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Abstract

There is a developing theory of growing power which, at its current stage of devel-
opment (indeed, for a number of years now), speaks to qualitative and quantitative
aspects of search strategies. Although it has been specialized and applied to genetic
algorithms, it’s implications and applicability are far more general. This paper deals
with the broad outlines of the theory, introducing basic principles and results rather
than analyzing or specializing to particular algorithms. A few specific examples are
included for illustrative purposes, but the theory’s basic structure, as opposed to
applications, remains the focus.
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1 Introduction

Vose [20] introduced a rigorous dynamical system model for the binary repre-
sentation genetic algorithm with proportional selection, mutation determined
by a rate, and one-point crossover, using the simplifying assumption of an in-
finite population.! While some of the extensions, most notably [8], are more
recent, the theory’s structure and basic results have been in place for a number
of years. In its abstract form, the model is sufficiently general to encompass
and unify a variety of search methods, from simulated annealing to genetic
programming.

The abstract model, referred to as Random Heuristic Search (RHS), is really
more of a general paradigm for heuristic search than a formalization of any
particular search method. From an analytical perspective, the power of random
heuristic search lies partially in its ability to describe a wide range of search
methods at various levels of detail, from fine-grained models which capture

! This model has been further extended in [7,8,10,21,22,25,27-29,32].
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complete information, to coarse approximations, which only attempt to track
particular statistics. The resulting description is amenable to analysis because
description within the framework of random heuristic search corresponds to
mathematical formalization.

Beyond description and formalization, the framework of random heuristic
search makes available a significant amount of theoretical scaffolding in the
form of key concepts and theorems which provide a unified theory. There-
fore, once identified as an instance of random heuristic search, a particular
search strategy inherits an environment of concepts and results which speaks
to the mechanisms that control its dynamics and determine its quantitative
and qualitative nature. Moreover, the framework of random heuristic search
is economical in that a single operator, referred to as the heuristic, encapsu-
lates behavior; its properties completely determine the system (at the level of
granularity it was defined), and the dynamical features of RHS are related to
its differential and to its fixed points.

Originally designed to describe stochastic search methods (of which deter-
ministic methods are a special case) over finite, discrete domains, RHS has
been generalized to the infinite and continuous case. This paper does not
concern such generalizations however, dealing principally with finite, time-
homogeneous, Markovian search strategies.

The organization of this paper is as follows. Section two introduces random
heuristic search as a general search paradigm. Section three briefly describes
how a variety of search strategies are naturally instances of random heuris-
tic search. Section four presents basic concepts and theorems which identify
quantitative and qualitative properties shared by instances of RHS. Section
five introduces hierarchical modeling and explains consistency concepts which
can be used to tie different levels in the modeling hierarchy together. Section
six illustrates some of the previous material by way of an example.

Before proceeding, a few remarks will be made to define the scope and intent
of this article. Whereas it is ludicrous to imply that no one else has worked
on stochastic search, this article is not a survey. The main objective is, within
the limited space available, to give the broad outlines of the theory of random
heuristic search and to introduce the basic principles and results of its abstract
framework. While some of this material has appeared elsewhere, this paper
brings those scattered results together into a unified theory.

2 The particular example considered has been previously analyzed by van Nimwe-
gen et. al. [17,18].



2 Random Heuristic Search

This section introduces random heuristic search as an abstract search method.
Whereas the emphasis here is on generality, RHS has been instantiated to
particular search methods with remarkable success. The interested reader is
referred to [25] for a concrete example of this abstract framework as specialized
to the Simple Genetic Algorithm.

Before proceeding with the development of RHS, some preliminary remarks
regarding notation will be made. Following that, random heuristic search will
be introduced gradually through a series of subsections, each supplying addi-
tional refinement and detail.

2.1 Notation

Some standard mathematical notation as well as some nonstandard but useful
conventions are introduced here.

The set of integers is denoted by Z, and the set of integers modulo ¢ is denoted
by Z.. The symbol R denotes the set of real numbers, and for any collection C
of real numbers, vectors, or functions, the sub collection of positive members
is denoted by C'*. A collection C' multiplied by a number «, as in aC, denotes
the collection whose members are those of C' multiplied by «.

Angle brackets (---) denote a tuple which is to be regarded as a column
vector. The column vector of all 1s is denoted by 1. The n X n identity matrix
is I, and the jth column of the identity matrix is the vector e;. For vector
z, diag(z) denotes the square diagonal matrix with 7i th entry z;. Indexing of
vectors and matrices begins with 0.

Transpose is indicated with superscript 7. The standard vector norm is ||z|| =
v/ z'z. Modulus (or absolute value) is denoted by |-|. When S is a set, | S |
denotes the cardinality of S. More generally, | - | will be used as a function
which returns the “cost” of a path or tributary (paths, tributaries, and their
associated costs are defined in section 4.3).

Composition of functions f and g is fo g(x) = f(g(x)). The ith iterate f
of f is defined by

Pay=e
@)= f o fi(a)

The notation O(f) denotes a function (with similar domain and codomain as
f), call it g, such that pointwise | g | < ¢ | f] for some constant c¢. The notation



o(f) represents a function (with similar domain and codomain as f), call it A,
such that pointwise || /| f| — 0. In the case where f is a vector or matrix,
| - | is to be interpreted as a norm.

Curly brackets {---} are used as grouping symbols and to specify both sets
and multisets. Square brackets [--:] are, besides their standard use as speci-
fying a closed interval of real numbers, used to denote an indicator function:
if expr is an expression which may be true or false, then

1 if expr is true
lexpr] =
0 otherwise

The supremum is the least upper bound, and is denoted by sup. The infimum
is the greatest lower bound, and is denoted by inf.

The equivalence of objects x and y is indicated by z = y.
2.2 Framework

This material is mostly summarized from the 1994 article by Vose and Wright
[28]. The interested reader is referred to [25] for more complete details.

Random heuristic search can be thought of as an initial collection of elements
Py chosen from some search space €2 of cardinality n, together with some
transition rule T which from P; will produce another collection P, ;. In general,
7 will be iterated to produce a sequence of collections

Py P P ...

The beginning collection P, is referred to as the initial population, the first
population (or generation) is Py, the second generation is P, and so on. Pop-
ulations are multisets.

Not all transition rules are allowed. Obtaining a good representation for pop-
ulations is a first step towards characterizing admissible 7. Define the simplez
to be the set

A={(z0,..c,zpn1) : 1Tz =1, 7; >0}

An element p of A corresponds to a population according to the following rule
for defining its components



p; = the proportion in the population of the jth element of

For example, suppose € is {0,1,2,3,4,5}. Then n = 6. The population
{1,0,3,1,1,3,2,2,4,0} is represented by the vector p = (.2,.3,.2,.2,.1,.0)
given Table 1.

coordinate corresponding element of 2 percentage of Py
Do 0 2/10
1 1 3/10
Do 2 2/10
D3 3 2/10
P4 4 1/10
Ds ) 0/10

Table 1. Illustration of population vector.

The cardinality of each generation Fy, P, ... is a parameter r called the pop-
ulation size. Hence the proportional representation given by p unambiguously
determines a population once r is known. The vector p is referred to as a pop-
ulation vector. The distinction between population and population vector will
often be blurred. In particular, 7 may be thought of as mapping the current
population vector to the next.

To get a feel for the geometry of the representation space, the simplex is dis-
played in figure 1 for n = 2, 3, and 4. The figures depict A (indicated with
the thicker lines) as a line segment, a triangle, and a solid tetrahedron. The
thinner arrows show the coordinate axes of the ambient space (the projection
of the coordinate axes are being viewed in the second figure, which is three di-
mensional, and in the last figure where the ambient space is four dimensional).

A

Figure 1. Representation space (n = 2,3,4).

In general, A is a tetrahedron of dimension n—1 contained in an ambient space
of dimension n. Note that each vertex of A corresponds to a unit basis vector of
the ambient space; A is their convex hull. For example, the vertices of the solid
tetrahedron (right most figure) are at the basis vectors (1,0,0,0), (0,1,0,0),



(0,0,1,0), and (0,0,0,1). Assuming that Q = {0,1,2,3}, they correspond
(respectively) to the following populations: r copies of 0, r copies of 1, r copies
of 2, and r copies of 3. The center diagram will later be used as a schematic
for general A, representing it for arbitrary n.

It should be realized that not every point of A corresponds to a finite pop-
ulation. In fact, only those rational points with common denominator r cor-
respond to populations of size r. They are the intersection of a rectangular
lattice of spacing 1/r with A,

1 1
~Xr=={{zg,..., Ty 1) ;€ Z, 3; >0, 1Tz =1}
r T

For example, the points corresponding to %Xff (n =4 and r = 4) are the dots
in figure 2.

[ =

Figure 2. Lattice of populations for n = 4 and r = 4.

As r — 00, these rational points become dense in A. Since a rational point may
represent arbitrarily large populations, a point p of A carries little information
concerning population size. A natural view is therefore that A corresponds to
populations of indeterminate size. This is but one of several useful interpreta-
tions. Another is that A corresponds to sampling distributions over €2: since the
components of p are nonnegative and sum to 1, p may be viewed as indicating
that ¢ € Q is sampled with probability p;.

In summary, random heuristic search appears to be a discrete dynamical sys-
tem on A through the identification of populations with population vectors.
That is, there is some transition rule 7 : A — A and what is of interest is the
sequence of iterates beginning from some initial population vector p

p, 7(p), T(p),

This view is incomplete however, because the transitions are in general nonde-
terministic and not all transition rules are allowed. Next, the stochastic nature
of 7 will be explained and admissible 7 will be characterized.



2.8 Nondeterminism

Because T is stochastic, the next population vector 7(p) cannot necessarily be
predicted with certainty given the current population vector p. It is most con-
veniently thought of as resulting from r independent, identically distributed
random choices. Let G : A — A be a heuristic function (heuristic for short)
which given the current population p produces a vector whose ¢ th component
is the probability that the i th element of Q2 is chosen (with replacement). That
is, G(p) is that probability vector which specifies the sampling distribution by
which the aggregate of r choices forms the next generation. A transition rule
7 is admissible if it corresponds to a heuristic function G in this way. Figure
3 depicts the relationship between p, A, Q, G, and 7 through a sequence of
generations (the illustration does not correspond literally to any particular
case, it depicts how transitions between generations take place in general):

Figure 3. Relationship between p, A, €2, G, and 7.

The triangles along the top row of figure 3 represent A, one for each of four
generations. Each A contains a dot representing a population. These same
populations are also represented in the second row with dots; 7 maps from
one to the next. The transition arrow for 7 is dashed to indicate that it is
an induced map, computed by following the solid arrows. The third row of
dots are images of populations under G. Below each is a curve, suggesting the
sampling distribution over 2 which it represents. The line segments in the
bottom row represent (2.

The transition from one generation to the next proceeds a follows. First G is
applied to produce a vector which represents a sampling distribution (curve)
over ). Next, r independent samples, with replacement, are made from )
according to this distribution (represented in the diagram by “sample”) to
produce the next generation.

For example, let 2 = {0, 1,2, 3} and suppose the heuristic is



G(p) = (0,1, 2p2,3ps)/ > ip;

Let the initial population be p = (.25,.25,.25,.25). Then G(p) is the sampling
distribution (0,1/6,1/3,1/2), the probability of sampling 0 is 0, of sampling
1 is 1/6, of sampling 2 is 1/3, and of sampling 3 is 1/2. With population size
r = 100, the transition rule corresponds to making 100 independent samples,
with replacement, according to these probabilities.

A plausible next generation is therefore 7(p) = (0,.17,.33,.50) . Note that the
sampling distribution G(p) used in forming the next generation 7(p) depends
on the current population p. Going one generation further, the new current
population is 7(p) and the sampling distribution for producing the next gener-
ation is given by G(7(p)) = (0,.07296,.28326, .64377). It is therefore plausible
that the second generation might be 7%(p) = (0,.07,.28,.65).

Note the conceptually dual interpretation of A. It serves as both the space of
populations and as the space of probability distributions over (2.

2.4  Dependence On Time

The previous description of random heuristic search is time-homogeneous, that
is, neither the population size nor the heuristic depends on time (i.e., on the
generation number t).

If, more generally, the population size is a function r(t) of time, or the heuristic
is a function G(¢,-) of time, then RHS is said to be inhomogeneous. In that
case, the heuristic is used to obtain the sampling distribution with which
generation ¢t + 1 is formed by way of r(¢) samples.

In the homogeneous case, random heuristic search is a homogeneous Markov
chain over the state space %Xﬁ since the next state (i.e., population) depends
only on the current state, and the dependence is independent of time. In the
inhomogeneous case, RHS is still a Markov chain over some subset of A, but
it is an inhomogeneous chain because the transition from one state to the
next, while still a function of the current population, is a function which also
depends on t.

3 Examples

This section briefly mentions a few examples to indicate the descriptive power
of random heuristic search. The goal is to show the flexibility of RHS as a
means to formally describe various search methods.



For some of the methods considered, the heuristic G will be given explicitly.
For others, it will only be indicated how, in principle, G could be determined.
While not exhaustive, or even representative, the examples touched upon be-
low nevertheless demonstrate that a wide variety of search methods are in-
stances of RHS.

3.1  Simulated Annealing

Simulated annealing over a finite domain is an example of inhomogeneous
random heuristic search. This is easily seen by identifying the corresponding
heuristic.

The population size for simulated annealing is typically » = 1, and, given pop-
ulation p (i.e., position p in the search space), the next generation is obtained
by the following stochastic procedure:

e Sample ¢ from a neighborhood N(p) of p.

o If f(q) < f(p), where f is the objective function, then the next generation
is q.

e Otherwise, the next generation is ¢ with probability

() =1(a)/T:

where T; is the temperature at generation ¢.

Since a population contains only a single element of the search space (when
r = 1), the state space — which is the set of vertices of A —is naturally identified
with 2. The corresponding heuristic satisfies

=R ([f(0) < f()] + [f() > f(5)] eV —FO/Try
for distinct elements 7 and j of 2. The case i = j is determined by

g(tvj)j =1- Z g(tvj)z
i£]

3.2 Stochastic Beam Search

Consider a stochastic version of beam search applied to the exploration of a
tree. A list p of size p contains nodes and represents the current state. An



arbitrary function f(s,p) — which may, for instance, estimate the likelihood
of node s being on a path to the goal, and could, for instance, involve look
ahead — determines how “good” node s is with respect to list p. The list p is
updated to the next state ¢ according to:

e Obtain a sample S of size A from p (sampling of s € p may depend on
1(5.5).

e Let p' be the collection of children obtained from expanding elements of S.

e Let ¢ be the best u elements from p'.

This is summarized by ¢ = £(p) where £ represents the stochastic procedure
above.

Since the best u elements from p’ are the best u children of S, the list ¢
may be represented by S. Assuming that p is similarly represented, the state
space for stochastic beam search can be taken to be populations of size .
Let the representative of ¢ — i.e., S — be denoted by ¢, and let p denote the
representative of p.

While perhaps mysterious, 7 determined by Pr{7(p) = ¢} = Pr{&(p) = ¢} is

an instance of RHS representing stochastic beam search. The heuristic G may
be expressed in terms of 7 as follows. Since

Pr{ie r(p)}=1-"Pr{i & 7(p)}
=1- (1 - G(p)i)r

it follows that

G(t,p);=1— (1 —Pr{i € 7(p) | generation t})*"

A homogeneous instance of random heuristic search results if p, A, f, and the
distribution governing the selection of S do not depend on time.

This example, while unsatisfying in the sense that the heuristic was deter-
mined only in principle, is important as a prototype for how a search strategy

may be shown to be an instance of RHS without explicitly determining the
corresponding §G.

3.8  Fvolutionary Algorithms

The first example below is presented in considerably more detail, though,
for reasons of manageability, it is only results rather than underlying reasons

10



that are given (the interested reader is referred to [8,25] for a more general
and complete account).

Consider the Simple Genetic Algorithm which moves from one generation to
the next as follows:

1

(1) Obtain two parents by proportional selection.

(2) Mutate (mutation implies change) the parents with rate p.

(3) Produce the (mutated) parents’ child by one-point crossover with rate Xx.
(4) Put one child into the next generation.

(5) If the next generation contains less than » members, go to step 1.

Here the search space is the set of all length ¢ strings over the alphabet
{0,...,¢c — 1}. Regarding elements of ) as c-ary numbers, they are identi-
fied with integers in the interval [0,n — 1], where n = c*. The search space
as also naturally identified with the product group

Z.X...X 2,

The group operation @ (i.e., addition modulo ¢) acts on integers in [0, n—1] via
these identifications, and ® is used to represent componentwise multiplication
modulo c.

Regarding the objective function f as a vector via f; = f(i), let F' = diag(f).
Define the operator F : A — A by

Fx

Flz)= 17Fx

Define the matrix M to have 4, j th component

( ; ) {,’7# <1_X+£_]_Z,’,] Ag ik +77#] 1_X+mz,’,’Az,J,k

k=1 k=1

where n = p/((¢ —1)(1 — p)), where #x denotes the number of nonzero c-ary
digits in z, where division by zero at 4 = 0 and ¢ = 1 is to be removed by
continuity, and where

AVEY :#((Ck -)® (Ck -1 ®1) — #((Ck -1)® (Ck -1 ®j)

Define permutation matrices o; on R" by

O-j<x07 s 7xn71> = <'rj6907 s 7xj®(n—1)>

and define the operator M : A — A by

11



M(z)={((coz) " Moyz,...,(0h12) Mo, 1 z)

The Simple Genetic Algorithm’s heuristic is

G =MoF

It is well known (and may be verified by direct calculation; simply take X = 0
above and simplify) that in the case of zero crossover the heuristic has the
form

Az

G(z) = 1T Ax

for a suitable matrix A which is positive for nonzero mutation.

As is no doubt clear by contrasting the previous example (stochastic beam
search) with this one, establishing that a search strategy is an instance of
random heuristic search is, in general, a far easier matter than identifying its
heuristic. However, the prototype

G(t,p)i=1 — (1 — Pr{i € 7(p) | generation t})""

where 7 denotes the search strategy’s transition rule, implies that many basic
types of evolutionary search, including common forms of

Evolutionary Programming
Evolutionary Strategies
Genetic Algorithms
Genetic Programming

are instances of RHS. The basic requirements are that 2 be finite, and that
the transition 7 from one generation to the next be Markovian and expressible
as the result of r independent, identically distributed random choices (the dis-
tribution governing those choices may depend on both the generation number
and the current population).

Finiteness is not a serious issue, since limited space and resolution make it a
practical reality (for example, in genetic programming it is common to employ
a depth bound, and what pass for “real numbers” in Evolutionary Strategies
are typically floating point variables of 64 bits or less).

Assuming Markovian transitions, the requirement that 7 be expressible as
the result of r independent, identically distributed random choices is not a
serious issue for many common forms of evolutionary search. For some, like

12



Genetic Programming for instance, the mechanism producing the next gener-
ation is naturally a series of independent identically distributed choices. For
others, like p + A Evolutionary Strategies, the situation, while considerably
less straightforward, may be handled by approximation in the sense that there
exists an instance of random heuristic search which approximates, to an arbi-
trary degree of precision, the actual dynamics.

As illustrated in section 3.2, appropriate choice of representation may help
identify a search method as an instance of RHS. In general, {2 need not contain
populations rather than strings if for some r > 1 there exists a solution z € A
(which may depend on p and t) to

Peir) = b= 1 2L

rg;)!

which holds for all g.

4 Basic Theory

This section is divided into three parts. The first is concerned with the most
basic results. The second classifies instances of random heuristic search and
introduces fundamental concepts. The third examines transient (i.e., local in
time) and asymptotic (i.e., averaged over infinite time) behavior. For simplic-
ity, the exposition will focus on the homogeneous case. For reasons of man-
ageability, it is only results rather than underlying reasons that are given (for
related results and more complete details, the interested reader is referred to
the citations which appear below).

4.1 First Principles

Given an instance of random heuristic search, perhaps the most fundamental
question is: beginning from current population p, what is the probability that
the next generation is ¢7 This is the first question to be addressed.

By Stirling’s theorem, given x € Z7, there exists 0 < # < 1 such that

13



Solving this equality for 6 defines it as a function of x. The function # appears
in the following theorem (see [23,25,28]).

Theorem 1 Let p be the current population vector. The probability that pop-
ulation q € %Xﬁ 18 the next population vector is

rq]
qu

r! H
9 1
:eXp{—?"qulnm—Z(hl 2TFTQj+W>+O(1nT)}

rq;
where summation is restricted to indices for which q; > 0.

The characterization of random heuristic search as completed in section 2 rests
ultimately on sampling €, since 7 is the induced map in figure 4.

sample €
g(p)

Figure 4. 7 as an induced map.

However, since each random vector in the sequence p, 7(p), 72(p), ... de-
pends only on the value of the preceding one, they form a Markov chain with
transition matrix

G(p),)"

Qpq=T! H (rq;)!
j

The conceptualization of RHS as given in section 2 may therefore be replaced
by an abstraction which makes no reference to sampling €2 at all: from current
population p, produce ¢ = 7(p) with probability @, ,.

As is no doubt clear, the theoretical scaffolding made available by the frame-
work of random heuristic search includes all the machinery of Markov chains.
Moreover, any question concerning 7(p) may be answered in terms of the tran-
sition matrix @), since it defines the stochastic behavior. For example, if the
goal of RHS is to produce a population contained in some set S, let v and
() be the initial population distribution and transition matrix (respectively),
except that all entries (rows and columns) corresponding to populations p € S
are omitted. A standard result from Markov chain theory is that the expected
number of generations to encounter a member of S is

14



V(- Q)1

Now that transition probabilities have been determined, it is natural to ask:
what is the expected next generation? The answer is given by the following
theorem (see [27,28]).

Theorem 2 Let £ denote the expectation operator.

Note the conceptually dual interpretation of G(p). Whereas it previously spec-
ified a sampling distribution, it now represents an expected population. Ob-
serve that theorem 2 places no conditions on r. It therefore holds independent
of population size; G simultaneously describes the expected next generation
for all population sizes.

Theorem 1 in conjunction with theorem 2 provides qualitative information
concerning probable next generations. The expression

q;
2 almgey

J

is the discrepancy of ¢ with respect to G(p) and is a measure of how far ¢ is
from the expected next population G(p). Discrepancy is nonnegative and is
zero only when ¢ is the expected next population. Hence the factor

o o)

occurring in theorem 1 indicates the probability that ¢ is the next generation
decays exponentially, with constant —r, as the discrepancy between ¢ and the
expected next population increases.

The expression

1
¥ (0Bt + 1yt

measures the dispersion of the population vector g. A minimally disperse pop-
ulation ¢ contains r identical population members and corresponds to g = e;
for some i (recall that e; is the ith column of the identity matrix). The corre-
sponding dispersion is O(Inr). If n > r, a maximally disperse population has

15



no duplication (¢ has r nonzero components which are all 1/r) and dispersion
r. Figure 5 illustrates this for ¢ = 2, » = 4. The size of dots correspond to dis-
persion; smaller dots have lower dispersion, larger dots have higher dispersion.

[

Figure 5. Distribution of dispersion.

The factor

1
exp{—Z(ln\/m“LW)}

occurring in theorem 1 indicates the probability that ¢ is the next generation
decays exponentially with increasing dispersion. This is related to fluctuations
in finite populations induced by sampling; finite populations have a natural
tendency under sampling to converge.

The combined effect of the two influences of discrepancy and dispersion is that
random heuristic search favors a less disperse population near the expected
next generation. In particular, if the current population is near the expected
next generation, then the first factor does not contribute a strong bias for
change and so the second factor may exert a stabilizing effect on the current
population provided it is the less disperse among the alternatives. A further
contribution to stasis is provided by the lattice %X}; of points available to
populations for occupation. When G(p) is nearly the initial population p, the
influence of discrepancy favors p as the next generation. The strength of this
preference depends upon the distance between p and other lattice points (i.e.,
alternative populations). This phenomenon is made precise by theorem 1 and
the characterization, given in section 2.2, of the finite population state space as
%Xﬁ. This same phenomenon was later rediscovered for a particular instance
of RHS by van Nimwegen et. al. ([17,18]).

According to theorem 2, the expected next generation from population p is

known, but what about the variance? It decreases like 1/r (see [22]) and
depends upon the distance of G(p) from a vertex of A (see [23,25]).

16



Theorem 3 Let £ denote the expectation operator.

Ellr(p) =M =1 = 1IGP)II*)/r

Theorem 3 points to another influence in support of stasis when the current
population is near the expected next generation and in an area of low disper-
sion. Since ||G(p)||* < 1 with equality precisely when G(p) is at a vertex of A,
the variance is small in areas of low dispersion. This (i.e., low variance) favors
populations near the expected next generation.

A consequence of theorem 3 is that 7(p) converges in probability to G(p) as
the population size increases. Therefore, 7 corresponds to G in the infinite
population case. The following observations can be made (see [7]):

Theorem 4 The heuristic G simultaneously answers each of the following
questions:

o What is the exact sampling distribution describing the formation of the next
generation?

o What is the expected next generation?

e In the limit, as r — oo, what is the transition function which maps from
one generation to the next?

Moreover, theorems 1, 2, and 3 provide a conceptually simple decomposition
of 7 into a deterministic signal component, and a stochastic noise compo-
nent. Theorem 1 shows, for any 7, that 7(p) is given by a single sample from
a multinomial distribution. Associated with the stochastic progression of ran-
dom heuristic search is the deterministic dynamical system on A obtained
by iterating G instead of 7. This is the underlying flow which provides the
signal. The message of theorem 2 is that locally (i.e., for a single transition)
the expected result of 7(p) is given by the underlying flow. The message of
theorem 3 is that the variance from the flow (i.e., the noise in the sample) is

L= NG®)II*)/r.

It is appropriate here to comment on the use of the word “flow” in the previ-
ous paragraph. In dynamical systems theory [1], flow is a technical term which
does not relate to iterating G, but rather to an extension of that discrete time
dynamical system to continuous time by interpolating between successive it-
erates. While a standard construction might be used to embed a discrete
dynamical system in a flow, the domain of the extension differs, in general,
from that of the original dynamical system. The use of the word “flow” in
this paper is metaphorical, intended to suggest that trajectories (in the infi-
nite population case) are being swept along an evolutionary path under the
influence of an underlying current provided by G.
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As was noted previously, not every point of A corresponds to a finite pop-
ulation; only those rational points with common denominator r correspond
to populations of size r. The following theorem makes precise the previous
remark that these populations become dense in A as r — oo (see [23,25]).

Theorem 5 Let p,q € A denote arbitrary population vectors for population
size T, and let & denote an arbitrary element of A. Then

inf [|p — q|| =Vv2/r
PF£q
sup inf [l€ = p = O(1/v/r)

where the constant (in the “big oh”) is independent of the dimension n of A.

In the decomposition into signal and noise described above, the signal is in-
variant in the sense that it is independent of the population size (G does not
depend on 7). Using the metaphor of the signal exerting a force on a popu-
lation, the force G(p) — p acting on p is independent of r (by theorem 1, the
influence of r is external to G). The lattice spacing within A is not, however
(theorem 5). When the force is small relative to v/2/r, discrepancy is mini-
mized by 7(p) = p. In that case, random heuristic search is naturally biased
towards treating such populations as if they were fixed points, provided other
considerations — like dispersion and noise — do not indicate counter tendencies
(theorems 1, 3).

The next result (see [22]) provides a normal approximation to the transition
behavior of random heuristic search. In particular, it approximates the fluctu-
ations that occur about a fixed point. Let ¢ = G(p) and let C be an n by n—1
matrix having orthonormal columns perpendicular to h = (\/qo, ..., \/Gn-1)-

Theorem 6 For any open subset U of 1%, the probability that T(p) belong to
the set G(p) + U/\/r is

(2m) (D2 / eV 24y + o(1)
CTdiag(h)=1U

as r increases.

As will be later explained in some detail (in section 5) the observations made in
this section and those that follow apply to random heuristic search in general,
and speak therefore to both microscopic and macroscopic behavior.
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4.2 Fundamental Concepts

Standard terminology from probability theory is used in this section (in the
context of Markov chains for example, see [4,13] for the definition of a closed
set of states, an absorbing state, etc.).

An instance of random heuristic search is called:

e Frgodic, if some some power of the transition matrix () is positive.

e Absorbing, if, in the Markov chain which represents it, every closed set of
states contains an absorbing state.

e Regular, if whenever C' has measure zero, then so does the set G*(C).

e Focused, if G is continuously differentiable and p, G(p), G*(p), ... converges
for every p € A.

o Hyperbolic, if G is continuously differentiable and its differential dG, at x
has no eigenvalues of unit modulus when z is a fixed point of G.

e Normal, if it is hyperbolic and has a complete Lyapunov function.?

If RHS is ergodic, absorbing, regular, focused, hyperbolic, or normal, then
both 7 and G are also called ergodic, absorbing, regular, focused, hyperbolic,
or normal (respectively). The following observations are, given the previous
definitions, standard results from probability theory [4,13].

When RHS is ergodic, every state must be visited infinitely often. Moreover,
in that case

7l = lim v7QF
k—o00

exists and is independent of the initial population distribution v. The rows
of Q> are each 7!, which is a left eigenvector of ) corresponding to the
simple and maximal eigenvalue 1. The pth component of 7w represents the
proportion of time the Markov chain spends in state p (i.e., 7 is the “steady
state distribution”). The steady state distribution 7 may be extended to a
probability measure on A as follows:

m(A)= > mlpeA

1
peLX]

Here 7(A) is the probability given to A by the probability measure, and 7, is
the pth component of the steady state distribution. Thus for arbitrary A C A,
the proportion of time that RHS spends in A, averaged over infinitely many
generations, is represented by 7(A).

3 The paragraph following theorem 7 (below) defines a complete Lyapunov function.
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When RHS is absorbing, every initial population has, with probability 1, an
evolutionary trajectory which terminates in an absorbing state. Moreover, a
steady state distribution

77 = lim vTQF
k—o00
exists but is not necessarily independent of the initial population distribution
v. The pth component of 7 represents the probability that the Markov chain
becomes trapped in state p given initial distribution v. As before, 7 may be
extended to a probability measure on A. The extension is denoted by m, to
make the dependence on v explicit. Thus for arbitrary A C A, the probability

that RHS becomes trapped in A, given initial distribution v, is represented by
m,(A).

When RHS is regular, if C' has positive volume, then so does its expected
image (i.e., G(C)). That is, the underlying flow cannot collapse space in any
finite number of steps.

When RHS is focused, the trajectory determined by following at each genera-
tion what 7 is expected to produce will lead to some state w. By the continuity
of G, such points satisfy G(w) = w and are therefore called fized points. That
is, from every p the underlying flow — or orbit — p, G(p), G*(p), ... leads to
some stagnant location w(p) which depends possibly upon p. Moreover, the
orbit depends smoothly on p since G is continuously differentiable.

At a later point the question of speed of convergence will be examined. How-
ever, a precise definition of convergence faces several obstacles. The most ob-
vious is that ergodic random heuristic search does not converge, as every state
will be visited infinitely often. The naive definition of convergence as time to
discover the optimal is generally useless as well. The “no free lunch theorem”
[12,31] implies that it is no better, in general, than that achieved by enumer-
ation. The underlying problem here is that the metric of how good RHS is at
function optimization is generally worthless to gauge inherent behavior.

Consider, however, that the transition from a population to the next genera-
tion is given by G plus multinomially distributed “noise” (theorem 1). If G is
focused and if the perturbations effected by this noise are not too great, then
the initial transient of random heuristic search from initial population p might
be characterized by moving towards and spending time in the vicinity of that
fixed point w(p) to which the underlying flow converges (theorem 8 of the fol-
lowing section partially addresses this phenomenon). This scenario is plausible
as the population size grows since the magnitude of the noise decreases with
increasing population size (theorems 3, 6).

It is therefore natural to consider the time to convergence of an orbit as an

20



indication of the “settling time” of the initial transient, that is, an approxi-
mation of how long it might take for random heuristic search to move from p
into the vicinity of w(p), assuming the multinomially distributed “noise” is not
too great. Even after accepting this concept as an interesting one to pursue,
several problems remain. If G is invertible, then, strictly speaking, the time
to convergence of p, G(p), G*(p), ... is either zero or infinite depending upon
whether p is a fixed point.

The essential point made above is that random heuristic search, under the
influence of the underlying dynamical system corresponding to G, may tem-
porarily explore the vicinity of w(p). This being the case, approaching w(p) is
what matters, and if the concept to be pursued is how the signal component
provided by the flow — as opposed to the noise component — relates to this
issue, then the most straightforward way to capture the essential idea is to
determine, for every 4, the time taken by p, G(p), G*(p), ... to come within
d of w(p). So as to streamline exposition, the time referred to in the last sen-
tence — which obviously depends on p and § — will be referred to as “time to
convergence”. Note that time to convergence has been defined as a statement
regarding the underlying flow of RHS.

Difficulties remain. Perhaps the most obvious is that the time to convergence
depends upon the initial population, and, given fixed 4, there is nothing to
prevent the existence of a sequence of initial populations along which the
time to convergence diverges to infinity. For example, consider any instance
of focused random heuristic search such that u and v are distinct attracting
fixed points, and let s(¢) = tu + (1 — t)v. Let t* be the supremum of ¢ € [0, 1]
such that w(s(t)) = v. If the time to convergence to v were bounded, say by
k, then by the uniform continuity of G* (it is continuous and A is compact) it
follows that G*(s(¢*)) is mapped within & of v, and hence converges to v (for
suitably small §) since v is an attractor. But this contradicts that ¢* was the
supremum because the same continuity argument would imply the flow from
s(t* + €) converges to v for some € > 0. Therefore, given fixed §, the time to
convergence cannot, in general, be uniformly bounded.

However, the possibility remains that time to convergence could be uniformly
bounded for “most” initial populations. Let a probability density o be given,
and for any set A define the probability that the initial population is contained
in A as

/gd/\

A

where A is surface measure. A natural definition of “most” is a set of proba-
bility at least 1 — ¢ for small e. It is at this point that the current exposition
stresses the generality of the methods employed in [24]. They support surface
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measure on any manifold invariant under G — not just Lebesgue measure on
A — as defining the meaning of “most”.*

A position has now been reached where a reasonable definition can be formu-
lated: Logarithmic convergence of RHS is a statement about the flow induced
by G, and is defined to mean that for every probability density ¢ and ev-
ery € > 0, there exists a set A of probability at least 1 — ¢ such that if the
initial population p is in A then the number of generations k required for
1G*(p) —w(p)|| < §is O(=logd), for any 0 < § < 1.

Let & be the set of fixed points of G. Note that & contains the absorbing
states (if there are any) of the Markov chain representing random heuristic
search. When RHS is hyperbolic, $ is finite (see [24]). Moreover, a standard
observation from dynamical systems theory [1] is that near a fixed point w
the heuristic G is locally well approximated by the linear transformation dg,,
(regarding w as the origin) which is a contraction on some linear space L
and an expansion on £ (for some suitable choice of inner product and corre-
sponding norm; eigenvectors having corresponding eigenvalues within the unit
disk are within the contracting linear space, eigenvectors having corresponding
eigenvalues exterior to the unit disk are in the orthogonal space).

A discrete form of Lyapunov’s theorem is given by the following (see [28]).

Theorem 7 If & is finite and ¢ 1s a continuous function satisfying

z # Gx) = o) > ¢(G(z))
then iterates of G converge.

The function ¢ occurring above is called a Lyapunov function. The condition
on ¢ given in the proposition may be taken as = # G(z) = ¢(z) < ¢(G(x))
since it is actually the monotone behavior of ¢ along orbits that matters.
When ¢ assigns distinct values to distinct fixed points, it is called a complete
Lyapunov function.

Since normal heuristics are hyperbolic, & is finite, and therefore theorem 7
implies that normal heuristics are focused. Normal heuristics are also open;
an arbitrarily small smooth perturbation of a normal heuristic remains normal.
Moreover, similar normal heuristics have similar flows (see [25,28]).

When it makes sense to solve the fixed point equation G(z) = z outside of
A, as for instance in the case of the simple genetic algorithm where the fixed
point equation can be considered over complex space (see [3,7]), then fixed
points near but not within A may influence the behavior of RHS (see [23,25]).

4 The statement of results in [24] was not as general as the proof allowed.

22



The principle involved has been encountered before: By the continuity of the
flow, regions in A near a fixed point — whether or not the fixed point is within
A — have a signal component which does not exert strong pressure for change.
In such regions, the expected next generation is nearly the initial population
(theorem 2). The lattice of points available to populations for occupation
contributes to stasis; because populations are constrained to %Xﬁ, discrepancy
favors the current population as the next generation in regions where the flow
has stalled (theorem 1). The natural preference of random heuristic search
for states having low dispersion may have a stabilizing effect on the current
population provided it is the less disperse among the alternatives (theorem 1).
Moreover, the noise is smaller in such areas of low dispersion (theorem 3).°

As pointed out by Rowe [14], fixed points are not the only regions where the
phenomenon described above may be manifest. He gives an example where
G is nearly the identity within the unstable manifold of an unstable fixed
point. Since the flow has therefore stalled at lattice points near that unstable
manifold, it is the entire manifold — not just the fixed point — which impacts
the behavior of RHS. More generally, what matters is that the flow has stalled,
and that may occur in areas not necessarily associated with fixed points (or
with unstable/stable manifolds, for that matter).

4.8  Transient And Asymptotic Behavior

The following theorem (see [10]) shows as r increases that, with probability
converging to 1, the transient behavior of a population trajectory converges
to the flow, and the initial transient occupies an increasing amount of time.

Theorem 8 Given k > 0, ¢ > 0 and v < 1, there exists N such that with
probability at least v and for all 0 <t <k

r>N = |7'(z) - G'(z)]] <c¢

Theorem 8 indicates that as r increases, a trajectory from p follows a tran-
sient trajectory towards a fixed point by approximately following the flow.
In particular, if p is near the stable manifold of an unstable fixed point, the
initial transient is characterized by moving towards that unstable fixed point.

® These mechanisms, as well as those described in section 4.3.1 as inducing punc-
tuated equilibria, have been the subject of public presentations at: The Sixth In-
ternational Conference on Genetic Algorithms (1995), EvCA’96 sponsored by the
Russian Academy of Sciences (1996), IMA Workshop on Evolutionary Algorithms
(1996).
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The next theorem (see [10,22]) provides a partial answer to the asymptotic
question of where RHS is predominantly spending time.

Theorem 9 If G is focused and ergodic, then for every e > 0 and every open
set U containing ¥, there exists N such that

r>N = 7n(U) > 1l—¢
If G is absorbing, then 7,(3) =1 for all v.

Assuming G is either absorbing or else focused and ergodic, theorem 9 indicates
that as r increases, population trajectories predominately spend time near &
asymptotically. The next theorem (see [24]) partially addresses how quickly
orbits approach a fixed point.

Theorem 10 If G is reqular, focused, and hyperbolic, then G is logarithmaucally
convergent.

4.3.1 Punctuated equilibria

Assuming G is ergodic, regular, focused, and hyperbolic, the view of RHS
behavior that emerges is the following (the absorbing, regular, focused, and
hyperbolic case is similarly characterized, except that once an absorbing state
has been encountered there can be no further change).

As r increases, and then with probability converging to 1, the initial tran-
sient of a population trajectory converges to following the flow determined by
G, and that transient occupies an increasing time span (theorem 8). Conse-
quently, populations will predominately appear near some fixed point w of G
(theorem 9), since, by logarithmic convergence, orbits approach fixed points
relatively quickly (theorem 10).

This appears in contrast to the fact that ergodic RHS visits every state in-
finitely often, and is reconciled by punctuated equilibria (see [24,27]): Random
events will eventually move the system to a population z’ contained within
or near the stable manifold (with respect to the underlying dynamical system
corresponding to G) of a different fixed point w’. Since random heuristic search
is Markovian, the anticipated behavior follows the flow to reach a new tem-
porary stasis in the vicinity of w’. This cycle of a period of relative stability
followed by a sudden change to a new dynamic equilibrium, commonly called
metastability, is the picture provided by the previous results. The time spent
in dynamic equilibrium near a fixed point will be referred to as an epoch.

As has already been explained (see the discussion at the end of section 4.2),
metastability is, among other things, a natural consequence of the ergodicity
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of the Markov Chain, and the interplay between the flow and the lattice avail-
able to finite populations for occupation. This mechanism inducing epochal
behavior was later rediscovered for a particular instance of RHS in [17,18].

The relationship of logarithmic convergence (theorem 10) to metastability is
clarified by reviewing the previous discussion in light of the existence of un-
stable fixed points and fixed points not within A (see [3,23,25]). For focused
and hyperbolic RHS, A is a finite disjoint union of basins of attraction of
fixed points. Although the stable manifolds of unstable fixed points have mea-
sure zero, they are interesting because small populations might not be within
the basin of attraction of any stable fixed point. Moreover, since the stable
manifolds of unstable fixed points have probability zero with respect to every
probability density over A, it might seem that the logarithmic convergence of
RHS does not speak to them.

That is not true, however. Logarithmic convergence is a statement about the
underlying flow, and the flow being considered may be taken to be that within
the stable manifold B of an unstable fixed point: the probability density ¢ may
be taken over B, the set A may be taken within B, and the integration [, o dA
may be performed with respect to surface measure on B.

It further clarifies matters to realize that whereas the flow within the stable
manifold of an unstable fixed point or of a fixed point not within A is relatively
unrestricted, finite populations are not. As pointed out in 2.2, only elements of
a finite lattice of points in A are available to finite populations for occupation.
Moreover, the lattice has measure zero with respect to every probability den-
sity over B, which again suggests that logarithmic convergence of RHS does
not speak to those regions of A most relevant; i.e., the populations themselves.

However, consider a small neighborhood U of a lattice point. By continuity
of the flow, the transient behavior from the lattice point as given by the flow
is nearly the transient behavior from any set A C U of positive probability
with respect to surface measure on any stable manifold B of any fixed point.
In particular, this continuity together with logarithmic convergence and theo-
rem 8 implies that the flow supports an initial transient of RHS which moves
towards the unstable fixed point of lowest dimension ® having stable manifold
near the lattice point (simply consider theorem 10 on the stable manifold B of
lowest dimension which intersects U in some set A of positive probability with
respect to surface measure on B); there is a predisposition to visit fixed points
in order of increasing dimension. In the context of genetic algorithms, this
predisposition has been expressed in terms of visiting fixed points in order of
increasing fitness, though in a much less precise and far more heuristic fashon
[27]. It was later rediscovered for a particular instance of RHS in [17,18].

6 The dimension of a fixed point is the dimension of its stable manifold.
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The bias of random heuristic search to visit fixed points in order of increasing
dimension does not necessarily imply that fixed points of higher dimension
(with a larger number of attracting dimensions) are more likely to be visited.
Expressed quantitatively in [10], as r decreases the lattice %Xf; of allowable
values for population vectors becomes increasingly coarse, as fewer points be-
come available for occupation. Search is conducted in lower dimensional faces
of A, which constrains the system’s ability to follow the signal. The restriction
of the heuristic to these low dimensional faces approximates the effective sig-
nal, and it is possible that the fixed points of high dimension are not visited,
being nowhere close to the low dimensional faces of A which can be occupied.
Among accessible fixed points, those of higher dimension may be relatively
more stable if they have fewer independent unstable directions lying in the
low dimensional faces of A explored by RHS.

The phenomenon of punctuated equilibria is not confined to the finite pop-
ulation case (though it may be more prevalent there due to the influences
peculiar to the finite population case which support its emergence, like, for
instance, the ergodicity of the Markov chain and the lattice of points available
to populations for occupation). The flow itself — which is followed exactly in
the infinite population case — is able to support metastability when there are a
number of fixed points of various dimensions. This follows from the continuity
referred to above, and is illustrated in figure 6.

Figure 6. Flow near an unstable fixed point.

The bold curves in figure 6 represent a stable manifold flowing into an unstable
fixed point of dimension one. The thin line depicts the flow nearby the stable
manifold, and the dots represent an infinite population trajectory. Since the
unstable fixed point is a fixed point, the flow must slow in its vicinity (by
continuity). Thus populations appear to be stable, for a while, as the orbit
approaches and leaves the fixed point ... only to approach, perhaps, another
unstable fixed point, though of dimension two, whereupon another temporary
stasis is experienced, and so on. This scenario of metastability wherein pop-
ulation trajectories may visit fixed points in order of increasing dimension is
supported by the continuity of the underlying flow.
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4.8.2  Meta-level Chain

Given that random heuristic search is adept at locating regions in the vicin-
ity of fixed points of G (theorems 8, 9, 10; see also [23,25]), the transition
probabilities from one such region to another are significant; random heuristic
search could be modeled by a Markov chain over the fixed points. If the tran-
sition probabilities from temporary stasis in the vicinity of one fixed point to
temporary stasis near another can be determined, then some aspects of the
punctuated equilibria could in principle be analyzed.

The goal of constructing a meta-level Markov chain as described in the previ-
ous paragraph has been partially achieved in the large population case, insofar
as steady state behavior is concerned, subject to the condition that G is nor-
mal and maps A to its interior (the interested reader is referred to [22,25] for
a more complete account).

Let p = x,...,z; be a sequence of points from A, referred to as a path of
length k from xy to x. Define the cost of p as
| P |:a$0,m1 ot gy

where

U.
oy = n —L—
Qy, Zvjng(u)j

Let the stable fixed points of G in A be {wy,...,w,} and define

Puiw; =inf { | p | : p is a path from w; to w;}

Let C be a Markov chain defined over {1,...,w} with i — j transition prob-
ability (for i # j) given by

Civj = exp{—r Puw;w; + O(T)}

As r increases, and then up to uncertainly in the o(r) terms, the desired
Markov chain is C in the sense that the steady state distribution of random
heuristic search converges to that of C.

As noted in section 4.2, the Markov chain C cannot possibly be appropriate
for small r» because unstable, complex, and stable fixed points outside A make
no contribution to C. Moreover, as pointed out by Rowe (see the discussion at
the end of section 4.2), entire manifolds may have relevance. More generally,
what matters is that the flow has stalled, and that may occur in areas not
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necessarily associated with fixed points or with stable or unstable manifolds.
Nevertheless, the form of the transition probabilities above is instructive. The
likelihood of a transition from 7 to j is determined by the minimal cost path
from w; to w; where a path incurs cost to the extent that it is made up of
steps which end at a place differing from where G maps their beginning.

As the population size increases, the steady state distribution of RHS con-
centrates probability near & (theorem 9), which for normal random heuristic
search is a finite set. Ergodic RHS will escape the vicinity of one fixed point
only to temporarily spend time in the vicinity of another. However, a dispro-
portionate amount of time may be spent near some particular fixed point.
Under suitable conditions, random heuristic search will, with probability ap-
proaching one, be asymptotically near that fixed point having “largest” basin
of attraction; as population size grows, the probability of it spending a non-
vanishing proportion of time anywhere else converges to zero.

Define the fized point graph to be the complete directed graph on vertices
{0,...,w} with edge ¢ — j (for i # j) having weight p,, .,,. Define a tributary
to be a tree containing every vertex such that all edges point towards its root.
Let Tree; be the set of tributaries rooted at k, and for £ € Treey let its cost
|| be the sum of its edge weights.

A steady state solution for an ergodic Markov chain with transition matrix A
refers to any solution z of the steady state equation z7 = 2T A. The steady
state distribution of the Markov chain is obtained simply by dividing x by
172, The Markov chain C has steady state solution

e=( Y e (@) 7 rlio)y

tecTree te Tree,

Theorem 11 If there exists a unique minimum cost tributary rooted at some
vertex k', then, as r increases, the steady state distribution of C — and that of

ergodic, normal random heuristic search as well — converges to point mass at
k'

In this case, wy is said to have the “largest” basin of attraction.

5 Hierarchical Models

This section considers the interpretation of random heuristic search as taking
place on equivalence classes. One might observe that there is nothing to do,
because the search space 2 can simply be taken to be a collection of equiva-
lence classes. While trivially true, the observation is nevertheless important.
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Random Heuristic Search is a general framework which allows any finite set as
the search space. Preconceived notions of “microscopic” vs “macroscopic” or
“genotype” vs “phenotype” are irrelevant to the scope, power, and application
of the paradigm.

At the risk of belaboring what is patently obvious, choosing €) to be a space
of “phenotypes” — which, by the way, is simply a set of equivalence classes —
brings the full force of the theory of RHS to bear at what one might call the
“macroscopic” level.

If, however, an instance of random heuristic search is already defined, the
interesting question is whether that instance is compatible with a given equiv-
alence relation. Put another way: given a microscopic definition of RHS;, is a
macroscopic model compatible with it?

The issue of compatibility may perhaps best be illustrated by discussing an
abstract example. Let 7 be an instance of RHS over search space €). Let =
be an equivalence relation on 2, and for p € Q let [p] denote the equivalence
class containing p.” Suppose further that 7 is an instance of RHS having the
equivalence classes as its search space.

Given p € (), one may be interested in some aspect of the sequence

p, 7(p), 7(7(p)), ---

Suppose the investigation is to be carried out by considering 7 instead, i.e.,
by focusing attention solely on

[pl, 7([p]), 7(7([p])), - -

If, for general p, a conclusion based on the behavior of [p], 7([p]), 7(7([p])), - - -
applies to p,7(p), 7(7(p)),... then it must also apply — without any change
whatsoever — to ¢q,7(q),7(7(q)), ... whenever [¢] = [p]. In other words, valid
conclusions cannot distinguish between members of an equivalence class. The
following question therefore arises: does the aspect of interest depend upon
the initial population p in any way? If so, then it had better be the case that,
with respect to the aspect of interest, members of an equivalence class are
indistinguishable.

Note that the situation described above depends on 7 (since p, 7(p), 7(7(p)), - . -
is the object of interest) and upon the equivalence relation (since valid con-
clusions cannot distinguish between equivalent members) but is independent

" Previous usage of [expr] to denote an indicator function will be maintained; the
type of the argument to [-] will disambiguate possible meanings.
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of 7 in the sense that, however it may be defined, only properties shared by
members of an equivalence class can be deduced.

Of course, 7 needs to be defined such that properties of [p], 7([p]), 7(7([p])), - - .
are relevant. Towards that end, one may desire a relationship between 7 and
7 similar to

In that case, a hierarchical relationship exists between them in that the fol-
lowing diagram commutes

Thus the trajectory of an equivalence class under 7 is the equivalence class of a
trajectory under 7. Without a relationship of this kind, there is no guarantee
that the equivalence class of a future generation, namely [7%(p)], bears any
relationship to that predicted by 7, namely 7*([p]).

In other words, if the goal of introducing 7 is to provide a coarse-grained
model of 7 over a simplified search space of reduced complexity in which many
states have been collapsed or aggregated together, then the commutativity —
in some sense — of the diagram is required in order that the model reflect the
search behavior of 7. Otherwise, without one reflecting the other, there is no
guarantee that the “model” 7 has any relevance to 7.

The general theory of random heuristic search, as well as the remarks above,
may be brought to bear on the model 7 since it is an instance of RHS. In par-
ticular, an equivalence relation =’ might be defined over its search space and
a coarse-grained model 7' of 7 might be introduced, leading to a commutative
diagram of the sort
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[Pl ——— '(llp])

!/ —/

where [[p]]" indicates the equivalence class of [p| with respect to ='. In this
manner a hierarchy of models of varying granularity, form fine-grained models
which capture complete information, to coarse approximations, which only
attempt to track particular statistics, may be constructed.

The first part of this section concerns the issues discussed above. Its main
results are conditions under which random heuristic search can be viewed as
taking place on equivalence classes in a hierarchical manner. That is, it is
concerned with consistency and commutativity.

The second part of this section briefly considers the suitability of random
heuristic search over equivalence classes as a framework for approximate mod-
els in which no analogue of the hierarchical relationship [7(p)] = 7([p]) neces-
sarily holds.

To put this and the following sections in perspective, a few observations can
be made. First, the idea of moving to equivalence classes for the purpose of
simplifying or analyzing behavior is hardly new. In mathematics, for example,
the use of quotient spaces dates back nearly a century (see [2] for a general

discussion of quotient spaces corresponding to a function f and its equivalence
relation E(f)).

As to the application of equivalence classes to genetic algorithms, Holland [6]
was perhaps the first. His schemata result from the equivalence relation E(f)
of suitably chosen f related to patterns occurring in chromosomes. Choosing f
to be fitness, or related to fitness, results in examples E(f) of a different char-
acter. Rabinovich and Wigderson have analyzed GA dynamics in terms of the
corresponding quotient, i.e., in terms of fitness distributions [11]. Whereas ad
hoc statistics of fitness distributions (online performance, offline performance,
etc.) have historically been used as indicators of GA performance, classical
statistics (mean, variance, skewness, excess) have been used for the purpose
of modeling evolutionary trajectories [16].

Therefore, the point here is not to introduce the field of genetic algorithms to
the concept of equivalence classes — as noted above that has been done before,
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the most notable examples being schema, and fitness distributions. The point
is rather to give a coherent general account of quotients as they relate to
the abstract framework of random heuristic search, and to explicate relevant
consequences, interpretations, and interrelationships of a given instance of
random heuristic search to natural interpretations of it in a quotient. For
reasons of space, theorems in the following sections are simply stated. The
interested reader is referred to [25,26] for details.

5.1 Equivalence

Because €2 can naturally be regarded as a subset of A through the correspon-
dence

1€Q «— e €A
an equivalence relation on {2 may be regarded as applying to the unit basis
vectors of R" (i.e., the vertices of A) by

eE=e < 1=]

This relation on the vertices of A is extended to all x,y € A by

=y <= V.Y li=tly, =) [i=ty

The practice of using = for an equivalence relation on both Q and A, as
above, will be continued, since context makes the meaning clear. Moreover, =
can without modification be regarded as an equivalence relation on all of R",
since the definition above applies to any z,y € R".

Let A/= denote the set of equivalence classes of = in A, and let /= denote
the set of equivalence classes of = in €. The notation [a] will be used to denote
the equivalence class of a; thus [a] € /= when a € Q, and [a] € A/= when
a €A

Equivalence can be expressed in terms of the linear operator

= R RIS

having matrix
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where the rows are indexed by elements of 2/= and the columns are indexed
by ). Note that =z = Zy if and only if for all

Yli=jle;=>li=7ly

Therefore, elements x,y € A are equivalent precisely when Zx = Zy. Since
equivalence corresponds to having the same image under =, the equivalence
classes must be preimages under =,

A=={A NE7'z : z € ZA}
Theorem 12 FElements of A/= are convex, compact sets.

Let T C A be a collection of equivalence class representatives. That is, let T’
be minimal with respect to containment such that

A c U

teT

Note that T represents A/= through the correspondence

t < [t]

Given any collection T" of equivalence class representatives, the map

=: T — EA

is an isomorphism. Hence A /=, which is represented by 7', may be identified
with ZA. Note further that

aTE),= Y li=j) =1

[ileQ/=

Hence the image of A under = consists of non-negative vectors of dimension
| Q/= | which sum to 1. It follows that ZA, which has been identified with
A/=, represents the state space for random heuristic search over the search
space (2/=. The set ZA is called the quotient representation space, = is called
the quotient map, and /= is called the quotient search space.

Now that basic objects (the quotient map, the quotient search space, and the
quotient representation space) have been introduced and the correspondences

T +— A= +— EA
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have been established, the question of how a map on A may act naturally on
the quotient space will be considered.

Given a stochastic function h on A, define stochastic hy : T — T in accor-
dance with

Pr{h;(t) =t} = Pr{h(t) = t'}

If h is deterministic, the definition reduces to

hr(t)=t" € T such that h(t) € [t]

The map h, is equivalent to a map A on the quotient space by h(Zt) = Zhy(t)
for t € T. As expected, h depends on the choice T' of representatives. That is,
there is no reason to expect any natural relationship exists between h and h.
Whereas the hierarchical relationship

[(t)] = h([t])

holds in the deterministic case — by definition — for £ € T, there is no guarantee
it holds for elements not in 7. When A is nondeterministic, the relationship
may fail altogether. However, a strict interpretation of the hierarchical rela-
tionship in the context of stochastic functions is neither necessary nor desir-
able. Given functions h and g, to say “as stochastic functions, h = ¢” is to
indicate that

Pr{h(z) =y} =Pr{g(z) = y}

for all z and y. It is true in the nondeterministic case that, as stochastic
functions,

[(t)] = h([t])

provided ¢ € T. As in the deterministic case, there is no guarantee this rela-
tionship holds for elements not in 7.

The stochastic function A is said to be compatible with = if

r=y = VteT.Pr{h(z) € [t]} =Pr{h(y) € [t]}

When & is deterministic, this reduces to z =y = h(z) = h(y).
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Theorem 13 In order, for every t € T, that the distribution of E(Et) be
independent of the collection T of equivalence class representatives, it is nec-
essary and sufficient that h is compatible with =. When h is deterministic, h
15 completely determined by the following commutative diagram.

r — h(z)

Given h compatible with =, the function A is referred to as the quotient of h
(with respect to =).® To simplify exposition, 2/= will be denoted by €2, and
the image of x € A under the quotient map will be denoted by z.

Theorem 13 has the consequence for random heuristic search that G is well
defined by the hierarchical relationship [G(p)] = G([p]) if and only if G is
compatible with =. The situation for 7 is essentially the same, though as the
instance 7 of random heuristic search is defined with respect to its heuristic
G, so the instance 7 should be defined with respect to its heuristic G It is
therefore not at all clear that the definition of 7 by way of 7, — even if it is
independent of T — is compatible with definition by way of its heuristic G. The

next theorem resolves this issue.

Theorem 14 An instance 7 of RHS is compatible with = if and only if its
heuristic G is. Moreover, in that case

G'p)=q <= G'B)=4q
and

Pri7(p) = @} =] 91);

Y|
e (qu)-

for allp,g e A and k > 0. Ifp,q € %X,C then

Pri{r*(p) = ¢} = Pr{7*(p) = ¢}

for all k > 0.

8 When h is nondeterministic, h is only determined up to distribution.
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The basic framework is now in place for interpreting random heuristic search
as operating on equivalence classes. The consequence of compatibility is that
one does not need to know the detailed system state to obtain the dynamics
of the quotient. In particular, fixed points = of G correspond to fixed points
=z of G. As a trajectory 7(t), 72(t), 73(t), ... relates to fixed points of G, so
=7(t), 272(t), 273(t), ... relates to fixed points of G. Moreover, the previous
theorem shifts the focus from 7 to G. Since compatibility of the heuristic suf-
fices, the following result may be useful when G is expressed as a composition
of functions on A.

Stochastic functions h and g are called independent provided that, for all w,
x? y? Z?

Pr{g(w) =z A h(y) = 2} =Pr{g(w) = =} Pr{h(y) = 2}
In particular, deterministic functions are independent.

Theorem 15 If stochastic functions g and h map A to A, are independent,
and are compatible with =, then g and h are independent, g o h is compatible
with =, and, as stochastic functions, (go h) = go h.

5.2 Approrimate Models

In situations where G is compatible with a nontrivial equivalence relation, one
might be interested in 7 or in G as an alternative to 7 or G. Objects are simpler
in the quotient for the reason that () is smaller than (2.

In situations where G is not compatible with the equivalence relation (and, by
theorem 14, neither is 7), the dauntless may nevertheless choose to proceed at
the peril of sacrificing any expectation that the equivalence class of a future
generation bears any relationship — besides serendipitous — to that predicted
by 7.

Depending upon one’s goals, that might be appropriate. Certainly G is per-
fectly well defined with respect to any choice 1" of equivalence class repre-
sentatives, whether or not it happens to be compatible with the underlying
equivalence relation. And, given any definition of G on the quotient space, one
may consider the instance of random heuristic search over Q) having G as its
heuristic.

Whereas the freedom allowed by the approach described in the previous para-
graph (i.e., define G based on a choice for T', then take 7 corresponding to G)
provides flexibility and hope of obtaining a reasonable fit by judicious choice,
the hierarchical relationship may vanish — even in expectation! One could
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wind up in the situation of having a simple model about which nothing has
been proved except internally; the resulting model is an instance of RHS, so
the general theory of random heuristic search may be brought to bear on the
model ...but the degree to which the model represents 7 is another matter
altogether!

When proof is an irrelevant concept, as when empirically validating a model
by way of anecdotal examples, the outcome described above is of no conse-
quence. Moreover, estimating G — rather than defining it with respect to T’
— may provide further simplification. If confidence in the model is desired,
one may resort to empirical means, assuming the model’s complexity is not a
computational barrier.

As far as choosing T is concerned, the elements of A/= are convex compact sets
(theorem 12), and so the average of [t] is a natural candidate to represent [¢].
One might alternatively pick a maximal element of [t] with respect to entropy,
for instance, as a representative (models employing some sort of maximum
entropy assumption are not uncommon; see, for example, [11,15,17,18]). These
two possibilities coincide, however.

An element x € R" is said to be dominated by =, denoted x < =, provided

1=7] = Tp =Ty

Theorem 16 If =z = Zy and x < =, then the entropy of = is greater than
or equal to that of y.

Theorem 17 Let T be the set of equivalence class representatives given by
averaging,

1
M),

T={ /yd)\(y) cx € A}
2]

Then the representative t € T' of x| has i th component

In particular, t < =.

Combining theorems 16 and 17, it may be concluded that equivalence class
representatives given by averaging have maximum entropy. This choice for T
is convenient because it allows a simple characterization of G.
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Theorem 18 If equivalence class representatives are chosen by maximum en-
tropy, then
G=Z0GoD="
where D is the square diagonal matriz having ii th entry | [i] |7
Another consideration in choosing T is invariance. Suppose there exists a set

of representatives such that G : T" — T. In the case where T is chosen by
maximum entropy, this is equivalent to the condition that

t<= = §(t) =<

Since the hierarchical relationship

holds for ¢t € T', a consequence of invariance is the following.

Theorem 19 If T is invariant under G, then

(G (1] =G"([t])

for all k, provided t € T'. Moreover, the local dynamics of T as viewed in the
quotient space — i.e., Z7(t), E7°(t), E7°(t), ... — is attracted to the local dy-
namics of G as population size increases, for population trajectories beginning
T

As far as choosing = is concerned (assuming compatibility and invariance
are not considerations), its definition depends on the main points of interest.
For example, it may be natural, in the context of function optimization, to
equivalence class based on fitness.

6 Example

The purpose of this section is not the analysis of a previously unexamined
system. The point is rather to illustrate the theory presented in this paper
by way of a concrete application. The example of this section — royal road
functions — has been considered before [9,17].
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The results presented in previous sections point towards fixed points as im-
portant objects. However, finding them is not necessarily trivial. In the case
of the simple genetic algorithm (see section 3.3), the heuristic has the form

G=MoF

and whereas the fixed points of M and F are known separately, those for the
composition are not (see [25,27,29)).

One might consider “approximating” G by assuming zero crossover. In that
case, the heuristic takes the form

A
G(z) = llex

for a matrix A which, given nonzero mutation, is positive. This is a well-
known result which reduces several key concepts to more or less standard
concepts from linear algebra. In particular, the fixed points of G are eigen-
vectors of A; apart from magnitude, G is simply matrix multiplication. More-
over, G is focused if A has a simple maximal eigenvalue (which is the case
by Perron-Frobenius theory because A is positive [5]). In fact, the sequence
G(p), G%(p), G*(p), ... is essentially the power method for calculating the cor-
responding positive eigenvector [30].

Giving no thought to compatibility issues, one may seek to further reduce
complexity by passing to a simplified model based on fitness (see, for example,
[17,18]). That is, consider the state space to be the possible fitness distributions
which populations could take on. Given fitness function f, let its range be
{%0, -, yr}. Then a population p € A has fitness distribution p defined by the
component equations

JEQ

The situation just described is simply a case of quotients as described in
section 5.1. Let the equivalence relation = be defined on ) by

r=y <= f(z) = fly)

Let S = {sq,...,sk} be a set of equivalence class representatives such that
f(si) = yi. Renaming the [s;] th row of = with 4,
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= [n = FO)p

Thus Zp = p, which, since the quotient representation space and the space
of fitness distributions coincide, justifies the notation p to denote the fitness
distribution of p.

The following theorems (theorems 20 and 21) present preliminary results of
a general nature which relate to the issue of compatibility in the context of
population-based genetic algorithms (see [25,26]).

Theorem 20 If the fitness f is dominated by =, then the proportional selec-
tion, ranking selection, and tournament selection schemes are compatible with

When equivalence is defined with respect to fitness, as it is for the example of
this section (i.e., x =y <= f(z) = f(y)), theorem 20 implies the equivalence
relation is compatible with several commonly used selection schemes. The
situation for mutation is not as simple.

An equivalence relation = is called uniform with respect to translation provided
that for all 4,7, h, k € €,

i=j = |Goh)NK[=]0G®h) N[

That is, the cardinality of the intersection of the equivalence class of k& with
the translate by j of the equivalence class of h depends on the class of j rather
than the particular value of j.

The next theorem is a sufficient, though not necessary, condition for the mu-
tation scheme to be compatible with =. The mutation distribution it refers to
is the vector p defined by

p; = Pr{j mutates to j & i}

Theorem 21 If the mutation distribution p is dominated by =, and if = s
uniform with respect to translation, then the mutation scheme is compatible
with =.

In order to investigate compatibility further, details concerning G are required.
Let the search space be Z¥ (as in section 3.3, but with ¢ = 2) and consider
the class of degenerate Royal Road functions, which have the following form
(see [9] for the general case). Let 1 = ag & - - - @ a; where a; ® a; = a;[i = j|.
The fitness of x is given by
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fle)=>"lai =z ®aig

where ¢ is some positive real vector. A particularly simple parametrized set
of examples is given by £ = NK, g = 1, and a; = 25 (2K — 1). The positive
integer parameters N and K correspond to a decomposition of the optimal
string, 1, into N blocks of K contiguous 1s. An arbitrary string = has fitness
equal to the number of blocks in common with 1. The range of f is therefore
{0,..., N}, hence y; may be taken to be i and s; may be taken to be 2/ — 1
(the paragraphs preceding theorem 20 introduce y; and s;).

Letting G be the heuristic for the simple genetic algorithm with proportional
selection, zero crossover, positive mutation, and fitness function f (as de-
scribed above, with parameters N and K) refines the instance of random
heuristic search represented by the example of this section (this same example
is treated in [17,18]). For the case K = 1, the analysis has an entirely different
character, and while not difficult, will not be pursued here. Assume therefore
that K > 1.

The equivalence relation = is not uniform with respect to translation, as is
easily seen by the definition via the choice h =k =1, =0, j = >, 4*. While
not proof, this raises the suspicion that mutation is not compatible with =. It
is easily seen that the suspicion is actually the case; a population consisting
entirely of ¢ is equivalent to one consisting entirely of j, but the probability of
the first producing — via mutation — a subsequent generation containing 1 is
exponentially less than the probability of the second producing a subsequent
generation containing 1 (in the first case all bits of a string must mutate, in
the second case only half).

The example of the previous paragraph does more than show mutation is
incompatible with = (that is, all strings with a given fitness cannot be treated
as equivalent with respect to the dynamics of mutation), it shows that 7 —
which encompasses selection as well as mutation — is also incompatible, and
hence (by theorem 14) so is G.

A situation has now been arrived at where an equivalence relation = is defined
over a search space A, its corresponding quotient map = and quotient space
A = EA are thereby defined, an instance 7 of random heuristic search has
been identified with its corresponding heuristic G (parametrized by N and
K), ...but there is no natural well defined notion for either G or 7, because
both G and 7 are incompatible with =.

Following Rabinovich and Wigderson [11], let 7" be the set of equivalence
class representatives corresponding to maximum entropy. By theorem 17, the
representative ¢ € T of [z] has s; th component

41



and t; = t; whenever ¢ = j. This choice of 1" corresponds to an assumption
that the bit values in unaligned blocks are uniformly represented (random).

Since G is determined by G(Zt) = 2G(t) for t € T', the hierarchical relation-
ship

holds — by definition — for ¢ € T, ...but it is hopeless (since G is incompatible
with =) to expect it will hold for elements which are not equivalence class
representatives (i.e., elements for which the bit values in unaligned blocks are
not random). One would expect, even if beginning at an initial population
t € T, that the hierarchical relationship would vanish after one application of
T.

If, however, randomness (i.e., maximum entropy) were preserved in expecta-
tion, then 7" would be invariant under G. Appealing to theorem 19, the dynam-
ics of 7 as viewed through fitness distributions —i.e., Z7(t), 2 7%(t), Z73(t), ...
— would be attracted to the dynamics of G as population size increases, for
population trajectories beginning in 7.7

That is not the case, however. Given fixed positive mutation, the dynamics
for 7 is not attracted to the dynamics for G in any meaningful sense, because
whereas selection preserves randomness of unaligned blocks, mutation does
not. For example, consider the population ¢ € T' containing only copies of 1.
The next generation is expected to contain strings of fitness zero, but all such
strings do not occur with equal probability; 0 is exponentially less likely to
occur than 3 4. Hence maximum entropy is not preserved.

From the perspective of modeling, it is of little concern that exact theoretical
coupling between 7 and 7 (or between G and Q~) does not exist. It is still of
interest to pursue G as an approximate model and to investigate the sense in
which it approximates.

The situation for selection is altogether different from that for mutation. Be-
cause selection satisfies t <= = F(t) < =, it follows that G : T — T
when mutation is zero. By theorem 19, the dynamics of 7 as viewed through
fitness distributions is therefore attracted to the dynamics of G as population

9 While not worked through in generality, the invariance principle (in this case, the
preservation of entropy) was implicit in the analysis of Rabinovich and Wigderson.
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size increases, provided mutation is zero and population trajectories begin at
members of T'.

However, more is true. Since selection is compatible with = (theorem 20), F is
well defined independent of T' (theorem 13), and the hierarchical relationships

[G*(z)] = G*([z])
Pr{r"(p) = ¢} =Pr{7 () = ¢}

hold in the zero mutation case for all k£ and every initial population (theo-
rem 14). By theorem 18 (and using the fact that 172 = 17,

5 . Bt
90 =175

where B = ZADZ=T. Given zero mutation this simplifies to

- . diag((0,...,N))z
R

Since G is a continuous function of mutation, so to is G(=t) = =G (t). Hence,
for small mutation, the local dynamics of G is nearly that of F (continuity),
which is the image under = of the local dynamics of F (theorem 14), which
is nearly the image under = of the local dynamics of G (continuity), which
coincides with that of 7 as viewed through fitness distributions as population
size increases (theorem 4). Therefore, there is theoretical reason to hope that
G approximately models trajectories through fitness distribution space:

Theorem 22

o As the mutation rate decreases, the local dynamics of T as viewed through
fitness distributions converges to that of 7.

o As the population size increases and the mutation rate decreases, the local
dynamics of T as viewed through fitness distributions converges to that of G.

The above theorem speaks to local (i.e., time bounded) dynamics. What about
global dynamics? What can be said concerning fixed points and their stable
and unstable manifolds as the mutation rate increases from zero?

The matrix diag((0, ..., N)) has distinct eigenvectors, which correspond to the
fixed points of F; these are the vertices of A. As has been explained in [28],
F is a normal heuristic. When it is regarded as acting on the sphere, call it
F' in that context,
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diag((0,...,N))z
||diag ({0, ..., N))z||

F'(z)=

its global dynamics are continuous; for small smooth perturbations, normality
is preserved, the number and dimensions of fixed points are preserved, and
their locations and stable and unstable manifolds vary continuously. However,
the global dynamics on A is, technically speaking, a different story. The addi-
tion of positive mutation, however small, changes the number of fixed points
from N to 1; this is a simple consequence of Perron-Frobenius theory: there
is a unique positive eigenvector of B in A (since the matrix B is positive) and
all of A is contained within its basin of attraction [5].

What is happening here is that the global dynamics on the sphere is varying
continuously, but fixed points — except for the one represented by the eigen-
vector corresponding to the maximal eigenvalue of B — are moving from the
vertices of A into the exterior of A taking their stable manifolds with them.
Although all but one fixed point leaves A, they still exert an influence on
trajectories within A by way of the continuity of the flow.

Since, for small mutation, G is a normal and regular heuristic, the general
theory of random heuristic search provides a unified understanding of the
mechanisms that control the dynamics and determine the quantitative and
qualitative nature of 7.

Qualitatively, one would expect to observe punctuated equilibria, even in re-
gions where fitness is not locally optimal. 1 Moreover, periods of stasis in pop-
ulation fitness distributions are identified near the flow’s fixed points whether
or not they are contained within A (see the discussion at the end of section 4.2).
The following observations can be made about such regions:

e They are, for small mutation, near vertices of A, and are areas of low dis-
persion.

e They are regions where the force, G(j) — p, is weak.

e They are regions where the noise, £(||7(5) — G(p)||?), is weak.

As discussed in section 4.3.1, one expects to observe alternation between pe-
riods of stasis and a sudden change to a new dynamic equilibrium. This punc-
tuated equilibria results from mechanisms fairly well understood in the theory
of random heuristic search: the interplay between the flow and the lattice
available to finite populations for occupation, the continuity of the underly-
ing flow which supports population trajectories visiting fixed points in order
of increasing dimension, the depressed dispersion, signal, and noise, and the
ergodicity and logarithmic convergence of the heuristic.

10°A specific example of this phenomenon, though in a different context, is given in
[19].
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One expects spatial fluctuations during an epoch to be approximately Gaus-
sian (theorem 6) and the variance to scale inversely with the population size
(theorems 3, 6). The spatial location of an epoch is not expected to change sig-
nificantly as the population size varies, since it is determined by the dynamics
of G (by theorem 1, the influence of population size is external to G). However,
population size is expected to impact its duration as well as the probability,
both local in time and averaged over infinite time, of it being encountered
(theorems 3, 8, 9, 11). From an asymptotic perspective, the meta-level chain
indicates increasing dominance, as population size increases, of the epoch rep-
resented by the eigenvector corresponding to the maximal eigenvalue of B
(theorem 11). From a transient perspective, the systems ability to follow the
flow increases with population size (theorems 5, 8). Whereas many of these
conclusions are reached in [17,18] for the specific example considered in this
section, the conclusions here are seen to be consequences of the general theory
of random heuristic search.

7 Conclusion

Parts of the theory of random heuristic search were illustrated in the pre-
vious section, though only in a qualitative and superficial way. The detailed
information provided by theorem 1

along the lines suggested in section 2.2 could be performed. Whereas the triv-
iality of the example — it is essentially linear — would enable a fairly accurate
quantitative analysis in terms of dG, at eigenvectors z, the computational ex-
pense of computing eigenvectors compares with matrix inversion (for a treat-
ment from that perspective, see [18]). With respect to theoretical analysis of
the example, the advantage of 7 over 7 is unclear.

The reader interested in more details, further results, and analysis as applied
to genetic algorithms is referred to [25].
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