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AbstractThere is a developing theory of growing power which, at its current stage of devel-opment (indeed, for a number of years now), speaks to qualitative and quantitativeaspects of search strategies. Although it has been specialized and applied to geneticalgorithms, it's implications and applicability are far more general. This paper dealswith the broad outlines of the theory, introducing basic principles and results ratherthan analyzing or specializing to particular algorithms. A few speci�c examples areincluded for illustrative purposes, but the theory's basic structure, as opposed toapplications, remains the focus.Key words: Random Heuristic Search, Modeling Evolutionary Algorithms,Degenerate Royal Road Functions.
1 IntroductionVose [20] introduced a rigorous dynamical system model for the binary repre-sentation genetic algorithm with proportional selection, mutation determinedby a rate, and one-point crossover, using the simplifying assumption of an in-�nite population. 1 While some of the extensions, most notably [8], are morerecent, the theory's structure and basic results have been in place for a numberof years. In its abstract form, the model is su�ciently general to encompassand unify a variety of search methods, from simulated annealing to geneticprogramming.The abstract model, referred to as Random Heuristic Search (RHS), is reallymore of a general paradigm for heuristic search than a formalization of anyparticular search method. From an analytical perspective, the power of randomheuristic search lies partially in its ability to describe a wide range of searchmethods at various levels of detail, from �ne-grained models which capture1 This model has been further extended in [7,8,10,21,22,25,27{29,32].Preprint submitted to Elsevier Preprint 26 July 1999



complete information, to coarse approximations, which only attempt to trackparticular statistics. The resulting description is amenable to analysis becausedescription within the framework of random heuristic search corresponds tomathematical formalization.Beyond description and formalization, the framework of random heuristicsearch makes available a signi�cant amount of theoretical sca�olding in theform of key concepts and theorems which provide a uni�ed theory. There-fore, once identi�ed as an instance of random heuristic search, a particularsearch strategy inherits an environment of concepts and results which speaksto the mechanisms that control its dynamics and determine its quantitativeand qualitative nature. Moreover, the framework of random heuristic searchis economical in that a single operator, referred to as the heuristic, encapsu-lates behavior; its properties completely determine the system (at the level ofgranularity it was de�ned), and the dynamical features of RHS are related toits di�erential and to its �xed points.Originally designed to describe stochastic search methods (of which deter-ministic methods are a special case) over �nite, discrete domains, RHS hasbeen generalized to the in�nite and continuous case. This paper does notconcern such generalizations however, dealing principally with �nite, time-homogeneous, Markovian search strategies.The organization of this paper is as follows. Section two introduces randomheuristic search as a general search paradigm. Section three brie
y describeshow a variety of search strategies are naturally instances of random heuris-tic search. Section four presents basic concepts and theorems which identifyquantitative and qualitative properties shared by instances of RHS. Section�ve introduces hierarchical modeling and explains consistency concepts whichcan be used to tie di�erent levels in the modeling hierarchy together. Sectionsix illustrates some of the previous material by way of an example. 2Before proceeding, a few remarks will be made to de�ne the scope and intentof this article. Whereas it is ludicrous to imply that no one else has workedon stochastic search, this article is not a survey. The main objective is, withinthe limited space available, to give the broad outlines of the theory of randomheuristic search and to introduce the basic principles and results of its abstractframework. While some of this material has appeared elsewhere, this paperbrings those scattered results together into a uni�ed theory.
2 The particular example considered has been previously analyzed by van Nimwe-gen et. al. [17,18]. 2



2 Random Heuristic SearchThis section introduces random heuristic search as an abstract search method.Whereas the emphasis here is on generality, RHS has been instantiated toparticular search methods with remarkable success. The interested reader isreferred to [25] for a concrete example of this abstract framework as specializedto the Simple Genetic Algorithm.Before proceeding with the development of RHS, some preliminary remarksregarding notation will be made. Following that, random heuristic search willbe introduced gradually through a series of subsections, each supplying addi-tional re�nement and detail.2.1 NotationSome standard mathematical notation as well as some nonstandard but usefulconventions are introduced here.The set of integers is denoted by Z , and the set of integers modulo c is denotedby Zc. The symbol < denotes the set of real numbers, and for any collection Cof real numbers, vectors, or functions, the sub collection of positive membersis denoted by C+. A collection C multiplied by a number �, as in �C, denotesthe collection whose members are those of C multiplied by �.Angle brackets h� � �i denote a tuple which is to be regarded as a columnvector. The column vector of all 1 s is denoted by 1. The n�n identity matrixis In, and the j th column of the identity matrix is the vector ej . For vectorx, diag(x) denotes the square diagonal matrix with ii th entry xi. Indexing ofvectors and matrices begins with 0.Transpose is indicated with superscript T . The standard vector norm is kxk =pxTx. Modulus (or absolute value) is denoted by j � j. When S is a set, j S jdenotes the cardinality of S. More generally, j � j will be used as a functionwhich returns the \cost" of a path or tributary (paths, tributaries, and theirassociated costs are de�ned in section 4.3).Composition of functions f and g is f � g(x) = f(g(x)). The i th iterate f iof f is de�ned byf0(x)=xf i+1(x)= f � f i(x)The notation O(f) denotes a function (with similar domain and codomain asf), call it g, such that pointwise j g j� c jf j for some constant c. The notation3



o(f) represents a function (with similar domain and codomain as f), call it h,such that pointwise jh j = jf j! 0. In the case where f is a vector or matrix,j � j is to be interpreted as a norm.Curly brackets f� � �g are used as grouping symbols and to specify both setsand multisets. Square brackets [� � �] are, besides their standard use as speci-fying a closed interval of real numbers, used to denote an indicator function:if expr is an expression which may be true or false, then
[expr ] =8><>: 1 if expr is true0 otherwiseThe supremum is the least upper bound, and is denoted by sup. The in�mumis the greatest lower bound, and is denoted by inf.The equivalence of objects x and y is indicated by x � y.2.2 FrameworkThis material is mostly summarized from the 1994 article by Vose and Wright[28]. The interested reader is referred to [25] for more complete details.Random heuristic search can be thought of as an initial collection of elementsP0 chosen from some search space 
 of cardinality n, together with sometransition rule � which from Pi will produce another collection Pi+1. In general,� will be iterated to produce a sequence of collectionsP0 ��! P1 ��! P2 ��! : : :The beginning collection P0 is referred to as the initial population, the �rstpopulation (or generation) is P1, the second generation is P2, and so on. Pop-ulations are multisets.Not all transition rules are allowed. Obtaining a good representation for pop-ulations is a �rst step towards characterizing admissible � . De�ne the simplexto be the set�= fhx0; :::; xn�1i : 1Tx = 1; xj � 0gAn element p of � corresponds to a population according to the following rulefor de�ning its components 4



pj =the proportion in the population of the j th element of 
For example, suppose 
 is f0; 1; 2; 3; 4; 5g. Then n = 6. The populationf1; 0; 3; 1; 1; 3; 2; 2; 4; 0g is represented by the vector p = h:2; :3; :2; :2; :1; :0igiven Table 1.coordinate corresponding element of 
 percentage of P0p0 0 2/10p1 1 3/10p2 2 2/10p3 3 2/10p4 4 1/10p5 5 0/10Table 1. Illustration of population vector.The cardinality of each generation P0; P1; : : : is a parameter r called the pop-ulation size. Hence the proportional representation given by p unambiguouslydetermines a population once r is known. The vector p is referred to as a pop-ulation vector. The distinction between population and population vector willoften be blurred. In particular, � may be thought of as mapping the currentpopulation vector to the next.To get a feel for the geometry of the representation space, the simplex is dis-played in �gure 1 for n = 2, 3, and 4. The �gures depict � (indicated withthe thicker lines) as a line segment, a triangle, and a solid tetrahedron. Thethinner arrows show the coordinate axes of the ambient space (the projectionof the coordinate axes are being viewed in the second �gure, which is three di-mensional, and in the last �gure where the ambient space is four dimensional).

Figure 1. Representation space (n = 2; 3; 4).In general, � is a tetrahedron of dimension n�1 contained in an ambient spaceof dimension n. Note that each vertex of � corresponds to a unit basis vector ofthe ambient space; � is their convex hull. For example, the vertices of the solidtetrahedron (right most �gure) are at the basis vectors h1; 0; 0; 0i, h0; 1; 0; 0i,5



h0; 0; 1; 0i, and h0; 0; 0; 1i. Assuming that 
 = f0; 1; 2; 3g, they correspond(respectively) to the following populations: r copies of 0, r copies of 1, r copiesof 2, and r copies of 3. The center diagram will later be used as a schematicfor general �, representing it for arbitrary n.It should be realized that not every point of � corresponds to a �nite pop-ulation. In fact, only those rational points with common denominator r cor-respond to populations of size r. They are the intersection of a rectangularlattice of spacing 1=r with �,1r Xrn= 1r fhx0; : : : ; xn�1i : xj 2 Z ; xj � 0; 1Tx = rgFor example, the points corresponding to 14 X44 (n = 4 and r = 4) are the dotsin �gure 2.

Figure 2. Lattice of populations for n = 4 and r = 4.As r !1, these rational points become dense in �. Since a rational point mayrepresent arbitrarily large populations, a point p of � carries little informationconcerning population size. A natural view is therefore that � corresponds topopulations of indeterminate size. This is but one of several useful interpreta-tions. Another is that � corresponds to sampling distributions over 
: since thecomponents of p are nonnegative and sum to 1, p may be viewed as indicatingthat i 2 
 is sampled with probability pi.In summary, random heuristic search appears to be a discrete dynamical sys-tem on � through the identi�cation of populations with population vectors.That is, there is some transition rule � : �! � and what is of interest is thesequence of iterates beginning from some initial population vector pp; �(p); � 2(p); : : :This view is incomplete however, because the transitions are in general nonde-terministic and not all transition rules are allowed. Next, the stochastic natureof � will be explained and admissible � will be characterized.6



2.3 NondeterminismBecause � is stochastic, the next population vector �(p) cannot necessarily bepredicted with certainty given the current population vector p. It is most con-veniently thought of as resulting from r independent, identically distributedrandom choices. Let G : � ! � be a heuristic function (heuristic for short)which given the current population p produces a vector whose i th componentis the probability that the i th element of 
 is chosen (with replacement). Thatis, G(p) is that probability vector which speci�es the sampling distribution bywhich the aggregate of r choices forms the next generation. A transition rule� is admissible if it corresponds to a heuristic function G in this way. Figure3 depicts the relationship between p, �, 
, G, and � through a sequence ofgenerations (the illustration does not correspond literally to any particularcase, it depicts how transitions between generations take place in general):
� :

� � �

G G G

sample sample sample


 : Figure 3. Relationship between p, �, 
, G, and � .The triangles along the top row of �gure 3 represent �, one for each of fourgenerations. Each � contains a dot representing a population. These samepopulations are also represented in the second row with dots; � maps fromone to the next. The transition arrow for � is dashed to indicate that it isan induced map, computed by following the solid arrows. The third row ofdots are images of populations under G. Below each is a curve, suggesting thesampling distribution over 
 which it represents. The line segments in thebottom row represent 
.The transition from one generation to the next proceeds a follows. First G isapplied to produce a vector which represents a sampling distribution (curve)over 
. Next, r independent samples, with replacement, are made from 
according to this distribution (represented in the diagram by \sample") toproduce the next generation.For example, let 
 = f0; 1; 2; 3g and suppose the heuristic is7



G(p)= h0; p1; 2p2; 3p3i=X i piLet the initial population be p = h:25; :25; :25; :25i. Then G(p) is the samplingdistribution h0; 1=6; 1=3; 1=2i, the probability of sampling 0 is 0, of sampling1 is 1/6, of sampling 2 is 1/3, and of sampling 3 is 1/2. With population sizer = 100, the transition rule corresponds to making 100 independent samples,with replacement, according to these probabilities.A plausible next generation is therefore �(p) = h0; :17; :33; :50i . Note that thesampling distribution G(p) used in forming the next generation �(p) dependson the current population p. Going one generation further, the new currentpopulation is �(p) and the sampling distribution for producing the next gener-ation is given by G(�(p)) � h0; :07296; :28326; :64377i. It is therefore plausiblethat the second generation might be � 2(p) = h0; :07; :28; :65i.Note the conceptually dual interpretation of �. It serves as both the space ofpopulations and as the space of probability distributions over 
.2.4 Dependence On TimeThe previous description of random heuristic search is time-homogeneous, thatis, neither the population size nor the heuristic depends on time (i.e., on thegeneration number t).If, more generally, the population size is a function r(t) of time, or the heuristicis a function G(t; �) of time, then RHS is said to be inhomogeneous. In thatcase, the heuristic is used to obtain the sampling distribution with whichgeneration t+ 1 is formed by way of r(t) samples.In the homogeneous case, random heuristic search is a homogeneous Markovchain over the state space 1r Xrn since the next state (i.e., population) dependsonly on the current state, and the dependence is independent of time. In theinhomogeneous case, RHS is still a Markov chain over some subset of �, butit is an inhomogeneous chain because the transition from one state to thenext, while still a function of the current population, is a function which alsodepends on t.
3 ExamplesThis section brie
y mentions a few examples to indicate the descriptive powerof random heuristic search. The goal is to show the 
exibility of RHS as ameans to formally describe various search methods.8



For some of the methods considered, the heuristic G will be given explicitly.For others, it will only be indicated how, in principle, G could be determined.While not exhaustive, or even representative, the examples touched upon be-low nevertheless demonstrate that a wide variety of search methods are in-stances of RHS.3.1 Simulated AnnealingSimulated annealing over a �nite domain is an example of inhomogeneousrandom heuristic search. This is easily seen by identifying the correspondingheuristic.The population size for simulated annealing is typically r = 1, and, given pop-ulation p (i.e., position p in the search space), the next generation is obtainedby the following stochastic procedure:� Sample q from a neighborhood N(p) of p.� If f(q) < f(p), where f is the objective function, then the next generationis q.� Otherwise, the next generation is q with probabilitye(f(p)�f(q))=Ttwhere Tt is the temperature at generation t.Since a population contains only a single element of the search space (whenr = 1), the state space { which is the set of vertices of � { is naturally identi�edwith 
. The corresponding heuristic satis�es
G(t; j)i= [i 2 N(j)]j N(j) j ([f(i) < f(j)] + [f(i) � f(j)] e(f(j)�f(i))=Tt)for distinct elements i and j of 
. The case i = j is determined byG(t; j)j =1�Xi 6=j G(t; j)i3.2 Stochastic Beam SearchConsider a stochastic version of beam search applied to the exploration of atree. A list p̂ of size � contains nodes and represents the current state. An9



arbitrary function f(s; p̂) { which may, for instance, estimate the likelihoodof node s being on a path to the goal, and could, for instance, involve lookahead { determines how \good" node s is with respect to list p̂. The list p̂ isupdated to the next state q̂ according to:� Obtain a sample S of size � from p̂ (sampling of s 2 p̂ may depend onf(s; p̂)).� Let p̂0 be the collection of children obtained from expanding elements of S.� Let q̂ be the best � elements from p̂0.This is summarized by q̂ = �(p̂) where � represents the stochastic procedureabove.Since the best � elements from p̂0 are the best � children of S, the list q̂may be represented by S. Assuming that p̂ is similarly represented, the statespace for stochastic beam search can be taken to be populations of size �.Let the representative of q̂ { i.e., S { be denoted by q, and let p denote therepresentative of p̂.While perhaps mysterious, � determined by Prf�(p) = qg = Prf�(p̂) = q̂g isan instance of RHS representing stochastic beam search. The heuristic G maybe expressed in terms of � as follows. SincePrfi 2 �(p)g=1� Prfi =2 �(p)g=1� (1�G(p)i)rit follows thatG(t; p)i=1� (1� Prfi 2 �(p) j generation tg)1=rA homogeneous instance of random heuristic search results if �, �, f , and thedistribution governing the selection of S do not depend on time.This example, while unsatisfying in the sense that the heuristic was deter-mined only in principle, is important as a prototype for how a search strategymay be shown to be an instance of RHS without explicitly determining thecorresponding G.
3.3 Evolutionary AlgorithmsThe �rst example below is presented in considerably more detail, though,for reasons of manageability, it is only results rather than underlying reasons10



that are given (the interested reader is referred to [8,25] for a more generaland complete account).Consider the Simple Genetic Algorithm which moves from one generation tothe next as follows:(1) Obtain two parents by proportional selection.(2) Mutate (mutation implies change) the parents with rate �.(3) Produce the (mutated) parents' child by one-point crossover with rate �.(4) Put one child into the next generation.(5) If the next generation contains less than r members, go to step 1.Here the search space is the set of all length ` strings over the alphabetf0; : : : ; c � 1g. Regarding elements of 
 as c-ary numbers, they are identi-�ed with integers in the interval [0; n � 1], where n = c`. The search space 
as also naturally identi�ed with the product groupZc � : : : �ZcThe group operation � (i.e., addition modulo c) acts on integers in [0; n�1] viathese identi�cations, and 
 is used to represent componentwise multiplicationmodulo c.Regarding the objective function f as a vector via fi = f(i), let F = diag(f).De�ne the operator F : �! � byF(x)= Fx1TFxDe�ne the matrix M to have i; j th component(1� �)`2 (�#i  1� �+ �`� 1 `�1Xk=1 ���i;j;k! + �#j  1� �+ �`� 1 `�1Xk=1 ��i;j;k!)where � = �=((c� 1)(1� �)), where #x denotes the number of nonzero c-arydigits in x, where division by zero at � = 0 and � = 1 is to be removed bycontinuity, and where�i;j;k=#((ck � 1)
 (ck � 1)
 i) � #((ck � 1)
 (ck � 1)
 j)De�ne permutation matrices �j on <n by�jhx0; : : : ; xn�1i= hxj�0; : : : ; xj�(n�1)iand de�ne the operatorM : �! � by11



M(x)= h(�0 x)TM�0 x; : : : ; (�n�1 x)TM�n�1 xiThe Simple Genetic Algorithm's heuristic isG =M�FIt is well known (and may be veri�ed by direct calculation; simply take � = 0above and simplify) that in the case of zero crossover the heuristic has theformG(x)= Ax1TAxfor a suitable matrix A which is positive for nonzero mutation.As is no doubt clear by contrasting the previous example (stochastic beamsearch) with this one, establishing that a search strategy is an instance ofrandom heuristic search is, in general, a far easier matter than identifying itsheuristic. However, the prototypeG(t; p)i=1 � (1 � Prfi 2 �(p) j generation tg)1=rwhere � denotes the search strategy's transition rule, implies that many basictypes of evolutionary search, including common forms of� Evolutionary Programming� Evolutionary Strategies� Genetic Algorithms� Genetic Programmingare instances of RHS. The basic requirements are that 
 be �nite, and thatthe transition � from one generation to the next be Markovian and expressibleas the result of r independent, identically distributed random choices (the dis-tribution governing those choices may depend on both the generation numberand the current population).Finiteness is not a serious issue, since limited space and resolution make it apractical reality (for example, in genetic programming it is common to employa depth bound, and what pass for \real numbers" in Evolutionary Strategiesare typically 
oating point variables of 64 bits or less).Assuming Markovian transitions, the requirement that � be expressible asthe result of r independent, identically distributed random choices is not aserious issue for many common forms of evolutionary search. For some, like12



Genetic Programming for instance, the mechanism producing the next gener-ation is naturally a series of independent identically distributed choices. Forothers, like � + � Evolutionary Strategies, the situation, while considerablyless straightforward, may be handled by approximation in the sense that thereexists an instance of random heuristic search which approximates, to an arbi-trary degree of precision, the actual dynamics.As illustrated in section 3.2, appropriate choice of representation may helpidentify a search method as an instance of RHS. In general, 
 need not containpopulations rather than strings if for some r > 1 there exists a solution x 2 �(which may depend on p and t) to
Prf�(p) = qg= r! Y xrqjj(rqj)!which holds for all q.

4 Basic TheoryThis section is divided into three parts. The �rst is concerned with the mostbasic results. The second classi�es instances of random heuristic search andintroduces fundamental concepts. The third examines transient (i.e., local intime) and asymptotic (i.e., averaged over in�nite time) behavior. For simplic-ity, the exposition will focus on the homogeneous case. For reasons of man-ageability, it is only results rather than underlying reasons that are given (forrelated results and more complete details, the interested reader is referred tothe citations which appear below).
4.1 First PrinciplesGiven an instance of random heuristic search, perhaps the most fundamentalquestion is: beginning from current population p, what is the probability thatthe next generation is q? This is the �rst question to be addressed.By Stirling's theorem, given x 2 Z+, there exists 0 < � < 1 such that

x! =�xe�x p2�x expn 112x+ �o13



Solving this equality for � de�nes it as a function of x. The function � appearsin the following theorem (see [23,25,28]).Theorem 1 Let p be the current population vector. The probability that pop-ulation q 2 1rXrn is the next population vector is
r! Y (G(p)j)rqj(rqj)!= exp(�rX qj ln qjG(p)j �X� lnq2�rqj + 112rqj + �(rqj) �+O(ln r))where summation is restricted to indices for which qj > 0.The characterization of random heuristic search as completed in section 2 restsultimately on sampling 
, since � is the induced map in �gure 4.

p �(p)

G(p)

sample 
Figure 4. � as an induced map.However, since each random vector in the sequence p; �(p); � 2(p); : : : de-pends only on the value of the preceding one, they form a Markov chain withtransition matrix
Qp;q = r! Y (G(p)j)rqj(rqj)!The conceptualization of RHS as given in section 2 may therefore be replacedby an abstraction which makes no reference to sampling 
 at all: from currentpopulation p, produce q = �(p) with probability Qp;q.As is no doubt clear, the theoretical sca�olding made available by the frame-work of random heuristic search includes all the machinery of Markov chains.Moreover, any question concerning �(p) may be answered in terms of the tran-sition matrix Q, since it de�nes the stochastic behavior. For example, if thegoal of RHS is to produce a population contained in some set S, let � andQ be the initial population distribution and transition matrix (respectively),except that all entries (rows and columns) corresponding to populations p 2 Sare omitted. A standard result from Markov chain theory is that the expectednumber of generations to encounter a member of S is14



�T (I �Q)�11Now that transition probabilities have been determined, it is natural to ask:what is the expected next generation? The answer is given by the followingtheorem (see [27,28]).Theorem 2 Let E denote the expectation operator.E(�(p))=G(p)Note the conceptually dual interpretation of G(p). Whereas it previously spec-i�ed a sampling distribution, it now represents an expected population. Ob-serve that theorem 2 places no conditions on r. It therefore holds independentof population size; G simultaneously describes the expected next generationfor all population sizes.Theorem 1 in conjunction with theorem 2 provides qualitative informationconcerning probable next generations. The expressionX qj ln qjG(p)jis the discrepancy of q with respect to G(p) and is a measure of how far q isfrom the expected next population G(p). Discrepancy is nonnegative and iszero only when q is the expected next population. Hence the factor
exp(�rX qj ln qjG(p)j)occurring in theorem 1 indicates the probability that q is the next generationdecays exponentially, with constant �r, as the discrepancy between q and theexpected next population increases.The expressionX� lnq2�rqj + 112rqj + �(rqj) �measures the dispersion of the population vector q. A minimally disperse pop-ulation q contains r identical population members and corresponds to q = eifor some i (recall that ei is the ith column of the identity matrix). The corre-sponding dispersion is O(ln r). If n � r, a maximally disperse population has15



no duplication (q has r nonzero components which are all 1=r) and dispersionr. Figure 5 illustrates this for ` = 2, r = 4. The size of dots correspond to dis-persion; smaller dots have lower dispersion, larger dots have higher dispersion.

Figure 5. Distribution of dispersion.The factor
exp(�X� lnq2�rqj + 112rqj + �(rqj) �)occurring in theorem 1 indicates the probability that q is the next generationdecays exponentially with increasing dispersion. This is related to 
uctuationsin �nite populations induced by sampling; �nite populations have a naturaltendency under sampling to converge.The combined e�ect of the two in
uences of discrepancy and dispersion is thatrandom heuristic search favors a less disperse population near the expectednext generation. In particular, if the current population is near the expectednext generation, then the �rst factor does not contribute a strong bias forchange and so the second factor may exert a stabilizing e�ect on the currentpopulation provided it is the less disperse among the alternatives. A furthercontribution to stasis is provided by the lattice 1rXrn of points available topopulations for occupation. When G(p) is nearly the initial population p, thein
uence of discrepancy favors p as the next generation. The strength of thispreference depends upon the distance between p and other lattice points (i.e.,alternative populations). This phenomenon is made precise by theorem 1 andthe characterization, given in section 2.2, of the �nite population state space as1r Xrn. This same phenomenon was later rediscovered for a particular instanceof RHS by van Nimwegen et. al. ([17,18]).According to theorem 2, the expected next generation from population p isknown, but what about the variance? It decreases like 1=r (see [22]) anddepends upon the distance of G(p) from a vertex of � (see [23,25]).16



Theorem 3 Let E denote the expectation operator.E(k�(p)� G(p)k2)= (1� kG(p)k2)=rTheorem 3 points to another in
uence in support of stasis when the currentpopulation is near the expected next generation and in an area of low disper-sion. Since kG(p)k2 � 1 with equality precisely when G(p) is at a vertex of �,the variance is small in areas of low dispersion. This (i.e., low variance) favorspopulations near the expected next generation.A consequence of theorem 3 is that �(p) converges in probability to G(p) asthe population size increases. Therefore, � corresponds to G in the in�nitepopulation case. The following observations can be made (see [7]):Theorem 4 The heuristic G simultaneously answers each of the followingquestions:� What is the exact sampling distribution describing the formation of the nextgeneration?� What is the expected next generation?� In the limit, as r ! 1, what is the transition function which maps fromone generation to the next?Moreover, theorems 1, 2, and 3 provide a conceptually simple decompositionof � into a deterministic signal component, and a stochastic noise compo-nent. Theorem 1 shows, for any r, that �(p) is given by a single sample froma multinomial distribution. Associated with the stochastic progression of ran-dom heuristic search is the deterministic dynamical system on � obtainedby iterating G instead of � . This is the underlying 
ow which provides thesignal. The message of theorem 2 is that locally (i.e., for a single transition)the expected result of �(p) is given by the underlying 
ow. The message oftheorem 3 is that the variance from the 
ow (i.e., the noise in the sample) is(1� kG(p)k2)=r.It is appropriate here to comment on the use of the word \
ow" in the previ-ous paragraph. In dynamical systems theory [1], 
ow is a technical term whichdoes not relate to iterating G, but rather to an extension of that discrete timedynamical system to continuous time by interpolating between successive it-erates. While a standard construction might be used to embed a discretedynamical system in a 
ow, the domain of the extension di�ers, in general,from that of the original dynamical system. The use of the word \
ow" inthis paper is metaphorical, intended to suggest that trajectories (in the in�-nite population case) are being swept along an evolutionary path under thein
uence of an underlying current provided by G.17



As was noted previously, not every point of � corresponds to a �nite pop-ulation; only those rational points with common denominator r correspondto populations of size r. The following theorem makes precise the previousremark that these populations become dense in � as r !1 (see [23,25]).Theorem 5 Let p; q 2 � denote arbitrary population vectors for populationsize r, and let � denote an arbitrary element of �. Theninfp 6=q kp� qk=p2=rsup� infp k� � pk=O(1=pr)where the constant (in the \big oh") is independent of the dimension n of �.In the decomposition into signal and noise described above, the signal is in-variant in the sense that it is independent of the population size (G does notdepend on r). Using the metaphor of the signal exerting a force on a popu-lation, the force G(p) � p acting on p is independent of r (by theorem 1, thein
uence of r is external to G). The lattice spacing within � is not, however(theorem 5). When the force is small relative to p2=r, discrepancy is mini-mized by �(p) = p. In that case, random heuristic search is naturally biasedtowards treating such populations as if they were �xed points, provided otherconsiderations { like dispersion and noise { do not indicate counter tendencies(theorems 1, 3).The next result (see [22]) provides a normal approximation to the transitionbehavior of random heuristic search. In particular, it approximates the 
uctu-ations that occur about a �xed point. Let q = G(p) and let C be an n by n�1matrix having orthonormal columns perpendicular to h = hpq0; : : : ;pqn�1i.Theorem 6 For any open subset U of 1?, the probability that �(p) belong tothe set G(p) + U=pr is
(2�)�(n�1)=2 ZCT diag(h)�1U e�yT y = 2 dy + o(1)

as r increases.As will be later explained in some detail (in section 5) the observations made inthis section and those that follow apply to random heuristic search in general,and speak therefore to both microscopic and macroscopic behavior.18



4.2 Fundamental ConceptsStandard terminology from probability theory is used in this section (in thecontext of Markov chains for example, see [4,13] for the de�nition of a closedset of states, an absorbing state, etc.).An instance of random heuristic search is called:� Ergodic, if some some power of the transition matrix Q is positive.� Absorbing, if, in the Markov chain which represents it, every closed set ofstates contains an absorbing state.� Regular, if whenever C has measure zero, then so does the set G�1(C).� Focused, if G is continuously di�erentiable and p; G(p); G2(p); : : : convergesfor every p 2 �.� Hyperbolic, if G is continuously di�erentiable and its di�erential dGx at xhas no eigenvalues of unit modulus when x is a �xed point of G.� Normal, if it is hyperbolic and has a complete Lyapunov function. 3If RHS is ergodic, absorbing, regular, focused, hyperbolic, or normal, thenboth � and G are also called ergodic, absorbing, regular, focused, hyperbolic,or normal (respectively). The following observations are, given the previousde�nitions, standard results from probability theory [4,13].When RHS is ergodic, every state must be visited in�nitely often. Moreover,in that case�T = limk!1 �TQkexists and is independent of the initial population distribution �. The rowsof Q1 are each �T , which is a left eigenvector of Q corresponding to thesimple and maximal eigenvalue 1. The p th component of � represents theproportion of time the Markov chain spends in state p (i.e., � is the \steadystate distribution"). The steady state distribution � may be extended to aprobability measure on � as follows:�(A)= Xp2 1rXrn �p [p 2 A]Here �(A) is the probability given to A by the probability measure, and �p isthe p th component of the steady state distribution. Thus for arbitrary A � �,the proportion of time that RHS spends in A, averaged over in�nitely manygenerations, is represented by �(A).3 The paragraph following theorem 7 (below) de�nes a complete Lyapunov function.19



When RHS is absorbing, every initial population has, with probability 1, anevolutionary trajectory which terminates in an absorbing state. Moreover, asteady state distribution�T = limk!1 �TQkexists but is not necessarily independent of the initial population distribution�. The p th component of � represents the probability that the Markov chainbecomes trapped in state p given initial distribution �. As before, � may beextended to a probability measure on �. The extension is denoted by �� tomake the dependence on � explicit. Thus for arbitrary A � �, the probabilitythat RHS becomes trapped in A, given initial distribution �, is represented by��(A).When RHS is regular, if C has positive volume, then so does its expectedimage (i.e., G(C)). That is, the underlying 
ow cannot collapse space in any�nite number of steps.When RHS is focused, the trajectory determined by following at each genera-tion what � is expected to produce will lead to some state !. By the continuityof G, such points satisfy G(!) = ! and are therefore called �xed points. Thatis, from every p the underlying 
ow { or orbit { p; G(p); G2(p); : : : leads tosome stagnant location !(p) which depends possibly upon p. Moreover, theorbit depends smoothly on p since G is continuously di�erentiable.At a later point the question of speed of convergence will be examined. How-ever, a precise de�nition of convergence faces several obstacles. The most ob-vious is that ergodic random heuristic search does not converge, as every statewill be visited in�nitely often. The naive de�nition of convergence as time todiscover the optimal is generally useless as well. The \no free lunch theorem"[12,31] implies that it is no better, in general, than that achieved by enumer-ation. The underlying problem here is that the metric of how good RHS is atfunction optimization is generally worthless to gauge inherent behavior.Consider, however, that the transition from a population to the next genera-tion is given by G plus multinomially distributed \noise" (theorem 1). If G isfocused and if the perturbations e�ected by this noise are not too great, thenthe initial transient of random heuristic search from initial population p mightbe characterized by moving towards and spending time in the vicinity of that�xed point !(p) to which the underlying 
ow converges (theorem 8 of the fol-lowing section partially addresses this phenomenon). This scenario is plausibleas the population size grows since the magnitude of the noise decreases withincreasing population size (theorems 3, 6).It is therefore natural to consider the time to convergence of an orbit as an20



indication of the \settling time" of the initial transient, that is, an approxi-mation of how long it might take for random heuristic search to move from pinto the vicinity of !(p), assuming the multinomially distributed \noise" is nottoo great. Even after accepting this concept as an interesting one to pursue,several problems remain. If G is invertible, then, strictly speaking, the timeto convergence of p; G(p); G2(p); : : : is either zero or in�nite depending uponwhether p is a �xed point.The essential point made above is that random heuristic search, under thein
uence of the underlying dynamical system corresponding to G, may tem-porarily explore the vicinity of !(p). This being the case, approaching !(p) iswhat matters, and if the concept to be pursued is how the signal componentprovided by the 
ow { as opposed to the noise component { relates to thisissue, then the most straightforward way to capture the essential idea is todetermine, for every �, the time taken by p; G(p); G2(p); : : : to come within� of !(p). So as to streamline exposition, the time referred to in the last sen-tence { which obviously depends on p and � { will be referred to as \time toconvergence". Note that time to convergence has been de�ned as a statementregarding the underlying 
ow of RHS.Di�culties remain. Perhaps the most obvious is that the time to convergencedepends upon the initial population, and, given �xed �, there is nothing toprevent the existence of a sequence of initial populations along which thetime to convergence diverges to in�nity. For example, consider any instanceof focused random heuristic search such that u and v are distinct attracting�xed points, and let s(t) = tu+ (1� t)v. Let t� be the supremum of t 2 [0; 1]such that !(s(t)) = v. If the time to convergence to v were bounded, say byk, then by the uniform continuity of Gk (it is continuous and � is compact) itfollows that Gk(s(t�)) is mapped within � of v, and hence converges to v (forsuitably small �) since v is an attractor. But this contradicts that t� was thesupremum because the same continuity argument would imply the 
ow froms(t� + ") converges to v for some " > 0. Therefore, given �xed �, the time toconvergence cannot, in general, be uniformly bounded.However, the possibility remains that time to convergence could be uniformlybounded for \most" initial populations. Let a probability density % be given,and for any set A de�ne the probability that the initial population is containedin A asZA % d�where � is surface measure. A natural de�nition of \most" is a set of proba-bility at least 1� " for small ". It is at this point that the current expositionstresses the generality of the methods employed in [24]. They support surface21



measure on any manifold invariant under G { not just Lebesgue measure on� { as de�ning the meaning of \most". 4A position has now been reached where a reasonable de�nition can be formu-lated: Logarithmic convergence of RHS is a statement about the 
ow inducedby G, and is de�ned to mean that for every probability density % and ev-ery " > 0, there exists a set A of probability at least 1 � " such that if theinitial population p is in A then the number of generations k required forkGk(p)� !(p)k < � is O(� log �) , for any 0 < � < 1.Let = be the set of �xed points of G. Note that = contains the absorbingstates (if there are any) of the Markov chain representing random heuristicsearch. When RHS is hyperbolic, = is �nite (see [24]). Moreover, a standardobservation from dynamical systems theory [1] is that near a �xed point !the heuristic G is locally well approximated by the linear transformation dG!(regarding ! as the origin) which is a contraction on some linear space Land an expansion on L? (for some suitable choice of inner product and corre-sponding norm; eigenvectors having corresponding eigenvalues within the unitdisk are within the contracting linear space, eigenvectors having correspondingeigenvalues exterior to the unit disk are in the orthogonal space).A discrete form of Lyapunov's theorem is given by the following (see [28]).Theorem 7 If = is �nite and � is a continuous function satisfyingx 6= G(x) =) �(x) > �(G(x))then iterates of G converge.The function � occurring above is called a Lyapunov function. The conditionon � given in the proposition may be taken as x 6= G(x) =) �(x) < �(G(x))since it is actually the monotone behavior of � along orbits that matters.When � assigns distinct values to distinct �xed points, it is called a completeLyapunov function.Since normal heuristics are hyperbolic, = is �nite, and therefore theorem 7implies that normal heuristics are focused. Normal heuristics are also open;an arbitrarily small smooth perturbation of a normal heuristic remains normal.Moreover, similar normal heuristics have similar 
ows (see [25,28]).When it makes sense to solve the �xed point equation G(x) = x outside of�, as for instance in the case of the simple genetic algorithm where the �xedpoint equation can be considered over complex space (see [3,7]), then �xedpoints near but not within � may in
uence the behavior of RHS (see [23,25]).4 The statement of results in [24] was not as general as the proof allowed.22



The principle involved has been encountered before: By the continuity of the
ow, regions in � near a �xed point { whether or not the �xed point is within� { have a signal component which does not exert strong pressure for change.In such regions, the expected next generation is nearly the initial population(theorem 2). The lattice of points available to populations for occupationcontributes to stasis; because populations are constrained to 1rXrn, discrepancyfavors the current population as the next generation in regions where the 
owhas stalled (theorem 1). The natural preference of random heuristic searchfor states having low dispersion may have a stabilizing e�ect on the currentpopulation provided it is the less disperse among the alternatives (theorem 1).Moreover, the noise is smaller in such areas of low dispersion (theorem 3). 5As pointed out by Rowe [14], �xed points are not the only regions where thephenomenon described above may be manifest. He gives an example whereG is nearly the identity within the unstable manifold of an unstable �xedpoint. Since the 
ow has therefore stalled at lattice points near that unstablemanifold, it is the entire manifold { not just the �xed point { which impactsthe behavior of RHS. More generally, what matters is that the 
ow has stalled,and that may occur in areas not necessarily associated with �xed points (orwith unstable/stable manifolds, for that matter).4.3 Transient And Asymptotic BehaviorThe following theorem (see [10]) shows as r increases that, with probabilityconverging to 1, the transient behavior of a population trajectory convergesto the 
ow, and the initial transient occupies an increasing amount of time.Theorem 8 Given k > 0, " > 0 and 
 < 1, there exists N such that withprobability at least 
 and for all 0 � t � kr > N =) k� t(x)� Gt(x)k < "Theorem 8 indicates that as r increases, a trajectory from p follows a tran-sient trajectory towards a �xed point by approximately following the 
ow.In particular, if p is near the stable manifold of an unstable �xed point, theinitial transient is characterized by moving towards that unstable �xed point.5 These mechanisms, as well as those described in section 4.3.1 as inducing punc-tuated equilibria, have been the subject of public presentations at: The Sixth In-ternational Conference on Genetic Algorithms (1995), EvCA'96 sponsored by theRussian Academy of Sciences (1996), IMA Workshop on Evolutionary Algorithms(1996). 23



The next theorem (see [10,22]) provides a partial answer to the asymptoticquestion of where RHS is predominantly spending time.Theorem 9 If G is focused and ergodic, then for every " > 0 and every openset U containing =, there exists N such thatr > N =) �(U) > 1� "If G is absorbing, then ��(=) = 1 for all �.Assuming G is either absorbing or else focused and ergodic, theorem 9 indicatesthat as r increases, population trajectories predominately spend time near =asymptotically. The next theorem (see [24]) partially addresses how quicklyorbits approach a �xed point.Theorem 10 If G is regular, focused, and hyperbolic, then G is logarithmicallyconvergent.4.3.1 Punctuated equilibriaAssuming G is ergodic, regular, focused, and hyperbolic, the view of RHSbehavior that emerges is the following (the absorbing, regular, focused, andhyperbolic case is similarly characterized, except that once an absorbing statehas been encountered there can be no further change).As r increases, and then with probability converging to 1, the initial tran-sient of a population trajectory converges to following the 
ow determined byG, and that transient occupies an increasing time span (theorem 8). Conse-quently, populations will predominately appear near some �xed point ! of G(theorem 9), since, by logarithmic convergence, orbits approach �xed pointsrelatively quickly (theorem 10).This appears in contrast to the fact that ergodic RHS visits every state in-�nitely often, and is reconciled by punctuated equilibria (see [24,27]): Randomevents will eventually move the system to a population x0 contained withinor near the stable manifold (with respect to the underlying dynamical systemcorresponding to G) of a di�erent �xed point !0. Since random heuristic searchis Markovian, the anticipated behavior follows the 
ow to reach a new tem-porary stasis in the vicinity of !0. This cycle of a period of relative stabilityfollowed by a sudden change to a new dynamic equilibrium, commonly calledmetastability , is the picture provided by the previous results. The time spentin dynamic equilibrium near a �xed point will be referred to as an epoch.As has already been explained (see the discussion at the end of section 4.2),metastability is, among other things, a natural consequence of the ergodicity24



of the Markov Chain, and the interplay between the 
ow and the lattice avail-able to �nite populations for occupation. This mechanism inducing epochalbehavior was later rediscovered for a particular instance of RHS in [17,18].The relationship of logarithmic convergence (theorem 10) to metastability isclari�ed by reviewing the previous discussion in light of the existence of un-stable �xed points and �xed points not within � (see [3,23,25]). For focusedand hyperbolic RHS, � is a �nite disjoint union of basins of attraction of�xed points. Although the stable manifolds of unstable �xed points have mea-sure zero, they are interesting because small populations might not be withinthe basin of attraction of any stable �xed point. Moreover, since the stablemanifolds of unstable �xed points have probability zero with respect to everyprobability density over �, it might seem that the logarithmic convergence ofRHS does not speak to them.That is not true, however. Logarithmic convergence is a statement about theunderlying 
ow, and the 
ow being considered may be taken to be that withinthe stable manifold B of an unstable �xed point: the probability density % maybe taken over B, the set A may be taken within B, and the integration RA % d�may be performed with respect to surface measure on B.It further clari�es matters to realize that whereas the 
ow within the stablemanifold of an unstable �xed point or of a �xed point not within � is relativelyunrestricted, �nite populations are not. As pointed out in 2.2, only elements ofa �nite lattice of points in � are available to �nite populations for occupation.Moreover, the lattice has measure zero with respect to every probability den-sity over B, which again suggests that logarithmic convergence of RHS doesnot speak to those regions of � most relevant; i.e., the populations themselves.However, consider a small neighborhood U of a lattice point. By continuityof the 
ow, the transient behavior from the lattice point as given by the 
owis nearly the transient behavior from any set A � U of positive probabilitywith respect to surface measure on any stable manifold B of any �xed point.In particular, this continuity together with logarithmic convergence and theo-rem 8 implies that the 
ow supports an initial transient of RHS which movestowards the unstable �xed point of lowest dimension 6 having stable manifoldnear the lattice point (simply consider theorem 10 on the stable manifold B oflowest dimension which intersects U in some set A of positive probability withrespect to surface measure on B); there is a predisposition to visit �xed pointsin order of increasing dimension. In the context of genetic algorithms, thispredisposition has been expressed in terms of visiting �xed points in order ofincreasing �tness, though in a much less precise and far more heuristic fashon[27]. It was later rediscovered for a particular instance of RHS in [17,18].6 The dimension of a �xed point is the dimension of its stable manifold.25



The bias of random heuristic search to visit �xed points in order of increasingdimension does not necessarily imply that �xed points of higher dimension(with a larger number of attracting dimensions) are more likely to be visited.Expressed quantitatively in [10], as r decreases the lattice 1r Xrn of allowablevalues for population vectors becomes increasingly coarse, as fewer points be-come available for occupation. Search is conducted in lower dimensional facesof �, which constrains the system's ability to follow the signal. The restrictionof the heuristic to these low dimensional faces approximates the e�ective sig-nal, and it is possible that the �xed points of high dimension are not visited,being nowhere close to the low dimensional faces of � which can be occupied.Among accessible �xed points, those of higher dimension may be relativelymore stable if they have fewer independent unstable directions lying in thelow dimensional faces of � explored by RHS.The phenomenon of punctuated equilibria is not con�ned to the �nite pop-ulation case (though it may be more prevalent there due to the in
uencespeculiar to the �nite population case which support its emergence, like, forinstance, the ergodicity of the Markov chain and the lattice of points availableto populations for occupation). The 
ow itself { which is followed exactly inthe in�nite population case { is able to support metastability when there are anumber of �xed points of various dimensions. This follows from the continuityreferred to above, and is illustrated in �gure 6.

Figure 6. Flow near an unstable �xed point.The bold curves in �gure 6 represent a stable manifold 
owing into an unstable�xed point of dimension one. The thin line depicts the 
ow nearby the stablemanifold, and the dots represent an in�nite population trajectory. Since theunstable �xed point is a �xed point, the 
ow must slow in its vicinity (bycontinuity). Thus populations appear to be stable, for a while, as the orbitapproaches and leaves the �xed point ... only to approach, perhaps, anotherunstable �xed point, though of dimension two, whereupon another temporarystasis is experienced, and so on. This scenario of metastability wherein pop-ulation trajectories may visit �xed points in order of increasing dimension issupported by the continuity of the underlying 
ow.26



4.3.2 Meta-level ChainGiven that random heuristic search is adept at locating regions in the vicin-ity of �xed points of G (theorems 8, 9, 10; see also [23,25]), the transitionprobabilities from one such region to another are signi�cant; random heuristicsearch could be modeled by a Markov chain over the �xed points. If the tran-sition probabilities from temporary stasis in the vicinity of one �xed point totemporary stasis near another can be determined, then some aspects of thepunctuated equilibria could in principle be analyzed.The goal of constructing a meta-level Markov chain as described in the previ-ous paragraph has been partially achieved in the large population case, insofaras steady state behavior is concerned, subject to the condition that G is nor-mal and maps � to its interior (the interested reader is referred to [22,25] fora more complete account).Let � = x0; : : : ; xk be a sequence of points from �, referred to as a path oflength k from x0 to xk. De�ne the cost of � asj � j=�x0;x1 + � � � + �xk�1;xkwhere�u;v =X vj ln vjG(u)jLet the stable �xed points of G in � be f!0; : : : ; !wg and de�ne�!i;!j = inf f j � j : � is a path from !i to !jgLet C be a Markov chain de�ned over f1; : : : ; wg with i ! j transition prob-ability (for i 6= j) given byCi;j =expf�r �!i;!j + o(r)gAs r increases, and then up to uncertainly in the o(r) terms, the desiredMarkov chain is C in the sense that the steady state distribution of randomheuristic search converges to that of C.As noted in section 4.2, the Markov chain C cannot possibly be appropriatefor small r because unstable, complex, and stable �xed points outside � makeno contribution to C. Moreover, as pointed out by Rowe (see the discussion atthe end of section 4.2), entire manifolds may have relevance. More generally,what matters is that the 
ow has stalled, and that may occur in areas not27



necessarily associated with �xed points or with stable or unstable manifolds.Nevertheless, the form of the transition probabilities above is instructive. Thelikelihood of a transition from i to j is determined by the minimal cost pathfrom !i to !j where a path incurs cost to the extent that it is made up ofsteps which end at a place di�ering from where G maps their beginning.As the population size increases, the steady state distribution of RHS con-centrates probability near = (theorem 9), which for normal random heuristicsearch is a �nite set. Ergodic RHS will escape the vicinity of one �xed pointonly to temporarily spend time in the vicinity of another. However, a dispro-portionate amount of time may be spent near some particular �xed point.Under suitable conditions, random heuristic search will, with probability ap-proaching one, be asymptotically near that �xed point having \largest" basinof attraction; as population size grows, the probability of it spending a non-vanishing proportion of time anywhere else converges to zero.De�ne the �xed point graph to be the complete directed graph on verticesf0; : : : ; wg with edge i! j (for i 6= j) having weight �!i;!j . De�ne a tributaryto be a tree containing every vertex such that all edges point towards its root.Let Treek be the set of tributaries rooted at k, and for t 2 Treek let its costj t j be the sum of its edge weights.A steady state solution for an ergodic Markov chain with transition matrix Arefers to any solution x of the steady state equation xT = xTA. The steadystate distribution of the Markov chain is obtained simply by dividing x by1Tx. The Markov chain C has steady state solutionx= h Xt2Tree0e� r (jtj+o(1)) ; : : : ; Xt2Treewe� r (jtj+o(1)) iTheorem 11 If there exists a unique minimum cost tributary rooted at somevertex k0, then, as r increases, the steady state distribution of C { and that ofergodic, normal random heuristic search as well { converges to point mass atk0.In this case, !k0 is said to have the \largest" basin of attraction.
5 Hierarchical ModelsThis section considers the interpretation of random heuristic search as takingplace on equivalence classes. One might observe that there is nothing to do,because the search space 
 can simply be taken to be a collection of equiva-lence classes. While trivially true, the observation is nevertheless important.28



Random Heuristic Search is a general framework which allows any �nite set asthe search space. Preconceived notions of \microscopic" vs \macroscopic" or\genotype" vs \phenotype" are irrelevant to the scope, power, and applicationof the paradigm.At the risk of belaboring what is patently obvious, choosing 
 to be a spaceof \phenotypes" { which, by the way, is simply a set of equivalence classes {brings the full force of the theory of RHS to bear at what one might call the\macroscopic" level.If, however, an instance of random heuristic search is already de�ned, theinteresting question is whether that instance is compatible with a given equiv-alence relation. Put another way: given a microscopic de�nition of RHS, is amacroscopic model compatible with it?The issue of compatibility may perhaps best be illustrated by discussing anabstract example. Let � be an instance of RHS over search space 
. Let �be an equivalence relation on 
, and for p 2 
 let [p] denote the equivalenceclass containing p. 7 Suppose further that ~� is an instance of RHS having theequivalence classes as its search space.Given p 2 
, one may be interested in some aspect of the sequencep; �(p); �(�(p)); : : :Suppose the investigation is to be carried out by considering ~� instead, i.e.,by focusing attention solely on[p]; ~� ([p]); ~�(~�([p])); : : :If, for general p, a conclusion based on the behavior of [p]; ~� ([p]); ~�(~�([p])); : : :applies to p; �(p); �(�(p)); : : : then it must also apply { without any changewhatsoever { to q; �(q); �(�(q)); : : : whenever [q] = [p]. In other words, validconclusions cannot distinguish between members of an equivalence class. Thefollowing question therefore arises: does the aspect of interest depend uponthe initial population p in any way? If so, then it had better be the case that,with respect to the aspect of interest, members of an equivalence class areindistinguishable.Note that the situation described above depends on � (since p; �(p); �(�(p)); : : :is the object of interest) and upon the equivalence relation (since valid con-clusions cannot distinguish between equivalent members) but is independent7 Previous usage of [expr] to denote an indicator function will be maintained; thetype of the argument to [�] will disambiguate possible meanings.29



of ~� in the sense that, however it may be de�ned, only properties shared bymembers of an equivalence class can be deduced.Of course, ~� needs to be de�ned such that properties of [p]; ~� ([p]); ~�(~�([p])); : : :are relevant. Towards that end, one may desire a relationship between � and~� similar to
[�(p)] = ~�([p])

In that case, a hierarchical relationship exists between them in that the fol-lowing diagram commutes
p ������! �(p)???y ???y[p] ������! ~� ([p])

Thus the trajectory of an equivalence class under ~� is the equivalence class of atrajectory under � . Without a relationship of this kind, there is no guaranteethat the equivalence class of a future generation, namely [� k(p)], bears anyrelationship to that predicted by ~� , namely ~� k([p]).In other words, if the goal of introducing ~� is to provide a coarse-grainedmodel of � over a simpli�ed search space of reduced complexity in which manystates have been collapsed or aggregated together, then the commutativity {in some sense { of the diagram is required in order that the model re
ect thesearch behavior of � . Otherwise, without one re
ecting the other, there is noguarantee that the \model" ~� has any relevance to � .The general theory of random heuristic search, as well as the remarks above,may be brought to bear on the model ~� since it is an instance of RHS. In par-ticular, an equivalence relation �0 might be de�ned over its search space anda coarse-grained model � 0 of ~� might be introduced, leading to a commutativediagram of the sort 30



p ������! �(p)???y ???y[p] ������! ~�([p])???y ???y[[p]]0 ������! � 0([[p]]0)where [[p]]0 indicates the equivalence class of [p] with respect to �0. In thismanner a hierarchy of models of varying granularity, form �ne-grained modelswhich capture complete information, to coarse approximations, which onlyattempt to track particular statistics, may be constructed.The �rst part of this section concerns the issues discussed above. Its mainresults are conditions under which random heuristic search can be viewed astaking place on equivalence classes in a hierarchical manner. That is, it isconcerned with consistency and commutativity.The second part of this section brie
y considers the suitability of randomheuristic search over equivalence classes as a framework for approximate mod-els in which no analogue of the hierarchical relationship [�(p)] = ~�([p]) neces-sarily holds.To put this and the following sections in perspective, a few observations canbe made. First, the idea of moving to equivalence classes for the purpose ofsimplifying or analyzing behavior is hardly new. In mathematics, for example,the use of quotient spaces dates back nearly a century (see [2] for a generaldiscussion of quotient spaces corresponding to a function f and its equivalencerelation E(f)).As to the application of equivalence classes to genetic algorithms, Holland [6]was perhaps the �rst. His schemata result from the equivalence relation E(f)of suitably chosen f related to patterns occurring in chromosomes. Choosing fto be �tness, or related to �tness, results in examples E(f) of a di�erent char-acter. Rabinovich and Wigderson have analyzed GA dynamics in terms of thecorresponding quotient, i.e., in terms of �tness distributions [11]. Whereas adhoc statistics of �tness distributions (online performance, o�ine performance,etc.) have historically been used as indicators of GA performance, classicalstatistics (mean, variance, skewness, excess) have been used for the purposeof modeling evolutionary trajectories [16].Therefore, the point here is not to introduce the �eld of genetic algorithms tothe concept of equivalence classes { as noted above that has been done before,31



the most notable examples being schema, and �tness distributions. The pointis rather to give a coherent general account of quotients as they relate tothe abstract framework of random heuristic search, and to explicate relevantconsequences, interpretations, and interrelationships of a given instance ofrandom heuristic search to natural interpretations of it in a quotient. Forreasons of space, theorems in the following sections are simply stated. Theinterested reader is referred to [25,26] for details.5.1 EquivalenceBecause 
 can naturally be regarded as a subset of � through the correspon-dencei 2 
  ! ei 2 �an equivalence relation on 
 may be regarded as applying to the unit basisvectors of <n (i.e., the vertices of �) byei � ej () i � jThis relation on the vertices of � is extended to all x; y 2 � byx � y () 8 t :X [i � t]xi = X [i � t] yiThe practice of using � for an equivalence relation on both 
 and �, asabove, will be continued, since context makes the meaning clear. Moreover, �can without modi�cation be regarded as an equivalence relation on all of <n,since the de�nition above applies to any x; y 2 <n.Let �=� denote the set of equivalence classes of � in �, and let 
=� denotethe set of equivalence classes of � in 
. The notation [a] will be used to denotethe equivalence class of a; thus [a] 2 
=� when a 2 
, and [a] 2 �=� whena 2 �.Equivalence can be expressed in terms of the linear operator� : <j
j �! <j
=�jhaving matrix�[i];j = [i � j] 32



where the rows are indexed by elements of 
=� and the columns are indexedby 
. Note that �x = �y if and only if for all iX [i � j]xj =X [i � j] yjTherefore, elements x; y 2 � are equivalent precisely when �x = �y. Sinceequivalence corresponds to having the same image under �, the equivalenceclasses must be preimages under �,�=�= f� \ ��1x : x 2 ��gTheorem 12 Elements of �=� are convex, compact sets.Let T � � be a collection of equivalence class representatives. That is, let Tbe minimal with respect to containment such that� � [t2T [t]Note that T represents �=� through the correspondencet ! [t]Given any collection T of equivalence class representatives, the map� : T �! ��is an isomorphism. Hence �=�, which is represented by T , may be identi�edwith ��. Note further that(1T�)j = X[i]2
=�[i � j] = 1Hence the image of � under � consists of non-negative vectors of dimensionj 
=� j which sum to 1. It follows that ��, which has been identi�ed with�=�, represents the state space for random heuristic search over the searchspace 
=�. The set �� is called the quotient representation space, � is calledthe quotient map, and 
=� is called the quotient search space.Now that basic objects (the quotient map, the quotient search space, and thequotient representation space) have been introduced and the correspondencesT  ! �=�  ! �� 33



have been established, the question of how a map on � may act naturally onthe quotient space will be considered.Given a stochastic function h on �, de�ne stochastic hT : T �! T in accor-dance withPrfhT (t) = t0g = Prfh(t) � t0gIf h is deterministic, the de�nition reduces tohT (t)= t0 2 T such that h(t) 2 [t0]The map hT is equivalent to a map ~h on the quotient space by ~h(�t) = �hT (t)for t 2 T . As expected, ~h depends on the choice T of representatives. That is,there is no reason to expect any natural relationship exists between h and ~h.Whereas the hierarchical relationship[h(t)]= ~h([t])holds in the deterministic case { by de�nition { for t 2 T , there is no guaranteeit holds for elements not in T . When h is nondeterministic, the relationshipmay fail altogether. However, a strict interpretation of the hierarchical rela-tionship in the context of stochastic functions is neither necessary nor desir-able. Given functions h and g, to say \as stochastic functions, h = g" is toindicate thatPrfh(x) = yg=Prfg(x) = ygfor all x and y. It is true in the nondeterministic case that, as stochasticfunctions,[h(t)]= ~h([t])provided t 2 T . As in the deterministic case, there is no guarantee this rela-tionship holds for elements not in T .The stochastic function h is said to be compatible with � ifx � y =) 8t 2 T :Prfh(x) 2 [t]g = Prfh(y) 2 [t]gWhen h is deterministic, this reduces to x � y =) h(x) � h(y).34



Theorem 13 In order, for every t 2 T , that the distribution of ~h(�t) beindependent of the collection T of equivalence class representatives, it is nec-essary and su�cient that h is compatible with �. When h is deterministic, ~his completely determined by the following commutative diagram.x ������! h(x)�???y ???y��x ~h������! �h(x)Given h compatible with �, the function ~h is referred to as the quotient of h(with respect to �). 8 To simplify exposition, 
=� will be denoted by ~
, andthe image of x 2 � under the quotient map will be denoted by ~x.Theorem 13 has the consequence for random heuristic search that ~G is wellde�ned by the hierarchical relationship [G(p)] = ~G([p]) if and only if G iscompatible with �. The situation for � is essentially the same, though as theinstance � of random heuristic search is de�ned with respect to its heuristicG, so the instance ~� should be de�ned with respect to its heuristic ~G. It istherefore not at all clear that the de�nition of ~� by way of �T { even if it isindependent of T { is compatible with de�nition by way of its heuristic ~G. Thenext theorem resolves this issue.Theorem 14 An instance � of RHS is compatible with � if and only if itsheuristic G is. Moreover, in that caseGk(p) � q () ~Gk(~p) = ~qand
Prf~� (~p) = ~qg= r!Yj2~
 ~G(~p)r~qjj(r~qj)!for all p; q 2 � and k > 0. If p; q 2 1rXrn thenPrf� k(p) � qg=Prf~� k(~p) = ~q gfor all k > 0.8 When h is nondeterministic, ~h is only determined up to distribution.35



The basic framework is now in place for interpreting random heuristic searchas operating on equivalence classes. The consequence of compatibility is thatone does not need to know the detailed system state to obtain the dynamicsof the quotient. In particular, �xed points x of G correspond to �xed points�x of ~G. As a trajectory �(t); � 2(t); � 3(t); : : : relates to �xed points of G, so� �(t); � � 2(t); � � 3(t); : : : relates to �xed points of ~G. Moreover, the previoustheorem shifts the focus from � to G. Since compatibility of the heuristic suf-�ces, the following result may be useful when G is expressed as a compositionof functions on �.Stochastic functions h and g are called independent provided that, for all w,x, y, z,Prfg(w) = x ^ h(y) = zg=Prfg(w) = xgPrfh(y) = zgIn particular, deterministic functions are independent.Theorem 15 If stochastic functions g and h map � to �, are independent,and are compatible with �, then ~g and ~h are independent, g � h is compatiblewith �, and, as stochastic functions, (g � h)~= ~g � ~h.5.2 Approximate ModelsIn situations where G is compatible with a nontrivial equivalence relation, onemight be interested in ~� or in ~G as an alternative to � or G. Objects are simplerin the quotient for the reason that ~
 is smaller than 
.In situations where G is not compatible with the equivalence relation (and, bytheorem 14, neither is �), the dauntless may nevertheless choose to proceed atthe peril of sacri�cing any expectation that the equivalence class of a futuregeneration bears any relationship { besides serendipitous { to that predictedby ~� .Depending upon one's goals, that might be appropriate. Certainly ~G is per-fectly well de�ned with respect to any choice T of equivalence class repre-sentatives, whether or not it happens to be compatible with the underlyingequivalence relation. And, given any de�nition of ~G on the quotient space, onemay consider the instance of random heuristic search over ~
 having ~G as itsheuristic.Whereas the freedom allowed by the approach described in the previous para-graph (i.e., de�ne ~G based on a choice for T , then take ~� corresponding to ~G)provides 
exibility and hope of obtaining a reasonable �t by judicious choice,the hierarchical relationship may vanish { even in expectation! One could36



wind up in the situation of having a simple model about which nothing hasbeen proved except internally ; the resulting model is an instance of RHS, sothe general theory of random heuristic search may be brought to bear on themodel ...but the degree to which the model represents � is another matteraltogether!When proof is an irrelevant concept, as when empirically validating a modelby way of anecdotal examples, the outcome described above is of no conse-quence. Moreover, estimating ~G { rather than de�ning it with respect to T{ may provide further simpli�cation. If con�dence in the model is desired,one may resort to empirical means, assuming the model's complexity is not acomputational barrier.As far as choosing T is concerned, the elements of �=� are convex compact sets(theorem 12), and so the average of [t] is a natural candidate to represent [t].One might alternatively pick a maximal element of [t] with respect to entropy,for instance, as a representative (models employing some sort of maximumentropy assumption are not uncommon; see, for example, [11,15,17,18]). Thesetwo possibilities coincide, however.An element x 2 <n is said to be dominated by �, denoted x � �, providedi � j =) xi = xjTheorem 16 If �x = �y and x � �, then the entropy of x is greater thanor equal to that of y.Theorem 17 Let T be the set of equivalence class representatives given byaveraging,
T = f 1�([x]) Z[x] y d�(y) : x 2 �gThen the representative t 2 T of [x] has i th component
ti= (�x)[i]j [i] jIn particular, t � �.Combining theorems 16 and 17, it may be concluded that equivalence classrepresentatives given by averaging have maximum entropy. This choice for Tis convenient because it allows a simple characterization of ~G.37



Theorem 18 If equivalence class representatives are chosen by maximum en-tropy, then~G=� � G �D�Twhere D is the square diagonal matrix having ii th entry j [i] j�1.Another consideration in choosing T is invariance. Suppose there exists a setof representatives such that G : T �! T . In the case where T is chosen bymaximum entropy, this is equivalent to the condition thatt � � =) G(t) � �Since the hierarchical relationship[G(t)]= ~G([t])holds for t 2 T , a consequence of invariance is the following.Theorem 19 If T is invariant under G, then[Gk(t)] = ~Gk([t])for all k, provided t 2 T . Moreover, the local dynamics of � as viewed in thequotient space { i.e., � �(t); � � 2(t); � � 3(t); : : : { is attracted to the local dy-namics of ~G as population size increases, for population trajectories beginningin T .As far as choosing � is concerned (assuming compatibility and invarianceare not considerations), its de�nition depends on the main points of interest.For example, it may be natural, in the context of function optimization, toequivalence class based on �tness.
6 ExampleThe purpose of this section is not the analysis of a previously unexaminedsystem. The point is rather to illustrate the theory presented in this paperby way of a concrete application. The example of this section { royal roadfunctions { has been considered before [9,17].38



The results presented in previous sections point towards �xed points as im-portant objects. However, �nding them is not necessarily trivial. In the caseof the simple genetic algorithm (see section 3.3), the heuristic has the formG=M�Fand whereas the �xed points ofM and F are known separately, those for thecomposition are not (see [25,27,29]).One might consider \approximating" G by assuming zero crossover. In thatcase, the heuristic takes the formG(x)= Ax1TAxfor a matrix A which, given nonzero mutation, is positive. This is a well-known result which reduces several key concepts to more or less standardconcepts from linear algebra. In particular, the �xed points of G are eigen-vectors of A; apart from magnitude, G is simply matrix multiplication. More-over, G is focused if A has a simple maximal eigenvalue (which is the caseby Perron-Frobenius theory because A is positive [5]). In fact, the sequenceG(p); G2(p); G3(p); : : : is essentially the power method for calculating the cor-responding positive eigenvector [30].Giving no thought to compatibility issues, one may seek to further reducecomplexity by passing to a simpli�ed model based on �tness (see, for example,[17,18]). That is, consider the state space to be the possible �tness distributionswhich populations could take on. Given �tness function f , let its range befy0; : : : ; ykg. Then a population p 2 � has �tness distribution ~p de�ned by thecomponent equations~pi=Xj2
 [f(j) = yi] pjThe situation just described is simply a case of quotients as described insection 5.1. Let the equivalence relation � be de�ned on 
 byx � y () f(x) = f(y)Let S = fs0; : : : ; skg be a set of equivalence class representatives such thatf(si) = yi. Renaming the [si] th row of � with i,(�p)i=Xj [si � j] pj
39



=Xj [yi = f(j)] pjThus �p = ~p, which, since the quotient representation space and the spaceof �tness distributions coincide, justi�es the notation ~p to denote the �tnessdistribution of p.The following theorems (theorems 20 and 21) present preliminary results ofa general nature which relate to the issue of compatibility in the context ofpopulation-based genetic algorithms (see [25,26]).Theorem 20 If the �tness f is dominated by �, then the proportional selec-tion, ranking selection, and tournament selection schemes are compatible with�.When equivalence is de�ned with respect to �tness, as it is for the example ofthis section (i.e., x � y () f(x) = f(y)), theorem 20 implies the equivalencerelation is compatible with several commonly used selection schemes. Thesituation for mutation is not as simple.An equivalence relation� is called uniform with respect to translation providedthat for all i; j; h; k 2 
,i � j =) j (i� [h]) \ [k] j = j (j � [h]) \ [k] jThat is, the cardinality of the intersection of the equivalence class of k withthe translate by j of the equivalence class of h depends on the class of j ratherthan the particular value of j.The next theorem is a su�cient, though not necessary, condition for the mu-tation scheme to be compatible with �. The mutation distribution it refers tois the vector � de�ned by�i=Prfj mutates to j � igTheorem 21 If the mutation distribution � is dominated by �, and if � isuniform with respect to translation, then the mutation scheme is compatiblewith �.In order to investigate compatibility further, details concerning G are required.Let the search space be Z2̀ (as in section 3.3, but with c = 2) and considerthe class of degenerate Royal Road functions, which have the following form(see [9] for the general case). Let 1 = a0 � � � � � ak where ai 
 aj = ai[i = j].The �tness of x is given by 40



f(x)=X [ai = x
 ai] giwhere g is some positive real vector. A particularly simple parametrized setof examples is given by ` = NK, g = 1, and ai = 2iK(2K � 1). The positiveinteger parameters N and K correspond to a decomposition of the optimalstring, 1, into N blocks of K contiguous 1s. An arbitrary string x has �tnessequal to the number of blocks in common with 1. The range of f is thereforef0; : : : ; Ng, hence yi may be taken to be i and si may be taken to be 2iK � 1(the paragraphs preceding theorem 20 introduce yi and si).Letting G be the heuristic for the simple genetic algorithm with proportionalselection, zero crossover, positive mutation, and �tness function f (as de-scribed above, with parameters N and K) re�nes the instance of randomheuristic search represented by the example of this section (this same exampleis treated in [17,18]). For the case K = 1, the analysis has an entirely di�erentcharacter, and while not di�cult, will not be pursued here. Assume thereforethat K > 1.The equivalence relation � is not uniform with respect to translation, as iseasily seen by the de�nition via the choice h = k = 1, i = 0, j = Pu 4u. Whilenot proof, this raises the suspicion that mutation is not compatible with �. Itis easily seen that the suspicion is actually the case; a population consistingentirely of i is equivalent to one consisting entirely of j, but the probability ofthe �rst producing { via mutation { a subsequent generation containing 1 isexponentially less than the probability of the second producing a subsequentgeneration containing 1 (in the �rst case all bits of a string must mutate, inthe second case only half).The example of the previous paragraph does more than show mutation isincompatible with � (that is, all strings with a given �tness cannot be treatedas equivalent with respect to the dynamics of mutation), it shows that � {which encompasses selection as well as mutation { is also incompatible, andhence (by theorem 14) so is G.A situation has now been arrived at where an equivalence relation � is de�nedover a search space �, its corresponding quotient map � and quotient space~� = �� are thereby de�ned, an instance � of random heuristic search hasbeen identi�ed with its corresponding heuristic G (parametrized by N andK), ...but there is no natural well de�ned notion for either ~G or ~� , becauseboth G and � are incompatible with �.Following Rabinovich and Wigderson [11], let T be the set of equivalenceclass representatives corresponding to maximum entropy. By theorem 17, therepresentative t 2 T of [x] has si th component41



tsi =(�x)i 0B@Ni 1CA�1 (2K � 1)i�Nand ti = tj whenever i � j. This choice of T corresponds to an assumptionthat the bit values in unaligned blocks are uniformly represented (random).Since ~G is determined by ~G(�t) = �G(t) for t 2 T , the hierarchical relation-ship [G(t)]= ~G([t])holds { by de�nition { for t 2 T , ...but it is hopeless (since G is incompatiblewith �) to expect it will hold for elements which are not equivalence classrepresentatives (i.e., elements for which the bit values in unaligned blocks arenot random). One would expect, even if beginning at an initial populationt 2 T , that the hierarchical relationship would vanish after one application of� .If, however, randomness (i.e., maximum entropy) were preserved in expecta-tion, then T would be invariant under G. Appealing to theorem 19, the dynam-ics of � as viewed through �tness distributions { i.e., � �(t); � � 2(t); � � 3(t); : : :{ would be attracted to the dynamics of ~G as population size increases, forpopulation trajectories beginning in T . 9That is not the case, however. Given �xed positive mutation, the dynamicsfor � is not attracted to the dynamics for ~G in any meaningful sense, becausewhereas selection preserves randomness of unaligned blocks, mutation doesnot. For example, consider the population t 2 T containing only copies of 1.The next generation is expected to contain strings of �tness zero, but all suchstrings do not occur with equal probability; 0 is exponentially less likely tooccur than P 4i. Hence maximum entropy is not preserved.From the perspective of modeling, it is of little concern that exact theoreticalcoupling between � and ~� (or between G and ~G) does not exist. It is still ofinterest to pursue ~G as an approximate model and to investigate the sense inwhich it approximates.The situation for selection is altogether di�erent from that for mutation. Be-cause selection satis�es t � � =) F(t) � �, it follows that G : T �! Twhen mutation is zero. By theorem 19, the dynamics of � as viewed through�tness distributions is therefore attracted to the dynamics of ~G as population9 While not worked through in generality, the invariance principle (in this case, thepreservation of entropy) was implicit in the analysis of Rabinovich and Wigderson.42



size increases, provided mutation is zero and population trajectories begin atmembers of T .However, more is true. Since selection is compatible with � (theorem 20), ~F iswell de�ned independent of T (theorem 13), and the hierarchical relationships[Gk(x)] = ~Gk([x])Prf� k(p) � qg=Prf~� k(~p) = ~q ghold in the zero mutation case for all k and every initial population (theo-rem 14). By theorem 18 (and using the fact that 1T� = 1T ),
~G(~t)= B~t1TB~twhere B = �AD�T . Given zero mutation this simpli�es to
~F(~x)= diag(h0; : : : ; Ni)~xh0; : : : ; NiT ~xSince G is a continuous function of mutation, so to is ~G(�t) = �G(t). Hence,for small mutation, the local dynamics of ~G is nearly that of ~F (continuity),which is the image under � of the local dynamics of F (theorem 14), whichis nearly the image under � of the local dynamics of G (continuity), whichcoincides with that of � as viewed through �tness distributions as populationsize increases (theorem 4). Therefore, there is theoretical reason to hope that~G approximately models trajectories through �tness distribution space:Theorem 22� As the mutation rate decreases, the local dynamics of � as viewed through�tness distributions converges to that of ~� .� As the population size increases and the mutation rate decreases, the localdynamics of � as viewed through �tness distributions converges to that of ~G.The above theorem speaks to local (i.e., time bounded) dynamics. What aboutglobal dynamics? What can be said concerning �xed points and their stableand unstable manifolds as the mutation rate increases from zero?The matrix diag(h0; : : : ; Ni) has distinct eigenvectors, which correspond to the�xed points of F ; these are the vertices of ~�. As has been explained in [28],~F is a normal heuristic. When it is regarded as acting on the sphere, call itF 0 in that context, 43



F 0(x)= diag(h0; : : : ; Ni)xkdiag(h0; : : : ; Ni)xkits global dynamics are continuous; for small smooth perturbations, normalityis preserved, the number and dimensions of �xed points are preserved, andtheir locations and stable and unstable manifolds vary continuously. However,the global dynamics on ~� is, technically speaking, a di�erent story. The addi-tion of positive mutation, however small, changes the number of �xed pointsfrom N to 1; this is a simple consequence of Perron-Frobenius theory: thereis a unique positive eigenvector of B in ~� (since the matrix B is positive) andall of ~� is contained within its basin of attraction [5].What is happening here is that the global dynamics on the sphere is varyingcontinuously, but �xed points { except for the one represented by the eigen-vector corresponding to the maximal eigenvalue of B { are moving from thevertices of ~� into the exterior of ~� taking their stable manifolds with them.Although all but one �xed point leaves ~�, they still exert an in
uence ontrajectories within ~� by way of the continuity of the 
ow.Since, for small mutation, ~G is a normal and regular heuristic, the generaltheory of random heuristic search provides a uni�ed understanding of themechanisms that control the dynamics and determine the quantitative andqualitative nature of ~� .Qualitatively, one would expect to observe punctuated equilibria, even in re-gions where �tness is not locally optimal. 10 Moreover, periods of stasis in pop-ulation �tness distributions are identi�ed near the 
ow's �xed points whetheror not they are contained within ~� (see the discussion at the end of section 4.2).The following observations can be made about such regions:� They are, for small mutation, near vertices of ~�, and are areas of low dis-persion.� They are regions where the force, ~G(~p)� ~p, is weak.� They are regions where the noise, E(k~�(~p)� ~G(~p)k2), is weak.As discussed in section 4.3.1, one expects to observe alternation between pe-riods of stasis and a sudden change to a new dynamic equilibrium. This punc-tuated equilibria results from mechanisms fairly well understood in the theoryof random heuristic search: the interplay between the 
ow and the latticeavailable to �nite populations for occupation, the continuity of the underly-ing 
ow which supports population trajectories visiting �xed points in orderof increasing dimension, the depressed dispersion, signal, and noise, and theergodicity and logarithmic convergence of the heuristic.10 A speci�c example of this phenomenon, though in a di�erent context, is given in[19]. 44



One expects spatial 
uctuations during an epoch to be approximately Gaus-sian (theorem 6) and the variance to scale inversely with the population size(theorems 3, 6). The spatial location of an epoch is not expected to change sig-ni�cantly as the population size varies, since it is determined by the dynamicsof ~G (by theorem 1, the in
uence of population size is external to ~G). However,population size is expected to impact its duration as well as the probability,both local in time and averaged over in�nite time, of it being encountered(theorems 3, 8, 9, 11). From an asymptotic perspective, the meta-level chainindicates increasing dominance, as population size increases, of the epoch rep-resented by the eigenvector corresponding to the maximal eigenvalue of B(theorem 11). From a transient perspective, the systems ability to follow the
ow increases with population size (theorems 5, 8). Whereas many of theseconclusions are reached in [17,18] for the speci�c example considered in thissection, the conclusions here are seen to be consequences of the general theoryof random heuristic search.
7 ConclusionParts of the theory of random heuristic search were illustrated in the pre-vious section, though only in a qualitative and super�cial way. The detailedinformation provided by theorem 1

~Q~p;~q = r! Yj2 ~
 ~G(~p)r~qjj(r~qj)!was not even touched (here r = N + 1). An analysis of ~� based on
�T (I � ~Q)�11along the lines suggested in section 2.2 could be performed. Whereas the triv-iality of the example { it is essentially linear { would enable a fairly accuratequantitative analysis in terms of d ~Gx at eigenvectors x, the computational ex-pense of computing eigenvectors compares with matrix inversion (for a treat-ment from that perspective, see [18]). With respect to theoretical analysis ofthe example, the advantage of ~� over � is unclear.The reader interested in more details, further results, and analysis as appliedto genetic algorithms is referred to [25].45
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