLhpf dget procmap Determines the gridmap of the process grid over which thematrix is distributed. The HPF LOCAL LIBRARY rou-tine ABSTRACT TO PHYSICAL gives the gridmappingin terms of HPF IDs. The HPF LOCAL LIBRARY rou-tine GLOBAL TO LOCAL gives the process coordinateshaving the �rst block of the matrix. These IDs are trans-lated into the process IDs used by the BLACS through amapping established by SLhpf get hpf2sys map.SLhpf compare grids Establishes whether or not two grids are conformant. Twogrids are conformant if they are equivalent or one is anequivalent subset of the other. Two grids are equivalent ifthey have the same number of rows and columns (i.e. theyare both r � c grids, and entry (i; j) in grid A is the sameprocess as entry ((RSRC+ i) mod r); ((CSRC+ j) mod c),where RSRC and CSRC are constants whose value is 0 �RSRC < r and 0 � CSRC < c.If a grid is an equivalent subset of another grid, its dimen-sions are less, its matrix is not overdecomposed, and theabove entry relationship holds.SLhpf get context Once a gridmap shared by all operand matrices has been�lled in, this routine calls the appropriate BLACS routinesto form a context corresponding to the required grid. Thisroutine caches the last context formed. If the new grid isconformant with that of the cached context, the old context15

!HPF$ INHERIT

GLOBAL HPF

LAYER 1

Assumed Shape
Arrays

LAYER 2

HPF_LOCAL

Assumed Shape
Arrays

LAYER 3

F77_LOCAL

Assumed Size
Arrays

SLhpf_dgesv

SLhpf_dgesv2 SLhpf_dgesv1

YESNO

Is
distribution

(sub)array of
form CYCLIC(K)

!HPF$
INHERIT

SLhpf_dmatinf SLhpf_dgridinf

SLhpf_dget_procmap

SLhpf_compare_grids SLhpf_get_context

pdgesv

SLhpf_pvmblacs_setup

CALL LA_GESV(A, B)

!HPF$ INHERIT

!HPF$ DISTRIBUTE
(cyclic(MB), cyclic(NB))
ONTO PROC

SLhpf_ddescset3

SLhpf_get_hpf2sys_mapFigure 2: Call hierarchy16

is reused. Otherwise, the old context is freed, and the newone is cached for the next call.SLhpf dgesv1 Intermediary interface to pdgesv. This wrapper INHERITsall matrices, so no redistribution will be done.SLhpf dgesv2 Intermediary interface to pdgesv. This wrapper is calledwhen a redistribution is required. After redistribution hastaken place, this routine calls SLhpf dget procmap to �ndthe new grid and calls the BLACS directly to form the con-text.10.3 Layer 3SLhpf get hpf2sys map At the cost of communication of order 2 log p (where pis the number of processes in the HPF application), thisroutine establishes a mapping between HPF process IDsand those used by the BLACS. Note that this mapping doesnot change, so this routine is called only once, and thusthe communication cost can be amortized over all calls tothe wrapper library. If the PVMBLACS are being used, itcalls SLhpf pvmblacs setup in order to dynamically forma PVM machine from the HPF-launched processes.SLhpf pvmblacs setup Called only when using PVMBLACS. Dynamically forms aPVM machine from HPF-launched processes. Called onlyonce for each execution.SLhpf mpiblacs setup Stub routine.pdgesv ScaLAPACK routine for solving a general system of linearequations.11 ExtrinsicsAs mentioned previously, our codes are written in Fortran77 and C written to be callablefrom Fortran77. We therefore need a way to go from the HPF code, which contains globaldescriptions of the matrix, to a local Fortran77 message passing view of the matrix. Obvi-ously, since this represents a change in language, we must make use of HPF's EXTRINSICdeclaration.At �rst glance, the obvious extrinsic is F77 LOCAL. After all, this is what our routines are.However this overlooks an important area of interfacing HPF routines and local Fortran77.17

SUBROUTINE F90_TO_F77(A)REAL, INTENT(INOUT) :: A(:,:)INTEGER :: M, N, LDAINTERFACESUBROUTINE F77ROUT(M, N, A, LDA)INTEGER, INTENT(IN) :: M, N, LDAREAL, INTENT(INOUT) :: A(LDA,*)END SUBROUTINE F77ROUTEND INTERFACEM = SIZE(A, 1)N = SIZE(A, 2)LDA = MCALL F77ROUT(M, N, A, LDA)RETURNEND Figure 3: A F90 routine passing a 2D array to a F77 routineThe problem involves the translation of a HPF/F90 assumed shape array to a Fortran77assumed size array.Fortran77 arrays are local arrays of assumed size. An assumed size array is basicallyjust a memory address, where all dimensions of the matrix save the last are speci�ed sothat the compiler can do the proper indexing. This, then, is the problem that faces us whengoing from HPF's global view of the matrix to Fortran77: �nding out the extent of the local2D array's �rst dimension so that we may do our index arithmetic. We refer to this extentas the local leading dimension (LLD for short) of the matrix.This problem may be overcome in F90 by specifying an explicit interface. This approachis illustrated in �gure 3. Obviously, if the compiler has not already stored the indicated(sub)array in an array whose �rst dimension is equal to the SIZE of the array, it will needto allocate space and copy the array.Note that in distributed memory terms, the leading dimension (LDA in the above ex-ample) is an inherently local quantity: it indicates the memory stride between elementsin a row. Thus the F90 approach cannot be directly utilized in HPF, since the interfacedescribed by HPF is global.This oversight means that only 1D arrays may be standardly passed from HPF toexternal languages such as C or Fortran77 (this is obviously true because it is impossible todetermine how the compiler has locally laid out the matrix, and thus it will be impossibleto do indexing on such arrays). This means that codes wishing to pass arrays with greater18

than 1 dimension will have to be compiler speci�c (actually, compiler version speci�c).Compilers supporting EXTRINSIC(F90 LOCAL) should not have this problem. There, theuser may pass the HPF matrix to a F90 LOCAL routine which takes the matrix as assumedshape. The F90 LOCAL routine may then use the code in �gure 3 to pass the local array tothe Fortran77 code.EXTRINSIC(HPF_LOCAL) &SUBROUTINE HPFLOC_TO_F77(A)REAL, INTENT(INOUT) :: A(:,:)INTEGER :: M, N, LDAINTERFACEEXTRINSIC(F77_LOCAL) &SUBROUTINE F77ROUT(M, N, A, LDA)INTEGER, INTENT(IN) :: M, N, LDAREAL, INTENT(INOUT) :: A(LDA,*)END SUBROUTINE F77ROUTEND INTERFACEM = SIZE(A, 1)N = SIZE(A, 2)LDA = MCALL F77ROUT(M, N, A, LDA)RETURNEND Figure 4: A HPF LOCAL routine passing a 2D array to a F77 routineA similar solution may be used if a language supports both HPF LOCAL and F77 LOCAL.HPF LOCAL routines are mandated to accept only assumed shape arrays, so this extrinsicalone cannot solve the problem. However, in conjunction with F77 LOCAL, we can adopt thesolution much like the one above. This solution is shown in �gure 4. Note: if the compilersupports HPF LOCAL as in the HPF 2.0 standard, then one can use HPF LOCAL in place ofF77 LOCAL.AcknowledgmentsWe acknowledge with gratitude the support which we have received from the followingorganizations, and the help of individual members of their sta�: Portland Group; DigitalEquipment Corporation. 19

Appendix ACalling sequencesUsers wishing to call ScaLAPACK routines need to USE the module HPF LAPACK. The�le SLHPF/TESTING/simple gesv.f shows a simple call to LA GESV. The calling sequencesfor the supplied routines are (default values for optional parameters are enclosed in []):SUBROUTINE LA_GESV(A, B, IPIV, INFO)<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: A, BINTEGER, OPTIONAL, INTENT(OUT) :: IPIV(:), INFOSUBROUTINE LA_POSV(A, B, UPLO, INFO)<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: A, BCHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: UPLO[='Upper']INTEGER, OPTIONAL, INTENT(OUT) :: IPIV(:)SUBROUTINE LA_GELS(A, B, TRANS, INFO)<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: A, BCHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: TRANS[='NoTranspose']INTEGER, OPTIONAL, INTENT(OUT) :: IPIV(:)SUBROUTINE LA_SYEV(A, W, Z, UPLO, INFO)<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: A<TYPE>, INTENT(OUT), DIMENSION(:) :: W<TYPE>, OPTIONAL, INTENT(OUT), DIMENSION(:,:) :: ZCHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: UPLO[='Upper']INTEGER, OPTIONAL, INTENT(OUT) :: INFOSUBROUTINE LA_GEMM(A, B, C, TRANSA, TRANSB, ALPHA, BETA)<TYPE>, INTENT(IN), DIMENSION(:,:) :: A, B<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: CCHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: TRANSA[='NoTranspose'],TRANSB[='NoTranspose']<TYPE>, OPTIONAL, INTENT(IN) :: ALPHA[=1.0], BETA[=0.0]20

SUBROUTINE LA_TRSM(A, B, SIDE, UPLO, TRANSA, DIAG, ALPHA)<TYPE>, INTENT(IN), DIMENSION(:,:) :: A<TYPE>, INTENT(INOUT), DIMENSION(:,:) :: BCHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: SIDE[='Left'],UPLO[='Upper'],TRANSA[=NoTranspose'],DIAG[='NonUnit']<TYPE>, OPTIONAL, INTENT(IN) :: ALPHA[=1.0]For more details, see the module �le, SLHPF/SRC/HPF LAPACK mod.f.

21

Bibliography[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users' Guide,Second Edition, SIAM, Philadelphia, PA, 1995.[2] L.S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J.Demmel, I. Dhillon, J.Dongarra,S. Hammarling, G.Henry, A.Petitet, K. Stanley, D. Walker, R.C. Whaley ScaLAPACKUsers' Guide, SIAM, Philadelphia, PA, 1997.[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM: ParallelVirtual Machine. A Users' Guide and Turtorial for Networked Parallel Computing, MITPress, Cambridge, MA 1994.[4] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. J. Dongarra, MPI: TheComplete Reference, MIT Press, Cambridge, MA 1996.[5] C. Koebel, D. Loveman, R. Schreiber, G.Steele, M. Zosel, The High Performance FortranHandbook, MIT Press, Cambridge, MA 1994.[6] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, \A Set of Level 3 Basic LinearAlgebra Subprograms," ACM Trans. Math. Soft., 16, 1:1-17, March 1990.[7] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, \A Set of Level 3 Basic LinearAlgebra Subprograms: Model Implementation and Test Programs," ACM Trans. Math.Soft., 16, 1:18-28, March 1990.[8] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of FortranBasic Linear Algebra Subprograms," ACM Trans. Math. Soft., 14, 1:1-17, March 1988.[9] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, \An Extended Set of FortranBasic Linear Algebra Subprograms: Model Implementation and Test Programs," ACMTrans. Math. Soft., 14, 1:18-32, March 1988.[10] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, \Basic Linear AlgebraSubprograms for Fortran Usage," ACM Trans. Math. Soft., 5, 3:308-323, September1979. 22

